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Abstract. We propose a novel method for unsupervised class segmen-
tation on a set of images. It alternates between segmenting object in-
stances and learning a class model. The method is based on a segmen-
tation energy defined over all images at the same time, which can be
optimized efficiently by techniques used before in interactive segmenta-
tion. Over iterations, our method progressively learns a class model by
integrating observations over all images. In addition to appearance, this
model captures the location and shape of the class with respect to an
automatically determined coordinate frame common across images. This
frame allows us to build stronger shape and location models, similar to
those used in object class detection. Our method is inspired by inter-
active segmentation methods [1], but it is fully automatic and learns
models characteristic for the object class rather than specific to one par-
ticular object/image. We experimentally demonstrate on the Caltech4,
Caltech101, and Weizmann horses datasets that our method (a) trans-
fers class knowledge across images and this improves results compared
to segmenting every image independently; (b) outperforms Grabcut [1]
for the task of unsupervised segmentation; (c) offers competitive per-
formance compared to the state-of-the-art in unsupervised segmentation
and in particular it outperforms the topic model [2].

1 Introduction

Image segmentation is a fundamental problem in computer vision. Over the past
years methods that use graph-cut to minimize binary pairwise energy functions
have become the de-facto standard for segmenting specific objects in individual
images [1, 13, 4]. These methods employ appearance models for the foreground
and background which are estimated through user interactions |1, |3, [4].

On the one hand, analog approaches have been presented for object class
segmentation where the appearance models are learned from a set of training
images with ground-truth segmentations [5-7]. However, obtaining ground-truth
segmentations is cumbersome and error-prone.

On the other hand, approaches to unsupervised class segmentation have also
been proposed [2, 18410, [12, [13]. In unsupervised segmentation a set of images
depicting different instances of an object class is given, but without information
about the appearance and shape of the objects to be segmented. The aim of an
algorithm is to automatically segment the object instance in each image.
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Interestingly, most previous approaches to unsupervised segmentation do not
use energy functions similar to those in interactive and supervised segmentation,
but instead use topic models [2] or other specialized generative models [10, [12]
to find recurring patterns in the images.

We propose ClassCut, a novel method for unsupervised segmentation based on
a binary pairwise energy function similar to those used in interactive/supervised
segmentation. As opposed to those, our energy function is defined over a set
of images rather than on one image |1, |3-5]. Inspired by GrabCut [1], where
the two stages of learning the foreground/background appearance models and
segmenting the image are alternated, our method alternates between learning a
class model and segmenting the objects in all images jointly. The class model is
learned from all images at the same time, so as to capture knowledge about the
class rather than specific to one image [1]. Therefore, it helps the next segmen-
tation iteration, as it transfers between images knowledge about the appearance
and shape of the class. Thanks to the nature of our energy function, we can
segment all images jointly using existing efficient algorithms used in interactive
segmentation approaches [1, 3, 14, [15].

Inspired by representations successfully used in supervised object class detec-
tion [16, [17], our approach anchors the object class in a reference coordinate
frame common across images. This enables modeling the spatial structure and
shape of the class, as well as designing novel priors tailored to the unsupervised
segmentation task. We determine this reference frame automatically in every
image with a procedure based on a salient object detector [18§].

At each iteration ClassCut updates the class model, which captures the ap-
pearance, shape, and location distribution of the class within the reference frame.
The final output of the method are images with segmented object instances as
well as the class model.

In the experiments, we demonstrate that our method (a) transfers knowledge
between images and this improves the performance over segmenting each image
independently; (b) outperforms the original GrabCut [1], which is the main inspi-
ration behind it and turns out to be a very competitive baseline for unsupervised
segmentation; (c) offers competitive performance compared to the state-of-the-
art in unsupervised segmentation; (d) learns meaningful, intuitive class models.
Source code for ClassCut is available at http://www.vision.ee.ethz.ch/ " calvin.

Related Work. We discussed in the introduction that our method employs
energy minimization techniques used in interactive segmentation [1, 13, 4, 114, [15],
and how it is related to supervised |5, (7, [19] as well as to unsupervised |2, 10-12]
class segmentation methods.

A different task is object discovery, which aims at finding multiple object
classes from a mixed set of unlabeled images |11, 29]. In our work instead, all
images contain instances of one class.

The two closest work to ours are [, 9], which have a procedure iterating be-
tween updating a model and segmenting the images. In |8] the model is given
a set of class and non-class images and then it iteratively improves the fore-
ground/background labeling of image fragments based on their class likelihoods.
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Their method learns local segmentations masks for image fragments, while our
method learns a more complete class model, including appearance, shape and
location in a global reference frame.

Arora et al. [9] learn a template consistent over all images using variational
inference. Their template model is very different from our class model, and closer
to a constellation model [20]. Moreover, their method optimizes the segmentation
of the images individually rather than jointly.

Finally, our approach is also related to co-segmentation [21] where the goal is
to segment a specific object from two images at the same time. Here we try to go
a step further and co-segment a set of images showing different object instances
of an unknown class.

2 Overview of Our Method

The goal is to jointly segment objects of an unknown class from a set of images.
Analog to the scheme of GrabCut [1], ClassCut alternates two stages: (1) learn-
ing/updating a class model given the current segmentations (sec. ); (2) jointly
segmenting the objects in all images given the current class model (sec. B]). It
converges when the segmentation is unchanged in two consecutive iterations.

Our segmentation model for stage (2) is a binary pairwise energy function,
which can be optimized efficiently by techniques used in interactive segmenta-
tion [1, 13, 122], but jointly over all images rather than on a single image |[1]
(sec. B).

In stage (1), learning the class model over all images at once enables cap-
turing knowledge characteristic for the class rather than specific to a particular
image [1]. As the class model is used in the next segmentation iteration it trans-
fers knowledge across images, typically from easier images to more difficult ones,
aiding their segmentation. For example, the model might learn in the first itera-
tion that airplanes are typically grayish and the background is often blue (fig. ).
In the next iteration, this will help in images where the airplane is difficult to
segment (e.g. because of low contrast).

The class model we propose (sec.[3.2) consists of several components modeling
different class characteristics: appearance, location, and shape. In addition to a
color component also used in GrabCut [1], the appearance model includes a bag-
of-words [23] of SURF descriptors [24], which is well suited for modeling class
appearance. Moreover, we model the location (sec. B:2) and shape (sec. B2)
of the object class w.r.t. a reference coordinate frame common across images
(sec. Bl). Overall, our model focuses on knowledge at the class level rather than
at the level of one object as in the works it is inspired from [, 4].

In addition to the class model, the segmentation energy include priors tailored
for segmenting classes (sec. BI)). The priors are defined on superpixels [25], which
act as grouping units for homogeneous areas. Superpixels bring two advantages:
(i) they provide additional structure, i.e. the set of possible segmentations is
reduced to those aligning well with image boundaries; (ii) they reduce the com-
putational complexity of segmentation. We formulate four class segmentation
priors over superpixels and multiple images (sec. [31]).
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Fig. 1. Overview of our method. The top row shows the input images, the auto-
matically determine reference frames and the initial location and shape models. The
bottom row shows how the segmentations evolve over the iterations as well as the final
location and shape models.

If a common reference frame on the objects is available, our method exploits
it to anchor the location and shape models to it and to improve the effectiveness
of some of the priors. We apply a salient object detector HE] to determine this
reference frame automatically (sec. [)). In sec. [l we show how this detector im-
proves segmentation results compared to using the whole image as a reference
frame. Fig. [[l shows an overview of the entire method.

3 Segmentation

In the set of images Z = {I1,...,Iny} each image I, (given either as a full
image or as automatically determined reference frame) consists of superpixels

{SL ..., SEn} We search for the labeling L* = <(l}, Y AL TN (A £ N

N (5 lﬁN)) that sets [¥ = 1 for all superpixels S* on the foreground and

I = 0 for all superpixels S7 on the background.
To determine L*, we minimize

L* = argmin{Fo(L, 1)}  with Fo(L,1) = de(L,T) + ¥o(L,T) (1)
where @ is the segmentation prior (sec. Bl and ¥ is the class model (sec. B2]).

In sec. B3] we describe how to minimize eq. (). © are the parameters of the
model.

3.1 Prior $o(L,T)
The prior @ consists of four terms
Po(L,T) = waA(L,T) + wyx(L,T) + wrl'(L,Z) + waA(L,T) (2)

The scalars w are part of the model parameters © and weight the terms. Below
we describe the terms in detail.
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Fig. 2. Priors. (a) The smoothness prior between two superpixels is weighted inversely
to the sum over the gradients along their boundary (shown in yellow and blue for
two pairs of superpixels). (b) The between image smoothness prior is weighted by
the overlap (yellow) of superpixels (shown for two pairs of superpixels (red/green) in
two images). (¢) The border penalty assigns high values to superpixels touching the
reference frame boundary (dark=low values, bright=high values).

The Within Image Smoothness A is a smoothness prior for superpixels
which generalizes the pixel-based smoothness priors typically used in interactive
segmentation [El] It penalizes neighboring superpixels having different labels.

=) Z 3(8, # 1) exp(—grad(Sy, Sy)) 3)

where j, k are the indices of neighboring superpixels S7, S*¥ within image I,,.
§(I7 # 1%) = 1 if the labels I7, ¥ are different and 0 otherwise. The gradient
grad(S7, S*) between S7 and SF is computed by summing the gradient mag-
nitudes m along the boundary between S7, S¥ (fig. Bh) normalized w.r.t. the
length of the boundary. Thus, the penalty is smaller if the two superpixels are
separated by high gradients. This term encourages segmentations aligned with
the image gradients.

The Between Image Smoothness x operates on superpixels across images.
It encourages superpixels in different images but with similar location w.r.t. the
reference frame to have the same label:
SInsS

D IR @

o \S U Sk |
where n,m are two images and j, k superpixels, one in I, the other in I,,.
This penalty grows with the overlap of the superpixels (measured as area of
intersection over area of union). Therefore only overlapping superpixels interact

(fig. Bb). This term encourages similar segmentations across all images (w.r.t.
the reference frame).

The Border Penalty I' prefers superpixels at the image boundary to be
labeled background. Objects rarely touch the boundary of the reference frame.
Notice how the object would touch even a tight bounding-box around itself only
in a few points (e.g. fig. Bh). The border penalty

border(S¥)
Ik
ZZ " perimeter(Sk) )
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assigns a penalty proportional to the number of pixels touching the refer-
ence frame (border(S¥)) to each superpixel S¥ normalized by its perimeter
(perimeter(S¥)). This term penalizes superpixels touching the border of the ref-
erence frame to be labeled foreground (fig. ().

I' is only meaningful on superpixels. If the segmentation is performed at the
pixel-level, the border penalty can be compared to a low prior on the boundary
pixels which may be propagated toward the image center using the smoothness
prior. This shows how superpixels introduce additional structure into the model.

The Area Reward A encourages a large foreground region in order to find
the entire recurring object and not just a small recurring object part. The term

ZZ—ZZ;" 7 (©)

assigns to each superpixel a reward proportional to its area (normalized w.r.t.
the area of the reference frame).

The combined effects of I" and A are similar to the (more complex) bounding-
box prior [4]: the foreground region should be as large as possible while not
crossing the boundary of the reference frame (here, touching it).

3.2 Class Model %Yo (L,T)

The class model Wg(L,T) accounts for the appearance, shape, and location of
the objects:

Uo(L,T) = woe(L,T) + wille(L,T) + Y wys TL(L,T) (7)
f

The scalars w are part of the model parameters @ and weight the terms. Below
we describe these models in detail. In sec. dl we explain how they are initialized
and updated over the iterations.

The Location Model 2 accounts for the locations of objects w.r.t. the ref-
erence frames. We model the probability for a pixel s at its position to be
foreground p*’(I|s) as the empirical probability in the reference frame. p*
quantized to 32x32 locations within the reference frame.

To compute the energy contribution for a superpixel S¥ labeled foreground,
we average over all positions in S* and incorporate this into eq. (@) as

ZZ gy 2 ~logp?(thls) (8)

n seSk

Fig. Bk shows a final location model obtained after convergence. The location
model encourages similar segmentations w.r.t. the reference frame in all images.

The Shape Model IT accounts for the global shape of the objects within the
reference frames. We model the global shape of the objects as the probability
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Fig. 3. (a) Training the location model (2. In each iteration, we segment all im-
ages and reestimate a location model specific to the current class using the current

segmentations. (b) Generic object location prior. The initial segmentation used to
initialize appearance models is drawn in white.

T(boundary|s, 3) that an object boundary with orientation 3 is at position
s. This is modeled as the empirical probability of oriented object boundaries
quantized into 5 orientations and 32x32 spatial bins.

For a pair of neighboring superpixels S7,S* in image I,, this probability is
accumulated along their boundary SJ ¢ S to obtain the probability that one of
them is foreground and the other background as:

pT (13 #1587, %) = ! > p"(boundaryls, 5;) (9)

J
|97 2 ‘ s€Siisk
where [, is orientation of pixel s. This model is then incorporated in eq. () as:

)= 6 #18) (u—p" 1 #1555, %)) (10)

where 11 = _ 43 ., > e p (boundaryl|s, 3) is the mean probability of a boundary
over all locations and orientations.

Fig.[d shows an initial shape model and a shape model after convergence. The
shape model encourages segmentations with similar shapes w.r.t. the reference
frame in all images.

The Appearance Models T/ capture the visual appearance of the foreground
and background regions according to different visual descriptors f. As visual
descriptors f we use color distributions (COL) and bag-of-words (23] of SURF
descriptors [24] (Bow).

For a pixel s, the probability to be foreground (or background) p/(I|s) is
modelled using Gaussian mixtures for p®(l|s), closely following [1], and using
empirical probabilities for p®°V(I|s). It is incorporated into eq. ([l by averaging
over all pixels within a superpixel.

Note that our appearance model extends the model of GrabCut [1] by the bag
of SURF descriptor which is known to perform well for object classes.

1L, T) = ZZ g > logp! (I5]s) (11)

seSk
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Fig. 4. The shape model. We initialize our shape model IT using only boundaries
between superpixels. The shape model after convergence is shown on the right.

The appearance models capture the appearance of foreground and background
region. The color model closely resembles those used in interactive segmentation
and together with the bag-of-SURF model captures class appearance.

3.3 Energy Minimization

As the energy (eq. () is defined over binary variables and comprises only unary
(IA,2,7) and pairwise (x,A,II) terms, we minimize it using QPBO @]
Since QPBO labels only those superpixels for which it is guaranteed to have
the global optimum, some superpixels might be left unlabeled. To label these
superpixels we use TRW-S ﬂﬁ] TRW-S not only labels them but also computes
a lower bound on the energy which may be used to assess how far from the global
optimum the solution is.

Note that all pairwise terms except for the shape model are submodular. We
observed that on average only about 2% of the pairwise terms in the final model
(i.e. incorporating all cues) are non-submodular.

In our experiments, we observed that QPBO labels on average 91% of the
superpixels according to the global optimum.

Furthermore, we observed that the minimization problem is hardest in the
first few iterations and easier in the later iterations: over the iterations QPBO
labels more superpixels and the difference between the lower bound and the
actual energy of the solutions is also decreased.

4 Initializing and Updating the Class Model

We describe how to initialize the model and how to update the parameters of
the class models at each iteration.

4.1 Location Model

The location model {2 is initialized uniformly. At each iteration, we update the
parameters of the location model using the current segmentation of all images
of the current class according to the maximum likelihood criterion (fig. Bh): for
each cell in the 32x32 grid we reestimate the empirical probability of foreground
using the current segmentations.
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4.2 Shape Model

The shape model I7 is initialized by accumulating the boundaries of all super-
pixels in the reference frame over all images. As the boundaries of superpixels
follow likely object boundaries, they will reoccur consistently along the true ob-
ject boundaries across multiple images. The initial shape model (fig. H]) already
contains a rough outline of the unknown object class.

At each iteration, we update the parameters of the shape model using the
current segmentation of all images according to the maximum likelihood crite-
rion: for each of the 5 orientations in the 32x32 grid, we reestimate the empirical
probability for a label-change at this position and with this orientation.

While the shape model only knows about the boundaries of an object but not
on which side is foreground or background, jointly with the location model (and
with the between-image smoothness) it will encourage similar shapes in similar
spatial arrangements to be segmented in all the images.

4.3 Appearance Model

The parameters of the appearance models 1 are initialized using the color/
SURF observations from all images using an initial segmentation. This initial
segmentation is obtained from a generic prior of object location trained on an
external set of images with objects of other classes and their ground-truth seg-
mentations (fig. Bb). From this object location prior, we select the top 75% pixels
as foreground; the remaining 25% as background. We observe that this location
prior is essentially a Gaussian in the middle of the reference frame.

In each iteration the Ty are updated according to the current segmentations
like the location and shape models.

If we are using automatically determined reference frames, the observations
for the background are collected from both pixels outside the reference frame
and pixels inside the reference frame but labelled as background.

5 Finding the Reference Frame

To find the reference frame, we use the objectness measure of HE} which quan-
tifies how likely it is for an image window to contain an object of any class.
Objectness is trained to distinguish windows containing an object with a well-
defined boundary and center, such as cows and telephones, from amorphous

Fig. 5. Finding the reference frame. Images with automatically determined refer-
ence frames (top) and the objectness maps (bottom).
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Fig. 6. Results on the Weizmann horses. From left to right: initial shape model,
shape model after convergence, location model after convergence, three example images
with their segmentations. The ground-truth segmentation is shown in red.

background windows, such as grass and road. Objectness combines several image
cues measuring distinctive characteristics of objects, such as appearing different
from their surroundings, having a closed boundary, and sometimes being unique
within the image.

We sample 1000 windows likely to contain an object from this measure, project
the object location prior (sec. E3]) into these windows and accumulate into an
objectness map M (fig. Bl (bottom)). M will have peaks on the objects in the
image. We apply a fixed threshold to M and then determine a tight bounding-
box around the selected pixels, which we use as the reference frame in our method
(fi. B (top)).

In the experiments we demonstrate that this method improves the results of
unsupervised segmentation compared to using the full images (sec. [).

6 Experiments

We evaluate the segmentation accuracy of our method as the percentage of pixels
classified correctly as either foreground (1) or background (0).

6.1 Datasets

We evaluate our unsupervised segmentation method on three datasets of varying
difficulty and compare the results to a single-image GrabCut and to other state-
of-the-art methods. In no experiment training images with segmentations of the
unknown class are used.

Setting Parameters. The general parameters to be determined for our model
are the weights w and the generic object location prior. These are determined on
external data, i.e. images showing objects of different classes than the one under
consideration for unsupervised segmentation (see below for the exact setups).
We find weights w by maximizing segmentation performance on this external
data. The weights are optimized using a grid-search on the weight space with
the option to switch off individual terms.

Weizmann Horses [8]. We use the experimental setup of [2]: given 327 im-
ages with a horse, segment the horse in each image without using any training
images with already segmented horses. Note that other approaches using the
Weizmann horses typically use ground-truth segmentations in some of the im-
ages for training, e.g. [7]. The weights and the generic object location prior
for these experiments are determined from the Caltechd dataset (as discussed
above).
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airplanes motorbikes

Fig. 7. Results on Caltech4. Top row: the initial shape model as well as the shape
model and the location model after convergence. Below: for each class, two examples
and their segmentations. The ground-truth segmentation is shown in red.

Caltech4 [27]. We use the experimental setup of |9]: for the classes airplanes,
car (sideviews), faces, and motorbikes, we use the test images of |27] and segment
the objects using no training datall. Weights and generic object location prior
are set from the Weizmann Horses dataset.

Caltech101 [28]. We use an experimental setup similar to [2]: for 28 classes, we
randomly select 30 images each and determine the segmentations of the objects.
Note that [2] additionally uses 30 training images for each class and solves a joint
segmentation and classification task (not done here). Weights and generic object
location prior are set by leaving-one-out (setting parameters on 27 classes, and
testing on the remaining 1; do this 28 times).

Note that most papers on unsupervised segmentation |2,[8-10, [13] use variants
of these datasets. However, a few object discovery methods, e.g. |11, [29], evaluate
on the more difficult datasets.

6.2 Baselines and the State of the Art

We compare our method to GrabCut [1]. To initialize GrabCut, we train a
foreground color model from the central 25% of the area of the image and a
background model from the rest. Using these models, GrabCut is iterated until
convergence for each image individually. On Weizmann and Caltech4, we evalu-
ate GrabCut in two different setups: (1) using the full image (Tab. [ line (c)),
(2) using the reference frame found by the method in sec. [l instead of the full
image (Tab.[ line (d)). On Caltech101, we always use the full image as the ob-
jects are rather centered. Notice how the automatic reference frame improves the
results of GrabCut from line (c) to (d) and how GrabCut is a strong competitor
for previous methods |2, |9] that were designed for unsupervised segmentation.

For the datasets for which results are available, we compare our approach to
Spatial Topic Models |2] (Tab.[d] line (a)) and to the approach of Arora et al. |9]
(Tab. [ line (b)).

! Ground-truth segmentations of the images for quantitative evaluation are taken from
the Caltech101 dataset
http://www.vision.caltech.edu/Image_Datasets/Caltech101/
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Fig. 8. Results on Caltech101. Top row: the initial shape model as well as the
shape model and the location model after convergence for four example classes. Below:
for each of these classes, some examples with their segmentation. The ground-truth
segmentation is shown in red.

We also report the upper bound on the performance that ClassCut can obtain
using superpixels (Tab. [ line (g)). This upper bound corresponds to labeling
each superpixel by the majority ground-truth label of its pixels. As the upper
bound is always higher than any method we consider, the superpixels are not a
limiting factor for the segmentation accuracy of ClassCut.

6.3 ClassCut

We evaluate the ability of ClassCut to segment objects of an unknown class in a
set of images. Qualitatively, the weights determined show that all terms in our
model aid the segmentation process, as none was assigned weight 0. Furthermore,
the weights are similar across all setups.

Interestingly, on the Weizmann Horses the GrabCut baseline considering only
one image at a time (Tab. [l line (¢)) outperforms the (more complex) spatial
topic model [2] (line (a)). When GrabCut is applied within the automatically
determined reference frames (line (d)), the result is further improved. ClassCut
(line (f)) improves the result a little further. Note also, how ClassCut improves
its accuracy over iterations (line (e) to (f)), showing that it is properly learning
about the class.

On Caltech4, we compare to [d] (line (b)). Again, the GrabCut baseline is
improved when using the automatically determined reference frame rather than
the entire image (line (c¢)/line (d)). This holds even for the classes where the
automatically determined reference frames contain a considerable amount of
background (cars, faces). ClassCut (line (f)) considerably improves over GrabCut
(line (d)) for all classes and on average performs about as well as [9] (ClassCut:
90.6 / [9]: 90.9). Again, ClassCut improves over iterations (from (e) to (f)).

As described above, on Caltech101 we use the full images as reference frames.
Using ClassCut we obtain a segmentation accuracy of 83.6%, outperforming both
GrabCut (line (c)) and the spatial topic model [2] (line (a)).

Additionally, we evaluate our results using the normalized Chamfer distance to
assess how well the segmentation masks align with the shape of the objects. The
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Table 1. Results are reported as percentage of pixels classified correctly into either
foreground or background

Weizmann Caltech4 Caltech101
Method horses airp. cars faces motorb. average
(a) Spatial Topic Model [2] 81.8 - - - - 67.0
(b) Arora et al. [9] - 93.1 95.1 924 83.1 -
(c) GrabCut (full image) 83.9 84.5 45.1 83.7 82.4 81.5
(d) GrabCut (reference frames) 85.8 88.7 81.4 89.6 82.3 -
(e) ClassCut (init) 84.7 88.4 90.7 85.3 89.2 83.0
(f) ClassCut (final) 86.2 89.8 93.1 89.0  90.3 83.6
(g) upper bound 924 955 972 93.3 94.7 92.9

Chamfer distance measures the average distance of every point on the segmen-
tation outline to its closest point on the ground-truth outline, normalized by the
diagonal of the ground-truth bounding-box. Since neither |2,|9] use any such mea-
sure we compare to the GrabCut baseline. For Weizmann/Caltech4/Caltech101
datasets the Chamfer distance averaged over all images is 0.09/0.06/0.13 for
ClassCut and 0.20/0.27/0.23 for the corresponding GrabCut baselines. This
shows that the segmentations obtained using ClassCut are better aligned to
the ground-truth segmentation than those from GrabCut.

7 Conclusion

We presented a novel approach to unsupervised class segmentation. Our ap-
proach alternates between jointly segmenting the objects in all images and updat-
ing a class model, which allows to benefit from the insights gained in interactive
segmentation and object class detection. Our model comprises inter-image priors
and a comprehensive class model accounting for object appearance, shape, and
location w.r.t. an automatically determined reference frame. We demonstrate
that the reference frame allows to learn a novel type of shape model and aids
the segmentation process.
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