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Abstract

classic is a data model that encourages the
description of objects not only in terms of their
relations to other known objects, but in terms of
a level of intensional structure as well. The clas-
sic language of structured descriptions permits i)
partial descriptions of individuals, under an `open
world' assumption, ii) answers to queries either as
extensional lists of values or as descriptions that
necessarily hold of all possible answers, and iii) an
easily extensible schema, which can be accessed
uniformly with the data. One of the strengths of
the approach is that the same language plays mul-
tiple roles in the processes of de�ning and popu-
lating the DB, as well as querying and answering.

classic (for which we have a prototype
main-memory implementation) can actively dis-
cover new information about objects from several
sources: it can recognize new classes under which
an object falls based on a description of the object,
it can propagate some deductive consequences of
DB updates, it has simple procedural recognizers,
and it supports a limited form of forward-chaining
rules to derive new conclusions about known ob-
jects.

The kind of language of descriptions and
queries presented here provides a new arena for
the search for languages that are more expressive
than conventionalDBMS languages, but for which
query processing is still tractable. This space of
languages di�ers from the subsets of predicate cal-
culus hitherto explored by deductive databases.

1 Motivation

A database is normally used to maintain a model of some
aspect of reality. Traditional data models, such as the rela-
tional one, have achieved great e�ciency in data storage and
retrieval by restricting modeling power; in particular, the
database is assumed to be a complete and accurate model
of the world, where all the individual objects are restricted
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to be primitive values like numbers and strings, and all their
inter-relationships are known and expressly stated. While
undeniably of extensive value, this makes traditional data
models unsuitable for a number of situations, for example,

� when complex objects are the natural way of describing
the domain;

� when information about the domain is incomplete or
becomes available incrementally;

� when the database should be taking a more active role
in deducing relationships rather than being just a pas-
sive repository of data.

These situations include those in which new artifacts are
being designed (e.g., CAD/CAM, con�guration), or an un-
derstanding of some existing situation is being built up over
time (e.g., diagnostic situations).
The �eld of logic (or deductive) databases [14] has emerged

as one response to some of these weaknesses: incomplete in-
formation canbe expressed naturally in logical languages us-
ing disjunction and existential quanti�ers, and the database
can infer new relationships through deductive rules. The
chief drawback of this approach is computational intractabil-
ity: a general version of this problem is equivalent to the-
orem proving for �rst order logic, and hence known to be
undecidable. There has been progress towards �nding var-
ious kinds of deductive rules [6] that can be added to re-
lational systems without making the result hopelessly in-
e�cient. But, as shown by results in [17], the same is
not true for databases with partial knowledge: very sim-
ple kinds of disjunction and existentials cause intractability.
The classic data model strives to provide a limited|and
more tractable|set of deductions derivednot from syntactic
alterations to a mathematically-oriented language of predi-
cates and quanti�ers, but from a class of languages explicitly
built for modeling real-world concepts and objects. As we
shall see, classicalsoprovides a means of dealing e�ectively
with some types of partial knowledge.
A second motivation for our work is that research in both

standard and deductive databases usually assumes that the
query must return an extensional answer|a list of atomic
individuals (or tuples thereof) that satisfy the relationship
expressed by the query. However, once we assume that the
database may not be complete, but might have both partial
knowledge and active rules, it seems perfectly reasonable
to allow descriptive answers|descriptions of objects, even
when their properties are not fully known in the database,
and descriptions of the necessary properties of all objects
that will satisfy the query, even if some of those objects are
not yet known. Some previous work in logic databases [11;
18] has considered descriptive or intensional answers, but



as su�cient rather than necessary conditions for the answer
set.
We should emphasize that although our goals appear am-

bitious, we are committed to a view of database manage-
ment systems as having limited responsibilities, which can
be carried out e�ciently. Such a system may need to be
used in conjunction with other computing engines (e.g., pro-
gramming languages, rule bases) in order to solve general
problems, like troubleshooting, con�guration, etc. We do
not want to put the burden on the database|even a deduc-
tive one|of having to support the entire range of activity in
a complex problem-solving task. We take the database com-
ponent of a complex application to be a cache for persistent
information of limited complexity.

2 The CLASSIC approach: structured
concepts

A classic database is mostly a repository of information
about individual objects, or individuals, for short. As usual
in object-based approaches [13; 16], objects have an intrinsic
identity, and are related to each other through binary rela-
tionships; these are called roles in our case (elsewhere known
as attributes or properties). Individualswill be grouped into
collections indirectly by way of descriptions that apply to
all members of a collection|these descriptions we shall call
concepts (elsewhere known as classes).
All of this is standard. Where classic di�ers is in the

ways we propose to address the problems presented in the
previous section: rather than starting from the syntax of
�rst-order logic, we begin with a language for describing the
general nature and structure of objects|a language of struc-
tured concepts. This language will be used in several ways:

� to de�ne the schema|an extended vocabulary of iden-
ti�ers used in descriptions;

� to enter possibly incomplete information about individ-
uals into the database;

� to express queries;

� to provide intensional descriptions of answers;

� to allow the speci�cation of simple `triggers'|limited
forward-chaining inference rules.

2.1 Features of the CLASSIC language

The classic \data de�nition language" is a language of ex-
pressions for de�ning concepts in a compositional manner.
Some concepts are obtainedby grouping together individuals
extensionally; others group individuals implicitly, through
the use of intensional descriptions concerning their struc-
ture. Complex classic concepts are formed by composing
expressions using a small set of constructors. We have chosen
a pre�x-style notation for our concept constructors, and each
legitimate classic expression has one of these constructors
as its �rst element.

2.1.1 Extensional constructors

The simplest kind of description one can form in classic

is a primitive concept. Primitive concepts are simple, but
not necessarily atomic; each primitive concept except for the
topmost concept (which we callTHING) is expected to have at
least one parent (more general) concept. The simplest kind
of primitive is one whose only parent is essentially vacuous,
namely THING. For example, the concept of a CAR might be
de�ned in this way:

(PRIMITIVE THING car),

where `car' here is just an atomic index, and does not au-
tomatically represent the name of the concept (e.g., it could
just as easily have been an integer, etc.).1 This expres-
sion means that whatever it designates is simply a type of
THING, with some unspeci�ed di�erence from THING in gen-
eral. Since the di�erentia is unspeci�ed, one cannot de�ni-
tively decide membership in a primitive concept simply by
looking at the parts of an object. This is quite the opposite
of the case with other, non-primitive concepts, as we shall
see in a moment. Primitive concepts with the same parent
but with di�erent indices are distinct.
Note that the above could well have been written syntac-

tically as

class CAR is-a THING

in some semantic data model, but we have chosen our no-
tation because our concepts will be composite. Expressions
can take full concept expressions in many places as subparts,
and this notation supports embedded expressions quite nat-
urally.
Primitives can also have non-trivial parents. Thus,

SPORTS-CAR might be de�ned as a subconcept of both CAR
and another concept, EXPENSIVE-THING:2

(PRIMITIVE (AND CAR EXPENSIVE-THING)
sports-car).

In fact, the parent of a primitive concept can be any classic
concept, including another primitive. Primitives thus spec-
ify necessary conditions: if Corvette-1 is an instance of
SPORTS-CAR, then it is both a CAR and an EXPENSIVE-THING.
But note that there is no su�ciency condition speci�ed for
primitive concepts.
Another simple way of de�ning a concept is as nothing

more than a time-invariant set of objects, speci�ed by enu-
meration. Enumerated concepts have a �xed extent; for ex-
ample, AMERICAN-CAR-MAKER might be de�ned as

(ONE-OF GM Ford Chrysler),

where GM, Ford and Chrysler are individual objects.
Primitive concepts and enumerations allow the de�nition

of the kinds of class hierarchies that are found in conven-
tional semantic data models.

2.1.2 Restriction-based constructors

The classic language of concepts allows us to go sub-
stantially beyond the simple IS-A hierarchies of more tradi-
tional semantic data models. It o�ers three special ways of
describing objects in terms of their structure. As we shall
see, these constructors give the language substantially more
power, and in particular, let some classmembership relations
be determined by inference.
classic's three complex constructors are role value re-

strictions, cardinality bounds, and co-reference constraints.
Role value restrictions are type constraints that hold of

the �llers for some single role. For example, the concept
expression

(ALL thing-driven CAR)

describes any object that is related by the thing-driven
role solely to individuals describable by the concept CAR (i.e.,
something \all of whose things-driven are CARs").

1In this paper we use the following orthographic conven-
tions: classic symbols in all upper case are CONCEPTS; those
in all lower case are roles or indices; and those in mixed
case are Individuals. Concept-forming constructors, like
PRIMITIVE, are written in THIS FONT.

2The AND constructor will be described momentarily in
Section 2.1.3.



Bounds restrict the number of �llers for roles. For exam-
ple,

(AT-MOST 4 thing-driven)

describes any object that is related to at most 4 distinct
individuals through the thing-driven role.

(AT-LEAST 3 wheel)

describes any object that is related to at least 3 distinct
individuals through the wheel role.
Co-reference constraints specify simple equalities between

single-valued roles or, more generally, chains of such roles.
For example, the expression

(SAME-AS (driver)
(insurance payer))

describes all those individuals whose �ller for the driver
role is the same as the payer of their insurance role. This
constraint is part of the meaning of any concept in which it
appears, and is not just an integrity constraint. In fact, each
of the constructors presented in this section can act as part
of both necessary and su�cient conditions for concepts in
which they appear (as long as they are not used in a primitive
concept, in which case there are no su�cient conditions).

2.1.3 Composition

The classic language of concept expressions is fully
compositional, with conjunction|the constructor AND|
providing the `glue'. For example,

(AND STUDENT
(ALL thing-driven

(AND SPORTS-CAR
(ALL maker ITALIAN-COMPANY)))

(AT-LEAST 1 thing-driven)
(AT-MOST 2 thing-driven))

refers to objects that are instances of STUDENT and have
the thing-driven role �lled by one or two instances of
SPORTS-CAR, each of which must have an ITALIAN-COMPANY
as its maker. AND takes any number of concept expressions
and forms a description that is the conjunction of those de-
scriptions.

2.1.4 Tests

There are a multitude of other concept constructors that
we might have considered adding to the classic language.
But the result would have been both baroque and very likely
intractable froma computational point of view. Forpractical
purposes, we have chosen to add just one feature that can
act as a limited `steam valve'|test concepts. A test concept
has an associated unary function in the host implementation
language (e.g., LISP or C), which must return a boolean
value; the concept then denotes all those objects for which
the test function returns true. For example, the concept
EVEN-INTEGER could be de�ned as

(TEST even),

where even is a host-language-speci�c procedure of one ar-
gument that returns true if and only if its argument is an
even number. If the concept of an INTEGER were already de-
�ned (such a concept is built-in to the LISP implementation
of classic), then this concept would instead be

(AND INTEGER
(TEST even)).

Originally intended as a single simple facility for de�ning
such `concepts' as integer ranges, limited-precision numbers,
limited-length strings, etc., the TEST facility has proven

to be a pragmatically useful `escape hatch' in tackling re-
alistic applications (for example, a computer con�guration
task we have recently undertaken, with a classic database
representing the parts inventory). While the construct is
open-ended, it has been homogeneously integrated into the
classic language. It can be thought of as a dual construct to
PRIMITIVE; insteadof allowing the speci�cation of a prim-
itive necessary condition (which PRIMITIVE gives us), it
allows speci�cation of a primitive su�ciency condition. Of
course, a construct like TEST can undermine the tractabil-
ity of inference in classic if used unwisely; if this is deemed
unacceptable, one can consider TEST to lie outside of the
core classic data model, and to be merely an implementa-
tion convenience. As we �ndpatterns of use of this construct
that can be integrated with the core data model in a seman-
tically clean and tractable way, we expect to extend the core
to include them, and again keep a �rm lid on tractability in
the core of classic.

In Appendix A, we summarize the syntax of classic con-
cept (and individual) expressions. The particular concept
constructors used in classic were chosen for their descrip-
tive adequacy and minimality. For example, we did not de-
�ne the constructor EXACTLY-ONE, which is easily deriv-
able as the AND of AT-LEAST 1 and AT-MOST 1. It is
our intention to add a macro-de�nition facility in order to
allow syntactic extensions such as EXACTLY-ONE, which
might simplify classic expressions. Also, the usefulness of
the particular choices of constructors here is supported in
part by the history of knowledge representation languages [9]
used in Arti�cial Intelligence. A great deal of work over the
last ten years on \frame" representation systems has led to
some consensus on the core constructs that are indispensable
in representing object-oriented knowledge.

2.2 Implied relationships between concepts

It is important to note that, unlike in many semantic data
models, the meaning of concepts in classic is determined
by their structure|the composition of the particular con-
structors used to build them. This implies that certain rela-
tionships exist between concepts by virtue of their de�nition.
For example, it is quite possible for several di�erent concept
expressions to denote the same class:

(AND (ALL thing-driven CAR)
(ALL thing-driven EXPENSIVE-THING))

is the same concept as

(ALL thing-driven
(AND CAR EXPENSIVE-THING)),

while

(ALL thing-driven
(AND (ONE-OF Ford-1 Volvo-2 Toyota-3)

(ONE-OF Volvo-2 Toyota-3 VW-4)))

is equivalent to

(AND (ALL thing-driven
(ONE-OF Volvo-2 Toyota-3))

(AT-MOST 2 thing-driven)).

Note that individuals may appear as part of the de�nition
of concepts. Since ONE-OF was originally meant to in-
troduce the equivalent of enumerated types in Pascal, and
since de�nitions are not supposed to change meaning over
time, inferences concerning the equivalence of concepts are
a�ected only by the identity of such individuals, not by their
properties, structure, etc.
While there is no room to include it here, we have a formal

account of the meaning of the classic language, providing a



denotational semantics for concepts. Concept meanings are
functions that map database states to the sets of objects that
`satisfy' the conceptual descriptions in that state. Based on
this semantics, two concepts are equivalent if and only if
their denotations are identical functions. Of course, in prac-
tice, we use this speci�cation to guide an implementation
that manipulates the structures in an e�ective, procedural
manner in order to decide equivalences. The recognition of
all the necessary equivalences is the kind of inference that
is at the core of the limited deduction and query processing
performed by the classic system.
As an aside, note that the TEST constructor is an entirely

procedural `black box', so that complete reasoning cannot be
done about the relationships between such concepts. In this
way, TEST concepts act just like primitive ones. Admit-
tedly, users may miss this subtle point, but our experience
indicates that the inclusion of this constructor has been quite
successful. Also, we see a certain resemblance between ad-
mitting \external" agents such as tests in classic, and the
adoption of abstract data types as domains for the formerly
pure relational data model.
We shallconsider next the variousways of interactingwith

a classic database, and hence the ways of using the lan-
guage of concepts.

3 Interacting with CLASSIC

The general pattern of using a database is to de�ne a
schema, using a data de�nition language (DDL); then suc-
cessively (or concurrently) present updates, presented in a
data manipulation language (DML) (which are either ac-
cepted or rejected because of constraint violations), and
queries, in a query language (which are answered in some
answer language). We shall consider the equivalent aspects
of interacting with a classic database, and do so by describ-
ing a number of operators that can be applied to it.

3.1 De�ning the schema

In a classic database, schema de�nition consists of giving
names to various concepts, roles and individuals that appear
of interest to all users, thus establishing a shorthand vocab-
ulary for interacting with the database. Speci�cally, this is
done through the use of operators such as de�ne-role3 and
de�ne-concept:

de�ne-concept[AMERICAN-CAR-MAKER,
(ONE-OF GM Ford Chrysler)];

de�ne-role[thing-driven];
de�ne-concept[RICH-KID,

(AND STUDENT
(ALL thing-driven SPORTS-CAR)
(AT-LEAST 2 thing-driven))].

This last de�nition, for example, assigns to \RICH-KID" the
concept of a student that drives at least two things, all of
which are sports cars.
In contrast with standard databases, this process can be

interleaved with updates and queries, so that we can de�ne
a new concept any time it seems useful. In lieu of a data
dictionary, classic o�ers operators that allow concepts to
be inspected; these will be described in Section 3.5.

3de�ne-role simply makes the database aware that a
particular identi�erwill be used as a role name, thus allowing
the DBMS to later detect errors such as typos. In some
related systems [9], roles have more structure than they do
here.

3.2 Updating the database

classic individuals are created, and possibly named,4 by
the create-ind operator; for example,

create-ind[Rocky]

creates an individual named \Rocky", about whom noth-
ing is known (except that Rocky is a THING). This estab-
lishes a unique identity for this individual, independent of
its properties. Thereafter, information about an individual
is added incrementally by the operator assert-ind, which
allows three kinds of facts to be asserted about an individ-
ual in the form of expressions. The �rst two deal with the
relationship of individuals to other individuals:

� the individual is related to some other individual by an
(existing) role; so, for example, to add Volvo-17 to the
group of things driven by Rocky, we would use

assert-ind[Rocky,
(FILLS thing-driven Volvo-17)];

� it is asserted that there are no additional objects related
by the particular role to this individual, beyond those
already known; thus,

assert-ind[Rocky, (CLOSE thing-driven)]

\closes" the thing-driven role so that no further �llers
can be added.

The last expression points out an important design decision
for classicdatabases: sincewe are committed to supporting
incomplete information about objects, we do not make the
`closed-world' assumption [26] that a relationship does not
holdunlesswe know of it. Thus, unless an individual's role is
closed, there may be more objects related to it by that role,
and so, for example, we would not yet have an upper bound
on the number of role �llers for that role of the individual.
The third kind of fact that we can assert about an in-

dividual is that it is an instance of some concept|that is,
the individual is appropriately described by the concept. In
the case of primitive concepts, this is just the usual way of
asserting class membership:

assert-ind[Rocky, PERSON].

Even in this case, one can already have a form of inde-
terminacy: if PERSON has other primitive subconcepts (e.g.,
INTELLECTUAL), it is left open at the moment whetherRocky
is or is not describable by any of them. The concept con-
structors allow further forms of indeterminacy, as indicated
by the following examples:

� assert-ind[Rocky,
(AT-LEAST 1 thing-driven)]

asserts the existence of an object driven by Rocky with-
out explicitly naming it;

� assert-ind[Rocky,
(ALL thing-driven SPORTS-CAR)]

asserts that the objects driven by Rocky are
SPORTS-CARs without knowing what they are, or how
many there are;

� assert-ind[Rocky,
(ALL thing-driven

(ALL maker (ONE-OF Ferrari)))]

requires that the objects driven by Rocky have maker
Ferrari, without identifying those objects or any other
properties they might have.

4If the database is large enough, it may be undesirable
to require the user to name all individuals explicitly.



One can also directly assert membership of an individ-
ual in a concept constructed with the AND operator. Such
an assertion amounts to a shorthand|it could be expanded
into a series of assert-ind calls, one for each conjunct from
the de�nition of the composed concept. For example, if
RICH-KID is de�ned as above,

assert-ind[Rocky, RICH-KID]

would be the equivalent of

assert-ind[Rocky, STUDENT]
assert-ind[Rocky,

(ALL thing-driven SPORTS-CAR)]
assert-ind[Rocky, (AT-LEAST 2 thing-driven)].

Since classic honors the semantics of constructors like
AND, not only are the two equivalent, but if only the lat-
ter three calls to assert-ind were made, classic would be
able to answer a�rmatively a query about Rocky's being a
RICH-KID.
Databases will want to record some information involving

numbers, strings, and other `primitive' data values. With-
out special provisions, these would have to be encoded as
individuals, creating them the �rst time we see them, and
keeping a dictionary of their names|clearly an onerous task.
Furthermore, we would like to use classic eventually for
computer-aided software engineering, to maintain software
objects in the database. For this reason, we opted to build
into the classic language a fundamental distinction: every
individual known to the database needs to be either a host
individual|a valid value from the space of values of the
host implementation language (LISP or C in our case)|or
a regular (CLASSIC) individual. Host individuals cannot
have roles, but are otherwise �rst class citizens|they can
be grouped by enumerated concepts, for example.
All of the updates discussed so far work in the obvious

fashion when they are monotonic|when they do not contra-
dict earlier assertions. We have also formulated and are now
implementing a facility for making \destructive updates"
(i.e., ones that contradict earlier assertions) and will report
on this at a future date.

3.3 CLASSIC as an active database

The fact that concepts, including those named and used in
the schema, can be de�ned in terms of the properties that
must be satis�ed by their instances clearly allows a classic

database to `recognize' new instances of a concept. So, for
example, if STUDENT were de�ned to be

(AND PERSON
(AT-LEAST 1 enrolled-at)),

then the moment we learn that Rocky (who was previously
asserted to be a PERSON) is enrolled at some school we im-
plicitly recognize Rocky as a STUDENT|it is not necessary to
explicitly assert this fact. In other words, without seeing any
explicit mention about the individualRocky's relationship to
the concept STUDENT, classic would still include Rocky in
the answer to a query about the instances of STUDENT.
On the other hand, one can, if one wants to, assert that

a complex concept description holds of an individual; this
allows the DB to deduce a number of new relationships. For
example, co-reference constraints in a concept can lead to
roles being �lled by new values:

assert-ind[Rocky,
(SAME-AS (likes) (thing-driven))]

would lead to likes being �lled by Volvo-17, if it were
already known that Rocky drives Volvo-17. Further, AT-
MOST restrictions on roles can allow the DB to deduce that
a role is closed:

assert-ind[Rocky, (AT-MOST 1 thing-driven)]

results in thing-driven being closed as soon as we learn
that Rocky drives Volvo-17.
In addition to these kinds of inferences, we have added a

limited form of forward chaining|the ability to specify rules
of the form `if an individual is a < concept1 > then it is
also a < concept2 >' :

assert-rule[STUDENT, (ALL eat JUNK-FOOD)]

adds to the database the information that any instance of
STUDENT is also an instance of the class of things that eat
only junk food. Note that this is very di�erent from making
(ALL eat JUNK-FOOD) part of the de�nition of STUDENT,
because in that case, someone would not be recognized as
a STUDENT until it was known that she also ate junk food,
whereas the current rule allows the DB to deduce that she
eats junk food as soon as we know she is enrolled at a school
(and hence is a STUDENT).
Note also that we do not consider rules to be equivalent

to logical implications; they are more appropriately viewed
as triggers activated only when a new individual is found of
which the antecedent concept description holds.

3.4 Integrity checking in CLASSIC

When asserting that an individual is describable by some
concept, it is of course necessary to verify that the pre-
viously asserted facts about the individual do not contra-
dict this description. For example, we cannot have an in-
dividual belong to a concept that contains the description
(AT-MOST 0 thing-driven) and at the same time have
asserted that its thing-driven role is �lled by some object.
Therefore integrity checking in a classic database involves
verifying the consistency of concept descriptions and role
�llers.
Experience indicates that there are many situationswhere

primitive subclasses being de�ned from a common parent
class are known to be disjoint. For example, MALE and
FEMALE, TALL and SHORT, etc., are all mutually exclusive
primitive subsets of PERSON. classic allows this to be ex-
pressed as an integrity constraint through the disjoint prim-
itive variant of the PRIMITIVE constructor. Its use is il-
lustrated by the de�nition of the MALE and FEMALE subclasses
of PERSON:

(DISJOINT-PRIMITIVE PERSON gender male)
(DISJOINT-PRIMITIVE PERSON gender female)

where gender, male, and female are simply identi�ers,
whose importance lies only in their distinctness. (Gender
names the grouping of disjoint concepts, and male and
female distinguish the elements within this grouping.) More
than one disjoint grouping is allowed below a single concept,
e.g., PERSON could be grouped by both gender and age.

3.5 Querying the DB

A classic database can be viewed as maintaining three
types of relationships: those between concepts, those be-
tween individuals, and those between an individual and the
concepts that describe it.

3.5.1 Queries about concepts

Because concepts are usually built up through the con-
junction of other concepts, it is useful to be able to look at
various aspects of a concept contributed through the di�er-
ent constructors. The concept-aspect operator allows one
to look at these facets, by taking as arguments a concept, a
constructor, and possibly a role name. For example,



� concept-aspect[c, ONE-OF]

inquires about any enumeration that is part of the def-
inition of the concept c;

� concept-aspect[c, ALL, thing-driven]

returns the type constraint on the thing-driven role
�llers that has been imposed on instances of c by its
de�nition;

� concept-aspect[c, AT-LEAST, thing-driven]

returns the lower bound constraint on the
thing-driven role that has been imposed on instances
of c.

For convenience, by dropping the role argument we get
the list of roles for which there is a restriction present:

concept-aspect[c, ALL]

returns allroles that have been restrictedbyALL constraints
for c.
It is also possible to �nd out certain relationships between

concepts. The most fundamental one is subsumption: if C1
and C2 are concepts, then concept-subsumes[C1, C2] is
true if and only if in every state any individual satisfying
C2 is necessarily (i.e., by de�nition) also an instance of C1.
Two concepts are equivalent if and only if they subsume
each other. Many other operators can be de�ned on the
basis of concept-subsumes. For example, the subsump-
tion relationship induces an acyclic directed graph over the
space of named concepts|the (in)famous `IS-A hierarchy'.5

Among other things, it is then often useful to know which
named concepts (those in the schema) are the most speci�c
subsumers or subsumees of some concept|the `immediate
parents' or `immediate children' of the concept in the IS-A
hierarchy.

3.5.2 Queries about role �llers

The facts asserted about an individual's relationship to
other individuals through roles constitute what would be
an ordinary database: just consider each role as a bi-
nary relation, and every primitive concept as a unary re-
lation, and one has an ordinary relational database (mod-
ulo the closed world assumption). Similarly, by con-
sidering roles as set-valued functions, and primitive con-
cepts as classes, one can easily view these facts as a
functional database [27]. Presumably, much of what
has been learned about querying relational or functional
databases could be applied to this problem, although it
would be important to take into account our open world
assumption. We have not spent much e�ort in devising
an elaborate query language for this space of facts|at the
moment it is possible to ask for all the �llers or restric-
tions of a role for an individual, and whether it is closed
or not, by using the ind-aspect operator, which behaves
similarly to concept-aspect but in addition recognizes
the invocations ind-aspect[<ind>, FILLS, <role>] and
ind-aspect[<ind>, CLOSE, <role>]. We plan to develop a
morepowerfuland integrated query language, possibly based
on the notation used in [5].

3.5.3 Queries about class membership

An arbitrary concept expression can be viewed as a query
requesting information about all the individuals in the DB
that satisfy it (i.e., individuals that are members of the class
de�ned by the concept). Thus, PERSON asks for all individ-
uals known to be instances of the primitive class PERSON.

5It is crucial to realize that for non-primitive concepts
the IS-A hierarchy is induced by the de�nitions, and is not
an independent structure under control of the user.

The query (AT-LEAST 2 thing-driven) would return all
individuals that have at least two speci�c role �llers for
thing-driven, or whose concept descriptor entails that they
have at least 2 �llers for this role (e.g., a concept descriptor
which contains (AT-LEAST 3 thing-driven)). Therefore
concepts used as queries take into account the structural
descriptions asserted of individuals.
We generalize this notion of query and answer in several

ways. First, concepts allow us to qualify an object by de-
scribing its role �llers. It seems reasonable to ask for quali�-
cations regarding the role an object itself �lls. A simple way
of accomplishing this, without introducing inverse roles, is
to allow the query concept to distinguish a speci�c subex-
pression, whose individual instances are desired. Using ?:
as this marker, the query concept

(AND STUDENT
(ALL thing-driven

?:(ALL maker (one-of Ferrari))))

can then be interpreted as asking for the objects that are
driven by students and have maker Ferrari. The earlier
query for all persons would simply be ?:PERSON.
Finally, once we assume that the database does not have

complete knowledge of the world, it becomes reasonable to
ask for information that necessarily holds of all possible in-
dividuals that satisfy the query|not just those currently
known, but those that might be added to the DB in time.
This of course becomes interesting once we have rules, be-
cause these supply additional information not contained in
the original query. So

(AND STUDENT (ALL eat ?:THING))

can be interpreted as asking for a concept describing all
objects that are eaten by students, independent of the
known examples|the description of this set, in light of the
forward-chaining rules in e�ect at that time, might include
JUNK-FOOD; also included would be any other facts that the
DB might infer about the query concept (and its role �llers
up to the ?: marker) through rules and reclassi�cation.
One way to accommodate all of the above versions of

querying is to provide the operators ask-necessary-set,
and ask-description; these take as argument a query con-
cept, which is just a concept with a single ?: embedded as
a distinguishing marker, placed in front of some subexpres-
sion.

4 A brief example

The following examples illustrate the integration of the
various features of classic presented earlier. Consider a
database about crimes and criminals that might be main-
tained by some law-enforcement agency. This is a typical
situation where one starts out with an incomplete view of
the actual events, and incrementally 
eshes out the details
of the crime, and especially the perpetrators and their iden-
tities.
A central primitive concept would be CRIME; every crime

would need to have at least one perpetrator, who is a person,
some victim(s) (these need not be persons!), and a site. A
person would have a domicile. To model this, we would
de�ne CRIME to be a primitive concept which, among other
things, has victims, perpetrators, and a site:

de�ne-role[perpetrator]
de�ne-role[victim]
...
de�ne-concept[CRIME,

(PRIMITIVE
(AND (AT-LEAST 1 perpetrator)



(ALL perpetrator PERSON)
(AT-LEAST 1 victim)
(AT-LEAST 1 site)
(AT-MOST 1 site))

crime)].

When a new crime occurs, an object for it is added to the
database:

create-ind[crime23, CRIME],

and as evidence accumulates, more information about it is
added. This is where the open-world assumption and abil-
ity to use structural descriptions are obviously useful. For
example, if a witness saw a group of criminals leaving, we
would invoke

assert-ind[crime23,
(AT-LEAST 2 perpetrator)].

And if these people were overheard to be speaking Rurita-
nian, then in addition we could invoke

assert-ind[crime23,
(ALL perpetrator

(ALL heard-speaking
(ONE-OF Ruritanian)))]

after �rst creating the role heard-speaking, if necessary.
(Note the usefulness of the ability to create new attributes|
and hence extend the schema|on the 
y: it seems hard
to anticipate all possible kinds of clues to crimes.) As the
identities of the criminals are discovered, they are entered
as �lling the perpetrator role of crime23 using the FILLS
constructor.
There are a variety of kinds of crime, for which concepts

could be de�ned. For example, domestic crime might be
de�nedas a crime perpetrated at the domicile of the (single)
perpetrator:

de�ne-concept[DOMESTIC-CRIME,
(AND CRIME

(AT-MOST 1 perpetrator)
(SAME-AS (site) (perpetrator

domicile)))].

Note that it is inferrable by classic that a DOMESTIC-CRIME
has exactly one perpetrator because it has CRIME included in
its de�nition, and every CRIME has at least one perpetrator.
One could also maintain in the database informa-

tion about the typical suspect for crimes, through role
typical-suspect; in this case, rules of a heuristic nature
could be added to the knowledge base, such as \domes-
tic criminals are typically adults, and have no jobs", which
might be encoded as the rule

assert-rule[DOMESTIC-CRIME,
(ALL typical-suspect

(AND ADULT
(AT-MOST 0 jobs)))].

When used as a query with ask-necessary-set, the
concept ?:DOMESTIC-CRIME would return all instances of
such crimes in the database (including ones where the
identity of the perpetrator is not yet known exactly:
\did the wife or husband do it?"); on the other hand
(AND DOMESTIC-CRIME (ALL perpetrator ?:THING))
would be used to ask for perpetrators of domestic crimes.
The ask-description operator could be applied to some

crime crime15, as in

ask-description
[(AND (ONEOF crime15)

(ALL typical-suspect ?:PERSON))],

to see if crime15 was classi�ed as a kind of crime for which
additional descriptive information about its suspect can be
inferred, and to show this information.
Systems like classichave beenused in real-world applica-

tions involving retrieval of information from complex struc-
tured domain models. kandor, the immediate predecessor
of classic, has been used to implement a prototype tool for
representing and querying a knowledge base of several hun-
dred concepts (and several thousand individuals) about a
large software system and its structure. [12] The knowledge
base for this system has already been upgraded to use clas-
sic, and new tools are being designed to exploit classic's
deductive power and completeness.

5 Comments on implementation and
tractability

The current prototype implementation of classic (which is
written in CommonLisp, and is being rewritten in C) opts
for a great deal of preprocessing in order to facilitate query
answering. Among other things, all concepts in the schema
are reduced to a normal form, and then are compared to
each other to establish the subsumption hierarchy. The sub-
sumption relationship is established in time proportional to
the sizes of the two concepts. Individuals are similarly nor-
malized and are classi�ed whenever new information about
them is asserted, so that each individual is associated with
the lowest concept(s) in the schema whose description(s) it
satis�es. This might cause other individuals to be reclas-
si�ed, but this process is guaranteed to end because it is
bounded by the number of classes and individuals in the
database: every individual can move into a class at most
once (since there is no `removal').
Query answering follows the technique introduced in [25]:

�rst, the query concept is itself `classi�ed' with respect to
the concepts in the schema;6 then the instances of the par-
ent concepts are tested individually to see if they satisfy
the query concept. The advantage of this technique is that
all instances of schema concepts that are subsumed by the
query are known to satisfy the query and are therefore not
explicitly tested. Assuming that the schema can �t in main
memory, this approach will reduce disk access tra�c in the
case of large databases.7

Each rule is associated with a speci�c schema concept and
the rule application is triggered whenever an individual be-
comes an instance of that class. Rules continue propagating
until a �xed point is reached.
The complexity of the algorithms for performing the above

operations is very sensitive to the choice of concept construc-
tors in the language. These tractability issues were �rst
recognized in [8], and over the last several years we have
explored extensively the computational behavior of systems
like classic. [19; 24] We have made a concerted e�ort to
keep the classic language small and eliminate `expensive'
features. This explains the absence of such obvious con-
cept constructors as OR and NOT, but has also led to more
subtle restrictions such as the requirement that co-reference
constraints be used only with roles that are single-valued.
We note that our current algorithm for subsumption has
low-order polynomial complexity and we believe that it is
complete, though a formal proof is not yet available.
A major research issue for the future is what algorithms

and data structures are best suited to implementing classic

6Classi�cation is the operation by which all known sub-
suming and subsumed concepts are found.

7A more detailed analysis of some ideas for implementing
such classi�cation systems appears in [20].



once we assume that there are very many concepts and indi-
viduals around, possibly requiring secondary storage. Some
ideas for e�ciently maintaining information about the sub-
sumption hierarchy itself appear in [2].

6 Conclusions and related work

The work presented here lies at the con
uence of several dif-
ferent approaches to the problem of managing information.
To begin with, classic belongs to the family of knowl-

edge representation languages that are descendants of kl-
one [9], including languages and systems such as kan-

dor [23], loom [20] and back [29]. These systems all o�er
sublanguages for de�ning terms such that the subsumption
relationship holds by de�nition. The classic concept lan-
guage resembles them to a considerable extent, but di�ers
from them in one or more of the following features: enu-
meration using ONE-OF, integration of host objects, test
concepts, the presence of rules (and complete propagation
to a �xed point), the general treatment of incomplete infor-
mation through ideas such as the open-world assumption,
concept constructors for individuals, and multiple ways of
querying the DB, including descriptions of answers.
There is also a considerable literature on the description of

views and meta-data (e.g., [21]) which has a bearing on our
work in the sense that new concepts (rather than instances)
are de�ned from others. However, to our knowledge such
systems do not reason with the newly de�ned concepts in
terms of their relationship to each other, nor do they apply
rules, etc., to them.

6.1 Object-based models and hierarchies

Semantic networks and semantic data models [16]|their de-
scendants in databases|also resemble classic, especially
in their object-oriented world-view and their exploitation
of subclass hierarchies. The IFO model [1], in particular,
has considered the `structure' of the data. But this body
of work is more distantly related since classes are almost
always treated as primitive identi�ers, as opposed to de�ni-
tions that can recognize instances, and that can be composed
and related to each other.8 So, for example, although many
semantic data models have constructs for specifying upper
and lower bounds on the number of role �llers, these act
only as integrity constraints on the data stored, rather than
allowing one to recognize instances of that class.
Object-oriented databases [13] are in many ways similar

to semantic data models, or languages based on them, but
may in addition concern themselves with the problems of
methods/message passing, which are foreign here. The ear-
lier remarks on semantic data models apply equally well to
these.
The work of A��t-Kaci [3] on term-structures with co-

reference was a source of inspiration for aspects of the clas-
sic language relating to equality. But A��t-Kaci's term struc-
tures assumed that all roles were single-valued, and general-
ized this using the notion of equivalence classes. Also, rules
and deduction in general are not part of the work on struc-
tured terms|instead A��t-Kaci has chosen to merge Prolog
with structured terms used as types [4].

6.2 Non-traditional queries and answers

Probably most closely related to classic is the work on
the new data model candide. [7] It essentially has many
of the features of the terminological logics noted above (be-
ing based on kandor), but is phrased in a notation more

8The signi�cant exception is the candide data model,
discussed below.

familiar to database researchers, and is extended for expres-
sive ease. We support and agree with many of the argu-
ments presented in [7], including the speci�cation of classes
with de�nitional meaning, and the merging of the DML and
DDL through the use of concepts as queries. We also share
a concern for computational tractability. Unfortunately, it
is now known that kandor (and thus candide) has a trap
where complexity gets out of hand [22]. classic has tried
to avoid this trap, and has also added new features, such
as using concepts as partial descriptions of individuals both
in updates and queries, and adding rules and co-reference
constraints.
On the other hand, the issue of non-enumerative

answers|answers that consist of descriptions of the ele-
ments in the answer set|has received some attention in
the literature on expert database systems (e.g., [11; 18; 28;
15]). Several general approaches can be discerned:

1. Using the rules in a backward-chaining manner to de-
rive from a query a (possibly empty) list of actual in-
dividuals plus a condition on the remaining answers
expressed using some pre-speci�ed subset of the pred-
icates. For example, the answer to `Who can teach
calculus?' might include `Anyone who can teach the
prerequisites of measure theory'. This is useful, among
other things, as a partial answer if one runs out of time
in query processing.

2. Using the current extensions of certain database pred-
icates to characterize the answer set. For example, the
answer to `Who earns over $50,000?' might be: `Per-
sonswho are tenuredand have been chairpersons.' This
is useful if the answer is too long, and if the current set
of individuals is representative of the class.

The �rst of these techniques considers su�cient conditions
for some object|known or not yet known|to be an answer,
while the second one characterizes the current extensional
answer set. Our idea is to provide necessary conditions that
describe and need to hold of the objects which are in the
answer set|conditions that are a consequence of satisfying
the query concept.
Also related is the work of Goebel [15] on the manipula-

tion of de�nite descriptions of objects and sets (e.g., \the
x such that ..."), since these are also intensional descrip-
tions. These can be manipulated as terms in an extension of
Prolog, thus providing considerable generality and power to
the language, partly because it is connected to Prolog as a
data manipulation language, and partly because the reason-
ing with these de�nite terms is carried out as full general-
purpose theorem proving, using predicates like DEMONSTRATE.
This is very di�erent from our much more limited approach
in classic.
To summarize, we believe that classic contributes novel

ideas to the solution of the problem of knowledge manage-
ment on several fronts:

1. Allowing the database to be viewed as a potentially
incomplete model of the world:

� individuals can be described not only in terms of
their relationship to other individuals, but also in
terms of their `conceptual structure' (e.g., `has 4
brothers', `has brothers who are all doctors');

� features such as the absence of the closed world
assumption support an incremental model of in-
formation acquisition.

2. Allowing the database to actively discover a limited
number of new relationships between individuals, not
explicitly asserted by users:



� concepts are classi�ed with respect to each other,
and individuals are classi�ed under concepts spec-
i�ed in the schema;

� concept constructors (such as numeric bounds, co-
reference constraints, and enumerations) can add
information about role �llers of individuals;

� simple forward chaining rules providenew descrip-
tors for individuals.

3. Providing a simple and uniform interface to the
database:

� through the use of multiple operators, a single lan-
guage is used to specify the schema (including in-
tegrity constraints), the information added to the
database, and the queries to it;

� the schema and data can be manipulated uni-
formly and with `closure': schema objects (con-
cepts) can be created, queried and obtained as an-
swers at any time;

� as a result, the description of the entire interface
is brief|it appears here as a short appendix.

4. Providing a variety of notions of `queries and answers':

� three kinds of relationships canbe queried: a stan-
dard one concerning the inter-relationship of in-
dividuals, one concerning the relationship of con-
cepts, and, most interestingly, one relating con-
cepts and individuals; it is this latter facility that
takes into account incomplete information;

� because of the open world assumption, di�erent
kinds of answers to queries can be considered: sets
of individuals that are known to satisfy the query,
sets of individuals that might satisfy the query,
and a most-speci�c description of the necessary
properties of the objects, known or unknown, that
might satisfy the query.

We consider as a signi�cant contribution the establish-
ment of a framework that treats both incomplete informa-
tion and active deduction in a manner di�erent from ap-
proaches based on �rst order logic. Although the contents
of a classic database can be expressed in ordinary logic,
the point we are making is that languages such as classic
impose syntactic restrictions on the form of the formulas per-
mitted that are di�erent from those that arise normally in
FOL. So, although the preceding list of features might seem
very ambitious, hence prohibitively expensive, the power of
classic resides largely in the particular language of struc-
tured concepts, and secondarily on the form of the rules; it is
thus possible to avoid computational intractability by care-
fully limiting the speci�c features included in this language.
Whatever the shortcomings of our particular language, we
now have a framework in which to search for inferential data
models that balance expressiveness with tractability.

Appendix A: The grammar of the CLASSIC
language
<concept-expr> ::=

THING | CLASSIC-THING | [these three are
HOST-THING | built-in primitives]
<concept-name> |

(AND <concept-expr>+)9 |
(ALL <role-expr> <concept-expr>) |
(AT-LEAST <positive-integer> <role-expr>) |
(AT-MOST <non-negative-integer> <role-expr>) |
(SAME-AS (<role-expr>+) (<role-expr>+)) |
(TEST <fn> <realm>) |
(ONE-OF <individual-name>+) |
(PRIMITIVE <concept-expr> <index>) |
(DISJOINT-PRIMITIVE

<concept-expr> <partition-index> <index>)
<individual-expr> ::=

<concept-expr> |
(FILLS <role-expr> <individual-name>) |
(CLOSE <role-expr>) |
(AND <individual-expr>+)

<realm> ::= host | classic

<concept-name> ::= <symbol>
<individual-name> ::= <symbol> | <host-lang-expr>
<role-expr> ::= <symbol>
<index> ::= <number> | <symbol>
<partition-index> ::= <number> | <symbol>
<fn> ::= a unary function with boolean return type

that can be evaluated in the host language.

Appendix B: Operators on a database
UPDATE
de�ne-role[<id>]
de�ne-concept[<id>, <concept-expr>]
assert-rule [<concept>, <concept-expr>]
create-ind[<id>] | create-ind[ ]
assert-ind[<ind>, <individual-expr>]

QUERY
concept-aspect[<concept-expr>, <constructor>] |
concept-aspect[<concept-expr>,

<constructor>, <role>]
ind-aspect[<individual-expr>, <iconstructor>] |
ind-aspect[<individual-expr>,

<iconstructor>, <role-expr>]
concept-subsumes[<concept-expr>, <concept-expr>]
ask-necessary-set[<query-concept>]
ask-description[<query-concept>]

where
<constructor> ::= AND | ALL | AT-LEAST |
AT-MOST | SAME-AS | TEST | ONE-OF|
PRIMITIVE | DISJOINT-PRIMITIVE

<iconstructor> ::= <constructor> | FILLS | CLOSE
<query-concept> ::= ?:<concept-expr>
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