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Classical and advanced multilayered plate elements
based upon PVD and RMVT. Part 1: Derivation of

�nite element matrices
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SUMMARY

This paper deals with the formulation of �nite plate elements for an accurate description of stress and
strain �elds in multilayered, thick plates subjected to static loadings in the linear, elastic cases. The
so-called zig-zag form and interlaminar continuity are addressed in the considered formulations. Two
variational statements, the principle of virtual displacements (PVD) and the Reissner mixed variational
theorem (RMVT) are employed to derive �nite element matrices. Transverse stress assumptions are
made in the framework of RMVT and the resulting �nite elements describe a priori interlaminar con-
tinuous transverse shear and normal stresses. Both modellings which preserve the number of variables
independent of the number of layers (equivalent single-layer models, ESLM) and layer-wise models
(LWM) in which the same variables are independent in each layer, have been treated. The order N of
the expansions assumed for both displacement and transverse stress �elds in the plate thickness direction
z as well as the number of element nodes Nn have been taken as free parameters of the considered
formulations. By varying N , Nn, variable treatment (LW or ESL) as well as variational statements (PVD
and RMVT), a large number of newly �nite elements have been presented. Finite elements that are
based on PVD and RMVT have been called classical and advanced, respectively.
In order to write the matrices related to the considered plate elements in a concise form and to imple-

ment them in a computer code (see Part 2), extensive indicial notations have been set out. As a result,
all the �nite element matrices have been built from only �ve arrays that were called fundamental nuclei
(four are related to RMVT applications and one to PVD cases). These arrays have 3× 3 dimensions
and are therefore constituted of only nine terms each. The di�erent formulations are then obtained by
expanding the indices that were introduced for the N -order expansion, for the number of nodes Nn and
for the constitutive layers Nl. Compliances and=or sti�ness are accumulated from layer to multilayered
level according to the corresponding variable treatment (ESLM or LWM). The numerical evaluations
and assessment for the presented plate elements have been provided in the companion paper (Part 2),
where it has been concluded that it is convenient to refer to RMVT as a variational tool to formulate
multilayered plate elements that are able to give a quasi-three-dimensional description of stress=strain
�elds in multilayered thick structures. Copyright ? 2002 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Multilayered structures are increasingly used in aerospace, ships, automotive vehicles,
advanced optical mirrors and semiconductor technologies. Examples of multilayered, anisotropic
structures are sandwich constructions, composite structures made of orthotropic laminae,
layered structures made of di�erent isotropic layers (such as those employed for thermal
protection) as well as intelligent structures embedding piezo-layers. In most of the applica-
tions, these structures mostly appear as �at (plates) or curved panels (shells). In this paper,
attention has been restricted to �at geometries, although most of the presented derivations
and techniques could be extended to shell cases. Examples of multilayered plates are given
in Figure 1.
The analysis of multilayered, anisotropic structures is di�cult when compared to one-layered

ones made of traditional isotropic materials. A number of complicating e�ects arise when their
mechanical behaviour as well as failure mechanisms have to be correctly understood. Interest-
ing discussions on these e�ects have been reported by Pagano [1]. Some of these complicating
e�ects have clearly been shown by early [2–4] and recent [5; 6] three-dimensional, elastic-
ity solutions. Unfortunately, these elasticity solutions are only available in a very few cases,
which are mainly restricted to sample geometries, loadings and boundary conditions as well
as orthotropic behaviour of constitutive layers.

Figure 1. Examples of multilayered structures and plate geometries and notations. Plates
(upper part) are made of layers of di�erent materials (left) and by unidirectional �bres

(right) and sandwich �at panel (lower, left part).
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As far as two-dimensional modelling is concerned, the subject to which this paper is
devoted, layered structures also require special attention. This is due to the intrinsic dis-
continuity of the thermomechanical properties at each layer-interface to which high shear and
normal transverse deformability is associated. An accurate description of the stress and strain
�elds of these structures requires theories that are able to describe the so-called zig-zag (ZZ)
form of displacement �elds in the thickness z-direction as well as interlaminar continuous
(IC) transverse shear and normal stresses (see [7; 2] as examples). Transverse and in-plane
anisotropy of multilayered structures make it di�cult to �nd closed-form solutions when these
structures are subjected to the usual static and dynamical loadings of the environment to which
these structures are exposed when in use. The use of approximated solutions is necessary in
these cases. It can therefore be concluded that the use of both re�ned two-dimensional the-
ories and computational methods become mandatory to solve practical problems related to
multilayered structures.
A large number of re�ned theories and computational strategies have been proposed and

implemented over the last four decades. Among the implemented computational strategies,
the iterative techniques based on a posteriori evaluations developed by Noor and co-authors
[8–10], the recent di�erential quadrature technique proposed by Malik [11], Malik and Bert
[12] and recently applied by Teo and Liew [13], and the interesting boundary element formu-
lation proposed by Dav�� [14] and recently applied by Dav�� [15], Dav�� and Milazzo [16] and
Milazzo [17] are herein mentioned. Excellent overview papers are available on the topics of
computational methods for multilayered structures analyses (see Section 2).
Among the several available computational methods, the �nite element method (FEM) has

played, and continues to play, a signi�cant role. Most of the commercial codes that are
used in small and large companies as well as in research centres are, in fact, �nite element
oriented. The subject of the present work consists of multilayered �nite elements that are
able to furnish an accurate description of strain=stress �elds in multilayer �at structure anal-
ysis. Reissner’s mixed variational theorem (RMVT) is used to derive what have been called
advanced‡ multilayered �nite elements. As a main property, RMVT permits one to assume
two independent �elds for displacement and transverse stress variables. The resulting advanced
�nite elements therefore describe a priori interlaminar continuous transverse shear and normal
stress �elds. Classical �nite elements with only displacement variables are formulated on the
basis of the principle of virtual work (PVD) for comparison purposes. The number of both
the order N of expansion in z and the number of nodes Nn of the elements are taken as free
parameters of the considered RMVT and PVD formulations. As a result, apart from the new
�nite elements based on RMVT, a number of new classical FE based on PVD are proposed
in this work.
In order to lower the number of equations related to the several presented �nite elements

as much as possible, the indicial notation already used in the �rst author’s papers [18–21]
has herein been extended to �nite element applications. As a fundamental property, such
an indicial notation has led to the writing of all the �nite element matrices in terms of a
few arrays, which are called fundamental nuclei, the dimension of which is 3× 3. These
fundamental nuclei are herein written at a layer level; such a choice has permitted the authors

‡The use of the word ‘advanced’ has been preferred by the authors, over a few others, such as ‘re�ned’, ‘mixed’
or ‘higher order’.
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to treat both modellings which preserve the number of variables independent of the number of
layers (equivalent single-layer models, ESLM) and layer-wise models (LWM) in which the
same variables are independent in each layer, at the same time. The variational statements and
continuity requirements for stresses and displacements as well as non-homogeneous boundary
conditions at each interface, for displacement and=or transverse stress variables, are used to
derive matrices from layers to multilayers and from elements to structure levels.
This paper has been organized as follows. Section 2 outlines the necessary requirements

(herein referred to as C0z -requirements) that should be taken into account for an accurate
description of multilayered structures. Relevant contributions based on di�erent approaches
are brie�y outlined. RMVT is introduced as a possible tool to completely meet the
C0z -requirements. Available, relevant �nite element implementations are also overviewed in
this section. Section 3 quotes the preliminaries that are used in the subsequent sections.
Geometries and Hooke’s law in classical and mixed forms are given along with strain dis-
placement relations and typical �nite element descriptions. Section 4 brie�y recalls the em-
ployed variational statements. RMVT and PVD are introduced along with their use in the
framework of �nite element applications. The used indicial notations are also explained in
this section. Sections 5 and 6 describe the two-dimensional assumptions that one made on
the displacements and transverse stresses. Section 7 derives the �rst 3× 3 fundamental nuclei
related to classical PVD applications. Section 8 derives the further four 3× 3 fundamental
nuclei related to RMVT applications. Section 9 discusses the possible treatment of stress vari-
ables for RMVT-based �nite elements. Section 10 gives a summary of the derived multilayered
�nite elements along with concluding remarks.
Further derivations have been outlined in the form of appendices as follows. Appendix A

reports an example that shows how the introduced indicial notations work. A well-known
�nite element based on PVD has been considered. Appendix B gives an example of loading
vectors related to the �nite element formulations that have been treated. Appendix C identi�es
the compliance=sti�ness terms that require speci�c, numerical sub-integration schemes.
A companion paper (Part 2) has been written to provide numerical evaluations related to

some of the herein proposed �nite elements.

2. MODELLINGS AND FE IMPLEMENTATIONS

This section gives some insight into the peculiarities of two-dimensional modellings of mul-
tilayered plates (Section 2.1). Analytical developments are also considered in Section 2.1,
while available, related �nite element implementations are brie�y discussed in Section 2.2.
The literature overview is not complete. A more exhaustive discussion on the several

contributions that have been made in the recent past has been covered by recent state-of-the-
art articles. Among these, one can mention the papers by Librescu and Reddy [22], Kapania
and Raciti [23], Noor and Burton [9], Reddy and Robbins [24], Noor et al. [25], and the
books by Librescu [26] and Reddy [27].

2.1. Two-dimensional modellings of multilayered structures

2.1.1. High transverse deformability. As far as two-dimensional modelling is concerned, the
main task of multilayered constructions is related to the possibility of exhibiting
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di�erent mechanical–physical properties in the thickness plate direction. These are trans-
versely anisotropic (TA) structures. In addition, anisotropic multilayered structures often show
both higher transverse shear and normal �exibility, with respect to in-plane deformability,
than traditional isotropic one-layered ones. These are transversely high deformable (THD)
structures. For instance, laminated structures made of advanced composite materials presently
used in aerospace structures could exhibit high values of Young’s moduli orthotropic ratio
(EL=ET =EL=Ez=5–40, where L denotes the �bre directions while T and z are two-directions
orthogonal to L) and low transverse shear moduli ratio (GLT =ET ≈GTT =ET =1=10–1=200),
leading to higher transverse shear and normal stress deformability than in isotropic cases.
As a direct consequence of both TA and THD, well-known thin-plate theories [28–30] that

were originally developed for traditional isotropic one-layer structures could be inadequate to
predict the response of multilayered structures. Extension of thin-plate theories to multilayered
structures are often denoted as classical lamination theories (CLT); see Jones [31] as an
example. Transverse shear as well as normal strains are, in fact, postulated to be negligible
with respect to the other strains in CLT plate analyses.
Improvements of thin-plate theories should be made according to the well-known Koiter’s

recommendation (KR) [32]: a re�nement of Kirchho� thin-plate theory is indeed meaningless,
in general, unless the e�ects of transverse shear and normal stresses are taken into account
at the same time. A great deal of contributions have been presented in the literature in which
thin-plate and improved theories, already known for isotropic one-layered structures, have
been extended to multilayered structures. Extensions of Reissner [33] and=or Mindlin [34]
re�ned-type models, which violate KR and include only transverse shear strains, to layered
structures are known as the shear deformation theory (SDT) (or �rst-order SDT, FSDT);
see Yang et al. [35], Whitney [7] and the recent book by Reddy [27]. KR can be retained
by including both transverse shear and normal strains, as done by Hildebrand et al. [36].
Examples of applications of these types of models to laminated structures can be found in
the works by Sun and Whitney [37] and Lo et al. [38]. These are all known as higher-order
theories (HOT).

2.1.2. Zig-zag e�ects and interlaminar continuity: C0z -requirements. In addition to the
discussed re�nements known for one-layer plates made of isotropic materials, the layered
construction introduces further complicating e�ects. Transverse discontinuous mechanical prop-
erties cause, in fact, displacement �elds u=(u1; u2; u3) (bold letters denote arrays, while sub-
scripts 1, 2, 3, denote the components in the x; y; z, directions, respectively) in the thickness
direction which can exhibit rapid changes and di�erent slopes in correspondence to each layer
interface (see Figures 1 and 2). This is known as the zig-zag (ZZ) form of displacement �eld
in the thickness shell direction. Although in-plane stresses �p=(�11; �22; �12) can in general
be discontinuous, equilibrium reasons, i.e. the Cauchy theorem, demand continuous transverse
stresses �n=(�13; �23; �33) at each layer interface (see Figure 3). This is often referred to in
the literature as interlaminar continuity (IC) of transverse shear and normal stresses. Figure 2
shows, from a qualitative point of view, what could be the scenario of displacement u and
transverse stress �n distributions in a multilayered structure in exact solutions and=or exper-
iments. Stresses at the interfaces are displayed in Figure 3. In-plane components, which can
be discontinuous, are also depicted for comparison. Figures 2 and 3 show that both displace-
ment and transverse stresses, due to compatibility and equilibrium reasons, respectively, are
C0-continuous functions in the thickness z direction. u and �n have, in the most general case,
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Figure 2. C0z -requirements. Displacement and stress (in-plane and transverse) �elds in the thickness
plate direction. Three-layered plate.

Figure 3. Details of the stress states at the interface between two consecutive layers.

discontinuous �rst derivatives with correspondence to each interface where the mechanical
properties change. In References [18; 39], ZZ and IC were referred to as C0z -requirements.
The ful�lment of C0z -requirements is a crucial point of two-dimensional modelling of multi-
layered structures.
The extension sic et simpliciter of CLT, FSDT and HOT to multilayered plates does not

permit the ful�lment of the C0z -requirements, that is, ZZ and IC are not addressed by the
mentioned CLT, SDT and HOT. An exception is given by Vlasov’s [40] SDT-type theory
which permits ful�lment of the homogeneous conditions for the transverse shear stresses in
correspondence to the top and bottom shell=plate surfaces. Reddy [41; 42] and Reddy and
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Phan [43] have shown that such simple inclusion could lead to signi�cant improvement, with
respect to SDT, in tracing the static and dynamic response of thick laminated structures.
The theories mentioned above all have the number of unknown variables that are indepen-

dent of the number of constitutive layers Nl. Following Reddy [27], these types of theories
are here grouped as equivalent single-layer models (ESLM). A possible, natural manner of
including the ZZ e�ect could be implemented by applying CLT, FSDT or HOT at a layer
level, that is, each layer is seen as an independent plate and compatibility of displacement
is then imposed as a constraint. In these cases, layer-wise models (LWM) are obtained.
Relevant examples of these types of theories are those found in the articles by Srinivas [44],
who applied CLT in each layer, and Cho et al. [45], who implemented the HOT by Lo
et al. [38] in each layer. Generalizations on these types of theories were given by Nosier
et al. [46] and Reddy [27], who expressed the displacement variables in the thickness direc-
tion in terms of Lagrange polynomials (interface values were used as unknown variables),
therefore permitting an easy linkage of compatibility conditions at each interface.
Literature has shown that LWM provides much better results than those related to ESLM-

type analyses. The overviewed ESL or LW models, being formulated with only displace-
ment unknowns, cannot describe a priori IC for the transverse shear and normal stresses, i.e.
C0z -requirements are not completely ful�lled. Apart from the previously discussed contribu-
tions, special mention should be made of those works in which the description of both IC and
ZZ e�ects is addressed. Among these, one should mention the pioneering paper by Lekhnitskii
[47; 48] that was originally developed for beams, and which describes interlaminar continuous
transverse shear stress as well as ZZ e�ects, and the plate=shell theories by Ambartsumian
[49]. Lekhnitskii’s theory was extended to plates by Ren [50] and Ren and Owen [51], while
Ambartsumian’s theory was �rst extended to unsymmetric plate cases by Whitney [7] and
then to shell geometries by Rath and Das [52]. Hundreds of papers have been published that
are based on the Ambartsumian–Whitney–Rath–Das theory (see the overview papers already
mentioned at the beginning of this section). Most of the works based on these types of the-
ories do not account for the interlaminar continuous transverse normal stress �33 description,
i.e. KR is discarded.

2.1.3. Use of RMVT. All the previously discussed theories are formulated on the basis of
displacement variables. These types of theories are not designed to a priori describe inter-
laminar continuous transverse stresses. A post-processing procedure is required to recover
�n stresses. Post-processing can be avoided if and only if stress assumptions are made.
In-plane and transverse stresses can be assumed in the framework of mixed variational prin-
ciples (see [41; 53]). Reissner’s mixed variational theorem consists of a mixed principle
designed for multilayered structures. RMVT, in fact, restricts the stress assumptions to trans-
verse components. Murakami [54–56] was the �rst to apply RMVT to multilayered structures
by assuming two independent �elds for displacement and transverse stress variables. Toledano
and Murakami [57; 58] showed that RMVT does not experience any particular di�culty when
including transverse normal stresses in a plate theory.
A more comprehensive evaluation of LW and ESL theories was considered by Carrera [19; 20]

where applications to the static analysis of plates were presented. Subsequent works extended
the analysis to the dynamics case [21]. In References [19–21; 59–64], Carrera showed that
RMVT leads to a quasi-three-dimensional description of the in-plane and out-of plane response.
In particular, transverse stresses were determined a priori with excellent accuracy.
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One should conclude that RMVT appears to be a natural tool to completely and a priori
ful�l the C0z -requirements in both LW and ESL cases. An exhaustive review in RMVT has
been recently proposed by Carrera in Reference [65].

2.2. Finite element implementations

Many �nite elements have been proposed which were based on the approaches mentioned in
the last section. Others based on some special �nite element techniques (such as hybrid) have
also been proposed. Some of these are brie�y discussed in the next two subsections. A third
subsection overviews available �nite element implementation based on RMVT.

2.2.1. Implementation of re�ned two-dimensional theories. Early papers concerning lami-
nated plate elements including transverse shear e�ects SDT have been developed by Pryor
and Barker [66], Noor [67], Noor and Mathers [68], Panda and Natarayan [69], Reddy [70] and
Kant and Kommineni [71]. Reduced, selective integration [72] and the assumed shear strain
concept [73; 74] are known techniques to contrast shear locking and spurious modes associ-
ated to these implementations. Many re�nements of SDT-type elements have been proposed
(see the overview papers by Pandya and Kant [75], Reddy [76] and Barboni and Gaudenzi
[77]).
Dozens of �nite elements have been proposed that are based on the Ambartsumian–Whitney

–Rath–Das-type theory. Among these, the recent works by Cho and Parmeter [78], Aitharaju
and Averill [79], Idlbi et al. [80], Cho and Averill [81] and Polit and Touratier [82] can be
mentioned.
Layer-wise �nite elements have been discussed by Pinsky and Kim [83], Reddy [84],

Robbin’s and Reddy [85], Gaudenzi et al. [86], and more recently by Botello et al. [87].
The �nite element models based on ESL or LW approaches have their own advantages=dis-

advantages in terms of solution accuracy and=or solution economy. However, these approaches
can be combined to lead to the so-called ‘multiple-method’ or ‘global=local technique’: an
LW description is used in those zones of the structures in which an accurate description is
required while ESL is left for the remaining parts. Examples of these approaches can be found
in Reddy [27]. Similar techniques, denoted as ‘sub-laminate approaches’, have recently been
developed in the already mentioned Cho and Averill article [81], in the framework of zig-zag-
type theories. The so-called ‘hierarchy’ �nite elements for laminated plates were discussed by
Babuska et al. [88] for similar reasons. The analytical derivations and numerical evaluations
were restricted to laminated strips. Similar approaches, named ‘s-version’, were used by Fish
and Markolefas [89]. Finite elements based on asymptotic expansion of three-dimensional
elasticity equations have been discussed by Turn et al. [90].

2.2.2. Mixed and hybrid FE. Discussions on mixed �nite elements can be read in the
interesting articles reported in the book by Atluri et al. [53]. Hybrid stress �nite elements
are based on a modi�ed complementary energy statement in which equilibrating intra-element
stresses and, independently, intra-element or element boundary displacements are interpolated
in terms of stress parameter and nodal displacement, respectively. The stress parameters are
then eliminated on an element level and a sti�ness matrix is obtained. Four-node hybrid stress
laminated plate elements, including transverse shear e�ects, have been developed by Mau and
Pian [91] and Spilker et al. [92; 93]. Stress �elds were de�ned for each layer (in the ESLM)
or for the laminate (for the ESLM case) with interlayer traction continuity and upper=lower
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laminate traction-free conditions enforced exactly. More recently, three-dimensional hybrid
stress elements have been proposed by Moriya [94] and Liou and Sun [95] and a partial
hybrid stress element was developed by Jing and Liao [96]. Partial mixed �nite elements
have been proposed by Auricchio and Sacco [97] which were based on a re-elaboration of
the classical Hellingher–Reissner mixed functional. These were directed to the building of
improved FSDT-type �nite elements.

2.2.3. Available plate elements based on RMVT. The �rst FE approach to multilayered
structures by means of RMVT is due to Jing and Liao [96]. A partial hybrid formulation
was presented; a self-equilibrated stress �eld was restricted to the three in-plane stresses.
As usual in hybrid formulation, stress unknowns were eliminated at an element level in the
implemented �nite hexahedron element for each layer. The results were restricted to cross-ply
plates and showed good accuracy with respect to the exact solution and improvements with
respect to other re�ned analyses.
Application of RMVT to develop standard �nite elements was proposed by Rao and Meyer-

Piening [98]. The Toledano and Murakami [57; 58] theory was used. Stress unknowns were
eliminated before introducing FE approximations by employing a technique that is equivalent
to the so-called weak form of Hooke’s law (WFHL), which was introduced in Reference
[18], that is, only displacements were taken as nodal variables in the ESLM framework.
Applications were quoted for laminate and sandwich plates and were related to eight-noded
plate isoparametric elements.
The extension of the standard Reissner–Mindlin model to multilayered structures was dis-

cussed by Carrera [99]. The obtained �nite plate elements (four, eight and nine nodes) were
denoted with the acronym RMZC (Reissner–Mindlin zig-zag interlaminar continuity). The
weak form of Hooke’s law proposed in Reference [18] was used to eliminate transverse shear
stress variables. The numerical e�ciency of the RMZC FE model was tested for non-linear
problems in subsequent works. Large de�ection of post-buckling was analysed by Carrera
and Kr�oplin [100]. Non-linear dynamics problems were solved by Carrera and Krause [101].
Applications to linear and non-linear multilayered plates embedding piezo-layers were given
by Carrera [102]. Extensive application to sandwich plates was quoted by Carrera [59] while
extension to shells has recently been provided by Brank and Carrera [74].
It can be concluded that no study is available in which a systematic application of RMVT

to develop ESLM as well as LW advanced multilayered plate elements is made. This is the
subject of the present paper, in which PVD applications are mainly developed for comparison
purposes.

3. PRELIMINARY ASSUMPTIONS

3.1. Geometry and notations for multilayered plates

The geometry and co-ordinate system of the laminated plates of Nl layers have been shown in
Figure 1. The integer k, which is extensively used as both subscripts or superscripts, denotes
the layer number that starts from the plate bottom. x and y are the plate middle surface
�k co-ordinates. �0 and � will be also used to denote the reference surface. 	k is the layer
boundary on �k . z and zk are the plate and layer thickness co-ordinates; h and hk denote plate
and layer thickness, respectively. �k =2zk=hk is the non-dimensional local plate co-ordinate;
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Ak will denote the k-layer thickness domain. Symbols not a�ected by k subscripts=superscripts
refer to the whole plate.

3.2. Hooke’s law for orthotropic lamina in the material reference system

The laminae are considered to be homogeneous and to operate in the linear elastic range.
By employing sti�ness coe�cients, Hooke’s law for the anisotropic k-lamina is written in
the form �i=Cij�j, where the sub-indices i and j, ranging from 1 to 6, stand for the index
couples 11; 22; 33; 13; 23 and 12, respectively. The material is assumed to be orthotropic, as
speci�ed, by C14 =C24 =C34 =C64 =C15 =C25 =C35 =C65 = 0. This implies that �k13 and �

k
23

only depend on �k13 and �
k
23. In matrix form,



�11

�22

�12

�13

�23

�33



=




C11 C12 0 0 0 C13

C12 C22 0 0 0 C23

0 0 C66 0 0 0

0 0 0 C55 0 0

0 0 0 0 C44 0

C13 C23 0 0 0 C33







�11

�22

�12

�13

�23

�33




(1)

3.2.1. Hooke’ law for orthotropic lamina in the plate reference system. Multilayered plates
are often composed of layers made up with di�erent orientation. It is therefore of interest to
write the previous Hooke’s law from the material axis 1, 2, 3 into the reference (or problem)
Cartesian system x; y; z.

�m = [�11 �22 �12 �13 �23 �33]T (2)

Um = [�11 �22 �12 �13 �23 �33]T (3)

�= [�xx �yy �xy �xz �yz �zz]T (4)

U= [�xx �yy �xy �xz �yz �zz]T (5)

The relations between the coe�cient in the two reference system are:

�=T�m (6)

Um =TTU (7)

�m =CUm (8)

Upon substitution of Equation (7) into Equation (8) and by using Equation (6), one has

�=TCTTU= C̃U (9)
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3.2.2. Mixed form of Hooke’s law. For our convenience, stresses and strains are grouped
into two sets, in-plane and out-of-plane (transverse) components:

�p = [�xx �yy �xy]T; �n=[�xz �yz �zz]T (10)

Up = [�xx �yy �xy]T; Un=[�xz �yz �zz]T (11)

The same is done for the matrices:

C̃pp =



C̃11 C̃12 C̃16

C̃12 C̃22 C̃26

C̃16 C̃26 C̃66


 ; C̃pn=



0 0 C̃13

0 0 C̃23

0 0 C̃36


 (12)

C̃np =



0 0 0

0 0 0

C̃13 C̃23 C̃36


 ; C̃nn=



C̃55 C̃45 0

C̃45 C̃44 0

0 0 C̃33


 (13)

Hooke’s law is therefore rewritten as
[
�p
�n

]
=

[
C̃pp C̃pn

C̃np C̃nn

][
Up
Un

]
(14)

That is,

�p= C̃ppUp + C̃pnUn (15)

�n= C̃npUp + C̃nnUn (16)

�p=CppUp +Cpn�n (17)

Un=CnpUp +Cnn�n (18)

Equations (17) and (18) represent the mixed form of Hooke’s law. Such a form plays a
fundamental role in the use of RMVT. The relations between the two forms of Hooke’s law
are

Cpp = C̃pp − C̃pn(C̃nn)−1C̃np
Cpn = C̃pn(C̃nn)−1

Cnp = −(C̃nn)−1C̃np
Cnn = (C̃nn)−1

(19)
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3.3. Strain–displacement relations

As one remains within the small deformation �eld, the strain components Up; Un are linearly
related to the displacements u according to the di�erential, geometrical relations,

Up =Dpu (20)

Un =Dnu=(Dn� +Dnz)u (21)

where u denotes the array of the displacement components,

u=[ux uy uz]T (22)

The di�erential matrices are

Dp =




@
@x

0 0

0
@
@y

0

@
@y

@
@x

0



; Dn=




@
@z

0
@
@x

0
@
@z

@
@y

0 0
@
@z




(23)

Dn� =



0 0

@
@x

0 0
@
@y

0 0 0


 ; Dnz=




@
@z

0 0

0
@
@z

0

0 0
@
@z




(24)

3.4. Finite element description and shape functions

Following standard FEM, the unknown variables in the element domain are expressed in terms
of their values with correspondence to the element nodes. According to the isoparametric
description, displacements or stresses are expressed as follows:

uk� =Niq
k
�i (i=1; 2; : : : ; Nn) (25)

where

qk�i=[q
k
ux�i q

k
uy�i q

k
uz�i]

T (26)

and

�kn�=Nigk�i (i=1; 2; : : : ; Nn) (27)

where

gk�i=[g
k
xz�i g

k
yz�i g

k
zz�i]

T (28)
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Nn is the number of the node of the element and it is taken as free parameter of the model.
Ni are the shape functions and qk�i, gk�i are nodal variables. �; � are the natural co-ordinates.
Explicit forms can be found in one of the many books on FEM; a few cases are detailed
in Part 2 [103].

4. RMVT AND PVD AND THEIR USE TO DEVELOP FINITE ELEMENTS

4.1. PVD and RMVT

For a complete and rigorous understanding of the foundations of RMVT, reference can be
made to the articles by Professor Reissner [104; 105]. Readers can refer to these works for a
systematic comprehension of the mathematical=variational background of Reissner’s theorem.
Here the author’s aim is to try to give a simple interpretation of RMVT, starting from the
basic concept of continuum mechanics and the well-known statements of calculus of variations
(see [106; 41; 53]).
In solid mechanics, it is well-known that the principle of virtual displacement (PVD)

involves only a compatible displacement �eld as a variable, and has as its Euler–Lagrange the
conditions of balance of momenta and traction boundary conditions. Likewise, the dual form of
PVD, i.e. the principle of virtual forces (PVF), involves a stress �eld that is equilibrated and
satis�es the traction boundary conditions, alone as a variable and has as its Euler–Lagrange
equations the kinematic compatibility conditions and displacement boundary conditions. If in
PVD kinematic compatibility and displacement boundary conditions are introduced as condi-
tions of constraint through Lagrange multipliers, which turn out to be stresses and surface
traction, respectively, one then obtains the so-called Hu–Washizu variational principle. Like-
wise, if the condition of equilibrium of stresses is introduced as a constraint condition through
a Lagrange multipliers �eld (which turns out to be displacement) into PVF, one is led to the
so-called Hellingher–Reissner principles. Thus, the Hu–Washizu and Hellingher–Reissner prin-
ciples, which involve that one �eld in the continuum as variables (some of which play the
role of Lagrange multipliers to enforce certain constraint conditions), are often referred to as
mixed variational principles.
This is the scenario in which RMVT can be simply interpreted as a particular case of

the previously mentioned mixed principles in which only compatibility of transverse strain
Un= (�13; �23; �33) is enforced by means of Lagrange multipliers which, in this case, turns out
to be transverse stresses ��n=(��13; ��23; ��33) (� is the variational symbol). The word only
signi�es Reissner’s intuition: for multilayered structure analyses, it is su�cient to restrict the
mixed assumptions to transverse stresses. It is for such stresses that an independent �eld is,
in fact, required to a priori and completely ful�l the C0z -require ments.
PVD assumes a displacement �eld u and puts three-dimensional inde�nite equilibrium

(and related equilibrium conditions at the boundary surfaces which are, for the sake of
brevity, not written here) into a variational form. In the static case, these equations
are

�ij; i=pi; i; j=1; 2; 3 (29)
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p=(p1; p2; p3) are volume loadings. The corresponding PVD integral, variational equation
for a multilayered structure is written as∫

V
(�UpTG�pH + �Un

T
G�nH) dV = �Le (30)

V denotes the three-dimensional multilayered body volume while the subscript H underlines
that stresses are computed via Hooke’s law. The variation of the internal work has been split
into in-plane and out-of-plane parts and involves stress from Hooke’s law and strain from
geometrical relations (subscript G). �Le is the virtual variation of the work made by the
external layer force p.
RMVT can be simply constructed by adding the constraint equations for the transverse

stresses to PVD. These equations can be built by evaluating transverse strains in two ways:
by Hooke’s law UnH and by geometrical relations UnG. In formula

UnH − UnG =0 (31)

RMVT therefore states∫
V
(�UpTG�pH + �Un

T
G�nM + ��nTM(UnG − UnH)) dV = �Le (32)

The third ‘mixed’ term variationally enforces the compatibility of the transverse strain com-
ponents. Subscript M underlines that transverse stresses are those of the assumed model.

4.2. Use of RMVT and PVD to develop �nite elements

RMVT and PVD can be used to derive governing equations of plate problems in a strong
form. Examples of the use of RMVT to derive governing di�erential equations are given
in the already mentioned papers, see Murakami [56] and Carrera [101] as examples. In the
present work, these two variational tools are used to establish the weak form of equilibrium
and compatibility according to �nite element approximations.
In the so-called axiomatic approach, a certain displacement and=or stress �elds are postu-

lated in the plate z-direction. An interesting discussion on the implications of the axiomatic
character of a given theory has been provided by Antona [107]. According to PVD and
RMVT variational statements, multilayered plate elements could be formulated according to
the following �ve steps.

1. Displacement and=or stress distributions in the thickness z plate direction are postulated
by referring to a certain set of base functions (Sections 5 and 6).

2. Material behaviour is assigned, i.e. Hooke’s law is given (Section 3.2).
3. A geometrical relation is given, i.e. a strain–displacement relation is assumed (Sec-
tion 3.3).

4. A �nite element description and shape functions are introduced (Section 3.4).
5. Variational statements are then used to establish in weak sense �nite element matrices
(Sections 7 and 8).

These developments are presented in the most general cases of N -order for the expansion
of the unknown variable in the z-thickness co-ordinate. The number of the nodes Nn is also
taken as a free parameter of the present work.
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Figure 4. Summary of the introduced approximations and related indicial notations.

4.3. Summary of the introduced approximations, indicial notations and fundamental
nuclei 3× 3
In order to derive �nite element matrices according to PVD or RMVT, the introduced
approximations can be summarized in the following two points:

1. The three-dimensional problem is reduced to a two-dimensional one by postulating a
certain behaviour in the plate thickness direction z. As a result, the unknown variables
only depend on the x; y co-ordinates which are de�ned on �.

2. The unknowns on � are further expressed in terms of nodal variables via shape function
assumptions.

Figure 4 shows a plate discretized in a certain number of �nite elements. The dependence
of the unknown variables on z is �rst eliminated via the introduction of two-dimensional
approximations. The unknown variables are therefore only de�ned on a reference surface �.
The dependence on x; y is further eliminated by introducing FE assumptions.
As far as indicial notations are concerned, one notices that the summands on the left-hand

side of PVD and RMVT are products of stresses=strains times variations of stresses=strains and
that each stress=strain array has three scalars. The two-dimensional and FE approximations (1)
and (2) enumerated above are introduced in these stresses=strains as well as in their variations.
In particular, in this paper the following sub=superscripts are used (Figure 4):

• �; s sub–superscripts couple is used for the z-expansions for stresses=strains and their
variation, respectively.

• i; j sub–superscripts couple is used for the number of nodes expansions for stresses=strains
and their variations, respectively.
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Hence PVD and RMVT statements lead to �nite element matrices that could be written by
means of simple arrays that have herein been called fundamental nuclei. These have 3× 3
terms. By varying the introduced indexes, the generic term of the �nite element matrices
related to a given set of N and Nn values could be obtained. The used indicial notation has
been designed for the computer implementations that are presented in the companion paper
(Part 2) [103]. An example showing the way in which the indicial notation works is given
in Appendix A.

5. DISPLACEMENT ASSUMPTIONS FOR PVD APPLICATIONS

In the framework of this paper, the behaviour of a displacement and=or transverse stress
components f is postulated in the thickness plate z-directions according to a given expansion

f(x; y; z)=Fi(z) fi(x; y); i=1; N? (33)

It is intended that repeated indexes are summed over their ranges. The polynomials Fi(z)
constitute a set of independent functions. Such a base can be arbitrarily chosen: power of z,
and combinations of Legendre polynomials will be considered in this paper. N? denotes the
number of the introduced terms.
In the case of classical models, formulated on the basis of PVD, the assumptions of Equa-

tion (33) are restricted to the displacement variables. Traditionally z power expansion is
employed,

u= u0 + zrur ; r=1; 2; : : : ; N (34)

The subscript 0 denotes displacement values with correspondence to the plate=shell refer-
ence surface �, not necessarily corresponding to the middle layer or multilayered surface.
Linear and higher-order distributions in the z-direction are introduced by the r-polynomials.
N remains a free parameter of the model. Di�erent N values could be used for di�erent
variables.
In order to write the whole modellings in a uni�ed notation, the above expansion is rewritten

as

u=Ftut + Fbub + Frur =F�u�; �= t; b; r; r=2; : : : ; N − 1 (35)

By comparing Equation (35) to Equation (34), one �nds that subscript b denotes values
corresponding to � (ub= u0) while subscript t refers to the highest-order term (ut = uN ). The
F� polynomials assume the following explicit form:

Fb=1; Ft = zN ; Fr = zr; r=2; : : : ; N − 1 (36)

where b and t subscripts will also signify, see below, values of the displacement and=or stress
variables with correspondence to layer bottom and top surfaces, respectively.
The assumptions written at previous expansions can be made at layer or multilayered level.

Layer-wise LW and equivalent single-layer (ESLM) descriptions correspond to the �rst and
second cases, respectively. These are discussed separately in the following two subsections.
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5.1. Equivalent single-layer models (ESLM) with zig-zag function

The displacement variables are the same in each of the Nl-layers. Resulting theories are well-
known classical plate models.
It is possible to introduce zig-zag e�ects in the previous expansion and in the PVD frame-

work by referring to Murakami’s idea which was originally introduced in the framework of
RMVT. Murakami [56] proposed to add a zig-zag function to Equation (33),

u= u0 + (−1)k�kuZ + zr−1ur ; r=2; : : : ; N (37)

Subscript Z refers to the introduced zig-zag term. Note that the unknown variables u0; uZ ; ur
are k-independent. The geometrical meaning of the zig-zag function is explained in Figure 3
of Part 2 of this paper. �k =2zk=hk is a non-dimensional layer co-ordinate (zk is the physical
co-ordinate of the k-layer whose thickness is hk). The exponent k changes the sign of the
zig-zag term in each layer. Such a trick permits one to reproduce the discontinuity of the �rst
derivative of the displacement variables in the z-directions which physically comes from the
intrinsic transverse anisotropy (TA) of multilayered structures (as depicted in Figure 2). By
employing a uni�ed notation, Equation (37) becomes

u=Ftut + Fbub + Frur =F�u�; �= t; b; r; r=2; : : : ; N (38)

Subscript t has been chosen to denote the zig-zag term (ut = uZ , Ft =(−1)k�k).

5.2. Layer-wise models (LWM)

By assuming the expansion in Equation (34) in each layer, layer-wise description is obtained.
Nevertheless, Taylor-type expansion of Equation (34) is not convenient for a layer-wise de-
scription. In fact, the ful�lment of continuity requirements for the displacement at interfaces,
i.e. the C0z -requirements, could be easily introduced by using the interface variables as un-
knowns. A convenient combination of Legendre polynomials [56–58; 18] could be used as
base functions:

uk =Ftukt + Fbu
k
b + Fru

k
r =F�u

k
� �= t; b; r; r=2; 3; : : : ; N; k=1; 2; : : : ; Nl (39)

It is now intended that the subscripts t and b denote values related to the layer top and
bottom surfaces, respectively. These two terms consist of the linear part of the expansion.
The thickness functions F�(�k) have now been de�ned at the k-layer level,

Ft =
P0 + P1
2

; Fb=
P0 − P1
2

; Fr =Pr − Pr−2; r=2; 3; : : : ; N (40)

in which Pj=Pj(�k) is the Legendre polynomial of j-order de�ned in the �k-domain: −16�k
61. The chosen functions have the following properties:

�k =

{
1; Ft =1; Fb=0; Fr =0

−1; Ft =0; Fb=1; Fr =0
(41)

The continuity of the displacement at each interface is easily linked,

ukt = u
(k+1)
b ; k=1; Nl − 1 (42)
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Figure 5. Examples of linear and higher-order �eld for both ESLM and LW variable description.

Examples of linear and higher-order �elds in the multilayer for ESLM and LW description
are shown in Figure 5.

6. DISPLACEMENT AND TRANSVERSE STRESS ASSUMPTIONS
FOR RMVT APPLICATIONS

6.1. ESLM case

RMVT consists of a variational tool designed for multilayered structures. Appropriate appli-
cations of RMVT demand displacement �elds which describe a zig-zag e�ect and transverse
stresses which are continuous at the interfaces. The zig-zag e�ect can be included by refer-
ring to displacement �elds quoted in Equations (37) and (39) for ESL and LW description,
respectively. Equation (37) is not appropriate for ESL description of transverse stresses. Its
extension to transverse shear and normal stress would violate Reissner’s aims. In fact, the
resulting stresses model does not ful�l homogeneous and non-homogeneous conditions at the
plate top=bottom surface. The use of RMVT therefore demands layer-wise description of trans-
verse stresses even though ESLM expansions are used for displacements. It is intended that in
the presented derivations ESLM description is only related to displacement �elds in RMVT
applications.
Transverse stresses are assumed independent in each layer. The layer-wise description al-

ready used for displacements is extended to transverse stresses,

�knM =Ft�knt + Fb�knb + Fr�knr =F��kn�; �= t; b; r; r=2; 3; : : : ; N ; k=1; 2; : : : ; Nl (43)

The interlaminar transverse shear and normal stress continuity IC can therefore be linked by
simply writing

�knt = �
(k+1)
nb ; k=1; Nl − 1 (44)

In those cases in which the top=bottom plate=shell stress values are prescribed (zero or imposed
values), the following additional equilibrium conditions must be accounted for:

�1nb= 
�nb; �Nlnt = 
�nt (45)

where the over-bar denotes the imposed values in correspondence to the plate boundary
surfaces.
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6.2. Layer-wise models (LWM)

Full layer-wise description can be introduced by simply extending the stress assumptions of
the previous paragraph to displacement variables,

uk =Ftukt + Fbu
k
b + Fru

k
r =F�u

k
� ; �= t; b; r; r=2; 3; : : : ; N

�knM =Ft�knt + Fb�knb + Fr�knr =F��kn�; k=1; 2; : : : ; Nl
(46)

In addition to Equation (44) the compatibility of the displacement reads

ukt = u
(k+1)
b ; k=1; Nl − 1 (47)

Note that LW description does not require any zig-zag function for the simulation of zig-zag
e�ects. C0z -requirements are completely and a priori ful�lled by Equations (44)–(47).

7. ESL AND LW FINITE ELEMENTS DEVELOPED ON THE BASIS OF PVD

7.1. FEM matrices for the k-layer

The assumed displacement �eld is �rst introduced in the expression for the strains, leading to

Ukp =Dpuk =Dp(F�uk� ) (48)

Ukn =Dnuk =(Dn� +Dnz)(F�uk� )=Dn�(F�uk� ) + F�;zuk� (49)

in which the notation

F�;z =
@F�
@z

(50)

has been introduced.
Secondly, �nite element approximations are used to express the displacement in terms of

their nodal values, via shape functions,

uk� =Niq
k
�i (i=1; 2; : : : ; Nn) (51)

where Nn denotes the numbers of the nodes in the element while

qk�i=[q
k
ux�i q

k
uy�i q

k
uz�i]

T (52)

The base functions F� being independent of x and y, the strains can be written as

Ukp = F�Dp(NiI)qk�i (53)

Ukn = F�Dn�(NiI)qk�i + F�;zNiqk�i (54)
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in which I is the identity matrix. By introducing the written strain–displacement relations
(Equations (53) and (54)) along with Hooke’s law (Equations (15) and (16)), the RHS of
the PVD statement is

�Lkint =
∫
�
�qkT�i D

T
p (NiI)C̃

k
pp

[∫
Ak

(F�Fs) dz
]
Dp(NjI)qksj d�

+
∫
�
�qkT�i D

T
p (NiI)C̃

k
pn

[∫
Ak

(F�Fs) dz
]
Dn�(NjI)qksj d�

+
∫
�
�qkT�i D

T
p (NiI)C̃

k
pn

[∫
Ak

(F�Fs;z) dz
]
Njqksj d�

+
∫
�
�qkT�i D

T
n�(NiI)C̃

k
np

[∫
Ak

(F�Fs) dz
]
Dp(NjI)qksj d�

+
∫
�
�qkT�i D

T
n�(NiI)C̃

k
nn

[∫
Ak

(F�Fs) dz
]
Dn�(NjI)qksj d�

+
∫
�
�qkT�i D

T
n�(NiI)C̃

k
nn

[∫
Ak

(F�Fs;z) dz
]
Njqksj d�

+
∫
�
�qkT�i NiC̃

k
np

[∫
Ak

(F�;zFs) dz
]
Dp(NjI)qksj d�

+
∫
�
�qkT�i NiC̃

k
nn

[∫
Ak

(F�;zFs) dz
]
Dn�(NjI)qksj d�

+
∫
�
�qkT�i NiC̃

k
nn

[∫
Ak

(F�;zFs;z) dz
]
Njqksj d� (55)

Note again that subscripts � and i have been used for the �nite values of unknown variables
while subscripts s and j have been introduced for their variations.
As usual in two-dimensional modellings the integration in the thickness direction can be

made a priori by introducing the following layer integrals:

(Z̃k�spp ; Z̃
k�s
pn ; Z̃

k�s
np ; Z̃

k�s
nn ) = (C̃

k
pp; C̃

k
pn; C̃

k
np; C̃

k
nn)E�s

(Z̃k�s;zpn ; Z̃
k�s;z
nn ; Z̃

k�;zs
np ; Z̃k�;zsnn ; Z̃

k�;zs;z
nn ) = (C̃kpnE�s;z ; C̃

k
nnE�s;z ; C̃

k
npE�;zs; C̃

k
nnE

k
�;zs; C̃

k
nnE�;zs;z)

(E�s; E�s;z ; E�;zs; E�;zs;z) =
∫
Ak

(F�Fs; F�Fs;z ; F�;zFs; F�;zFs;z) dz

Equation (55) is therefore written in the following form:

�Lkint = �q
kT
�i K

k�sijqksj (56)
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where the following �nite element matrix has been introduced:

Kk�sij = /DTp (NiI)[Z̃
k�s
pp Dp(NjI) + Z̃

k�s
pnDn�(NjI) + Z̃

k�s;z
pn Nj]

+DTn�(NiI)[Z̃
k�s
np Dp(NjI) + Z̃

k�s
nn Dn�(NjI) + Z̃

k�s;z
nn Nj]

+Ni[Z̃
k�;zs
np Dp(NjI) + Z̃k�;zsnn Dn�(NjI) + Z̃

k�;zs;z
nn Nj].� (57)

The symbol / : : : .� has been introduced to denote integrals on �.
Note that the matrix Kk�sij is made by triplicate products of 3× 3 arrays, so that Kk�sij

is itself a 3× 3 array. Such an array consists of the fundamental nucleus of �nite element
matrices related to PVD applications. The nine terms Kk�sij are:

Kk�sijxx = Z̃ k�spp11 / Ni; xNj; x .� +Z̃
k�s
pp16 / Ni;yNj; x .� +Z̃

k�s
pp16 / Ni; xNj; y.�

+ Z̃ k�spp66 / Ni;yNj;y .� +Z̃
k�;zs;z
nn55 / NiNj.�

Kk�sijxy = Z̃ k�spp12 / Ni; xNj; y .� +Z̃
k�s
pp26 / Ni;yNj;y .� +Z̃

k�s
pp16 / Ni; xNj; x.�

+ Z̃ k�spp66 / Ni;yNj; x .� +Z̃
k�;zs;z
nn45 / NiNj.�

Kk�sijxz = Z̃ k�s;zpn13 / Ni; xNj .� +Z̃
k�s;z
pn36 / Ni;yNj .� +Z̃

k�;zs
nn55 / NiNj; x.�

+ Z̃ k�;zsnn45 / NiNj;y.�

Kk�sijyx = Z̃ k�spp12 / Ni;yNj; x .� +Z̃
k�s
pp16 / Ni; xNj; x .� +Z̃

k�s
pp26 / Ni;yNj;y.�

+ Z̃ k�spp66 / Ni; xNj; y .� +Z̃
k�;zs;z
nn45 / NiNj.�

Kk�sijyy = Z̃ k�spp22 / Ni;yNj;y .� +Z̃
k�s
pp26 / Ni; xNj; y .� +Z̃

k�s
pp26 / Ni;yNj; x.�

+ Z̃ k�spp66 / Ni; xNj; x .� +Z̃
k�;zs;z
nn44 / NiNj.�

Kk�sijyz = Z̃ k�s;zpn23 / Ni;yNj .� +Z̃
k�s;z
pn36 / Ni; xNj .� +Z̃

k�;zs
nn45 / NiNj; x.�

+ Z̃ k�;zsnn44 / NiNj;y.�

Kk�sijzx = Z̃ k�s;zknn55 / Ni; xNj .� +Z̃
k�s;zk
nn45 / Ni;yNj .� +Z̃

k�;zs
np13 / NiNj; x.�

+ Z̃ k�;zsnp36 / NiNj;y.�

Kk�sijzy = Z̃ k�s;zknn45 / Ni; xNj .� +Z̃
k�s;zk
nn44 / Ni;yNj .� +Z̃

k�;zs
np23 / NiNj;y.�

+ Z̃ k�;zsnp36 / NiNj; x.�

Kk�sijzz = Z̃ k�sknn55 / Ni; xNj; x .� +Z̃
k�sk
nn45 / Ni;yNj; x .� +Z̃

k�sk
nn45 / Ni; xNj; y.�

+ Z̃ k�sknn44 / Ni;yNj;y .� +Z̃
k�;zs;z
nn33 / NiNj.�

(58)
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By varying N and Nn, the �nite element matrices of the k-layer corresponding to the imple-
mented two-dimensional theories and number of nodes are obtained.
By introducing the external work of applied loadings, one has (see Appendix B for an

example)

�qkT�i K
k�sijqksj= �q

kT
�i P

k
�i

By imposing the de�nition of virtual variations, PVD leads for each k-layer to the following
equilibrium conditions:

�qkT�i : Kk�sijqksj=P
k
�i (59)

7.2. Assembly from layer to multilayer

In order to write the �nite element matrix for the multilayered plate, for a given set of
parameters N , Nn and Nl, the following steps must be implemented (global=local approaches
mentioned in Section 2.2.1 should be taken into account at this stage):

1. The 3× 3 fundamental nucleus of the matrix Kk�sij should be expanded according to
the indexes �; s and i; j. The expansion according to �; s indexes is shown in Figure 6
(a four-noded element has been considered in this �gure in conjunction to N =2 expan-
sions in z).

2. The obtained matrix must be written for each of the Nl-layers.
3. Resulting matrices are assembled from layer to multilayer level depending on the used
variables descriptions.

(a) In the case of ESLM, the variables and their variations being the same for each layer,
these matrices are simply summed. That is, layer sti�ness is accumulated layer by
layer. Assemblage related to a three-layered plate is depicted in Figure 7.

(b) Displacement variables are independent in each layer in the LW cases which require
only continuity of displacement variables at the interface. This is formally shown in
Figure 8.

8. ESL AND LW FINITE ELEMENTS DEVELOPED ON THE BASIS OF RMVT

The same steps made in the PVD case could be extended to RMVT formulated �nite elements.
Transverse normal stress variables along with displacement ones will now lead to four 3× 3
fundamental nuclei. Three of them are related to equilibrium conditions; the other establishes
compatibility conditions.

8.1. FEM matrices for the k-layer

The mixed form of Hooke’s law for the k-layer is here rewritten as

�kpH =CkppUkpG +Ckpn�knM (60)

UknH =CknpUkpG +Cknn�knM (61)
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Figure 6. Expansion of the layer matrix from the correspondent 3× 3
fundamental nuclei via � and s indexes.

Transverse stress variables are expressed in terms of shape functions as done for the displace-
ment ones,

�kn�=Nigk�i (i=1; 2; : : : ; Nn) (62)

where

gk�i=[g
k
xz�i g

k
yz�i g

k
zz�i]

T (63)

By introducing

�knM =F�Nigk�i (64)
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Figure 7. Assemblage from layer to multilayered level in ESLM description for a three-layered plate.

Figure 8. Assemblage from layer to multilayered level in LW description for a three-layered plate.

the left-hand side of RMVT becomes

�Lint =
∫
v
[�UkTpGCkppUkTpG + �UkTpGCkpn�knM + �UkTnG�knM + ��kTnMUknG − ��kTnMCknpUkTpG − ��knMCknn�kTnM] dv

(65)

Upon substitution of (64), (53) and (54) one has

�Lkint = /{�qkT�i [DTp (NiI)Zk�spp Dp(NjI)]qksj} .� + / {�qkT�i [DTp (NiI)Zk�spn Nj]gksj}.�
+ / {�qkT�i [DTn�(NiI)E�sNj + E�;zsNiNjI]gksj}.�
+ / {�gkT�i [NiE�sDn�(NjI) + E�s;zNiNjI]qksj}.�
− / {�gkT�i [NiZk�snp Dp(NjI)]qksj} .� − / {�gkT�i [NiZk�snn Nj]gksj}.�
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where the following layer sti�ness and compliance have been introduced:

(Zk�spp ;Z
k�s
pn ;Z

k�s
np ;Z

k�s
nn )= (C

k
pp;C

k
pn;C

k
np;C

k
nn)E�s

so that

�LRkint = �q
kT
�i [K

k�sij
uu qksj +K

k�sij
u� gksj] + �g

kT
�i [K

k�sij
�u q

k
sj +K

k�sij
�� g

k
sj] (66)

where

Kk�sijuu = / [DTp (NiI)Z
k�s
pp Dp(NjI)].�

Kk�siju� = / [DTp (NiI)Z
k�s
pn Nj +D

T
n�(NiI)E�sNj + E�;zsNiNjI].�

Kk�sij�u = / [NiE�sDn�(NjI) + E�s;zNiNjI−NiZk�snp Dp(NjI)].�
Kk�sij�� = / [−NiZk�snn Nj].�

(67)

By imposing the de�nition of virtual variations, the RMVT leads to the following equilibrium
and compatibility equations:

�qkT�i : Kk�sijuu qksj +K
k�sij
u� gksj=P

k
�i

�gkT�i : Kk�sij�u q
k
sj +K

k�sij
�� g

k
sj= 0

(68)

As anticipated, four 3× 3 fundamental nuclei have been obtained. In explicit form these hold:

Kk�sijuuxx = Z k�spp11 / Ni; xNj; x .� +Z
k�s
pp16 / Ni;yNj; x .� +Z

k�s
pp16 / Ni; xNj; y .� +Z

k�s
pp66 / Ni;yNj;y.�

Kk�sijuuxy = Z k�spp12 / Ni; xNj; y .� +Z
k�s
pp26 / Ni;yNj;y .� +Z

k�s
pp16 / Ni; xNj; x .� +Z

k�s
pp66 / Ni;yNj; x.�

Kk�sijuuxz = 0

Kk�sijuuyx = Z k�spp12 / Ni;yNj; x .� +Z
k�s
pp16 / Ni; xNj; x .� +Z

k�s
pp26 / Ni;yNj;y .� +Z

k�s
pp66 / Ni; xNj; y.�

Kk�sijuuyy = Z k�spp22 / Ni;yNj;y .� +Z
k�s
pp26 / Ni; xNj; y .� +Z

k�s
pp26 / Ni;yNj; x .� +Z

k�s
pp66 / Ni; xNj; x.�

Kk�sijuuyz = 0

Kk�sijuuzx = 0

Kk�sijuuzy = 0

Kk�sijuuzz = 0

(69)
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Kk�siju�xx = E�;zs / NiNj.�

Kk�siju�xy = 0

Kk�siju�xz = Z k�spn13 / Ni; xNj .� +Z
k�s
pn36 / Ni;yNj.�

Kk�siju�yx = 0

Kk�siju�yy = E�;zs / NiNj.�

Kk�siju�yz = Z k�spn23 / Ni;yNj .� +Z
k�s
pn36 / Ni; xNj.�

Kk�siju�zx = E�s / Ni; xNj.�

Kk�siju�zy = E�s / Ni;yNj.�

Kk�siju�zz = E�;zs / NiNj.�

(70)

Kk�sij�uxx = E�s;z / NiNj.�

Kk�sij�uxy = 0

Kk�sij�uxz = E�s / NiNj; x.�

Kk�sij�uyx = 0

Kk�sij�uyy = E�s;z / NiNj.�

Kk�sij�uyz = E�s / NiNj;y.�

Kk�sij�uzx = −Z k�snp13 / NiNj; x .� −Z k�snp36 / NiNj;y.�
Kk�sij�uzy = −Z k�snp23 / NiNj;y .� −Z k�snp36 / NiNj; x.�
Kk�sij�uzz = E�s;z / NiNj.�

(71)

Kk�sij�� =



−Z k�snn55 / NiNj.� −Z k�snn45 / NiNj.� 0

−Z k�snn45 / NiNj.� −Z k�snn44 / NiNj.� 0

0 0 −Z k�snn33 / NiNj.�


 (72)

As done for the PVD case, by expanding the (�; s) as well as (i; j) couples of indices, the
�nite element matrix for the given k-layer is obtained.

8.2. Assembly of matrices from layer to multilayer level

In order to obtain multilayer matrices, the procedure already described for the PVD case must
be applied. The LW case perfectly follows what is written for the PVD case.
Some di�erence arises because the ESL–RMVT formulation demands LW description for

the stresses. In these cases, Kk�sij�� follows the LW PVD case while Kk�sijuu follows the ESL
PVD case. A mixed LW and ESL assembly procedure has to be implemented for the other
two matrices Kk�siju� and Kk�sij�u This is described in Figure 9 for a three-layer case and the
Kk�sij�u case (N and Nl are �xed to the values 2 and 3, respectively).
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Figure 9. Assemblage from layer to multilayered level related to K�u-type matrix in the mixed case and
ESLM description, for a three-layered plate.

9. TREATMENT OF STRESS VARIABLES

Mixed formulation o�ers several possibilities as far as the treatment of stress variables is
concerned. Stress variables can be expressed in terms of the displacement ones. This can be
done at layer level, multilayer level or structure level. As an alternative, stress variables can
be retained and full mixed implementation is then obtained.
These methods are discussed in the following sections. For the sake of simplicity, attention

has been restricted to the particular case of homogeneous boundary conditions, that is no
transverse stresses are applied at any interface.

9.1. Elimination of stress variables at layer level

Let us consider a plate loaded by concentrated loadings. After expansion of (�; s) and (i; j)
indexes, the four mixed matrices

Kk�sijuu ;Kk�siju� ;Kk�sij�u ;K
k�sij
��

lead to corresponding layer matrices that are denoted by

Kkuu;K
k
u�;K

k
�u;K

k
��

RMVT can therefore be written as

�qkT[Kkuuq
k +Kku�g

k] + �gkT[Kk�uq
k +Kk��g

k]= �Lkest (73)
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This leads to, for each layer, the following set of governing equations:

Kkuuq
k +Kku�g

k =Pk

Kk�uq
k +Kk��g

k = 0
(74)

The second equation is then solved in terms of displacements by means of the so-called
static-condensation technique. The �rst equation becomes

[Kkuu −Kku�(Kk��)−1Kk�u]qk =Pk (75)

By introducing

Kkmixed =[K
k
uu −Kku�(Kk��)−1Kk�u] (76)

one has

Kkmixedq
k =Pk (77)

Such a matrix assumes the role that sti�ness matrix K plays in PVD applications. It is to be
pointed out that Kk and Kkmixed consist of two completely di�erent matrices; the di�erential
operator in them as well as sti�ness=compliances are completely di�erent. Nevertheless, as
will be demonstrated in Part 2 of this work, PVD and RMVT will lead to the same results
if applied to one-layered structures (see Table IV of Part 2 [103]).
The matrix Kkmixed must be assembled in a similar manner as those used for the PVD case.

Loadings require to be assembled too. At the very end, for the whole multilayer one has

Kmixedq=P (78)

Assembly from element to structure level is made as usual in the �nite element technique.
At the structure level, the governing �nite element system is

KSmixedq
S =PS (79)

where superscript S denotes that arrays are those at the structure level.

9.2. Elimination of stress variables at element level

Let us expand the layer matrices

Kkuu;K
k
u�;K

k
�u;K

k
��

to multilayered element level, according to the procedure described in Section 8.2,

Kuu;Ku�;K�u;K��

RMVT is then written as

�qT[Kuuq+Ku�g] + �gT[K�uq+K��g]= �Lest (80)

This leads to the following governing equations at element level:

Kuuq+Ku�g=P

K�uq+K��g= 0
(81)
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Static condensation is then applied at this stage,

[Kuu −Ku�(K��)−1K�u]q=P (82)

By introducing

K?mixed = [Kuu −Ku�(K��)−1K�u] (83)

one has the governing equations written in terms of only displacement variables,

K?mixedq=P (84)

At structure level, one has

K?
S

mixedq
S =PS (85)

Transverse stresses are then calculated a posteriori.

9.3. Elimination of stress variables at structure level

Following similar steps that have been discussed above, the layer matrix is assembled at
multilayered level and then at structure level,

KSuu;K
S
u�;K

S
�u;K

S
��

RMVT is then written as

�qST[KSuuq
S +KSu�g

S] + �gST[KS�uq
S +KS��g

S]= �LSest (86)

which leads to the following governing equations:

KSuuq
S +KSu�g

S =PS

KS�uq
S +KS��g

S = 0
(87)

Static condensation can be applied at this stage,

[KSuu −KSu�(KS��)−1KS�u]qS =PS (88)

By introducing

K??
S

mixed = [K
S
uu −KSu�(KS��)−1KS�u] (89)

One has

K??
S

mixedq
S =PS (90)

which has only displacement variables as nodal unknowns.
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9.4. Full mixed case

For the full mixed case, the governing equations with stress variables are obtained. This leads
to the following system of governing equations:

KSuuq
S +KSu�g

S =PS

KS�uq
S +KS��g

S = 0
(91)

For convenience, the following arrays are introduced:

h=

[
q

g

]
(92)

Pf =

[
P

0

]
(93)

Kf =

[
Kuu Ku�
K�u K��

]
(94)

The resulting global system of linear algebraic equations is

Kfh=Pf (95)

in which both displacement and stress variables appear as problem unknowns.
Di�erent stress treatments would lead to di�erent governing FE matrices and to di�erent

results. For the sake of completeness the so-called weak form of Hooke’s law, established by
Carrera [18], should be mentioned as a further possibility for the treatment of stress variables.

10. SUMMARY OF THE PRESENTED FINITE ELEMENTS
AND CONCLUDING REMARKS

This paper has formulated multilayer �nite plate elements according to the following state-
ments:

• Two-dimensional theories that consider each layer as an independent plate (layerwise)
as well as plate theories that consider all the layers as a single plate (equivalent single
layer) have been considered.

• Linear and higher-order �elds are considered for the two-dimensional expansion in the
thickness direction. The order N of such an expansion has been taken as a free parameter
of the derived formulations.

• The number of element nodes Nn has also been taken as a free parameter of the
considered plate �nite elements.

• Classical formulations with only displacement variables have been addressed in the
framework of the principle of virtual displacements.
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• Advanced formulations have been developed in the framework of Reissner’s mixed
variational theorem which consists of a variational tool designed for multilayered struc-
ture applications. Displacements and interlaminar continuous transverse stresses (shear
and normal components) are assumed in the RMVT case.

Depending on the used variational statement (PVD or RMVT), variable descriptions (LWM or
ESLM), order of the used expansion N , number of nodes Nn, a large number of multilayered
plate elements have been derived. In order to lower the number of the formulas related to
the di�erent �nite element matrices as much as possible, extensive use of indicial notations
has been proposed in this work. Such an indicial notation, which was mainly invented for
computer implementation, has permitted the authors to write all the considered FE matrices
in terms of only �ve arrays (one for PVD and four for RMVT applications). These arrays
have been called fundamental nuclei and were derived at a layer level. Each of them is of
dimension 3× 3. Multilayer arrays are constructed by imposing the continuity requirements
for stresses and=or displacements, according to the variational statements that have been used.
Implementation of some of the derived �nite elements is given in Part 2 of this work

[103], where it is mainly concluded that RMVT can be considered a natural tool to analyse
multilayered structures. RMVT, in fact, leads to a quasi-three-dimensional description of the
stress �elds of layered plates.

APPENDIX A: AN EXAMPLE SHOWING HOW THE INDICIAL NOTATION WORKS

This appendix shows how indicial notation works for a simple case. A particular plate element
related to PVD applications has been chosen. These elements will be denoted by the acronym
ED1 in Part 2 of this work: E for equivalent single layer, D for displacement approaches
based upon PVD and 1 to signify that it consists of �rst-order linear expansion in z. ED1
�nite element consists of one of the most popular plate elements. It is in fact the closest to the
Reissner–Mindlin plate theories (ED1 cases include transverse normal strain=stress e�ects).
The functions used in the z-expansions are Equation (43),

Fb=1; Ft = z

The corresponding layer integrals are in this case

Ebb=
∫
Ak

FtFt dz=
∫
Ak

dz= zk−1 − zk = hk

Ebt=
∫
Ak

FtFb dz=
∫
Ak

z dz=
1
2
(z2k−1 − z2k)

Etb=
∫
Ak

FbFt dz=
∫
Ak

z dz=
1
2
(z2k−1 − z2k)

Ett =
∫
Ak

FbFb dz=
∫
Ak

z2 dz=
1
3
(z3k−1 − z3k)

(A1)

ED1 corresponds to the ESLM case of Figure 5 (left), that is sti�ness terms in the cor-
respondent fundamental nuclei are summed over k-range. In other words, layer sti�ness is
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accumulated from layer to multilayered level. At this stage, we can denote the accumulated
multilayer sti�ness by referring to notations usually used for laminate analysis [27; 31]:

AIJ =
Nl∑
k=1
Ckij

∫
Ak

FbFb dz =
Nl∑
k=1
Ckijhk

BIJ =
Nl∑
k=1
Ckij

∫
Ak

FbFt dz =
Nl∑
k=1
Ckij

1
2 (z

2
k−1 − z2k); I; J =1; 6

DIJ =
Nl∑
k=1
Ckij

∫
Ak

FtFt dz =
Nl∑
k=1
Ckij

1
3 (z

3
k−1 − z3k)

(A2)

which correspond to well-known in-plane, coupling and bending plate sti�ness.
By using these sti�nesses, the fundamental nuclei related to ED1 �nite element can be

expanded as far as � and s superscripts are concerned. As a result, the �nite element sti�ness
matrix related to i; j node is obtained. It takes the form of (2× 3)× (3× 2) arrays in which
the terms

Z k�spp ; Z
k�s
pn ; Z

k�s
np ; Z

k�s
nn

are opportunely replaced by the plate sti�nesses

AIJ ; BIJ ; DIJ

according to the following substitution:

Z kbbpp ; Z
kbb
pn ; Z

kbb
np ; Z

kbb
nn � AIJ

Z kbtpp ; Z
kbt
pn ; Z

kbt
np ; Z

kbt
nn � BIJ

I; J =1; 6
Z ktbpp ; Z

ktb
pn ; Z

ktb
np ; Z

ktb
nn � BIJ ;

Z kttpp ; Z
ktt
pn ; Z

ktt
np ; Z

ktt
nn � DIJ

(A3)

The resulting 36 terms of this matrix are:

Kttijxx =
∫
�
(D11Ni; xNj; x +D16Ni;yNj; x +D16Ni; xNj; y+;+D66Ni;yNj;y + A55NiNj) d�

Ktbijxx =
∫
�
(B11Ni; xNj; x + B16Ni;yNj; x + B16Ni; xNj; y+;+B66Ni;yNj;y) d�

Kbtijxx =
∫
�
(B11Ni; xNj; x + B16Ni;yNj; x + B16Ni; xNj; y+;+B66Ni;yNj;y) d�

Kbbijxx =
∫
�
(A11Ni; xNj; x + A16Ni;yNj; x + A16Ni; xNj; y+;+A66Ni;yNj;y) d�
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Kttijxy =
∫
�
(D12Ni; xNj; y +D26Ni;yNj;y +D16Ni; xNj; x +D66Ni;yNj; x + A45NiNj) d�

Ktbijxy =
∫
�
(B12Ni; xNj; y + B26Ni;yNj;y + B16Ni; xNj; x + B66Ni;yNj; x) d�

Kbtijxy =
∫
�
(B12Ni; xNj; y + B26Ni;yNj;y + B16Ni; xNj; x + B66Ni;yNj; x) d�

Kbbijxy =
∫
�
(A12Ni; xNj; y + A26Ni;yNj;y + A16Ni; xNj; x + A66Ni;yNj; x) d�

Kttijxz =
∫
�
(B13Ni; xNj + B36Ni;yNj + B55NiNj; x + B45NiNj;y) d�

Ktbijxz =
∫
�
(A55NiNj; x + A45NiNj;y) d�

Kbtijxz =
∫
�
(B13Ni; xNj + B36Ni;yNj) d�

Kbbijxz =0

(A4)

Kttijyx =
∫
�
(D12Ni;yNj; x +D16Ni; xNj; x +D26Ni;yNj;y +D66Ni; xNj; y + A45NiNj) d�

Ktbijyx =
∫
�
(B12Ni;yNj; x + B16Ni; xNj; x + B26Ni;yNj;y + B66Ni; xNj; y) d�

Kbtijyx =
∫
�
(B12Ni;yNj; x + B16Ni; xNj; x + B26Ni;yNj;y + B66Ni; xNj; y) d�

Kbbijyx =
∫
�
(A12Ni;yNj; x + A16Ni; xNj; x + A26Ni;yNj;y + A66Ni; xNj; y) d�

Kttijyy =
∫
�
(D22Ni;yNj;y +D26Ni; xNj; yD26Ni;yNj; x +D66Ni; xNj; x + A44NiNj) d�

Kttijyy =
∫
�
(B22Ni;yNj;y + B26Ni; xNj; yB26Ni;yNj; x + B66Ni; xNj; x) d�

Kttijyy =
∫
�
(B22Ni;yNj;y + B26Ni; xNj; yB26Ni;yNj; x + B66Ni; xNj; x) d�

Kttijyy =
∫
�
(A22Ni;yNj;y + A26Ni; xNj; yA26Ni;yNj; x + A66Ni; xNj; x) d�

Kttijyz =
∫
�
(B23Ni;yNj + B36Ni; xNj + B45NiNj; x + B44NiNj;y) d�

Ktbijyz =
∫
�
(B23Ni;yNj + B36Ni; xNj) d�

Kbtijyz =
∫
�
(B45NiNj; x + B44NiNj;y) d�

Kbbijyz =0

(A5)
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Kttijzx =
∫
�
(B55Ni; xNj + B45Ni;yNj + B13NiNj; x + B36NiNj;y) d�

Kttijzx =
∫
�
(B55Ni; xNj + B45Ni;yNj) d�

Kttijzx =
∫
�
(B13NiNj; x + B36NiNj;y) d�

Kttijzx =0

Kttijzy =
∫
�
(B45Ni; xNj + B44Ni;yNj + B23NiNj;y + Z36NiNj; x) d�

Kttijzy =
∫
�
(B45Ni; xNj + B44Ni;yNj) d�

Kttijzy =
∫
�
(+B23NiNj;y + Z36NiNj; x) d�

Kttijzy =0

K�sijzz =
∫
�
(D55Ni; xNj; x +D45Ni;yNj; x +D45Ni; xNj; y +D44Ni;yNj;y + A33NiNj) d�

K�sijzz =
∫
�
(B55Ni; xNj; x + B45Ni;yNj; x + B45Ni; xNj; y + B44Ni;yNj;y) d�

K�sijzz =
∫
�
(B55Ni; xNj; x + B45Ni;yNj; x + B45Ni; xNj; y + B44Ni;yNj;y) d�

K�sijzz =
∫
�
(A55Ni; xNj; x + A45Ni;yNj; xA45Ni; xNj; y + A44Ni;yNj;y) d�

(A6)

The integral on � has been explicitly written. Note that it is a multilayered level matrix. By
varying the superscripts i; j over the element node Nn the full 6Nn× 6Nn matrix is obtained.
The written explicit expression of sti�ness matrix will never be used in computer imple-

mentations. In fact, these implementations will build sti�ness matrices by making appropriate
loops around the �ve derived fundamental nuclei (see Part 2).

APPENDIX B: APPLIED LOADING VECTORS

The technique employed to derive �nite element sti�ness=compliance matrices can be applied
to derive consistent loading arrays. An example is given in this appendix, which deals with a
distribution of pressure acting on the k-layer and applied on a plane parallel to the reference
surface � which is distant �k = �k1 . The external work made by these pressure distributions is

�LkP=
∫
�1
�ukT(x; y; �k1 )P

k(x; y; �k1 ) d�1 (B1)

where �1 is the domain on which the pressure acts and Pk(x; y; �k1 ) is the array which denotes
the pressure.

Copyright ? 2002 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2002; 55:191–231



PLATE ELEMENTS BASED UPON PVD AND RMVT. PART 1 225

Since �1 =� for plates, Equation (B1) becomes

�LkP= �q
kT
�i F

1
� F

1
s iNjpks .� a

k
sj (B2)

In case more pressure loadings are applied corresponding to more than one plane, the related
terms must be summed. In formula

�LkP= �q
kT
�i F

m
� Fms / NiNjp

k
s .� a

k
sj; m= t; r; b; r=2; 3; : : : ; N (B3)

At least top and bottom layer surface pressure are included in the previous equation. By
introducing

Dk�sij=Fm� Fms / NiNjp
k
s .� (B4)

one has

�LkP= �q
kT
�i D

k�sijaksj (B5)

Dk�sij plays the role of fundamental nucleus. In explicit form, it holds that

Dk�sij=Fm� Fms



/NiNjpkxs.� 0 0

0 /NiNjpkys.� 0

0 0 /NiNjpkzs.�


 (B6)

At the very end, one notices that by introducing

Pkeq�i =Dk�sijaksj (B7)

Equation (B5) becomes

�LkP= �q
kT
�i P

keq
�i (B8)

The array Pkeq�i therefore assumes the meaning of the loading array variationally equivalent to
the applied pressure.

APPENDIX C: IDENTIFICATION OF TERMS RELATED TO TRANSVERSE
STRESSES AND STRAINS

Owing to numerical reasons, such as shear locking mechanisms [108], it is essential to
distinguish sti�ness=compliance terms related to di�erent transverse stress components.
These terms are, in fact, treated with di�erent numerical integration schemes in the companion
paper (Part 2), where numerical evaluations are given.

C.1. PVD cases

The Hooke’s law matrix can be conveniently arranged in the following form:

�k =(C̃kp + C̃k‡ + C̃k†)Uk (C1)
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By splitting in-plane and out-of-plane contribution, one has

�kp = C̃kppUkp + C̃kpnUkn (C2)

�kn = �†C̃knpUkp + (�‡C̃k‡nn + �†C̃k†nn )Ukn (C3)

where

C̃k‡nn =



C̃ k55 C̃ k45 0

C̃ k45 C̃ k44 0

0 0 0


 ; C̃k†nn =



0 0 0

0 0 0

0 0 C̃ k33




For our convenience, the symbols �† �‡ have been introduced. Such symbols permit one to
evaluate in a di�erent manner shear and normal components.
In order to outline transverse strain contribution �kzz, geometrical relations are then written

in the following form:

Ukp = F�Dp(NiI)qk�i (C4)

Ukn = F�Dn�(NiI)qk�i + F�;z(NiI�)qk�i (C5)

where

I�=



1 0 0

0 1 0

0 0 �


 (C6)

�kzz is therefore written as

�kzz=F�;z �(Niq
k
uz�i) (C7)

�kzz=0 is simply obtained by forcing �=0.
The sti�ness matrix can be written as

Kk�sij = /DTp (NiI)[Z̃
k�s
pp Dp(NjI) + Z̃

k�s
pnDn�(NjI) + Z̃

k�s;z
pn (NjI�)]

+DTn�(NiI)[�†Z̃
k�s
np Dp(NjI) + (�‡Z̃

k‡�s
nn + �†Z̃k†�snn )Dn�(NjI)

+ (�‡Z̃k‡�s;znn + �†Z̃k†�s;znn )(NjI�)] + (NiI�)[�†Z̃
k�;zs
np Dp(NjI)

+ (�‡Z̃k‡�;zsnn + �†Z̃k†�;zsnn )Dn�(NjI) + (�‡Z̃k‡�;zs;znn + �†Z̃k†�;zs;znn )(NjI�)].� (C8)

where
(Z̃k‡�snn ; Z̃

k†�s
nn ) = (C̃k‡nnE�s; C̃

k†
nnE�s)
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(Z̃k‡�s;znn ; Z̃k‡�;zsnn ; Z̃k‡�;zs;znn ) = (C̃k‡nnE�s;z ; C̃
k‡
nnE

k
�;zs; C̃

k‡
nnE�;zs;z)

(Z̃k†�s;znn ; Z̃k†�;zsnn ; Z̃k†�;zs;znn ) = (C̃k†nnE�s;z ; C̃
k†
nnE

k
�;zs; C̃

k†
nnE�;zs;z)

As far as the reduced=selective integration technique is concerned, it is intended that:

• Normal integration denoted by the IN scheme (see Part 2) signi�es that all the terms
are fully integrative (full integration by using 3× 3 and 2× 2 Gaussian points for eight-
or nine- and four-noded plates, respectively).

• Selective integration denoted by the IS scheme signi�es that terms that have been put
in a single rectangle must be calculated by reduced integration (it is intended that the
reduced integration scheme is obtained by the full one by reducing the grid of one unity).

• Selective integration denoted by the IS2 scheme signi�es that both terms that have been
put in single and double rectangles must be calculated according to reduced integration.

C.2. RMVT cases

Following what was done above, �kxz; �
k
yz;�

k
zz (the fundamental array related to RMVT appli-

cations) are obtained in the following forms:

Kk�sijuu = / [DTp (NiI)Z
k�s
pp Dp(NjI)].�

Kk�siju� = / [DTp (NiIz)Z
k�s
pn Nj +D

T
n�(NiIz)E�sNj + E�;zsNiNjIzI�].�

Kk�sij�u = / [NiE�sDn�(NjIz) + E�s;zNiNjIzI� − NiZk�snp Dp(NjIz)].�
Kk�sij�� = / [−(NiIz)Zk�snn (NjIz)].�

(C9)

where

Iz=



�T 0 0

0 �T 0

0 0 �z


 ; I�=



1 0 0

0 1 0

0 0 �


 (C10)

Note that Kk�sijuu is not in�uenced by �kxz; �
k
yz;�

k
zz.
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