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Stress-strength models have been frequently studied in recent years. An applicable extension of these models is conditional stress-
strength models. The maximum likelihood estimator of conditional stress-strength models, asymptotic distribution of this
estimator, and its confidence intervals are obtained for Kumaraswamy distribution. In addition, Bayesian estimation and

bootstrap method are applied to the model.

1. Introduction

In reliability, R = P(X >Y) is named as the “stress-strength
model.” This model has application in some literatures in
addition to reliability, such as biostatistics, quality control,
engineering, psychology, stochastic precedence, medicine,
and probabilistic mechanical design. For a comprehensive
review with details, refer to the study by Kotz et al. [1].
Regarding this reference, a sample in a clinical study can be
considered in such a way that Yand X are assumed to be the
results of a treatment group and a control group, respec-
tively. Therefore, the expression (1 — R) measures the effect of
treatment.

For some other applications, refer to the study by
Ventura and Racugno (2011). In terms of reliability, Y is
considered the strength of a component, which is under X
stress. Therefore, R and (1 — R) indicate the system perfor-
mance and the probability of system failure, respectively.

Some authors have extensively studied quantity R in
parametric case for different distributions and in non-
parametric case. Refer the study by Rezaei et al. [2] for a list
of distributions used in this matter.

In usual situations, it is known that X and Y are bigger
than two fixed values. Especially when X and Y are
lifetime of two components of a system, we may know
that these components had been alive for a known time
until we are going to have some inferences about
R =P(X>Y). Therefore, Saber and Khorshidian [3] in-
troduced the conditional stress-strength model as
follows:

R* = p(X>Y|X>aY>b). (1)

The quantity R is special case of this quantity if we set
a =b = —00. In the study by Saber and Khorshidian [3], if
independent random variables X and Y are continues, then
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They worked on exponential distribution in the first
paper on conditional stress-strength models.

In this paper, the Kumaraswamy distribution is applied
to conditional stress-strength models. The Kumaraswamy
distribution is a continuous distribution whose values are
similar to the beta distribution in the distance [0.1]. In this
respect, it is very similar to the beta distribution. However, it
has significant advantages in terms of performance, and the
cumulative irreversible distribution of booklets has
advantages.

In the study by Kumaraswamy [4]; Kumaraswamy [5],
hydrological data were shown, for example, daily rainfall and
daily flow are not compatible with known and widely used
distribution distributions such as normal, log-normal, and
beta distributions. In addition, distributions such as Johnson
and natural transformed polynomials have this problem too.
Therefore, he defined a new probability density function
called the sine probability density function. It seems that
researchers for such data have considered this type of dis-
tribution (see Sundar and Subbiah [6]; Fletcher and Pon-
nambalam [7]; Seifi et al. [8]; Ponnambalam et al. [9]; and
Ganji et al. (2006)).

The Kumaraswamy (Kw) distribution has a probability
density function (pdf) and a cumulative distribution

function as follows:
fX(x):oc[jxo‘*l(l—x“)ﬁfl, 3)
3
Fy(x)=1-(1-x",

respectively, where x € [0,1] and «,f € (0,00)are two
positive shape parameters. Some works on stress-strength

Qet _ LB @ = [ Fx () fy () dy

(1-Fx(a)(1-Fy(b)
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models by using of this distribution have been listed as
follows. Nadar et al. [10] studied classical and Bayesian
estimation of R, and then Nadar and Kizilaslan [11] per-
formed the same study but by using upper record values.
Estimation of reliability of multicomponent stress-strength
models (introduced by Bhattacharyya and Johnson (1974))
has been studied by Dey et al. [12]. Finally, the multi-
component stress-strength model based on progressively
censored sample has been worked by Kohansal [13].

The rest of the paper is organized as follows; we devote
Section 2 to study R*? in case of Kumaraswamy distri-
bution. In a continuation of Section 2, the ML estimator of
quantity R ?, its corresponding asymptotic distribution,
and confidence interval are presented. Furthermore, two
methods including Bayesian and bootstrap are applied to our
recommended model. Finally, results are presented in
Section 3.

2. Conditional Stress-Strength Model for
Kumaraswamy Distribution

In this section, quantity (2) is computed when distribution of
components is Kumaraswamy.

Theorem 1. Suppose X ~ Ku(a, ;) and Y ~ Ku(a, 3,) are
independent random variables, then

B, . _
By + By a=b

/32 (l—b“)ﬁl
By+p\1-a%) "’
B
B 1-a*
1 B+ B\ 1= b , a>b.

Proof. Use and substitute functions
Fx() =ax (1 -xP Fy(x) =1~ (1-x9P,
fr)=apy (1= and Fy(y) =1~ 1=y
in equation (2). So, let a = b, then

Rla’b = <

a<b, (4)

R I;[l -(1 —ya)’gl]ocﬁzyml (1-y*Y=""dy

(1 _ aa)ﬁl’rﬁz

1 a— a\fr- 1 a— a\Bi+B—
_1-Fy@ - [ afpy (=) dy [ By (-t

(1 _ a“)ﬁl*’ﬂz
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_ 1-Fy(a)- fl Fydy + B/ (B, +B,)) Jl a(By +B)y™ " (1- ya)[)’1+/32—1 dy

(1-

_ BB+ B))(1-a By

(1 _ a“)ﬁl*ﬁz

And, if a < b, then

RIb — 1-Fy(b) - ;OO Fx(n)fy(y)dy
(I_Fx(“))(l_Fy(b))

_1-P&(b)—I;[l—(1—Jﬁ)&]aﬁzyWJ(l—J”)%fldy
B (1- % (1- by

~ B, 1-b™ B
_ﬁ1+ﬁ2<l—a“> )

(6)

- B+ By

ao‘)ﬁl‘*ﬂz ( 5)
Eventually, if a > b, we can calculate RI%b Jike previous
ones.

ot L Py (0 x () dx ~ Fy (0) (1 - Fy (a)

(1_Fx(“))(1_Fy(b))

fl[l—(1—nfﬁm]aﬁlme(l——x“yﬁ_ldx——FY(b)Un—FX(aD

(1-a") (10>

(7)

_ (e b - BB+ B (1 e
(1-a* (1- )"

_q ﬁl 1-a“ B>
S B+ \1-b)

In continuation of this section, we find MLE of
R, and then asymptotic distribution of this est-
imator is found in order to construct its confidence
interval.

Let X,,X,,...,X, be a random sample of size n of
Ku(a,f;)and Y,,Y,,...,Y,, be a random sample of size m
of Ku(a, 3,) such that X and Y are independent. Then, the
likelihood function is obtained.

LBy, B;) = ‘anﬁrll/qu | | x;'x_l | | (1- x;‘x)ﬁl_l
i=1 i=1
(8)

m m

5 TT-)
j=1 j=1

Then, to facilitate the calculation, use the form of the
likelihood function in [14].

I(a, $1,B,) =In[L(a, B, 3,)] =(n+m)ln a+nln
+mln B, +(a—1)(1,+1,))

+ (ﬁl - l)lxx + (ﬁZ - l)l;vy’

9
where ;
I, = ZIn X
i=1
l, = Ziln Vi
g (10)



Therefore, the MLE parameters a, f3;, and f3, are obtained
by solving the following equations:

ol (e By, B,)

oa =0,
ol (a, By, B>) _
T =0, (11)
(@b
9B,
Then,
xx (12)
g -_m
t lyy)

and the MLE parameter « is obtained by solving the fol-
lowing nonlinear equation:

n+m — & x¥n x;
+lx+ly_(ﬁl_1)zll_xal
i=1 i

(13)

g%l
(B )Y
j=1

The above equation is solved by numerically methods.

J

Therefore, the MLE of R becomes
A’BZA, a=>b,
Bi + B>
- ~\ B
N 1-b*
R _ P =], a<b, (14)
Bi+PBy\1-a*
_ ~\ B,
_
1—Aﬁ1A L aA , a>b.
| Bi+By\1-b°
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2.1. Asymptotic Distribution of R™. In_this section, we
compute the asymptotic dlStI‘lbuthIlS of 8 = (& p,,5,) and
R Hence, the Fisher information matrix of = (o, 1, 8)
denoted by J(0) =E[I,0] is given as follows, where
I'=[I;;]; =15 is the observed information matrix, i.e.,

azl(“’ﬁpﬁz) azl(“’ﬁpﬁz) azl(“>ﬁ1’ﬁ2)
0o’ Ow 03, ou 9f3,

'1(o By, By) (. By, ;) O
0, o a,’

I(e, B1 B2)

Hor=- 96,96,

azl(“’ﬁl’ﬁz) azl(“’ﬁl’ﬁz) azl(“’ﬁl’/jz)

9, 0a 9,9p, B,
Iy I; I
=| Ly I, Iz |
I3y I3, I3
(15)
and the elements of I(6) are as follows:
n+m - X “In? X; yil J’
I = Z (/32_1)2 ’ ]2’
o = (1= ) ( y])
[ i x; In x;
12 =121 = )
P
& y] ln y] n
113—13122 at2 = p
=1 1-y; ﬁ%
m
I3 =—.
B
(16)

The elements of the Fisher information matrix are ob-
tained by taking the expectations of the observed matrix. The
following integrals can be helpful when finding the elements
of the Fisher information matrix:

jl 1 (1-t) 'In tdt = B(x, y) ((x) — v (x + ¥)),
0

Jlt’“‘l(l —1)"'In’ tdt = B(x, p) [ (y(x) =y (x + 9)7 + 9 (%) =
0

(17)
y' (x+ )],
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where B(x, y) is the beta function, ¥ (x) is the digamma
function, and
=2
v (x) = axl//(x),
n+m n -1 , ,
0 =" D o oy o) -y BIPlY @ - ¥ BF
m -1 ! !
B g g -y -y B - v B
_g 1B _ -
Jio=Jn = " B(2,B, - 1)(v(2) -y (B +1)),
(18)
m
Jo= T =" B2, - 1) (@) -y (B + 1),
n
]22 =
1
Jo3 =75 =0,
m
]33 = [g)
Ju T Tis
where S0,J(0) =1 Ty Jaz Ja3 |- Asn —> 0o andm — 00,
v(l)=—y Js1 Jan T3 _
’ then by using of multivariate CLT of 6, we have
2)=1- 6 — N, (0, Z) where 0 = (&, 8, 5,) and X is inverse of the
L Fisher information matrix:
Y = _r, (1))
(19)
")y ="_
VE) =Y o i-12
n=0 (ﬁz + ”)
Joalss = JasTs2 JisJsa = TiaJss Jiados = Jis) J22)3 ~J12J3 “J13)2
1 1
szet](g) ]23]31_]21]33 ]11]33_]13]31 ]13]21‘]11]23 :det](ﬂ) _]21]33 ]11]33‘]13]31 ]13]21 >
JorJs2 = Joalsr TiaJsi = TuJsa JiJoa = TiaJ ~Jnls Ji2J1 JuJn =T 1n

(20)
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such that

det](e) = ]11]22]33 + I12]23]31 + ]13]21]32 - ]13]22]31 - ]12]21]33 - ]11]23I32
= ]11]22]33 - I13]22]31 - ]12]21]33

- AnmenB (B - 1)BB - 2) [y -y (B)PY @ - v (B)]
BB

(21)
2
’ ’ nm
+mB, (B, = 1)B(2,8, - 2) [y ) - v (B’ [v' @) - v (B)]} —ﬁz—az{ﬁzB(lﬁz -Dlv@ -y @B+ DY
1
ﬁz 2{ﬁlB(2 ﬁl )[1//(2)—1//(/31+1)]}2.
2
Now, we can use the Delta method to express the fol-  where 03, 0%, and o3 are obtained as the following equations:
lowing theorem.
Theorem 2. As n — 0o and m — 00, then
[ =lab la,b
R -R
— — N(0,1); a=b,
0y
Slab _ plab
1 u—>N(0,l); a<b, (22)
03
Hlab _ plab
R R NGO ash
03
o= /5%/35 {m(A—C)—anﬁZ[}ZBBwl// +n(A—D)}
' mm (B, +B,)' (A-C-D) T ’
1
o) = A-C-D) {P%"‘Z +p3B1 (A= C) + p3f; (A - D) - 2p,p,aBy = 2p,p;0) + 2P2P3/3§f333334‘//3‘//4}’ (23)
1
o) = (ACD){ = 2017207 = 21173085 + 27,318, BsByysyy + 2 VZﬁl (A-C)+=—+= Y3ﬁ2 (A- D)]’>

where

B, =B(2.p,-2), B, = B(2,8,-2),B; = B(2,,—1),B, = B(2,8, - 1),
=y@ -y () va=v@) =y (B) v3=v 2~y (B + 1),y =y (2) —y (B, +1),
=y @ -y (B) v2=v' 2 -v'(B)

A=n+m+np (B~ 1)Byiy, +mp, (B, — 1)B,yoy,

402 2 402 2
C =mp,B3y5, D = np By,
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>

p = Pibe (1—5“)131la“(l—ba)lna—ba(l—a“)lnb
B B\ 1 - at (1—,1"‘)2

By (1= (10" 1
pz_ﬁl*‘ﬁz(l_a“) [ln(l—aa)_ﬁl‘*ﬁz],

(24)

B (1—19“)’3‘ BB, (1—aa)ﬁz1a“(1—b“)1na—b“(1—a“)1nb

P g \1ma) VTR g\ T b (- ) ’
R )

PTG pr ) P T\ ) [Bes )|

Proof. Let then
X ; a=b,
.X2+X3
X5 1-bn xz.
g(xl’xZ’x??):‘ x2+x3<]—ax1> ’ a<b’

x 1-aa\"™
1- 2 i a>b,
[ o tx;\1- b0

(25)
( 0; a=b,
%=1 _x X X x
xX3%, [1-b% a'"(1-b")na-b"(1-a")nb
99 Xy +x (l—a"l *1)2 ; a<bh,
—— =1 X% tX; (1-a")
0x4
x3%, [(1-a5\* " 'a" (1-6")In a-b" (1-a")ln b 25b
| X, + x5 \1 - b4 (1- bxl)Z ’ ’
[—— a=b,
(%3 +x3)

_1x \ 2 _ 1
B_g = X L-b In ! bx - L i a<b,
ox, X, +x3\1-an 1-a™ Xy + X3

—x; 1-a%\"
2(1— bx1> ; a>b,
[ (% +x3)




X

(%, + xa)z’

dg % (l—b’“)xz.
a—x3_4 (x2+x3)2 1—ax )’
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X, 1—a%\™
[ %, + x5 \1 - b0

g =(ag(x1’x2’x3) 99 (x1, %5, X3) 0g (x;j;cxz,xa))_
3

0x, ’ 0x,

Since (@ —-0) — N (0, Z), by Cramer’s theorem,
(9®-g0) —N(0.9®29®)"). (@)

where g(6) = OR**/90 = (OR'**/da, OR1**/33,, ORI**/3B,).
Now, 02, 02, and 0% are computed of g(6)2g ()" for case of
a=>b,a<b, and a > b, respectively.

Using the previous theorem, the confidence interval for
R can be obtained. O

Theorem 3. (I - «) 100% confidence interval for R is equal
to

la,b slab ~  glab ~ . _
R™" € <R —Z1_4n01, R +2_4p0,); a=b,

=la,b

a,b =lab ~ X ~
R ¢ <R —Z1_40,, R+ zl_a/202>; a<b,

la.b Blab ~  plab ~ .
R™ ¢ <R —Z1 403, R +21_4,05); a>b.

(28)

In above equations G; wherei=1,2,3 are similar to
o7 wherei =1,2,3 in Theorem 2 with substitutions &, f3,,
and 3, instead of w, 5, and ,.

2.2. Bayesian Estimation of R™*P, In this section, we use the
Bayesian method to approximate the posterior distribution
for the values of interest in the multicomponent stress
strength for the Kumarswamy distribution based on the
MCMC method.

Therefore, suppose 7(0) = m(a)m (B,)7(f,) is the joint
prior density for 0= (&, f;,f,), such that a ~T(a;,b,),
B, ~T(ayb,), and B, ~ T (as,b;).

In these priors, I'(a;,b;) is the gamma distribution with
mean and variance a;/b; and a;/b?, respectively, such that a;
and b; are known parameters and a;, b; > 0. We assume that
the prior distributions «, 8;, and S, are independent.

-1 -
ﬁzus e ﬁzhsl

(29)

m(a) oc a® e, n(By) o B le Pibz, 7(f,) o

Then, 7(0,%,y) = 7 (&) (B,)7 (B,)L (e, By, B5)-

a=b,
a<b,
(26)
! —ln(l_ax )], a>b,
Xy + X3 1-b"
oc g le— ab, ﬁcll2+n—le— ﬁlbzﬁ;3+m—le— ﬁ2b3ﬁ£n
n 1 n ﬁ _1 n 1 n ﬁ 1
[T [Ta==" T TT-55)"
i=1 i=1 i=1 i=1
(30)
Hence,
m(alBy, By, %, y) ocT(ay +m+mn,by) L(a, By, By),
n
77(,31|“’/32)x))’)0<r(a2+”’b2)1—[(1‘x?)ﬁ]_l’ (31)
i=1

a a\Bo- 1
7 (Balas iy x, y) o T ay +m,b) [T (1-55)
j:l

Bayesian inference for parameters a, f8;, and S, can be
performed using the Metropolis—Hastings algorithm (see
Chib and Greenberg [15]) considering the conditional
distributions as the target densities.

2.3. Bootstrap Confidence Intervals. Similar to Section 2.2,
we study confidence interval based on the percentile
bootstrap method for the case of common shape parameter.
The algorithm is as follows:

Step 1: For samples {x,,... Vb

calculate 0= (& f5;,f5,).

Step 2: Use (@, f3,) and (@, f3,) to generate bootstrap
samples {x},...,x:} and {y},...,y:}, respectively,
and then using the generated samples, calculate the
bootstrap estimate of R say R* as follows:

, x,} and {y,,...

A/SAZA; a=b,
Bi+ B,

-~ ~\ Bi
— 1-b%
R* = 4 2 < > ; a<b, (32)

/3A1+/§2 l—a;

~ =\
I—AﬁlA l_aA i a>bh.
[ BitB\1-b"
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TaBLE 1: Classical estimation: & = 5,8, = 3.5, 8, = 3.25, a = 0.1,b = 0.2, and R*® = 0.480959271 for equal sample sizes n and .

=la,b =~lab

(m, n) R Bias (") MSE (R*") ClI Ccp Length
(5, 5) 0.4842 0.0033 0.0320 (0.2225, 0.7459) 0.8000 0.5235
(10, 10) 0.5135 0.0307 0.0097 (03040, 0.7228) 0.9500 0.4188
(15, 15) 0.4833 0.0005 0.0082 (0.3115, 0.6549) 0.9487 0.3433
(20, 20) 0.4754 ~0.0068 0.0050 (03248, 0.6259) 0.9600 0.3012
(35, 35) 0.4778 ~0.0032 0.0028 (0.3625,0.5930) 0.9630 0.2305
(50, 50) 0.4809 0.0000 0.0030 (03846, 0.5772) 0.9300 0.1927
(70, 70) 0.48589 0.00493 0.00178 (0.4038, 0.5679) 0.93000 0.16402
(100, 100) 0.4786 ~0.0023 0.0010 (0.4098, 0.5474) 0.9700 0.1376

TaBLE 2: Bayesian and bootstrap estimations: & = 5, 3; = 3.5, 8, = 3.25,a = 0.1,b = 0.2,and RI*® = 0.480959271 for equal sample sizes 1 and .

(”’ m) R:::ses Bias (R‘k;lz;:jes) MSE (RL’:yl:es) C'Ibayes CPbayes Lengthbayes C'Iboot Cpboot Lengthboot
(5, 5) 0.4929 0.0120 0.003 (0.4188, 0.5497) 1 0.1310 (0.1228, 0.8455) 1 0.7227
(10, 10) 0.4967 0.0157 0.0003 (0.4363, 0.5498) 1 0.1135 (0.2709, 0.7559) 1 0.4850
15, 15) 0.4975 0.0166 0.0003 (0.4412, 0.5498) 1 0.1086 (0.2905, 0.6759) 1 0.3853
(20, 20) 0.4985 0.0175 0.0003 (0.4446, 0.5498) 1 0.1052 (0.3092, 0.6415) 1 0.3323
(35, 35) 0.4989 0.0180 0.0003 (0.4469, 0.5498) 1 0.1030 (0.3538, 0.6017) 1 0.2479
(50, 50) 0.4990 0.0181 0.0003 (0.4475, 0.5498) 1 0.1023 (0.3772, 0.5846) 1 0.2074
(70, 70) 0.49467 0.01371 0.00088 (0.44507, 0.54427) 1 0.09920 (0.40004, 0.5717) 1 0.17169
(100, 100)  0.0190 0.5000 0.0004 (0.4499, 0.5499) 1 0.1000 (0.4138, 0.5434) 1 0.1297

TaBLE 3: Classical estimation: a« = 5,8, = 3.5,8, =3.25,a=0.1,b = 0.2, and Rl = 0.480959271 for different sample sizes n and m.

(n, m) R Bias (R") MSE (R"") clI cp Length
(5, 15) 0.4040 01134 0.0413 (0.2015, 0.6065) 0.5000 0.4050
(20, 15) 0.4787 ~0.0022 0.0065 (0.3243, 0.6330) 0.9315 0.3087
(20, 35) 0.5007 0.0217 0.0047 (0.3661, 0.6352) 0.8974 0.2691
(30, 60) 0.4755 ~0.0055 0.0034 (0.3680, 0.5829) 0.8900 0.2149
(100, 55) 0.4820 0.0010 0.0015 (0.4004, 0.5634) 0.9600 0.1630

TABLE 4: Bayesian and bootstrap Estimations: & = 5,8, = 3.5, 3, = 3.25,a = 0.1,b = 0.2, and RI** = 0.480959271 for different sample sizes #
and m.

(1’1, m) RL“;;S Bias (RL(:}I;S) MSE (R{)ae;ses) C'Ibayes CPbayes Lengthbayes C'Iboot CPboot Lengthboot
(5, 15) 0.4969 0.0159 0.0003 (0.4361, 0.5498) 1.0000 0.1137 (0.1341, 0.6738)  1.0000 0.5398
(20, 15) 0.4981 0.0171 0.0003 (0.4437, 0.54981) 1.000 0.1061 (0.3076, 0.6497)  1.0000 0.3421
(20, 35) 0.4986 0.0177 0.0003 (0.4453, 0.5498) 1.0000 0.1045 (0.3539, 0.6474)  1.0000 0.2935
(30, 60) 0.4990 0.0181 0.0003 (0.4473, 0.5498) 1.0000 0.1025 (0.3598, 0.5911)  1.0000 0.2313
(100, 55)  0.5000 0.0190 0.0004 (0.4499, 0.5499) 1.0000 0.1000 (0.3955, 0.5683)  1.0000 0.1728

TasLE 5: Classical estimation: a = 1.25,8, = 7,8, = 4.2, a = 0.1, b = 0.2, and R1** = 0.20582159557.

(n, m) R Bias (R") MSE (R"*%) clI CP Length
(5, 5) 0.1962 20,0165 0.0138 (0.0169, 0.4094) 0.7895 0.4265
(25, 25) 0.2148 0.0090 0.0036 (0.1055, 0.3239) 0.9300 0.2184
(30, 30) 0.2009 00049 0.0028 (0.1043, 0.2975) 0.8800 0.1932

(40, 40) 0.2024 —-0.0034 0.0017 (0.1180, 0.2868) 0.9500 0.1689




10 Computational Intelligence and Neuroscience
TABLE 6: Bayesian and bootstrap estimations: a = 1.25,8, = 7,8, = 4.2, a = 0.1, b = 0.2, and R** = 0.20582159557.
Slab . ~la,b la,b
(I’l, m) Rbayes Bias (Rbayes) MSE (Rbayes) C'Ibayes CPbayes Lengthbayes C'Iboot CPboot Lengthboot
(5,5) 0.3462 0.1404 0.0233 (0.1438, 0.5486)  0.9100 0.3048 (-0.0571, 0.4496)  1.0000 0.5069
(25, 25) 0.3055 0.0997 0.0119 (0.1337, 0.4772)  1.0000 0.2435 (0.0974, 0.3320)  1.0000 0.2346
(30, 30)  0.3035 0.0977 0.0115 (0.1297, 0.4773)  1.0000 0.2477 (0.0933, 0.3085)  1.0000 0.2152
(40, 40)  0.3001 0.0942 0.0110 (0.1231, 0.4769)  1.0000 0.2538 (0.1093, 0.2955)  1.0000 0.1863

Step 3: Repeat the previous step with time N bootstrap
to generate R,,...,Ry.

Now, RboOt =1/NYN, R and the approximate 100 (1 -
) % confidence interval of R is given by (R(M2 R(1 w2)
where R shows quantile of order y for R1 e ,RN.

3. Simulation Study

In this section, we want to simulate the results for different
sample sizes to better illustrate the methods presented in this
paper (classical estimation, Bayesian estimation, and boot-
strap). Codes of this section have been provided in Ap-
pendix. The two known parameters a = 0.1 and b = 0.2 are
used in our study. For other parameters in the model, we
consider two cases « = 5,8, = 3.5, and 3, = 3.25 which lead
to R*P =0.480959271 and « = 1.25,8, =7, and B, = 4.2
that their corresponding R** is 0.20582159557. In this
simulation, sample sizes (n,m) = (5,5), (10, 10), (15, 15),
(20, 20), (35, 35), (50, 50), (70,70), (100, 100), (5,15), (25,
15), (20, 35), (30, 60), (100, 55) are used. All results are the
mean of 5000 iteration. Estimation has been accomplished
by three methods such as MLE, Bayesian, and bootstrap. For
comparing these methods, we compute bias and MSE. In
addition, coverage probabilities (CPs) and length of confi-
dence interval have been computed. Our findings are rep-
resented in Tables 1-6. As these tables demonstrate,
Bayesian estimation is the best method among three used
methods with respect to criteria MSE, CP, and length of
confidence interval. However, ML estimation has less bias
than two other studied methods.

4. Discussion and Conclusion

The conditional stress-strength model as an interesting
extension of the stress-strength model in reliability was
studied for Kumaraswamy distribution. Three estimation
methods are applied for statistical inference in this
model.

The stress-strength model has been investigated for
many distributions such as generalized logistic distribution,
generalized failure rate distribution, Rayleigh, and half-
normal distribution (see, for instance, Rasekhi et al. [16] and
Alamri et al. [17]). They may be applied for the conditional
stress-strength model, too. We are going to study this model
for generalized logistic distribution in the next step.

The generalized stress-strength parameter (R®) intro-
duced by Saber et al. [18] is given by

C-p(Y< X<2). (33)

This quantity is related to a system with three compo-
nents while R is defined for systems which have two
components.

For future studies, a possible extension of (33) is rec-
ommended in the following:

RGIa,b,c

=P(Y< X<Z|X>a,Y>b,Z>c). (34)

Appendix

Program Codes
rm(list =1s())

a<—0.1; b<-0.2; n<-50; m<-50; alfa<-5; betal
<-3.5; beta2<-3.25; N <—-1000; n.boot < —200

ALFA <-0.05; sigma2a < —0.36; sigma2b < —4; al<-1;
b1<-0.5; a2<-1.5; b2<-1; a3<-1.5; b3<-1.25

alfas<0.9; Dbetals<—6.25; beta2s<-10.25;
—32101456; n.mh < —1; n.gs < —10000

Rab < -function(b1,b2,alf) {

if(a<b) m1<—(b2/(b1 + b2))*((1 — balf)/(1 — dalf) )bl
if(a>b) m1<-1-(b1/(b1 + b2))*((1 — dalf)/(1 — balf) b2
return(ml) }

rkus < -function(sn,alf,bet) {

u < -runif(n); d <-(1 —uf(1/bet); dd < -(1 — d)(1/alf)
return(dd) }

lalfa < -function(alf){

Ix < -sum(log(x)); ly <-sum(log(y)); lxx < -sum(log(1-
¥alf)); lyy < -sum(log(1-yalf))

seed <

Ixxx < -sum(xalf*log(x)/(1-Xalf));
(y)/(1-yalf))
d<-(n+m)lalf+1x+ly; dl<-(n/lxx+1)*1xxx;
(m/lyy + 1)*lyyy; dd <-d +d1 + d2
return(dd) }

thetahat < -function(n, m,b1,b2,alf){
x < -tkus(n,alf,b1); y < -rkus(m,alf,b2)
lalfa < -function(alf){

Ix < -sum(log(x)); ly<-sum(log(y));
(1 —xalf)); lyy < -sum(log(1-yalf))
Ixxx < -sum(xalf*log(x)/(1 — xalf));
log(y)/(1-yalf))
d<-(m+m)/alf+1x+ly; dl<-(n/lxx+1)*Ixxx; d2<-(m/
lyy+1)*lyyy; dd<-d+dl +d2

return(dd) }

lyyy < -sum(yalf*log

d2<-

Ixx < -sum(log

lyyy < -sum(yalf*
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alfahat < -uniroot(lalfa,c(0.0001, 20))$root

Ixx < -sum(log(l — xalfahat));  lyy<-sum(log(l -y
alfahat)); betalhat < --n/lxx; beta2hat < --m/lyy
return(c(betalhat,beta2hat,alfahat))}

fishermi < -function(n,m,b1,b2,alf){

al<-beta(2, b1-2); a2<-beta(2, b2-2); a3<-beta(2, b1-1);
ad<-beta(2, b2-1)

cl <-digamma(2)-digamma(bl); ¢2 < -digamma(2)-
digamma(b2); c¢l11 < -trigamma(2)-trigamma(bl);
c21 < -trigamma(2)-trigamma(b2); c3<-
digamma(2)-digamma(bl +1);  c4<-digamma(2)-
digamma(b2 + 1)

J<-matrix(0, 3, 3); J[1, 1l]<-(n+m+n*b1*(b1-1)*
al*cl2*cll+m*b2*(b2-1)*a2*c2*c21)/alf2

J[1, 2]<-J[2, 1]<-nbl*a3*c3/alf; J[1, 3]<-J[3, 1]
< -m*b2*a4*c4/alf; J[2, 2] < -n/b12; J[3, 3]<-m/b22
return(])}

moshtag < -function(b1, b2,alf){

if(a<b){ el<--((b2/(b1 +b2)) (((1-balf)/(1-aalf))(b1-1)
(bl * (balf * log(b)/(1 - dalf) - (1 - balf) * (aalf * log(a))/
(1-aalf)2))))

€2 <-(b2/(b1 +b2)) * (((1 — balf)/(1-dalf) )bl * log((1 - &
alf)/(1 — aalf))))-b2/(b1 + b2)2 * (1 — balf)/(1 — aalf))bl
e3<-(1/(b1 + b2) —b2/(b1 + b2)2) * ((1 - balf)/(1 — dalf))
bl }

if(a>b){

el<-(b1/(b1 + b2)) * (((1 — aalf)/(1 — balf))(b2 -1) * (b2
* (aalf * log(a)/(1 —balf) — (1 —aalf) * (balf * log(b))/
(1 -balf)2)))

e2<--((1/(b1 + b2) —b1/(b1 + b2)2) *
(1 - balf))b2)

e3<--((b1/(b1 + b2)) * (((1 — aalf)/(1 — balf)Jb2 * log(((1 — &
alf)/(1 - balf)))) - b1/(b1 +b2)2 * ((1 aalf)/(1 - balf))b2) }
return(c(el,e2,e3))}

sigma2<-function(n,m,b1,b2,alf){

JJ < -fishermi(n,m,b1,b2,alf); mosh < -moshtag(bl,-
b2,alf); a5<-t(mosh)%* %solve(J])%* %mosh

return(a5) }

R120 < -Rab(betal, beta2, alfa)

R12h < -bias12 < - MSE12< - L12 < - CP12 < -rep(0, 0);
za < -qnorm(1-ALFA/2)

for(i in 1:N) {

x < -rkus(n,alfa, betal); y<-rkus(m,alfa, beta2);
tethat < -thetahat(n, m, betal, beta2, alfa)

blhat < -tethat[1]; b2hat < -tethat[2]; ahat < -tethat[3]
if((blhat>2)&(b2hat>2))

R12hat < -Rab(blhat,b2hat,ahat);  varl2 < -sigma2(n,
m, blhat, b2hat, ahat); bias12[i]<-R12hat-R120
MSE12[i] < -(R12hat-R120)2; L12[i] < -2*1.96"sqrt
(varl2)

((1 —aalf)/
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CP12[i] < -sum((R120=(R12hat-za*sqrt(var12))) &
(R120<(R12hat + za*sqrt(var12))))

R12h[i]<-R12hat }

Rhat < -mean(R12h); bias < -mean(bias12); mse< -
mean(MSE12); Im < -mean(L12); cp < -mean(CP12)

lower < -max(round(N*ALFA/2),1);  upper < -min(-
round(N*(1-ALFA/2)), N)

fboot < -function(N){
R12bo < -rep(0, 0)
for(i in 1:N) {

x < -rkus(n, alfa, betal); y<-rkus(m,alfa, beta2);
tethat < -thetahat(n, m, betal, beta2, alfa)

blhat < -tethat[1]; b2hat < -tethat[2]; ahat < -tethat[3]
if((blhat > 2)&(b2hat > 2))

R12hat < -Rab(b1lhat, b2hat, ahat); R12bo[i]<-R12hat};
Rs < -sort(R12h); Ib < -Rs[lower]; ub < -Rs[upper]

L<--(Ib-ub);  CP <-sum((R120 > Ib)&(R120 < ub));
dd < -c(L,CP)

return(dd)}
Lboot < -¢(0,0); CPboot < -rep(0, 0)
for(i in 1:n.boot) {

results < -fboot(N); Lboot[i] < -results[1]; CPboot[i]
<-results[2]}

Lboot < -mean(Lboot); CPboot < -mean(CPboot); ini-
tial < -c(alfa, betal,beta2,n,m,R120);

dmle < -c(Rhat, bias,mse,cp,lm); dboot < -c(CPboot,
Lboot); dclassic < -c(initial, dmle,dboot)

dkus < -function(x,alfa, beta) alfa*beta*x{(alfa-1)*(1-
xalfa)(beta-1)

falfa < -function(alfa, betal,beta2,x,y){

n < -length(x); m < -length(y); dl < -(prod(x)*
prod(y)J(alfa — 1); d2<-prod(1 — xalfa)(betal — 1)

d3<-prod(l — yalfa)(beta2 —1);  d4<-dgamma(alfa,al
+m+n,bl); d5<-d1*d2*d3*d4

return(d5)}
fbeta < -function(beta, alfa,x,a,b){

n < -length(x); dl<-prod(1-xalfa)(beta-1); d2 < -
dgamma(beta,a + n,b); d3<-d1*d2

return(d3)}

mhalfa < -function(nmbh,alfas, betals,beta2s,x,y){
set.seed < -seed; sample < -rep(0,nmh)

for(i in 1:nmh){

alfa < -rnorm(1,alfas, sqrt(sigma2a)); a.pl < -falfa(alfa,
betals,beta2s, x, y)

a.p2 < -falfa(alfas, betals,beta2s, x, y); accept.prob < -
a.pl/a.p2

if(is.nan(accept.prob) = = T) sample[i] < -alfas

else {

ratio < -min(1,accept.prob); u < -runif(1)
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if(u < ratio) sample[i] < -alfa

else sample[i] < -alfas }

alfas < -sample[i] }

return(mean(sample)) }

mhbeta < -function(nmh,betas, alfas,x,a,b){
set.seed < -seed; sample < -rep(0,0)

for(i in 1:nmh){

beta < -rnorm(l,betas, sqrt(sigma2b)); a.pl<-fbeta(-
beta, alfas,x,a,b); a.p2<-fbeta(betas, alfas,x,a,b)
accept.prob < -a.pl/a.p2

if(is.nan(accept.prob) = = T) sample[i]<-betas
else {

ratio < -min(1,accept.prob)

u < -runif(1)

if(u < ratio) sample[i]<-beta

else sample[i] < -betas }

betas < -sample[i] }

return(mean(sample)) }

GSnew < -function(N.GS,N.MH,alfas, betals,beta2s,x,
A

n < -length(x); m < -length(y); alfa < -betal < -beta2 < -
Rhat < -rep(0,N.GS)

for(i in 1:N.GS){

alfa[i] < -mhalfa(N.MH,alfas, betals,beta2s,x,y); betal
[i]]<-mhbeta(N.MH,betals,alfa[i],x,a2,b2) beta2[i]
<-mhbeta(N.MH,beta2s,alfa[i],y, a3,b3); alfas < -alfa[i];
betals < -betal[i]; beta2s<-beta2[i] Rhat[i]<-Rab(-
betal[i],betal[i],alfa[i])}

R12h < -mean(Rhat);  varl2<-var(Rhat); biasl2<-
mean(Rhat-R120); MSE12<-mean((Rhat-R120)2)
L12<-2*1.96"sqrt(var12); CP12<-sum((R120 > (R12h-
L12/2)) & (R120<(R12h + L12/2)))
R12h1<-sort(Rhat);
* ALFA/2)1)
upnumber < -min(round(N.GS*(1-ALFA/2)),N.GS);
c.I<-R12h1{lownumber]; c.u < -R12h1[upnumber]
L12n<-cu-cl; CP12n<-sum((R120>cl) & (R120<
cw));

dd < -c(R12h, varl2, bias12, MSE12, L12, CP12, L12n,
CP12n)

return(dd) }

Rlh < -biasl <- MSEl1<- L1<-Lln<- CP1<-CPIn< -
rep(0,0)

for(i in 1:N) {

x < -rkus(n,alfa, betal); y < -rkus(m,alfa, beta2)

lownumber < -max(round(N.GS,

resu < -GSnew(n.gs,n.mh,alfas, betals,beta2s,x,y)

R1h[i] < -resu[l]; biasl[i] < -resu[3]; MSEIL[{] < -resu
[4]; L1[{] < -resu[5]
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Lln[i] < -resu[7]; CP1[i] < -resu[6]; CP1n[i] < -resu[8]
t

dbayes < -c(mean(R1h), mean(biasl), mean(MSEIL),
mean(L1), mean(CP1), mean(L1n), mean(CP1n))
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