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We review the studies of quantum systems of the hydrogen atom in a magnetic field in the 

language of "chaos" (both in the classical dynamical and the quantum mechanical sense) up 

to 1988 with an emphasis on 1) a clarification of Solov'ev's discovery of the approximate 

constant of motion in terms of the normal-form analysis, 2) features of numerical computa· 

tions of spectra in comparison with experimental optical spectra in the chaotic regime, and 

3) the r6le of unstable periodic orbits in the quasi-Landau resonances and their relation to 

"chaotic" eigenfunctions. 
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Classical and Quanta! Chaos in the Diamagnetic Kepler Problem 199 

§ I. Introduction 

The idea that the hydrogen atom in a uniform, static magnetic field would provide 

a prototype object of physical studies which may elucidate richness of chaotic 

dynamics, both in the classical and quantal regimes and also in the correspondence 

between them, occurred in several investigations around 1980 (representative works : 

Edmonds and Pullen/> Robnik,2>·2a> Reinhardt and Farrelly,3> Harada and Hasegawa.4> 

It can be observed that behind this idea existed a motivation of analogy to the 

pioneering work by Henan and Heiles5> on classical nonlinear oscillators in 1964, 

which demonstrated for the first time the existence of regular and stochastic 

motions.6> 

The idea occurred, however, not abruptly: During the period between 1964 and 

1980 the investigation of the diamagnetic hydrogen atom by means of its classical 

trajectories took place having a potential importance for this later development. 

The first significant contribution in this direction was the semiclassical quantization 

formula of the two-dimensional Kepler motion, ignoring the third motion along the 

magnetic field (or taking it into account adiabatically), which was proposed by 

Edmonds8> for an interpretation of the quasi-Landau resonances, according to his own 

naming (Garton-Tomkins resonance discovered in 1969 for Ba and Sr7>), and was led 

from the prior work by Hasegawa9> in solid state physics. The new development 

towards chaos was inevitable in as much as it became indispensable to take into 

account the full three-dimensional aspect of the problem. It was necessitated, as a 

matter of experimental fact, from progress of spectroscopy in highly excited 

diamagnetic Rydberg atoms10>.u> in search for the possible hidden dynamical symme

try which stimulated the first successful result by Solov'ev.12> This success brought 

out a great significance of the theory of near-integrable dynamics, known as the KAM 

(Kolmogorov-Arnold-Moser) theory on invariant tori,6> in that it indeed provided a 

prototype example of the normal form analysis by Robnik13> showing how to construct 

such an invariant structure of the trajectories in phase space. 

The above discovery of the symmetry in the weak-diamagnetic Kepler system 

was further supplemented by the purely quantum mechanical computation of the 

energy eigenvalues and eigenfunctions reported by Clark and Taylor14>'14a> with thou

sands of Sturmian basis functions :15> Their result showed the optical spectral profiles 

computed, demonstrating how the regularly structured quadratic Zeeman spectrum 

changes to irregularity which can be identified with "quantum" chaos. But, on the 

other hand also, a limitation was manifested because of their inability to fill the 

energy scale completely, leaving an interval of 40 cm-1 down from the ionization 

threshold just blank. The computations were taken up anew by the TUbingen 

group/6> who used a different- set of orthonormal complete basis functions and in

creased the number of basis functions up to 2 X 105 , which enabled them to fill a 

substantial part of the above gap of the essential chaos, pushing the boundary of the 

theoretical computations up to the field-free ionization threshold E=O. By this 

improvement, they were able to complete the so-called correspondence diagram in the 

wavelength spectroscopy for astrophysical use17> (a gauge for polarized optical radia-
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200 H. Hasegawa, M. Robnik and G. Wunner 

tion from white dwarfs) and also to compare the computed spectra with finer experi

mental ones available since 1986-above all, with the one reported by the Bielefeld 

group18> for the first time on the hydrogen atom. An emphasis of such fine computa

tions must be laid, however, on the contribution to a statistical aspect, or fluctuation 

aspect, of the spectra in the framework of random matrix theory from the quantum 

chaos viewpoint. 19> 

Since many things are thus involved for our review purpose, even if restricted to 

the recent developments, we must now fix the idea of constitution of this article with 

a length limited, and we choose the following subject matters: § II. Generalities of 

chaos in Hamilton dynamics, § III. Surface of section analyses in the diamagnetic 

Kepler problem, §IV. Transition from regular to chaotic spectra, and § V. Current 

topics. 

We begin in § II with a brief review of the classic work of Henan and Heiles as 

an elementary example of chaos and an explanation of the dynamical and determinis

tic origin of chaos with a focus on the almost integrable system as described by the 

KAM theory. We will also survey the basic ideas and problems of quantum chaos, 

and deal with the semiclassical quantization of such systems (Gutzwiller's version, in 

spite of its potential importance for the problem has to be dispensed with owing to a 

limitation of space). In particular, §II. 4 is devoted to the theory of the Birkhoff

Gustavson normal form, its classical development and a quantization method applica

ble to the regime of well-defined tori. 

Section III, the central part of the present article, aims at a thorough treatment 

of the classical problem of surfaces of section, where the subjects are divided into 

a) magnetic-field scaling, b) analytic description of the invariant tori, c) presentation 

of the surfaces of section-both analytically and numerically and d) a feature of 

instability by means of computing Liapunov exponents. In § IV, we present our 

specific results on quantum (optical) spectra in comparison with the observed ones, 

discuss energy-level statistics, and examine a proposed interpolation formula of the 

level-spacings distribution which connects the Poisson and the GOE (Wigner) case. 

By the name of current topics we select, in § V, four subjects which are being inves

tigated intensively both experimentally and theoretically : the structures of the 

quantum spectra in the classically regular regime-experiments by the Orsay group 

which substantiated the torus quantization of Solov'ev-, the interpretation of the 

appearance of resonances in the spectra in the classically chaotic regime in terms of 

unstable periodic orbits-in the wake of experiments by the Bielefeld group-, the 

visualization of eigenfunctions in the chaotic regime, and, in particular, the problem of 

"scarring" of the wavefunctions along unstable periodic orbits. 

Still, one more subsection is devoted to a summarizing discussion and orientation 

about quantum chaos in the diamagnetic Kepler problem, which concludes the present 

review. 

§ II. Generalities of chaos in Hamilton systems 

ILL Basic concepts and examples 

It is one of the most important discoveries in classical mechanics and in science 
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Classical and Quanta! Chaos in the Diamagnetic Kepler Problem 201 

in general that there exist simple, nonlinear and deterministic systems, which display 

chaotic behaviour, and whose motion cannot be predicted, not even in principle. 

Simple means that the underlying system has only a few degrees of freedom N, e.g. 

N =2. Deterministic means that the laws of motion are locally perfectly well known; 

they are given by the velocity vector field in the phase space. The evolution in time 

is described by ordinary differential equations, and in this way the past and the future 

of the given systems are uniquely determined by the initial conditions (present state). 

The motion as a function of time is obtained by finding the integral curves of the 

velocity vector field, i.e., by solving the differential equations. This is always pos

sible for sufficiently short times, at worst by numerical integration ; and yet for 

sufficiently long times the motion can be unpredictable. The reason for such chaotic 

motion is the instability of orbits which can separate exponentially. Thus the motion 

displays sensitive dependence on initial conditions. One consequence is that the 

number of correctly given digits of coordinates in phase space decreases linearly in 

time. Therefore our prediction of the state of the system will be completely wrong 

after a finite time. Thus the finite precision in measuring the initial state translates 

into logarithmically small times of the validity of our predictions. The exponential 

instability can lead to the type of motion which is as random as the outcomes of the 

coin tossing. In fact, there is a whole hierarchy of chaotic systems extending from 

the Bernoulli systems (most chaotic), mixing systems, ergodic systems, to the almost 

integrable systems (KAM systems). An ergodic system is defined by the property 

that it comes arbitrarily close to almost any point in the phase space as time goes on, 

infinitely often for almost all initial conditions. ("Almost all" means that the excep

tions have measure zero.) 

Regular motion results if the orbits "live" on a smooth manifold in phase space, 

and if they wind quasiperiodically or periodically without selfcrossing. This can 

occur in systems which possess global and smooth integrals of motion. The invariant 

manifolds on which the orbits "live" are the level sets of such constants of motion. 

Typical systems display a transition from regular motion to the ergodic or 

ergodic-like regime of irregular motion as one of the system's parameters is varied. 

A classic example is the Henon-Heiles system (Henon and Heiles5>) of two degrees of 

freedom defined by the Hamiltonian 

(II ·1) 

The Hamilton equations 

Px=-x-2xy, (II· 2) 

can easily be integrated numerically. Each orbit lies, of course, on the energy surface 

H(x, Px, y, py)=E=constant. To reveal the geometry of orbits one introduces the 

Surface of Section (SOS) defined by 

py=py(E;Px, X, y), y=O, (II· 3) 

The Poincare map on the SOS is simply defined by the image of an initial point on the 
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Fig. Il-l. The Poincare mappings on the SOS for the Henon-Heiles system at different energies. In 

(e) the relative area of the regular regions versus the energy is plotted, displaying the sharp but 

nevertheless continuous stochastic transition. (Taken from Henon and Heiles.">) 
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Classical and Quantal Chaos in the Diamagnetic Kepler Problem 203 

SOS under the time evolution: Pick up an initial point on SOS, let it evolve in time 

until it returns to SOS ; its crossing point with the SOS is defined as the image. As 

is well known the Poincare map on the SOS is area preserving. If every orbit is bound 

to cross the SOS, then the Poincare map contains complete information about the 

asymptotic behaviour of the orbits in phase space, and its study is thereby nicely 

reduced to the study of a two-dimensional area preserving map. As an orbit will 

repeatedly cross the SOS it will thus generate an (infinite) sequence of discrete points. 

These points can be well organized in the sense that they fill a smooth curve (invariant 

curve). This happens if there is an independent (of energy) integral of motion 

A(x, Px, y, py) restricting the orbits to a smooth invariant surface in phase space, 

which has the topology of a two-dimensional torus, so it is termed invariant torus. 

Figure II-1 shows that at low energies E most of the orbits do lie on invariant tori, 

whereas with energy increasing there are first some bifurcations of invariant curves 

appearing in the SOS, followed by a rapid increase of the area of chaotic (irregular) 

regions on the SOS. At high energy E the SOS has the appearance of an ergodic 

system. The chaotic motion in such irregular regions displays sensitive dependence 

on initial conditions. The chaotic orbits do not lie on a smooth invariant curve, and 

in fact seem to fill two-dimensional regions in the sense that they come arbitrarily 

close to any point in the region. 

If one doubts the genuineness of such chaotic behaviour and suspects that the 

numerical noise (e.g., rounding-off errors and their propagation) is the actual source 

of chaos rather than some inherent dynamical properties, then the following study of 

an area preserving mapping (Rannou20>) is a highly instructive proof of the determinis

tic dynamical origin of chaos. The standard mapping is defined by 

x'=x+y (mod 2.7r), y' = y- asinx' (mod 2.7r) , a=1.3. (II ·4) 

A straightforward calculation of the Jacobi determinant shows that the mapping is 

area preserving, for the determinant is equal to unity. Its portrait (Fig. II-2(a)) shows 

generic aspects: Regions of regular motion are coexistent with the regions of irregu

lar motion. Here the dynamics is defined by the iteration of the map. (There is 

nothing arbitrary about the study of area preserving maps, since every area preserv

ing map can be associated with a Hamiltonian system). One can convince oneself 

that the two morphological types of orbit, the regular one and the irregular one, are 

indeed dynamical properties rather than being a consequence of external (numerical 

rounding-off) perturbations, by looking at the discrete analogy of the continuous 

standard mapping (II ·4), namely, 

x'=x+y (mod m), [ m . 2.7rx' J ( ) y'=y- a 2.7rsm---,:n- mod m , a=l.3, (II·5) 

which is a one-to-one mapping of a discrete grid of m X m points onto itself. The 

square brackets denote the rounding to the nearest integer. Since the mapping is 

one-to-one every point returns to itself no later than after m2 iterations. Thus every 

orbit is a periodic orbit. Since the arithmetic is integer and exact there is no 

numerical noise. Nevertheless the orbits fall into two classes: The regular periodic 
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204 H. Hasegawa, M. Robnik and G. Wunner 
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Fig. II-2. The phase portrait of the continuous (a) and of the discrete (b) standard mapping according 

to Rannou.20) See text. (Taken from Henon.20")) 

orbits seem to lie on a smooth curve and tend to fill it in the limit of large m, m-HxJ. 

The irregular periodic orbits seem to fill a two-dimensional region and do so in the 

ergodic sense in the limit of large m. This is shown in Fig. II-2(b) for m=l800 as a 

persuasive evidence for the dynamical and deterministic origin of chaotic behaviour. 

The irregular periodic orbits have periods of order m2 in accordance with their 

ergodic-like behaviour within the chaotic region, whilst the regular periodic orbits 

have periods of order m, which is a consequence of the fact that they lie on smooth 

curves whose lengths scale linearly with m. 

There are other exact models of nonlinear systems displaying chaotic behaviour. 

Without the precise definition of such an exact model of chaos, namely, Smale's 

horseshoe map,21)'22> we would like to emphasize the importance of this system for the 

understanding of the origin of chaos : It is a repetition of the stretching and of the 

folding operations which gives rise to the exponential divergence of nearby trajecto

ries. But we will not go into details. Instead, in the following subsections we will 

concentrate predominantly on the almost integrable motion in the regime described by 

the Kolmogorov-Amold-Moser (KAM) theory, and shall review some less known 

methods such as the Birkhoff-Gustavson normal form13>'23> for our purpose. 

Before doing so let us briefly review the fundamental aspects of quantum chaos. 

The World is quantum mechanical in nature and as soon as we begin to study 

phenomena at the molecular, atomic or even nuclear level classical mechanics must be 

replaced by quantum mechanics. The problem of quantum chaos may be stated as 

follows. Are there any quantum phenomena such that, firstly, the name chaos is 

appropriate for them, and, secondly, they are related to the classical chaos of the 

corresponding classical Hamilton systems? The answer is definitely positive 

(Berry,24> Robnik,2>'25> Bohigas and Giannoni/9> Casati et al.,26> Bohigas and Weiden

mtiller27>). 
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Classical and Quanta! Chaos in the Diamagnetic Kepler Problem 205 

In classical chaos there are two major aspects. The nonstationary aspects con

cern the transient behaviour of classical dynamics, and embody such properties as 

sensitive dependence on initial conditions (positive Liapunov exponents). One should 

bear in mind that the spectrum of the evolution operator (the Liouville operator) is 

continuous in the case of chaotic motion, whilst it is discrete if the motion is regular, 

i.e., periodic or generally almost-periodic. The stationary aspects of classical chaos 

are defined by the asymptotic behaviour (dynamical properties for infinite times) and 

embody such properties as the geometry of the topologically transitive invariant sets, 

i.e., such sets that cannot be further decomposed into smaller invariant sets, and their 

bifurcations. 

In quantum chaos, too, we have to distinguish between these two major aspects. 

In the dynamical nonstationary problem of evolving quantum states we encounter the 

difficulty that as long as purely bound systems are studied the spectrum of the 

evolution operator (Hamilton operator) is always discrete, and the evolution of the 

quantum states therefore is always almost-periodic. There is no sensitive depend

ence on initial conditions (any meaningful definition of Liapunov exponents in quan

tum mechanics would result in the conclusion that they are always exactly zero), no 

decay of correlations and the power spectrum of the autocorrelation functions is 

discrete. Nevertheless, it has been found that quite generally for times smaller than 

the so-called break time t = n/ (mean-level-spacing) the agreement with classical 

chaotic behaviour is good or at least satisfactory, but ultimately for times larger than 

the break time the discreteness of the spectrum shows up in the almost-periodic 

behaviour. Important systems in regard of this nonstationary aspect of quantum 

chaos are the kicked rotator and the hydrogen atom in microwaves, especially the 

question of microwave ionization of the atoms in highly excited states (Rydberg 

atoms) where the semiclassical and classical pictures become relevant and useful 

(de Broglie wavelength is small compared to the typical dimensions of the electronic 

motion). (See Casati et al.26> and the references therein.) 

The stationary problem in quantum chaos is concerned with the solutions of the 

stationary Schrodinger equation and corresponds to the stationary problem of clas

sical chaos. The theoretical, computational and experimental work in studying the 

properties of the energy spectra (and of other observables) has led to the firmly 

established conclusion that the spectra of classically integrable quantum Hamilton 

systems generically exhibit Poisson statistics, while the classically ergodic systems 

exhibit the statistical properties of random matrix theories. The latter statement is 

the subject of the conjecture originally -due to Berry24> and Bohigas et al.28> Theoreti

cal arguments in support of the conjecture go back to the ideas by Dyson29> and were 

further developed by Pechukas,30> Yukawa31> and recently by Wilkinson.32> The role 

of antiunitary symmetries for the level statistics in classically ergodic systems has 

been explained by Robnik33>: If there is an antiunitary symmetry (such as time 

reversal symmetry), then the Gaussian Orthogonal Ensemble statistics of random 

matrix theories applies, whereas the Gaussian Unitary Ensemble statistics applies if 

there is no such symmetry. Numerical evidence has been given by Bohigas, Giannoni 

and Schmit,28> Seligman and V erbaarschot,34> Berry and Robnik.35> The mixed cases 

of generic systems (KAM-systems) have been studied by Robnik,36> Berry and 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/p
tp

s
/a

rtic
le

/d
o
i/1

0
.1

1
4
3
/P

T
P

S
.9

8
.1

9
8
/1

9
0
0
9
7
1
 b

y
 g

u
e
s
t o

n
 2

0
 A

u
g
u
s
t 2

0
2
2



206 H. Hasegawa, M. Robnik and G. Wunner 

Robnik,37l Seligman et al., 38>'39> Robnik, 40> Wintgen and Friedrich, 41 > Hasegawa 

et al., 42> (also Wunner et al.81l). 

A surprise in the above research of quantum chaos was the finding that the 

statistics of random matrix theory apply not only to the spectra of sufficiently 

complex systems with many coupled degrees of freedom (ignorance motivated the 

statistical approach in the early development for nuclear levels) but also to relatively 

simple systems having a few degrees of freedom, provided that their classical 

dynamics is ergodic (knowledge of the statistical properties of the classical motion 

motivates the approach). Recent development of the formulation by Pechukas, 

Yukawa and others elucidate this question further (cf. Hasegawa95>): By regarding 

the perturbations of a Hamilton matrix for a regular quantum system as the source 

of chaos for this system developing in a course of dynamics, i.e., by treating the 

perturbation parameter as time of dynamics, they show the way of introducing a 

natural ensemble of the Hamiltonian matrices obeying the same dynamics. 

The problem of the properties of the eigenfunctions of (quantum systems whose 

classical counterparts are) classically chaotic systems has been the subject of increas

ing interest in recent years (Heller,43>'45> Robnik,36> Heller et al.,44> Robnik22>'46>'47>). 

Briefly, the eigenfunction of a classically ergodic system is predicted to be roughly a 

superposition of a Gaussian random function and of the scars of the classically 

periodic orbits-regions of enhanced probability density. The first firm 

computational evidence and a theory of scars was given by Heller.43> Since the 

existence of scars, e.g., in atomic systems has important observational consequences, 

we shall discuss this problem in the last section. 

The hydrogen atom in a strong magnetic field is one of the current central topics 

in atomic physics (cf. Taylor 48>). It has been shown to be a classically chaotic 

system1H> displaying a transition from the (almost) integrable motion at low energies 

and/or magnetic field strength to the ergodic-like behaviour at high energies and/or 

field strength. It is regarded as a paradigm of quantum chaos due to its elementarity 

and experimental importance, in the course which started in 1982 at the Aussois 

meeting.*> The progress since then was enormous calling for a review of the status, 

which is our motivation for writing the present article. The very recent experimen

tal achievements in this regard emphasize the necessity for review and discussion. 

II.2. Integrable and almost integrable systems-KAM theory**> 

The classical Kepler problem is a good textbook example of an integrable 

system. Owing to its supersymmetry there are many more integrals of motion than 

needed for integrability. By integrable we mean that there are at least N(N =the 

number of freedoms) global, analytical, single-valued and independent integrals of 

motion, being in involution, i.e., such that all Poisson brackets vanish. By the 

important theorem stated explicitly by Arnold49> the integrability implies that each 

invariant surface in phase space (of 2N dimensions) must have the topology of theN-

*> The first statement that the irregular levels in the classically ergodic-like region computed by Clark and 

Taylor14' can be identified with quantum chaos (in the sense of the stationary problem) was given by 

Robnik2' at that meeting, and then by Harada and Hasegawa•> on a quantitative basis (see Fig. II-5). 

**> This is an extended version of a brief review offered in Robnik.2' 
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Classical and Quanta! Chaos in the Diamagnetic Kepler Problem 207 

dimensional torus (sphere with N -1 handles), the so-called invariant torus. 

The phase space of an integrable system is thus filled everywhere with invariant 

tori. In absence of perturbations the motion is confined to an invariant torus, which 

justifies the attribute "stable system". It is then possible to use the topologically most 

natural canonically conjugate variables, namely, the action-angle variables. The 

actions h 1~j ~N, are defined as the integrals /j=(1/2;r)f ciP' dq along the irreduc

ible circuits Cj on the torus (these are loops, which for topological reasons cannot be 

shrunk to a point by a continuous transformation), hereafter called "irreducible (or 

elementary) cycle". They label a given torus, while the position of a phase point on 

the torus is specified by the angles f!h 1~j~N, canonically conjugate to the actions 

h The angle fh changes by 2;r along the closed irreducible cycle C. The 

Hamiltonian reads H = H(I), so that the angles are cyclic variables by construction. 

The equations of motion 

. iJH 
1=- ()8 =0, 

. iJH 
8= i)J = cu(/)=constant, (II· 6) 

can immediately be integrated to yield: /j=constant, ej= mjt +constant, showing that 

the motion on an invariant torus is quasiperiodic. A torus is called rational (also 

resonant) or irrational according to whether the frequencies mj= iJH/iJij are rationally 

connected or not. In the resonant case the motion is periodic. 

Incidentally, for the Kepler problem all tori are resonant, since all frequencies 

depend only on the value of the total energy, and are thus equal, as is well known. 

Let us look more closely at the Kepler problem. The Hamilton function in spherical 

coordinates can be written 

C<O. (II· 7) 

We have three actions 

(11·8) 

(11·9) 

(II ·10) 

The action ]rp is equal to the z-component of the angular momentum. The angular 

momentum L=rXp is a constant of motion, and so is L 2, 

(II ·11) 

From this follows 

(II ·12) 
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208 H. H9-segawa, M. Robnik and G. Wunner 

This integral can be calculated conveniently using the substitution 

Vsin28-p,/ 
cos28 

(II ·13) 

The integral (II·12) consists of four equal contributions J'Odz···, since z=O corre

sponds to the turning point, whilst z=oo corresponds to B=;r/2. The result is simple, 

I6=L-p"'. (II ·14) 

Finally, we calculate 

Ir=- -J2mHr2 - V- Cr =- L+ . 11rmax dr { C } 
7( Tm!n r 2J -2mH 

(II ·15) 

The new Hamilton function 

H= (II ·16) 

is degenerate in the sense that all three frequencies 

aH aH aH 
C:0Kepler=C:Or=--=c:o6=--=c:o'P=--

aJr ai6 ai'P 
(II ·17) 

are equal, as has been claimed. Thus on each torus we have 1:1:1 resonance and 

consequently all orbits are periodic. This degeneracy is a consequence of the super

symmetry of the Kepler problem. We will show that there exists another conserved 

vector, namely, the so-called Runge-Lenz vector 

r 
A=pXL+mC-. 

r 

Using ;- = p and p = Cr/r 3 one shows 

The Runge-Lenz vector has also the following three properties: 

A·L=O, 

A 2=m2 C2 +2mHV, 

r·A=V+mCr. 

(II ·18) 

(II ·19) 

(II· 20) 

(II· 21) 

(II· 22) 

Since A is perpendicular to L, it lies in the orbital plane. We can use it as the 

reference line 9'=0. Then one has trivially r·A=rAcoS9', which must be equal to 

(II· 22) whence the elliptic orbits 

V/mC 
r 

1- (A/mC)cos 9' 
(II ·23) 

are derived without even solving a single integral. 

The degeneracy of the Kepler problem is also reflected in the fact that the 
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Classical and Quanta! Chaos in the Diamagnetic Kepler Problem 209 

periodic orbits can be embedded in different systems of tori. The problem is separa

ble in two different coordinate systems (classically and quantum mechanically!), 

namely, the spherical coordinates and the parabolic cylindrical coordinates. If one is 

dealing with the perturbations of the Kepler problem, then the first job is to find out 

which tori are the unperturbed tori when the perturbation asymptotically vanishes. 

An important example is provided by the central object of our study in this work, 

namely the hydrogen atom in a strong magnetic field (the Diamagnetic Kepler 

froblem, DKP). It has been shown that this system is not integrable1H> and that at 

low energies and at low magnetic fields most of the Kepler tori do survive the 

diamagnetic perturbation, and that they can be described by the third choice of 

coordinates, namely, the elliptic cylindrical coordinates, which answers the question 

of the unperturbed tori as discussed in § III.2. 

What happens to tori of an integrable system under a small perturbation has been 

a long-standing and most important question of classical mechanics. Some people 

like Landau thought that all systems are integrable, but that we are in almost all cases 

just unable to find the integrals. The opposite extreme was favoured by Fermi, who 

believed that integrable systems are exceptions (which is correct), and become 

ergodic when slightly perturbed (which is incorrect). 

As a surprise came, then, a partial answer due to Kolmogorov, Arnold and Moser 

(KAM Theorem) : All tori of the unperturbed integrable system Ho(/) outside the 

resonant gaps survive a perturbation Ho(/) ~ Ho + c V. The resonant gaps are center

ed around the rational tori, and their width is determined by the inequality 

(II· 24) 

where K(c) is some constant vanishing when c~O, being the same for all tori, while 

kj are integer numbers. The volume of each gap is small with c, and summing up the 

volumes of all gaps we still reach the same conclusion, since the series is convergent 

(a> N -1). This is the basis of the condensed formulations of the KAM theorem, 

such as "most tori survive", or "all sufficiently irrational invariant tori survive", 

although they may be slightly distorted (see Fig. II-3). 

However, the KAM Theorem says nothing about the motion within the resonant 

gaps. No general predictions can be given, but there are examples for the persistence 

of even the rational invariant tori as demonstrated in the Henon-Heiles system.5> But 

usually tori within the resonant gaps are destructed, resulting in a hierarchy of 

smaller and smaller tori embedded in the chaotic region. 

It is difficult to predict what happens when a perturbation is applied. One 

indispensable concept and tool in such an analysis is the Poincare mapping on the 

Surface of Section (SOS). When each orbit of given energy passes through the SOS, 

then the Poincare mapping will give full information on the stability of motion. For 

example, when N=2, the irrational invariant tori will appear as a curve consisting of 

periodic points. Simple periodic orbits correspond to fixed points, while a chain of n 

periodic points is called n-cycle, and each point of the n-cycle is a fixed point of the 

n-th iterate of the Poincare mapping. One important property of the Poincare 

mapping is that it is area preserving, a direct consequence of the symplectic nature of 
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210 H. Hasegawa, M. Robnik and G. Wunner 

the Hamiltonian systems. 

The stability analysis of the periodic orbits is then reduced to the stability 

analysis of the Poincare mapping and of its iterates, i.e., the stability of the fixed 

points of some area preserving mapping T. A fixed point xo of an area preserving 

mapping T is said to be stable if for each neighbourhood U of xo there exists a 

subneighbourhood V~ U such that all iterates Tk( V) lie in U. Putting the coor

dinate origin to Xo and linearizing T, we find that its linear part M is a 2 X 2 

unimodular matrix with constant real coefficients. Its eigenvalues are thus either 

complex conjugates il, il* on the unit circle, or reciprocals il, 1/il on the real axis. 

They are determined by 

(II· 25) 

In the former case M describes elliptic rotation, the discrete motion being confined to 

ellipses ; xo is called an elliptic fixed point of T. In the latter case we have hyperbolic 

rotation, the motion being confined to hyperbolae on the same or interchanging 

branches, depending on whether the eigenvalues are positive or negative, respectively. 

A hyperbolic fixed point of T is unstable, and nearby orbits separate exponentially. 

An elliptic fixed point is stable (and the nearby orbits separate linearly) except in 

cases of low order resonances, i.e., in cases that the rotation angle of M is 2;r/m, m 

= 1, 2, 3, 4, where the linear stability analysis is not sufficient. 

2-dim. nested tori 

infinite hierarchy 

~ SOSofthe 

~ integrable system 

~ H0 -+H=H.+t:V 

SOS of the perturbed system 

with resonant gaps of destructed tori 

Fig. II-3. The scenario of the KAM theorem. (Taken from Robnik!') 

smooth joining is 

exceptional homoclinic oscillation 

Fig. II-4. The homoclinic points. (Taken from Robnik!') 
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Classical and Quantal Chaos in the Diamagnetic Kepler Problem 211 

The stable elliptic islands surrounding the elliptic fixed points within the other

wise chaotic resonant gaps are sketched in Fig. II-3. How they come about upon a 

small perturbation of an integrable system is explained by the Poincare-Birkhoff 

theorem : When an area preserving mapping has a simple closed invariant curve 

consisting of fixed points, then due to the KAM Theorem and the area preserving 

property, an even number of these fixed points is shown to survive a small perturba

tion. Half of them are elliptic, and the others are hyperbolic. The almost self

similar infinite hierarchy is explained by the fact that all considerations above are 

valid for any iterate of the Poincare mapping. 

It remains to understand how the chaotic motion can arise. This is connected 

with the hyperbolic points. All that has been done so far is the linearization around 

a hyperbolic fixed point. We shall concentrate on the asymptotes of the hyperbolae 

and the motion on them. We call them incoming or outgoing strand, according to 

whether M acts as a contraction or expansion, respectively (Fig. II-4). Actually, 

these linear parts can be extended into the nonlinear region of T, and are then called 

stable and unstable manifold, respectively. Now, the most important thing is how 

they meet each other. If they join smoothly, nothing special happens. But such a 

smooth joining is exceptional, since they will generically (i.e., in almost all cases) meet 

transversally at a point which is not a fixed point. When they do so, they will do it 

infinitely many times, as a little reflection shows. Moreover, due to the area preserv

ing property of the mapping the amplitude of the oscillations will become larger and 

larger, so that an extremely complex motion arises, which has little in common with 

the regular integrable behaviour. Such an oscillatory motion is called homoclinic 

oscillation. It is a prototype of chaotic motion. Indeed, it can be shown that no 

smooth integral of motion exists for homoclinic oscillation (by embedding Smale's 

horseshoe mapping). We see that hyperbolicity+transversality imply chaotic 

motion. Since both occur in almost all cases upon a perturbation, we get a feeling 

that the type of motion within the resonant gaps, as shown in Fig. II-3, is of the generic 

type. 

We can now understand the nature of the extreme of completely unstable systems, 

as opposed to the stable integrable systems : They must be full of hyperbolic periodic 

orbits. Indeed, an ergodic system can be and must be full of periodic hyperbolic 

orbits. They are dense in the phase space and their measure is zero. In a certain 

sense the periodic orbits, being all unstable, span the flow of even an ergodic system. 

This fact is not less surprising than the approximation of the real numbers by the 

rationals. 

However, a generic Hamilton system is neither integrable nor ergodic, both 

extremes being exceptional. (We consider only systems with a few degrees of 

freedom. It should be noted that the ergodic systems are less exceptional than the 

integrable ones, since they are structurally stable : A small perturbation does not 

change the two fundamental properties, hyperbolicity and transversality). To be 

specific, a typical system displays all features of an integrable system at low energies. 

At some critical energy a rather sharp (but not discontinuous) transition, the so-called 

stochastic transition occurs: The invariant tori are observed to disappear rapidly as 

the energy is increasing, and the motion becomes irregular almost everywhere on the 
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~r.---------------------------, 

~ (ol 

L~j-~ 
1.01---------..-...\'bl 0.8 

0.6 

0.4. 

0.2 

0 =-En-e-rg--,y(-ou..,..l--='1.';:-6------,~1.:::-2 -------:-0:::-':.a:o-----_--=-oA x 10-3 0 

Fig. II-5. (a) The oscillator strengths for .dm=O 

transitions from the ground state to the excited 

states of the diamagnetic H atom after Clark 

and Taylor.14> (b) The relative area of the 

regular regions versus the energy. The hump 

near the chaotic boundary reflects the "rem

nant tori". (Taken from Harada and Hase

gawa,•> cf. Ref. 65).) 

energy surface. When the motion is numerically integrated the best way to observe 

the transition from the regular to the irregular motion is by means of Poincare 

mappings. But it is quite difficult to predict the critical energy. In §II. 1 we have 

discussed the classic example of Henan and Heiles.5> The case for the diamagnetic 

Kepler system is shown in Fig. II-5 according to Harada and Hasegawa4> (see Fig. III-8 

for a more precise result) where the transition is found to be not sharp. 

II.3. Semiclassical approach to quantization 

By the semiclassical quantization we mean in general methods of approximation 

that yield in a direct way approximate solutions to the Schrodinger equation that are 

correct in the leading term of Pt, and become asymptotically exact as Pt--> 0. 

In the rare cases that a system is integrable we have the well-defined and 

well-known quantization conditions initiated by Einstein50> and rigorously developed 

by Maslov and Fedoryuk.51 > The method is known under the names: tori quantiza

tion, topological quantization, Maslov quantization, Einstein quantization, Einstein

Brillouin-Keller (EBK) quantization, ···. It is just the quantization of the classical 

action, 

(II· 26) 

where mj=O, 1, 2, 3, ···, while aj is the number of caustics encountered in the 

configuration space upon traversing the irreducible cycle C (the integration path to 

obtain the action /j), and is called Maslov index. (See Fig. III-4 as an example: Both 

paths ra and YP have index 2). The (semiclassical) spectrum is then given by 

Em=H(/m), (II· 27) 

i.e., it is nothing but the value of the Hamiltonian taken at the quantized values of the 

classical actions (II· 26). 

It is easy to derive this.22> First one should appreciate the little known fact that 

in the semiclassical limit when Pt--> 0 the quantization (here meaning the association of 

classical variables and the quantal operators in disregard of product-ordering) com

mutes with the classical canonical transformations : Thus we can work in any 

coordinate system in the classical phase space without spoiling the semiclassical 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/p
tp

s
/a

rtic
le

/d
o
i/1

0
.1

1
4
3
/P

T
P

S
.9

8
.1

9
8
/1

9
0
0
9
7
1
 b

y
 g

u
e
s
t o

n
 2

0
 A

u
g
u
s
t 2

0
2
2



Classical and Quanta! Chaos in the Diamagnetic Kepler Problem 213 

validity of the results (see, e.g., Robnik13J·22l). 

Therefore we can work in the most natural coordinate system of an integrable 

system, namely, with actions and angles, which are the natural coordinates on the 

invariant tori filling the entire phase space. Therefore we use the prescription 

I=-itz a~. (II· 28) 

Since the Hamiltonian is by construction the function of the actions alone (i.e., the 

angles are cyclic variables) H = H(I), so that I =constant, one has trivially the result 

for the wave functions 

1 { i } rp= (2nY'2exp -y;;(/·8-Et) . (II· 29) 

The above solution is the eigenfunction of the Hamiltonian (in the semi-classical 

approximation) if it satisfies the uniqueness requirement (single-valuedness), which 

implies 

I=Im=mtz, mi=O, 1, 2, 3, ···, (II ·30) 

so that the energy spectrum is 

Em=H(/m). (II ·31) 

Now this is not yet the Maslov result (II· 26), for it differs from the latter by the 

constant Maslov index terms; nevertheless its leading behaviour at high quantum 

numbers is correct! 

To obtain the Maslov result (II· 26) we have to go over into the common 

configuration space. We replace the exponent of the wave function (II· 29) such that 

I·8--->classical action= J p·dq=S(q,I), 
on torus 

where the definition of the action and angle variables assures to write 

I· 8=S(q, I) d [ 
periodic functions of 8 l 

mo . . . 
With penod 2Jr for every €Ji 

(II· 32) 

Recall that S(q, I) is the generating function, 8=aSjai, whence 

dNe=IDet ;;~ ldNq. (II· 33) 

Thus finally projecting (II·29) onto the q-space we obtain 

rf!(q) (2;)Nt2 /IDet :;Jq I exp{ ~ (S(q, I)- Et)}. (II·34) 

Strictly speaking, Eq. (II· 32) is correct only for closed loops as only then the canonical 

in variance of the action integral J p • dq is guaranteed, which in fact underlies the 

definition of the action-angle variables. Nevertheless, as a rule of replacement in 

going over from the (q, p)-representation to the(/, B)-representation, Eq. (II·32) is 

certainly correct, and yields the correct torus quantization, as we will now show. 
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214 H. Hasegawa, M. Robnik and G. Wunner 

The requirement of single-valuedness must be satisfied again, so that by virtue of 

(II ·32) 

(II· 35) 

where aj is the Maslov index which stems ~rom the pre-exponential of ¢(q) and LljS 

is the change of the action around the irreducible cycle Ch and by definition is equal 

to 2;rh Thus the condition (II· 35) is the Maslov condition (II· 26), and the resulting 

energy spectrum is given by the Maslov formula (II· 27). The eigenfunctions are 

given by (II· 34) evaluated at the quantized actions as given by (II· 26, 27). 

The morphology of the eigenfunctions will be discussed in § V.4. 

II.4. Birkhoff-Gustavson method of constructing invariant tori and a method of 

quantizing the normal form 

Suppose we are studying the motion of a classical Hamilton system near an 

equilibrium point. The system may have an arbitrary number N of degrees of 

freedom. Then, to the lowest approximation the motion is described by N uncoupled 

(one-dimensional) harmonic oscillators. However, they become coupled if the 

higher-order (anharmonic) terms in the Taylor expansion of the potential are taken 

into account. As a result of the coupling the system becomes non-integrable in 

almost all cases ; in fact, being a generic system, it is neither integrable nor ergodic 

but shows a stochastic transition at the critical energy, such as in the Henon-Heiles 

system. Above the critical energy which marks the sharp but nevertheless continu

ous stochastic transition the motion is chaotic on the entire energy surface (in phase 

space), but below that energy the motion has all features of regular integrable motion 

in the sense of the KAM regime of small perturbations, where the invariant tori still 

exist almost everywhere in the phase space the excluded stochastic gaps having the 

volume of order of a perturbation parameter. 

We have then the difficult problem to predict analytically the KAM invariant tori, 

or equivalently, to construct the approximate integrals of motion. One of the pos

sible methods is to calculate the normal form of the classical Hamiltonian. This was 

originally developed by Birkhoff for the nonresonant cases (no commensurability 

conditions for the frequencies of the harmonic oscillators), and consists of a series of 

canonical transformations, which are polynomial functions of coordinates and 

momenta. The algorithm is such that after s-2 transformations the new 

Hamiltonian is in normal form to degree s. By definition, this means that all 

monomials of order s in the power expansion of the Hamiltonian commute (Poisson 

brackets vanish) with the (unchanged) harmonic part of the Hamiltonian. In fact, all 

normal terms are just polynomials of the N actions. This formal procedure can be 

extended ad infinitum (s~=), whereby one obtains a power expansion of the 

Hamiltonian as a function of the actions. Each of the N actions, when expressed in 

terms of the original coordinates and momenta, is itself a power expansion of an 

integral of motion. However, the series diverges : If the convergence radius of the 

series were non-zero, then the system would be rigorously integrable in some region 

of phase space, since the integrals of motion would be analytic there. But according 
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to the KAM Theorem a generic system is non-integrable, and we have thin gaps of 

irregular chaotic motion as described in § II.2, unless the system is accidentally 

rigorously integrable. The convergence radius of such series can generally never be 

made non-zero, whatsoever the method we use. Hence the name formal integral of 

motion. 

Birkhoff's algorithm was generalized by Gustavson23l to the resonant cases (see 

also Arnold49l). The divergence difficulties of course still exist. But one should 

observe that while the infinite series has no rigorous meaning, the Hamiltonian in 

normal form truncated after the degree s is a rigorously integrable system that is close 

to the original system in the following sense: Its invariant tori are close approxima

tions to the KAM invariant tori of the actual system, if they really exist. This fact 

can be used for the torus quantization. The method of calculating the normal form 

has been further developed by Robnik, 13l where also a new method of quantizing the 

normal form in an algebraic way has been proposed and tested on some systems such 

as Henon-Heiles systems and the hydrogen atom in a magnetic field (Robnik and 

Schrlifer52l), with success for low-lying levels. For the quantization of highly excited 

Rydberg states it is more practical to resort to the torus quantization. 

The truncated normal Hamiltonian is also useful in the dynamical sense-in the 

sense of adiabatic invariants. Namely for sufficiently short times its trajectories 

follow closely those of the exact KAM system, whilst the asymptotic behaviour is not 

correctly described except for the motion on the exact KAM-tori. The quality of the 

approximations offered by the normal form Hamiltonian is the better the closer we 

are to the equilibrium point, i.e., the smaller the coupling between the N harmonic 

oscillators, i.e., the smaller the energy. Clearly, above the critical energy where the 

stochastic transition occurs, these formal integrals of motion lose their meaning 

completely, as the large scale invariant tori no longer exist. The only practical value 
might be in approximating the "cantori"*l -if they are strongly pronounced- and the 

adiabatic invariants and thereby the motion for short times if the chaos is not too 

strong (see an example provided by Hasegawa et al.65l for the hydrogen atom). 

Consider a Hamiltonian with N degrees of freedom in the form 

H(x, y)= ~HUl(x, y), (II ·36) 

where x=Cx1, x2, ···, XN) are the coordinates, y=(yl, Y2, ···, YN) the momenta, and 

(II ·37) 

is the harmonic part of (II·36), with Wk, l~k~N, being the oscillation frequencies. 
Each term H<il in (II·36) is assumed to be a homogeneous polynomial of degree j, i.e., 

(II·38) 

where hkt are real constants, and we use the multi-indices like k=(kl, k2, ···,kN) with 

*l A cantorus (plural cantori) has been defined and introduced by Aubry and by Percival in 1978/79 as the 

remnant of a broken invariant torus, being itself an invariant set but having the topology of the Cantor 

set rather than that of a smooth manifold (see MacKay et al. 121> and the references therein). 
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216 H. Hasegawa, M. Robnik and G. Wunner 

the definitions 

lkl=lkrl+lkzl+···+lknl, 

We say that there is an rth-fold resonance at the equilibrium point (x, y)=(O, 0), 

if there are r linearly independent commensurability conditions between the frequen

cies, i.e., 

N 

L: ajkWk=O, 
k=l 

(II ·39) 

where j = 1, 2, · · ·, r, and the rank of the real matrix ajk equals r. The equilibrium 

point is said to be non-resonant if there are no rational connections (II·39). 

We now define the normal form. The Hamiltonian (II· 36) is in normal form to 

degrees if 

(II ·40) 

for 2sj ss, where the partial differential operator 

D(x,y)={Ho, • }= ~1 Wk( Xk a~k - Yk a!k)' (II ·41) 

so that (II ·40) is just the Poisson bracket {Ho, HU>}. 

It is useful to introduce the quantities 

1sksN. (II ·42) 

The following theorem is the main result of Gustavson.23> 

Theorem (Gustavson). If the Hamiltonian (II· 36) is in normal form to all orders 

(s=oo), and is represented by a formal series, then: 

(a) For an rth-fold resonance we have N- r independent formal integrals of the 

motion, 

(II ·43) 

where f.lzk, 1 s l s N- r, are the independent solutions of the commensurability condi

tions (II· 39), i.e., 

1sisr. 

In this case the Hamiltonian (II· 36) is itself an integral independent of the Ns. 

(b) In the non-resonant case we haveN independent integrals n, rz, ···, rN, and the 

Hamiltonian (II· 36) becomes a function of them, i.e., 

H=H(n, rz, ···, rN) .. (II ·44). 

Given a Hamilton system with the quadratic kinetic+potential energy, we can always 

shift the energy scale, shift and rotate the coordinate axes Xk, and stretch the coor

dinates and momenta in such a way that the Hamiltonian appears in the form 
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Classical and Quanta! Chaos in the Diamagnetic Kepler Problem 217 

H(x, y)=Ho+ f u(j>(x), (II·45) 
j=3 

where 

(II ·45a) 

is the harmonic part, while u(j>(x) are just the homogeneous polynomials of degree j 

arising from the Taylor expansion of the potential U= U(x) around the equilibrium 

point x = 0. The Hamiltonian (II· 45) is thus a special case of (II· 36) : The anhar

monic terms depend only on the coordinates x. Note that (II·45) is an even function 

of momenta. 

The question now is whether the Hamiltonian (II·45) can be brought to the 

normal form by a canonical transformation (x, y)~(q, p), so that H(x, y)~ H(q, p), 

where q=(qr, q2, ···, qN), P=(Pr, P2, ···, PN) are new coordinates and momenta, re

spectively, and H(q, p) is the normal form Hamiltonian. The answer is positive by 

theorem 1 in Gustavson's work.*> 

Let H(x, y) from (II· 36) be in normal form to degree s-1. Then there exists a 

generating function 

c<s>(x, p)=xp+ w<s>(x, p)' (II ·46) 

where w<s>(x, p) is a homogeneous polynomial of degree s, such that after the 

canonical transformation 

- aw<s>(x, p) 
q-x+ op ' 

- + aw<s>(x, p) 
y~p ox ' (II ·4 7) 

the new Hamiltonian H(q, p) is in normal form up to degrees. To show this consider 

first the equality 

( aw<s>) ~( aw<s> ) 
H x,P+-ax- =H x+ap-,P . (II ·48) 

From the power expansion of these expressions we see 

2sjss-1, (II ·49) 

where (~, TJ) stands for the arguments of the functions. In other words, those terms 

which are already in normal form are not affected by the transformation. The 

homogeneous polynomial w<s>(x, p) determining the generating function can be 

chosen in such a way that 

{Ho, fj<s>}=D(q,p)fj<s>(q, p)=O, 

i.e., that fi is in normal form up to degrees. This can be seen by equating the terms 

of order s in (II ·48), whence 

*> Gustavson's result23> on the formal integrals was summarized in his two theorems 1 and 2 ; the existence 

of the canonical transformation which brings the Hamiltonian into the normal form in every order, and 

the assurance of theN- r formal integrals in case of the rth-fold resonance. This latter theorem is in 

our exposition in the text Theorem (a) and (b). 
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218 H. Hasegawa, M. Robnik and G. Wunner 

D(x,P) w<sl.(x, p)=H(B)(x, p)- jj<sl(x, p). (II· 50) 

By definition H<sJ must be in the kernel of the partial differential operator D<x,PJ

Now since D is a linear operator, it allows a unique decomposition of the space of 

polynomials into a direct sum of the kernel 'Jl and the range !R. Accordingly, each 

polynomial can be uniquely decomposed into a sum of its 'Jl-component and $.

component. To solve (II·50) we take fi<sJ to be the 'Jl-component of an arbitrary 

additive polynomial from 'Jl. To make w<sJ unique we require, following Gustavson, 

that w<sJ is in the range !R of D. 

Having obtained the solution for fi<sJ and w<sJ we can calculate the remaining 

terms of the new Hamiltonian ii in the power expansion of (II •48). It turns out that 

for each i=2, 3, 4,··· 

where the summation over j is restricted by the conditions 

l+ljl(s-2)=i, 1~2' 

and we use the multi-index notations 

()fjfH<tlj()j/=.()fjfH<tl(x, p)fop/i()p/•···()pjN, 

(aw<s) /ox)j=(aw<s) /oxl)j~---(aw<s) /oxN)JN. 

s~3, 

(II ·51) 

(II ·51a) 

(II·51b) 

One can see that for i<s we get indeed (II·49), while for i=s we recover Eq. (II·50). 

All terms fiUl, j>s, can be then calculated successively by the formula (II·51). 

Fig. II-6. Comparison between the contours of the integral of motion (left) obtained by the Birkhoff

Gustavson procedure with the numerical ("exact") invariant curves (right) of the Henon-Heiles 

system. (Taken from Lichtenberg and Lieberman."') 
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Classical and Quanta! Chaos in the Diamagnetic Kepler Problem 219 

By the assumption H<2>(x, y) is already in normal form. Consequently, by a 

series of successive canonical transformations generated by c<3>, c<4>, ···,c<s>, ···, we 

can calculate the normal form to an arbitrary degree. 

The success of the Birkhoff-Gustavson procedure in approximating the rigorously 

existing KAM invariant tori is clearly demonstrated by the original work of Gustav

son23> on the Henon-Heiles system with one-fold resonance of two degrees of freedom 

(N=2, r=l) (see Fig. II-6). Its lowest-order, nontrivial normal form involves 

polynomials up to fourth order in x and P, amenable to analytic treatment. By this 

we mean that, within this order of the normal form Hamiltonian and the other 

constant of the motion, the invariant tori can be traced by algebraic curves subject up 

to a quartic equation with which action integrations can be performed. The situation 

is the same for the diamagnetic Kepler problem, which is the basis of the torus 

quantization in §III and clarifies Solov'ev's procedure.12> 

The structure of the normal form has been further studied by Robnik.13> The fact 

that the normal form can be always presented as in (II· 61) is an important property 

of the normal form and a prerequisite for quantizing it. We will now review that 

work. 

The following proposition can be easily proven. 

Proposition (Robnik13>): If the Hamiltonian (II ·36) is an even function of momenta, i.e., 

H(x,y)=H(x, -y), and is assumed in normal form up to degree s-1, then the 

Hamiltonian H(q, p) obtained according to the transformation (II ·45 through II ·51) is 

also an even function of momenta, i.e., 

H(q, p)=H(q, -p). 

A consequence is that for the Hamilton system (II ·45), which has the usual form 

kinetic+potential energy, we find the result that its normal form to any degrees is an 

even function of momenta. This will be used later on. 

In order to study the structure of the general normal form we now make a non

canonical transformation to the complex variables 

1-s:.k-s:.N, (II· 52) 

so that the coordinates and the momenta are 

(II· 53) 

where zk* is the complex conjugate of z. We see from (II·53) that rk=zkzk* and with 

8k=argzk, we obtain 

(II· 54) 

It can be easily seen that the operator D<x,y> from (II ·41) becomes 

N a 
D= ~ wk-ae . 

k=l k 
(II· 55) 

By definition the normal form .(II· 36) contains only polynomials from the kernel 
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220 H. Hasegawa, M. Robnik and G. Wunner 

'Jl of the operator D. A basis of 'Jl can be most easily determined by using the 

complex variables (II· 52). Inserting (II· 53) into the normal form (II· 36) yields the 

power series in complex variables Zk, Zk *. But since (II ·45) is an even function of 

momenta, so is its normal form (II· 36), and all coefficients in the series are real. 

Since the series H(x, y) is real-valued we conclude that if zmz*n occurs in the formal 

series, then its complex conjugate z*mzn must do so with the same real coefficients. 

Here we used again the multi-index notation z=Cz1, Z2, ···, ZN), m=Cm1, m2, ···, mN), 

etc. 

The monomials zmz*n in the kernel 'Jl of the operator D given in (II· 55) are 

determined by 

Dzmz*n=O, 

whence 

N a 
D= ~ wk-ae . 

k=l k 
(II ·56) 

This condition implies that mk- nk, 1-::;;.k-::;;.N, must be a linear combination of the 

rows of the commensurability matrix azk, 1-::;;.t-::;;.r, given in (II·39). To simplify the 

expressions we assume that each row vector (an,···, azn)=az has integer components 

without a common factor. From (II·56) we obtain 

r 

m-n=~rzaz, 
l=l 

(II· 57) 

where rz are non-negative numbers. Note that the integer vectors az can have 

negative components. It is not very convenient to write 

because negative powers of z can appear in the second factor. Instead, we introduce 

the resonant monomials 

where 

if 

if 

(II· 58) 

(II· 59) 

It can be easily seen that DKz=O, i.e., Kz, 1-::;;.t-::;:, r, are constants of the motion of the 

harmonic part Ho= ~~=lWkrk. Writing 

and (II· 60) 

we obtain the most general expression (Robnik13>) 

(II ·61) 

for the normal form (II· 36), where fr( r) is a real polynomial. The summation runs 

over all non-negative integers r=Cr1, ···, rN) and K 7 =K/'K27'···KN7N, etc. We see 

that the normal form is generally a function of the variables r=(n, r2, ···, rN) defined 
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Classical and Quanta! Chaos in the Diamagnetic Kepler Problem 221 

in (II·42) and K=CK1, K2, ... , KN), as defined in (II·58 through II·60). In the non

resonant case r=O, and H depends only on r, which are thus the action variables. 

In the same paper (Robnik13>) the general fourth-degree normal form has been 

calculated for Hamilton systems with two degrees of freedom, which was still possible 

without using the computer algebra. The Hamiltonian is assumed in the form 

H = (l)I rl + (1)2 r2 + u<3>(xl, X2) + u<4>(xl, X2) ' 

U<3>=ax13 +bXI2X2+cx1X22+dxl, 

(II·62) 

where it is assumed aJI/ah=l=1/2, 2. Its fourth-degree normal form can be cast in the 

standard form (II· 61), namely, 

(II· 63) 

where 

(II ·64) 

The wdw2=1 resonance is the only one affecting the fourth-order normal form (wdw2 

=I= 1/2, 2 has been excluded by the assumption- see (II· 62). This would change 

already the third-order normal form). In this case r1, r2 and r3 (which should not be 

confused with the summation index r in (II·61)) have to be determined with w1=w2 

=w, while in all other cases r1 = r2= yg=O. The easiest way of finding the coefficients 

of normal form (II·63) is to use the complex variables. We distinguish between two 

cases. In all cases the third-degree term iill~P> vanishes, while the fourth-degree term 

is written in the form 

(II ·65) 

The nonvanishing coefficients h(klmn) are listed in Table Il-l. There are 19 non-zero 

and 16 vanishing coefficients. 

(a) The non-resonant case and the higher-order resonances Cwdw2=t=1/2, 2, 1) 

The result is 

g2o= ~ h(4000)+ ~ h(2020)+ ~ h(0040), 

gu =h(2200)+ h(2002)+ h(0220)+ h(0022), 

3 1 3 
go2=-zh(0400)+-zh(0202)+-zh(0004), 

Y1 = r2= yg=O. (II ·66) 

(b) The lowest-order resonance w1 = W2 = 1 . 

The result can be given in a more explicit form 
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222 H. Hasegawa, M. Robnik and G. Wunner 

2 
gu=C-t<b2+c2)-3(ac+bd), 

goz =]__(E _.i_d2 _ _j_c2) 

2 2 18 ' 

?'1 = ! ( B- 1
3° b( a+ j c)) , 

rz=! ( D- 1
3° c( d + j b)), 

(II ·67) 

The Henon-Heiles system is the special case of (II·62) when ah=wz=1 and b=A., 
d=A.r;, whilst all other coefficients of uca> and of uc4> vanish. The result follows 

directly from (II· 67), 

- 5 l2 
gzo-- 12 ,~ , 

r1=rz=O, 

gu =- ~ A2
( 1 + ~ 7J) , 

/'3 = - ~ A2( 1- ~ 7J) . 

(II ·68a) 

(II ·68b) 

Table Il-l. The nonvanishing coefficients h(klmn) determining the fourth-degree normal 

form as given in Eqs. (II·65) and (II·66). 

1 
h(4000)=A -t<ai!Vs2+wzv?) 

h(0400)= -fcw,vs2 +wzvs2) 

1 
h(0040) = -t<9w, v,2 + WzV•2) 

h(0004)=E- ~ (w,v~o+9wzvz') 

h(3100)= B-(w, VgVs+ WzV4V7) 

h(0031)= -(6w,v,v.+2wzv.vw) 

h(0013)= -2(w,v.vw+ 3wzvzvw) 

h(1300)= D- ( w, V•Vs+ WzV•Vs) 

h(2200)= C -fcw,v.'+2w,vsva+ wzvl+2wzV7Vs) 

h(2020)= ~ (4w,vs2 + wzv.'-6w,v,vs-2WzV7Vo) 

h(2002) =tc 4w,v? + Wzvl- 2w, Vsvw-6WzVzV7) 

h(0220)= ~ (w,v.'+4wzvs2 -6w,v,va-2wzvsvo) 

h(0202)= ~ (w,vl+4wzvs2 -2w,vavw-6wzvzvs) 

h( 0022) =- (2w, Vo2 + 3w, v, vw+ 2wzV~o + 3wzVzV•) 

h(2011) =4w, VsV1+ WzV•V•- 2w, Vsvo- 2WzV7Vw 

h(l102) = 2w, v.v1+ 2wzv.vs- w, V•Vw- 3wzVzV• 

h(1120) =2w, VgVs + 2wzVgVs- 3w, v, v.- WzV•V• 

h(0211)= w,v.v. +4wzvavs-2w,vav.-2w.vovw 

v,=2a/3w, 

v.=2d/3wz 

vs=afw, 

vo=d/wz 

v1=(w,fwz- w./2w,)v. 

va=(wzfw,-w,f2wz)v. 

h(1111) =2w, V3V1 + 2w, V•V• + 2w.v.vs + 2w.v.va- 2w, v.v.- 2w.v.vw 
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A method of quantization has been developed in the same paper (Robnik13l). 

When it comes to quantizing the normal form one faces all the questions connected to 

the non-existence of a canonically invariant quantization scheme : The association 

between the classical variables and the quantum operators cannot be made invariant 

against the classical canonical transformations, so it does matter in which systems of 

classical variables one works. For the discussion the reader is referred to the 

original paper. Here we just summarize the final result of that theory, in the form of 

the following quantization prescription for the Hamilton operator corresponding to 

the normal Hamiltonian (II· 61), 

where 

and 

fl = l:/7( f)(K7 + K* 7 ) , (II· 69) 
7 

if 

if 

(II ·70) 

(II ·71) 

and Zk and Zk t are annihilation and creation operators. Their action on the eigen

states of the harmonic operator flo corresponding to the Hamiltonian flo defined in 

(II ·37) is 

(II ·72a) 

(II ·72b) 

The quality of this approximation is the same as in the semiclassical theories. The 

power of the method is the simple final result, which together with the use of Table 

II-1 enables one to immediately write down the spectrum of an arbitrary Hamiltonian 

of the form (II· 62), etc. and of the more general ones (N > 2) once the normal form has 

been calculated. In cases that there is no resonance the result is particularly simple : 

Each operator given in (II· 70) is simply replaced by the number (nk + 1/2)ftwk, because 

in such cases (II· 69) does not depend on the operators K and is diagonal in the 

harmonic basis. 

Example : Consider the Hamiltonian (II· 62) with c and C being nonzero, while all 

other coefficients are assumed to vanish; the frequencies ah and w2 are not in a 

low-order resonance, i.e., wdw2=t=1j2, 2, 1. Then the energy spectrum obtained by 

quantizing the normal form according to the method just described is given by 

( C+ w 1 ~~ 2 f: 2 2 )-( n2+ ~ r 4 ~ 1 ( 
3 ::/~ 4 8 ~~ 2 ) J n1, n2=0, 1, 2, ···. 

(II ·73) 

This must be compared with the result of the exact nondegenerate quantum perturba-
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224 H. Hasegawa, M. Robnik and G. Wunner 

tion theory, which differs from (II· 73) only by a constant (i.e., independent of the 

quantum numbers) of order ft2, namely, 

3 c2ft2 aJI 
16 ((JJI 2 -4(th2) ' 

(II·74) 

which emphasizes the high quality of the method especially at high quantum numbers, 

where the constant term (II· 7 4) becomes negligible. 

Another example, a case of the typical resonance wdw2=1, is given by the 

Henon-Heiles system, as discussed in detail in Robnik.13> It was shown there that the 

present method gives the best result of all the available semiclassical procedures, at 

least for low-lying levels. This very method has been applied also to the diamagnetic 

hydrogen atom by Robnik and Schrlifer.52> It is further dealt with in § III.2 in a 

satisfactory analytic representation which resolves the problem of the "unperturbed 

tori" to survive the diamagnetic perturbation. 

§III. Surface of section analyses in DKP 

III. 1. Scaling properties of diamagnetic Kepler systems 

A classical nonrelativistic Hamiltonian for atoms in a uniform magnetic field B 

satisfies a remarkable scaling property as regards the magnetic field strength. 

Namely, let its strength be measured in the unit 

Bo=me2e3cft-3 =2.35 X 109 gauss 

(electronic Bohr magnet on X Bo =Rydberg energy) 

and be denoted by 

r=B/Bo. (III ·1) 

Express such a Hamiltonian function in terms of a set of cartesian coordinates {x;} 

and their momenta {p;} as well as of the parameter r as H({p;}, {x;}; r). Then 

H({r-1'3p;}, {r2'3x;}; r=1) 

(III· 2) 

It says that the scaling of the coordinate and momentum variables by r-213 and r 113, 

respectively, results in a scaling of the energy variable by y213 (thereby, all other 

subsidiary parameters, i.e., masses and charges being fixed).*> 

One can immediately infer that another scaling exists: A scaling of the time 

variable consistent to the above, which must be by r-1. Its correctness can be seen 

indeed from two simple dimensional analyses; (a) [time] x [energy ]=[action] and 

(b)[time] X [momentum]=[mass] X [length]. One accordingly infers the existence of 

*> There are several other scaling relations proposed; Surmelian and O'Connell,""> Wunner and Ruder57> 

(charge and mass scaling), and Robnik2"> (P~·scaling, where p~ is the value of the angular momentum 

component parallel to B). The last one is equivalent to (III·2), provided p~=I=O. 
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Classical and Quanta! Chaos in the Diamagnetic Kepler Problem 225 

a moving unit system related to this scaling -moving according to a variation of the 

field strength- which is useful for discussing dynamics, spectroscopy and so forth of 

diamagnetic atoms, because the scaling eliminates the variation. Such a unit system 

should be particularly useful for the spectroscopy near ionization threshold, because 

it utilizes the scaling by r (i.e., the magnetic field strength) on the frequency domain 

that conforms to a choice of the familiar cyclotron frequency eB/mec. 

The scaling equality (III·2) and hence the existence of the field-eliminating unit 

system mentioned above for diamagnetic atoms has been recognized very limitedly in 

spite of its basic character (the equality is not indicated in any established text-books 

of quantum mechanics to our knowledge), the utility now starting to be known 

gradually. We shall discuss some of this feature below and also in § V. The first 

explicit use of such a unit system was made, without mentioning the equality (III·2) 

however, by Gajewski :53> He noted that a characteristic length l can be introduced by 

which, together with the cyclotron frequency, the classical equation of motion for the 

diamagnetic Kepler motion can be made B-independent. This length is given by 

l =(mec2 B-2) 113 =0.93 x 10-2 B-213 em 

=[Bohr radius] X r-213 . (III·3) 

Let us write down the simplest diamagnetic Kepler Hamiltonian in the cylindrical 

coordinates (p, rp, z) to examine the scaling: 

=H(pp, Pz, p, z; p,, r), r= B/Bo (cf. III ·1). (III ·4) 

In this representation, the scaling equality can be easily seen to become 

(III· 5) 

and, by the choice of Gajewski's unit (III· 3) for length together with the unit r213 for 

energy, the Hamiltonian (III ·4) becomes*> 

H- _lJ :1; 2 + p ,z + :1; 2) + 1 -2 1 + p"' ---z \ J.l p P2 J.l z 8 P - / P2 + z2 -2-, 

where 

(p, z)=r213(p, z)' 

( P p, P z) = r- 113(Pp, Pz) 

and 

(III· 6) 

(III ·6a) 

(III ·6b) 

(III·6c) 

*> Another choice of the unit, i.e., 2l for length and 2m.c/eB for time, leads to the following expression: 

H=l/2(]5/+ J5~ 2 /p 2 + Pz2 + p2-I/f +2]5~). which has been adopted by several authors."2> 
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226 H. Hasegawa, M. Robnik and G. Wunner 

Also, the scaling of the Hamiltonian H ~ H = r 213 H implies that the scaled energy 

c=E is related to the unsealed one as 

E( =E(r))= r 213c. (III ·6d) 

It suggests that the "determination of all the energies" for the fixed system (III·6) 

would suffice to solve the (quantum mechanical) spectral problem of an arbitrary 

diamagnetic Kepler system (III ·4). It is too optimistic to think so, and before 

drawing any conclusion about such a possibility one must specify what is meant by the 

determination. 

Within the context of classical mechanics, the determination of all the energies 

means to express the Hamiltonian as a function of the action variables, the number 

of which is equal to the degrees of freedom of the Hamiltonian : As to the explicit 

diamagnetic Kepler system (III ·4) which is of two degrees of freedom after setting p'~' 

=canst ( = m; a constant of the motion), it means to find a canonical transformation 

(pp, Pz; p, z) ~(]I, ]z; (/JI, cp2) 

with 

H=HUr, lz; P'~'=m, r). (III ·7) 

In a strict sense this requires the integrability, and since the Hamiltonian (III ·4) is not 

separable (verifiable a posteriori by the existence of chaos) the required integrability 

is satisfied only in the context of KAM theory and practically by the Birkhoff

Gustavson method as discussed in § II. It is then possible to apply the general scaling 

law (III· 2) to such a transformed Hamiltonian in the following form: 

H(rrr3h rrr3lz; rrr3m, r=1) 

= r-213 HUr, ]z; m, r). (III· 8) 

An explicit derivation of this relation from (III· 2)54> is based on the existence of a set 

of well-defined two-dimensional two-tori parametrized by an assumed third constant 

of motion, imbedded in the four-dimensional phase space (p, z; PP, Pz) filling its 

allowed region, which assures two independent action variables ]r and ]2. A full 

discussion of such a structure will be given in § III. 2. Here we show an extent of 

details for the special case of a two-dimensional model to bring out the utility of the 

scaling law. 

A two-dimensional' diamagnetic Kepler system is defined by setting z=O and Pz 

=0 in the Hamiltonian (III ·4): 

1 ( p z ) rz ez ez ez 
H(pp, P; p'l', r)= 2me p/+ ; 2 + 8as3 p2-p+ 2as mr' (III ·9) 

where as is the Bohr radius given by n2 /mee 2• Historically, this model played an 

important role for an understanding of the resonance peaks of optical spectra near the 

first ionization threshold of Ca and Sr atoms, also of alkali atoms, called now 

Garton-Tomkins resonances.1l The scaling equality for this case reads: 

(III ·10) 
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Classical and Quanta! Chaos in the Diamagnetic Kepler Problem 227 

where the single action variable ] is explicitly given in terms of E (constant value of 

the Hamiltonian) as well as m by 

E'=E- r:fr. (III ·11) 

Here, atomic units (me=e=n=l) are used for simplicity. We note that one is 

dealing with a purely periodic motion, the period of which is calculated by 

(III ·12) 

The classical turning points PI and P2 of such a periodic motion in these integrals are 

the two real zeroes of the square root there. For m=O, PI =0 and the integration is 

made from 0 to Po(= P2). 

Hasegawa et al.54> obtained the scaling law in the form of a scaling of the energy 

and the magnetic field strength individually with respect to the action variable ] : 

There exists a universal function which relates the scaled energy to the scaled field for 

the two-dimensional model (III·9). For m=O, this scaling law reads 

€= /(/3)' where and /3=Pr, (III ·13) 

which is to realize Feneuille's conjecture55> explicitly. To outline this result, it 

suffices to note a factoring of the square root of the action integrand in (III ·11) : 

x=..E_ 
Po' 

where Po is the unique positive zero of the left-hand side in the above equation, and 

1 
E=-(-l+u) 

Po 
O~u<oo 

These establish a parameter representation of c and /3 as follows : 

u-1 
€=-2-{<P(uW=G(u), 

/3= ui12{ <P(u)P=F(u), 

where 

Q>(u)=! loll ~X (1 +u(x+x2)) r2 dx. 

(III ·14a) 

(III ·14b) 

(III ·14c) 

Thus, Feneuille's universal function fin (III·13) is given by /(x)=GoF-I(x). We 

note that the form (III ·13) implies the previous form (III ·10) with m=O, and vice 

versa. This can be seen by identifying E(]; r)=]-2/(Pr) so that both scaling laws 

are identical. 

As to the formula of period T(III ·12) for m=O, one can get 
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228 H. Hasegawa, M. Robnik and G. Wunner 

d] 2 fl[ ux ] 112 

dE= y;r Jo (1-x)(l + u(x+x2)) dx' (III ·15) 

which shows that the scaling of time is by r-1. From the parameter representation 

of energy (III·14a), the ionization threshold E=O can be seen to correspond to u=l, 

for which the above integral yields 

.1_ fl[ __ x_J112dx=..1__ [1 c112-1(1- c)112-1dc=.l.. 
7r Jo 1-x 3 3;r Jo <; <; <; 3 ' 

showing that 

2;r 3 
r=r;:r. 

i.e., the Garton-Tomkins frequency. 58> 

(III ·16) 

The extension of these analyses to m:::f=-0 cases is more intricate but still feasible 

to an extent to show the scaling law 54> as well as to compute the resonance 

frequency. 59> Experimental situations often require m:::f=-0 analyses but, fortunately, 

only with its small integer values. Optical spectra near ionization threshold repre-

E >0 E=O 

80. 

60. 

... . 
20-

40 80 80 

Fig. III ·1. Experimental and theoretical plots of 

the radial quantum number against (B/Bc)- 113 

( = y-113) at various energies for the dominant 

series of the spectrum of Cs (after Gay et al.60>) 

Theoretical points expressed by crosses and 

broken curves were computed by the formula 

(III·ll) with m=3.5 (iml=3 is the actual Cs 

experimental value), but can be well re· 

produced by (III ·17) (unpublished work by S. 

Adachi). 

sent the situation of considerably high 

principal quantum number n, y113n;;:::l, 

which satisfies, in the present terminol

ogy, l~lml. Under such circumstances, 

the corrections to the formulas discussed 

so far due to m ==1=- 0 can be often ignored. 

One of good examples to show that the 

correction is indeed small was provided 

by the n vs r-113 plot of the Garton

Tomkins peaks in Cs atoms given by 

Gay, Delande and Biraben60>,soa> with a 

comparison of the plot to a theoretical 

prediction, as shown in Fig. III-1. We 

note that this prediction can be deduced 

fully from (III ·14), as outlined below. 

The above-mentioned n vs r-113 plot 

in Fig. III ·1, if m=O allowed, must be 

deduced by converting (III-14a, b) into a 

relation of I vs r 113, in which the energy 

E is regarded as a parameter : I= 
1Jf( y-113 ; E). Note that for high values 

of the principal quantum number n the 

continuous variable I may be set just 

equal to n. We show that the function 

1Jf can be constructed explicitly as fol

lows: 
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Classical and Quanta[ Chaos in the Diamagnetic Kepler Problem 229 

J = r-113(1 + ¢(2Er-2'3) )116 (1)(1 + ¢(2Er-2'3)] ' (III ·17) 

where ¢(x) is a real root of 

(III ·17a) 

Since the latter equation shows ¢(0)=0, which corresponds to the ionization threshold 

E=O, the] vs r-113 curve represents a straight line: 

J = r-1/3(1)(1)= r-1/3 x 1.159··· . (III·17b) 

( 2 fl[ 1-x3 
]

1
'
2 2 ( 3 1 ) ) fb(1)=;r lo -x- dx= 37rB 2• 6 where B(x, y) is the beta function . 

More in detail, since the function fb(u) is a very smooth, increasing function of u for 

O~u~4; with fb(0)=1 and (1)(4)=1.5,54' the demonstrated feature for E~O in Fig. III-1 

can be seen easily by noting ¢(x)~ 0 for x~O. Finally, (III·17) and (III·17a) can be 

deduced from (a)]= y-113 u 116¢(u) by rewriting (III ·14b), and from (b) (u-1)3-x3u=O 

with x=2Ey-213 , as is obtained easily by the elimination of (/)from the two parameter 

representations (III ·14a, b). 

In § V.3 we shall see another interesting application of the scaling laws for the 

more general class of resonances near the ionization threshold, which has been studied 

by the Bielefeld group :61' The resonances can be classified according to groups of 

(unstable) periodic orbits indexed by the single integers 1, 2,-··, the first one ((II)) 

corresponding just to the two-dimensional model (planar periodic orbit) and the rest 

(!2), (!3)··· to those of generally three-dimensional structure (non-planar ones), for 

which the two equivalent relations between E, J and r hold such that (III ·17) or 

(III ·13) can be extended. In particular, Feneuille's scaling relation (III ·13) can be 

extended in terms of a set of universal functions from !(=GoF-1)=h to A hand so 

forth with a simplified construction of the /-functions (see §§III. 3, 4 and V.2, 3). 

III. 2. Analytic description of invariant tori in the weak diamagnetic limit 

Our concern in this subsection will be the diamagnetic Kepler system (III ·4) with 

the field-dependent term as a perturbation to lowest order. Hence throughout this 

subsection atomic units are used to write 

1 
(III ·18) 

(the constant Zeeman energy is omitted) 

whose structure of. invariant tori will serve for analyses of chaos in the sequel. 

2.1. Birkhoff-Gustavson normal form to lowest order 

We need a special coordinate system by which the Kepler motion can be described 

as two harmonic oscillators uncoupled when r=O. The well-known parabolic coor

dinate must be relevant and was used to study chaos first by Edmonds and Pullen1' and 

then followed by several authors.3''52''99''100' Application of the Birkhoff-Gustavson 
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230 H. Hasegawa, M. Robnik and G. Wunner 

procedure in terms of this coordinate was first made by Reinhardt and Farrelly,3> only 

by a graphical demonstration however, a fully systematic construction that followed 

is due to Robnik and Schrlifer,52> who applied a general method of Robnik13> (see 

§ II. 4). 

There are many choices of such parabolic coordinates referring to the starting 

cylindrical one, but there exists a unique choice that makes the free Kepler motion 

fully separate: (p, z)~(u, v) 

p=uv, 

Pz 

1 
2+ 2 (vPu+ uPv), u v 

The Hamiltonian (III ·18) for r=O is then 

Introduce a regularized Hamiltonian 

Then 

for r=O, and for r=FO with an additional term 

2 

+ ~ u2v2(u2+v2). 

(III ·19) 

(type I) 

(III· 20) 

(III· 21) 

Note that the regularization by a multiplication of the factor u 2+ v2( =2r) amounts to 

a change of time.3> Therefore, for m=O, the unperturbed (r=O) Hamiltonian with 

negative energy expresses two uncoupled harmonic oscillators with the same frequen

cy m=( -2E)112 : It meets the case of the mdm2=l resonance for two degrees of 

freedom in the general formulation/3> where the normal Hamiltonian admits a formal 

expansion 

~ fu( n, r2)(K" + K*") , 
u=O 

(i=l, 2) (cf. §II. 4) 

in terms of the 'annihilation and creation operators' a;, a;*'s [i.e., a;=(l/ /2)(m 112q; 

+ im-112p;), a;*=(l/ /2)(m 112q;- im- 112p;) in the classical sense] associated with the two 

free oscillators. Robnik and Schrlifer52> carried out the expansion up to 14-th order, 

i.e., O(r6) for (III·21) with m=o.*> 

*> For general m*O, the B-G procedure can be extended to a system of four oscillators subject to a 

constraint, which establishes the full approximate constant of Solov'ev, A(A) (M. Kuwata's result67l). 
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Classical and Quanta! Chaos in the Diamagnetic Kepler Problem 231 

As far as the restriction m=O is made, the parabolic coordinate of type I in 

(III ·19) is not a unique choice in view of the mdmz= 1 resonance: Any rotated 

coordinate in the u-v plane may be used, and we may have 

(III· 22) 

z=UV, Pz (type II) 

This is the rotation of type I coordinate by 1C/ 4 : 

1 
u= .f2(U- V) and (III· 23) 

by which the centrifugal potential in (III ·18) cannot be separated unless m=O. If this 

is the case, however, 

for r=O, a~d for r=FO with an additional term3l 

+ (zcuz- vzycuz+ vz). (III· 24) 

It is straightforward to obtain the lowest order, nontrivial normal form of the 

Hamiltonian; to take a projection of the perturbation part ( r-term in (III· 21) or in 

(III· 24)) onto the space which is involutive with n + rz (i.e., whose Poisson bracket 

vanishes with n + rz). Let us introduce a parameter n defined by 

n=( _ 2E)-lt2. (III· 25) 

Then the unperturbed Hamiltonian is written in common as 

in both types of coordinate , (III· 26) 

and the perturbation as JC<aJ ; a sextet polynomial of the a's and the a*'s written in 

each coordinate. The results of the normalization to such a lowest order can now be 

written as 

or 

1 llr(6) _lJ + ) -zn...:n. normal-2' rl rz 

r ( 5 9 ~+ 4 K*
2 ) + 32n4( n + rz) fC r1 + rz)2 --zn rz 

(III ·27a) 

(III·27b) 

for the Hamiltonian in type I (III· 21), and in type II (III· 24) coordinate, respectively. 

The relation between the regularized Hamiltonian JC and the original H in 
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232 H. Hasegawa, M. Robnik and G. Wunner 

(III·20) indicates that H=E implies .JC=2, which, in turn, requires 

_ 1 nr(6) 
-2nut normal 

etc. 

to lowest order 

to next order 

We assume a quantization rule for r=O to be given by 

n=N (non-zero integers, as can be assured later) . 

A combination of this rule with (III· 25) yields, to next order, 

E=- 2 ~2 =- 21z + [~N 2 (3nrz+K 2 +K* 2 ) 

or 

(III·28·0) 

(III·28·1) 

(III·29) 

(III ·30a) 

(III·30b) 

Clearly, the second term represents the quadratic Zeeman correction which requires 

an additional rule of quantization due to the mdmz=1 resonance. According to 

Gustavson (see theorem (a) in § II. 4) there exists another constant of motion different 

from the energy even in the presence of a resonance, and this will provide a two

dimensional invariant torus embedded in the four-dimensional phase space. We 

show its detailed structure in terms of a geometric notion, namely, the Runge-Lenz 

hyperboloid. 

2.2. Runge-Lenz hyperboloid of Solov'ev 

The possibility of the third constant of motion in the diamagnetic Kepler system 

(III·4), other than energy E and angular momentum component Pf', was discussed by 

several authors63l around 1980. The first successful result due to Solov'ev12l is expres

sed in the form 

(III ·31) 

where Ax, Ay, Az are the three cartesian components of the Runge-Lenz vector, 

A=pXL- ~ (L=rXp) =(p2 - ~ )r-(r·p)p. (III ·31a) 

It says that the intersection of the energy surface and a manifold formed by (III· 31), 

for a possible real value of A, yields the aimed invariant torus. Since IAI 
(=/I +2EV) represents the eccentricity of a Kepler ellipse, less than unity for E 

< 0, the allowed values of A are 

-1~A:::;;4. (III·31b) 

Solov'ev obtained the form (III ·31), which we call the Runge-Lenz hyperboloid, from 
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Classical and Quanta! Chaos in the Diamagnetic Kepler Problem 233 

a consideration of perturbation average discussed by Arnold.49> Namely, a motion of 

the vector A around its constant value perturbed by the presence of a weak magnetic 

field B, or any function of the A, is averaged over the period of the Kepler ellipse, 

which shows*> 

(III ·32) 

Here we outline how such an intersection can be located and traced on a plane in the 

phase space (i.e., a surface of section).64>,es> Also, we aim at its connection to the B-G 

normal form deduced in (III·30). 

We need a convenient representation of the two vectors L (angular momentum) 

and A, namely, the rotating cylindrical coordinate representation (RCCR). Suppose a 

cylindrical coordinate (p, q;, z) is given as x=pcosq; and y=psinq;. Then, any vector 

V in RCCR is given by a rotation of V represented in (x, y, z) by angle q; around the 

z-axis so that 

(III ·33) 

For example, RCCR of r(x, y, z) and p(Px, py, Pz) are: r(p, 0, z) and p(p.=pp, 

pq=p9'/p, Pz). Here, we obtain RCCR of Land A with the result given by 

A~;=-(zpP-PPz)Pz- ~ + p;
2 

A Aq= -(pp+ ~Pz )P9' 

_ z zp/ 
Az-(zpp- PPz)PP-r+7 

(III ·34) 

This representation is useful particularly for those motions with p9' (constant of 

motion)=O, because then the 7]-component of the three vectors r, p and A vanishes 

while L has its nonvanishing component only for the 7J·direction, that is to say, the 

motion is confined in the ~-z plane. Under this circumstance one can write 

(III ·35) 

We shall use the above formula to relate the normal form in (III·30) to A(A) later. 

First let us obtain SOS I(p, PP; z=O), generally p9'=FO, defined by the trace of intersec

tion H=E and A(A)=A projected onto z=O. As can be seen from (III·34), then, V 
=p2Pi+P/ and 

n in (III· 25) , (III· 36) 

*> For B=t=O, let the pseudo angular momentum and the pseudo Runge-Lenz vector be defined by L=rX v 

and A= v xL-(r/r), respectively, where v=p+(B/2)X r, and consider k2A(A)=(l-k2)A2-Ai. By 

the equation of motion, (d/dt)A2=-4E(r· v)(rx v)B and (d/dt)A.Z=-2AzPz(rx v)·B. The unknown 

parameter k is determined so that 1ima-o<(d/dt)A(A)>/<(d/dt)A2 )=0. This procedure is shown to give 

k2 =(1/5) (equivalent to (III·32)) (Refs. 64)). 
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234 H. Hasegawa, M. Robnik and G. Wunner 

which simplify the remaining manipulation. The result can be shown to be a qua

dratic equation for p with coefficients rational function of PP : 

2n2 n4(k2A'+m2p2) 
n2p2+ 1 p+ (n2p2+ 1)(n2p2+ k'2) 0 (III ·37) 

with notational convention 

m=P"' (III ·37a) 

and 

(III·37b) 

This defines an algebraic function P= p(p) and hence the associated action integral 

Jp(p)dp in terms of the so-called Abel integral. The nontrivial part of this integral, 

we show, is of the form 

._ 1 j[ n2P2+ 1 2 , 2 2 ] 1' 2 n2dP J-;r 1- n2P2+k'2CkA +mp) n2P2+ 1 , (III ·38a) 

(III·38b) 

by the transformation p~ s: 
P=n-1cn(?;, k)/sn(?;, k), 

Further, by a so-called Gauss transformation of jacobi's elliptic function with modulus 

k to that with k-\ i.e., ksn(k- 1u, k)=sn(u, k- 1), and by setting sn(u, k-1)=sin8, the 

above action integral becomes 

._ 1 j[ 2( A ) m2 ]112 
J-;r n 1 + 1-k 2sin28 - sin28 dB· (III ·38c) 

This is precisely the action integral Solov'ev obtained,I2l,*l provided a proper 

Specification is made of the range of integration. 

2.3. SOS .J:(~, Pe; z=O) and SOS .J:(z, Pz; ~=0) for m=O 

For m=O, the surface of section z=O implied by (III ·37) is not bounded in the p-pp 

plane in the limit p~O, which is due to the absence of the centrifugal potential. The 

dependence of p vs PP is drawn schematically in Fig. III-2, where the geometrical 

meaning of the action integral (III· 38a) is indicated. If the two branches of the root 

of (III· 37) are denoted by P±, one can write 

whereas 1 100 J=-2 (P++P-)dp=n, 
TC -co 

(III· 39) 

*l Solov'ev obtained this result by identifying the integration variable r9 with the polar angle of the A· 

vector, and its proper conjugate momentum with L-'-=[V- Lz"/sin2 r9] 112 which seemed difficult to prove. 

A proof has been provided by Pinard based on a geometrical construction (private communication). 

H. H. thanks Professor]. Pinard for his kind communication, and withdraws with apology the author's 

premature statement.••> See also § V.l. 
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Classical and Quanta! Chaos in the Diamagnetic Kepler Problem 235 

which shows the existence of another action variable I: I= n (defined by (III· 25)) 

implies the Rydberg spectrum E=( -1/2)r2, if the quantization /=1, 2, ···is allowed 

(as can be justified by means of a contour integration and the Maslov-index argument 

given in the last part of the next subsection 2.4). 

The unbounded SOS can be avoided by going over to the parabolic coordinate 

representation (type II): From (III·22), the section z=O corresponds to V=O (p>O), 

or U=O (p<O)-negative p should be allowed to interprete that p represents the 

rotating cylindrical coordinate ~. and for this reason the notation I:(~, P~; z=O) is 

adopted. Similarly, from (III·19) the section ~=0 corresponds to u=O (z>O), or v 

f % 

Fig. III-2. Analytic curves p vs PP for the case m=O in (III ·37) which represents the surface of section 

z=O of the invariant tori in the weak diamagnetic limit parametrized by AE( -1, 4] of the 

Runge-Lenz hyperboloidal value (A=4, the outermost contour; A=O, the unique separatrix line 

which separates the two regions of the motions). The shaded area represents the action integral 

j(III·38a, m=O) for a A(<O). It can be extended to case A>O (see the separate figure which 

indicates J = n as well as j (doubly shaded area) for A >0). 

(a) (b) 

Fig. III-3. Graph presentations of the surface of section (a) X(~, Pt; z=O) and its map onto (b) 

L:(qu, Pu ; V =0). Their duals L:(z, p,; ~=0) and L:(qv, Pv ; u =0) have similar structures. 

f 
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236 H. Hasegawa, M. Robnik and G. Wunner 

=0 (z< 0), which yields SOS I(z, Pz; .;=O). 

An invariant torus for a given set of values (n, A) can be given by a quartic 

equation for the four canonical variables (q;, p;), i=u, v (type I) or U, V (type II), 

intersected by the energy surface, as follows : 

where 

- 1 ( 2+ 2) r;=-z q; p; , z=u, v 

(III ·40a) 

(III·40b) 

and U, V. (III·40c) 

Projecting the first manifold onto u=O, and the second onto V=O, we get 

I I(qv, Pv; u=O): (4n2 -Pv2 -qv2)(5Pv2 +qv2)=4n2(1 +A), 

II I(qu, Pu; V=O): (4n2 - Pu2 -qu2)(5Pu2 +qu2)=4n2(4- A). (III ·41) 

Each SOS corresponds to 

I I(z, Pz; .;=O): 
2n2 n2(k2+k2A) 

n 2Pi+ 1 z+ (n2Pi+ 1)(n2pi+ k 2) 0 ' 

II I(.;, p,; z=O): 
2n2 n2(/(2-k2A) 

n2P/+1 .;+ (n2P/+1)(n2P/+k'2) 0 ' 

cf. (III· 37). (III ·42) 

A computer-graphic drawing of SOS I(.;, P,; z=O) and its correspondent I(quPu ; 

V=O) is shown in Fig. III-3. 

Two key formulas to deduce the above result are given by 

(III ·43) 

and 

(qvPu-QuPvY=(qvPu-quPv)2=4V. (III·44) 

Also, a combination of these with (III· 35) yields 

}('!+ K*2=t<qu+ iPu)2(qu- iPv)2 +c.c. 

=2rurv- V(type I, similarly for type II), (III ·45) 

establishing the invariant expression for the normal form (III· 30 ) as 

___ 1_ ..i.. 2 
E- 2N2 + 16N (1 +A(A)). (III ·46) 

This is subject to a further quantization by the action integrals below. 
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2.4. Action integrals for m=O: dual structure and analyticity 

We start from 

I 
. 2n [8o* 
Je=-

1C 0 

where Oo*=; for -1<A<O, =sin-1/1- ::A for O<A, 

II 
. - 2n[no 
Jz--

1( 0 

where Oo=sin-1/l+A for -1<A<O, ; for O<A. 

(III·47a) 

(III·47b) 

The latter integral is the special case m=O of (III·38a), whose geometrical meaning 

on SOS ~(~, Pe; z=O) has been illustrated (see Fig. III-2). A remarkable dual 

structure can be seen to exist between these action integrals: Namely, 

by the interchange of the modulus 

of elliptic functions and (III ·48) 

Obviously, this duality stems from the invariance of the Kepler Hamiltonian by the 

interchange ~~z for m=O as well as the antisymmetry of the Runge-Lenz hyperbola 

(III· 35) -this is reexpressed as 

(III ·35') 

What is more important for physics, particularly for spectroscopy, is the identity 

(III ·49) 

The significance of the duality and this sum rule in spectroscopy will be discussed in 

§ V.l. 

Our concern here is to explore a deeper origin of the above feature, namely, the 

analyticity of the two-dimensional two-torus for the (weakly perturbed) Kepler 

motion: The torus can be parametrized by a single complex variable l;, the conjugate 

momentum of which, p,, is given in terms of doubly periodic analytic functions on the 

complex !;-plane, i.e., elliptic functions. Thus the two-dimensional two-torus under 

consideration must be a Riemann surface of p, = p( l;) with one 'hole' structure (Fig. 

III ·4, see a detail in Ref.67)). Consequently, both action integrals are identified to be 

a Cauchy integral of a complex analytic function along two elementary cycles on the 

!;-plane: 

jz,e= 21,. r p(t;)dl;(=ja,p)' 
"· Jra, ra 

(III·50) 

(III ·50a) 

where a and fJ are related to l; by l;=a+ if]+const (the elliptic cylindrical coordinate 

to parametrize the Fock hypersphere68J'69l), and ra.P are two segments parallel to a and 
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238 H. Hasegawa, M. Robnik and G. Wunner 

D 

-1< A 

(a) 
Calle A < 0 

21K' C 

IK' 

-~. ~. 

ip 

D 

A 

A 
l<t 

0 B I< -1< 

case A > 0 

21K' 

I(K' +'7.1 

1K' 

I ( 1<' -'I.) 
'( .. 

0 

c 

B 

B' 
I< 

Fig. III-4. Schematics of a two-dimensional two

torus of Hamiltonian systems with two degrees 

of freedom for which the weak diamagnetic 

Kepler system is a representative. (a) The 

Riemann surface of the analytic function p( t) 

of the complex coordinate t=a+iP+const on 

which the above torus structure is represented ; 

case m=O and A~O. Two elementary cycles 

ra and y, are those along which two action 

integrals are defined in terms of two elliptic 

integrations involving K and K' (the complete 

elliptic integrals of the 1st kind with modulus k 

and the complementary modulus k'=./1- k2 ). 

the quantization rule, Jpdq=2TC(N+a/4), 

quantization rule (III· 29). 

/3 which define the double periods to 

characterize the two elementary cycles. 

This means that the two action integrals 

jz and j~, individually defined as the one 

on each surface of section, are actually a 

counterpart of the other of the two 

action integrals on the one identical 

torus. An appendix to this subsection 

(at the end of §III) summarizes the 

matter of the elliptic cylindrical coor

dinate relevant here. 

Consider a contour integral of the 

analytic function p( s) along a double 

combination of ra+ YP which encircles a 

rectangular portion (a parallelogram) 

ABCDA on the (Riemann surface of) s
plane in Fig. III -4(a). Since p( s) is 

single-valued and regular in this portion 

except at one point s= i · K', which is a 

simple pole of p( s) with residue i. n, this 

contour integral yields the value n ; a 

proof of the sum rule (III ·49), which we 

may call the "Rydberg speciality".64>·66> 

Futhermore, since this contour integra

tion can be regarded as along a complex 

trajectory in the phase space with four 

caustics, the resulting Maslov index a in 

must be 4. This justifies the primitive 

III. 3. Surfaces of section in general diamagnetic strength 

The analytic description of the foregoing section can no longer be used once one gets 

into regimes where the Lorentz force and the Coulomb force acting on the electron 

become of comparable size. To determine trajectories, and thus SOS in this more 

general, nonseparable situation, one is forced to resort to solving numerically the 

equations of motion. In doing so one can make use of the scaling properties discussed 

in § III.l, which imply that, except for a similarity transformation, the classical 

dynamics of a hydrogen atom in a uniform magnetic field depends solely on the value 

of the scaled energy 

E 
c= r2/3 ' (III ·51) 

and not on energy and magnetic field strength individually (cf. III·6). That is, to 

exploit the whole of classical dynamics it suffices to determine trajectories and 
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Classical and Quanta! Chaos in the Diamagnetic Kepler Problem 239 

surfaces of section as functions of one single parameter, the scaled energy c. 

Furthermore, the scaled angular momentum Jjrp= y113P"' remains negligibly small 

under laboratory conditions and can be ignored in what follows (corresponding to m 

=0). 

Trajectories can be determined, e.g., using the cylindrical coordinates, in which 

case the equations of motion are governed by the (scaled) Hamiltonian (III·6). A 

feature of that Hamiltonian is its singularity at f(=(,0 2 +z2) 112)=0, which can be 

removed by introducing the parabolic coordinates u, v defined in Eq. (III ·19) and the 

rescaled time r given by 

(III ·52) 

The equations of motion generated by the Hamiltonian (III· 6) at fixed scaled energy 

c are then found to be equivalent to the equations of motion generated by the 

Hamiltonian 

(III·53) 

at the fixed "energy" 2. 

Although there is clearly a one-to-one correspondence between the solutions of 

the equations of motion in cylindrical and parabolic coordinates (III ·19), it is useful 

to consider some qualitative aspects in detail. Near the origin ,0=0, z=O (or u=O, 

v=O) the motion of the electron in cylindrical coordinates is dominated by the 

Coulomb force and, for c<O, corresponds to Kepler ellipses which reduce to straight 

lines reflected at the origin for vanishing angular momentum. In the parabolic 

coordinates such a straight-line limit of a Kepler ellipse will not be reflected at the 

origin but will continue, e.g., from the u, v>O quadrant to the u, v<O quadrant, 

z 

6.00 r 6.00 

.... (a) .... 
, ... 3.110 

v 
.... 2.00 

I .GO 1.00 

0.110 0.110 

-I .GO ·I .GO 

..... ..... 

..... .. ... 

..... V=1 -<1.00 

-1.111 
... DO ..... ..... ·1.00 I .GO . ... 

p (..(. 

Fig. III-5. The three periodic orbits J~, I~, C at the zero-field threshold .:=0 in (a) the cylindrical j5- z 
representation and (b) the regularized u~v representation. Also shown are, in Fig. III-5(a), the 

lines of constant potential V= vd,.+ Vcoulomb= i52/8-(i52+ z2)-112, decreasing from V=l in steps of 

0.5 to V= -4 (innermost contour), and, in Fig. III-5(b), the lines of constant rV, decreasing from 

rV=0.390 in steps of 0.195 to -0.975. 

. ... 
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240 H. Hasegawa, M. Robnik and G. Wunner 

because the potential is regular at v = u = 0. 

In order to illustrate the differences in the two representations Fig. III-5 shows, in 

both coordinate systems, the straight-line orbits perpendicular (II) and parallel(!,,) to 

the field as well as the almost circular orbit (C) which reduces to an exact circle (in 

both representations) in the field-free limit. We note that in the other set of the 

parabolic coordinates introduced in § III.2, U, V(III•23) (obtained from u, v by a 

rotation by K/ 4), the orbits l1 and L,, interchange their meaning in that l1 runs along 

a coordinate axis ( U) while lao runs along a bisectrix of a quadrant. The orbits l1 and 

lao are in fact limiting cases of a whole family of curved periodic orbits {Ivh<v<ao (see 

Fig. III-6) of the diamagnetic Kepler problem that pass through the origin. These 

have recently gained importance in the interpretation of long-range modulations in 

the photoabsorption spectra of magnetic Rydberg atoms18l'70),n) (see also § V.2). 

As an example, SOS's ~(p, PP; z=O) are shown in Fig. III-7 for a magnetic field 

strength of 6 Tesla and decreasing binding energy of the electron with respect to the 

field-free ionization threshold (this was first presented by Harada and Hasegawa4l and 

simulated analytically 65Ml). In these SOS the orbit l1 corresponds to the right-hand 

limiting contour of the kinematically allowed region, while the Pp-axis corresponds to 

lao. Furthermore, the orbit C is represented by the hyperbolic point visible in the 

panel for -132 cm-1. As the energy is decreased the regular structures present in the 

(regular) weak-diamagnetic case are gradually destroyed. In particular it is seen 

that irregularity first sets in around the hyperbolic point, and below~ -24 cm-1 no 

regular orbits can be recognized in the surfaces of section ~(p, PP; z=O) any more. 

In Fig. III-8 the breakdown of regularity is quantified by plotting the area fraction of 

regular orbits as a function of energy for B=6 Tesla. By the scaling relation (III·5) 

Fig. III-8 is universal, and not restricted to that set of parameters. Converting the 

absolute to scaled energies one arrives at the £scale shown at the top horizontal axis 

p p p p p p 

Fig. III-6. Leading members of the family of classical periodic orbits Uvh<v<~ at E=O. The first 

member/, is the straight-line orbit perpendicular to the direction of the magnetic field, the limiting 

case I~ corresponds to the straight-line orbit parallel to the field. (From Ref. 115).) 

*) The analytic simulation of I:(p,p.; z=O) performed in Ref. 65) is by taking into account the diamagnetic 

part beyond the first order perturbation and hence some higher-order effects of c, exhibiting an essential 

hyperbolicity of the tori to remain on the average. 
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p 

p 

-1 
em 

1011e 

2111111 

a 

0 

E = -99 

p 

p 

-1 
em 

zaaa 

24110 

Fig. III-7. Poincare surfaces of section of classical motion l:(p, PP; z=O) at different energies and for 

B=6 Tesla, m=O. Note that chaos grows around· the hyperbolic point, and finally fills most of 

phase space at -22 cm-1. 

-0.6 -0.5 

-100 

scaled energy E 
-0.4 -0.3 

-80 -60 

energy (cm-1) 

-0.2 -0.1 

-40 -20 

Fig. III-8. Area fraction of the surfaces of section l:(p, PP; z=O) which is filled by regular orbits as 

a function of scaled energy (top horizontal scale), or in explicit spectroscopic units for a magnetic 

field strength of 6 Tesla. Note the transition from regularity to irregularity between~;~ -0.48 and 

-0.125. 
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242 H. Hasegawa, M. Robnik and G. Wunner 

of Fig. III-8. 

As a second example of SOS at increasing diamagnetic strength Fig. III-9 shows 

a sequence of SOS's I(v, Pv; u=O). From (III·19) it follows that this corresponds to 

p=O (z~O). The diamagnetic term does not contribute in this case in (III·53), and by 

rescaling the v coordinate, v*=v./2( -s), the limiting contours (Pu=O) become circles 

of radius 2. The SOS's show the results obtained for orbits starting at the origin and 

by varying the starting angle r3 with respect to the B direction. From the starting 

condition Pv= ±2sin(r'J/2) one recognizes that the orbit l1 is represented, in the regular 

and near-regular panels, by the two elliptic points Pv= ±/2 on the Pv axis, while the 

orbit leo along the direction of the magnetic field is represented by the outermost circle. 

The separatrix visible in the regular and near-regular regime separates the phase 

space in two different parts characterized by librating and rotating motion (cf. Delos 

et al.72> and § V.l). As an alternative, Fig. III-10 shows SOS's I( V, Pv; U =0) (i.e., 

z=O) for decreasing scaled energy. The limiting contours (Pu=O) are in this case 

given by a third-degree equation in V 2• As discussed before, the orbits l1 and leo 

interchange their meaning with respect to the SOS's I(v, Pv; u=O) and thus also with 

respect to the positions of the elliptic points. 

Figures III-9 and III-10 again display the breakdown of regularity as the scaled 

energy is decreased. It is seen that as one intrudes into the chaotic regime, other 

elliptic points are born and subsequently evanesce, indicative of other periodic orbits 

which eventually become unstable (a feature just as described in § II.2), and that 

.... 

.... Pv 

.... 

.... 

.... 

.... . ... 
-o.IO -o.IO 

•t.OD . -1.00 

..... 
~ ... 
..... 

•1.10 ooO,IID• .... ..... 
j·~ ... ... 

v .... -1.10 
1.110 -2.50 -1.10 ..... .... v 

1,10 1.10 .... .... .... 
.... Pv . ... .... £= -0.1 

.... . ... !.10 

.... . ... . ... 

.... . ... . ... 

.... . ... . ... 
-o.oo -o.oo ...... 
-s.oo -s..oo ....... 
...... -s..so ..... 
.• : .. f -1.00 

v v 
...... [ . I ...... ... ... ...... -o.IO .... . ... .... ...... ..... ...... -1.!10 -o ... . ... . ... .... -z.ICI ..!..10 ..... 0.10 !.110 1.10 

Fig. III-9. Poincart) surfaces of section .J:(v, Pv; u=O) at different scaled energies (corresponding to 

increasing diamagnetic strength). The elliptic fixed point at the origin corresponds to the 

straight-line orbit I~, the other two fixed points to the straight-line orbit h 
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2.50 -

2.00 l Pv 

1.50 l 
1.00 ~ 

2.5o r 
I 

Pv E=-0.69 2.00 

1.50 

1.00 

E"' -0.52 

0.50 ~ 0.50 

0.00 [ 

-0.50 I 

0.00 

-0.50 

-1.00 r 
-1.50 ~ 

-2.00 f 
. 

-2.50 
-2.50 -t.50 -o.so 0.50 

j 
-1.00 

-1.50 

-2.00 

v .J I 
-2.50 

1.50 2.50 -2.50 -1.50 -o.5o 0.50 

v 
1.50 2.50 

2.5o r 
I 

Pv I 

2.00 t 
1.50 r 
1.00 t 

I 

0.50 r 

0.00 f 

I 
2.50 

2.00 Pv 

L50 

1.00 

0.!10 

0.00 

i 

-o.50 r -0.50 

! 

-1.00 -1.00 

-1.50 -1.50 

-2.00 -2.00 

v 
-2.50 

-2.50 -1.50 -o.so 0.50 1.50 
-2.50 

-2.50 2.50 2.!10 -LSO so 0.50 1.50 

Fig. III-10. Poincare surfaces of section~( V, Pv; U=O) (i.e., z=O) at different scaled energies. The 

connection of the elliptic fixed points to the straight, line orbits is interchanged with respect to Fig. 

III-9. 

apparently the orbit perpendicular to the magnetic field is the last one to finally turn 

unstable. 

In the next subsection we want to examine the transition from stability to 

instability of trajectories in the diamagnetic Kepler problem in more detail using the 

concept of Liapunov exponents and, in doing so, pay special attention to these 

quasi-periodic orbits. The subsection summarizes results presented by us elsewhere 

(Schweizer et al.73>) with a supplement. 

III. 4. Stability analyses-Liapunov exponents 

A quantitative measure for the degree of instability .of a classical trajectory in the 

chaotic region is provided by the Liapunov exponent which characterizes, roughly 

speaking, the velocity at which trajectories in the vicinity of a given trajectory 
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244 H. Hasegawa, M. Robnik and G. Wunner 

exponentially separate from that trajectory in phase space. The Liapunov exponent 

is the same for all phase space points lying on a given classical trajectory. Further

more, isolated unstable periodic trajectories are known to lead to modulations in the 

quantum mechanical level densities71 ' and in observable cross sections,74''75> and a 

quantitative measure of the stability of the orbits is therefore requisite to quantitative

ly account for observable features in the level density and other spectra. 

To introduce the concept of Liapunov exponents we consider the trajectory r(t) 
starting, at t=O, at the phase space point r(t=O)=(x1, ···, XN, P1, ···, PN) (N=2 in our 

case) and study the evolution in time of the norm IISr(t)ll of the infinitesimal separa

tion or between the trajectory r(t), which passes through r(O) at t=O, and a nearby 

trajectory which passes through r(O)+a at t=O. As shown by Oseledee6> the limit 

li~-tlnllor(t)ll = L(a) (III· 54) 

exists for all non-vanishing displacement vectors a, and the Liapunov exponent 

(associated with phase space point r(O)) is defined as the maximum of the at most 2N 
different values (III· 54) corresponding to different directions of the displacement 

vector. Following Meyer77' we calculate the stability matrix M(O, t) along the tra

jectory passing through r(O) : 

M··(O t)= ar;(t) 
.., ' ar;(o) ' (III ·55) 

and the Liapunov exponent ,1 is then the long-time limit of the Liapunov function tl(t): 

(III ·56) 

where IIMII is a norm78' (any norm) of the matrix M. As shown by Meyee7> the limit 

defined in (III •56), though not the Liapunov function itself, is invariant under canoni

cal transformations. We list a few important properties that follow immediately 

from (III· 55, 56). Using 

Mij(T, T+ t) 

we obtain 

ar;(T+t) 
ar;(T) 

M(O, T+t)=M(T, T+t)M(O, T) 

(chain rule). From the triangle inequality for matrix norms we have 

IIM(O, T+t)II~IIM(O, T)IIIIM(T, T+t)ll. 

Conversely we can use the relation 

M(T, T+t)=M(O, T+t)M(O, T)- 1 

to deduce the result 

IIM(T, T+t)II~IIM(O, T+t)IIIIM(O, T)-111. 

(III· 57) 

(III· 58) 

(III· 59) 

(III ·60) 

(III ·61) 
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(Because the flow is Hamiltonian the matrix M is symplectic ;77> in particular M and 

M-1 have finite norms). From (III·59, 61) it follows that the ratio IIM(O, T+t)ll 

/liM( T, T + t )II is bounded from above by liM( 0, T)ll and from below by the positive 

number IIM(O, T)-111- 1• This means that the Liapunov function ll(t) defined with M(O, 

t) and with M( T, t) differ only by a bounded function divided by t and hence yield the 

same Liapunov exponents (III· 56) in the limit t --+eXJ. Thus all points along a given 

trajectory have the same Liapunov exponent. 

The Liapunov exponent becomes particularly easy to calculate for periodic 

trajectories. If Tis the period of a periodic orbit, then M(O, nT)=M(O, T)n. In the 

limit n -HXJ we have 

(III ·62) 

where a is the maximum absolute value lm;l of all eigenvalues of M(O, T) (seep. 299 

of Ref.78)). Hence 

ll=lim IT lniiM(O, nT)II= y1 lna. 
n-oon 

(III· 63) 

For periodic orbits, the Liapunov exponent can be obtained directly from the maxi

mum (by absolute value) eigenvalue of the stability matrix after one period. 

We would like to mention that the Liapunov exponent is constant inside one and 

the same stochastic region, because it contains a dense orbit (topological transitivity). 

The longest (unstable) periodic orbits are also dense in such a region and their 

Liapunov exponent asymptotically approaches the value for chaotic orbits. 

For the hydrogen atom in a uniform magnetic field the Liapunov exponents are 

not independent of which Hamiltonian, (III·6)) or (III·53), we use for calculating the 

trajectories. The reason for this is that the transformation leading from (III· 6) to 

(III·53) is not canonical. The relation between the Liapunov exponents Ak based on 

the perturbed Kepler problem (III· 6) and the Liapunov exponents As based on the 

parabolic representation (III· 53) can be derived by decomposing the transformation 

into two steps. In the first step a canonical transformation takes us from the cylindri

cal coordinates p, z to the parabolic coordinates u, v as defined by Eq. (III ·19). As 

shown by Meyer77> such a transformation may lead to a modified Liapunov function 

X(t)-and a modified stability matrix M(t)- but the Liapunov exponent (III·56) 

defined in the infinite-time limit remains unchanged. In the second step we keep the 

coordinates and momenta -and hence also the stability matrix- unchanged, but 

rescale the time according to Eq. (III· 52). Hence 

but 

1 -
lls=lim-lniiM(O, r)ll. 

r-+oo T 

Thus the relation between Ak and As can be written as 

(III·64) 

(III ·65) 
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246 H. Hasegawa, M. Robnik and G. Wunner 

A t llr(t) 
_s = lim-= lim- 2 r ( r')dr' ' 
Ak t,r~co r t,r~co r r'=O 

(III ·66) 

and obviously depends on the trajectory under consideration and, in particular, on the 

mean value of the radial distance r =(1/2)(u2+ v2). For periodic orbits Eq. (III ·66) 

simplifies to 

(III· 67) 

where Tk is the period of the orbit in "natural time" t and Ts is one half of the 

corresponding period (that is of half a traversal in the u-v plane) in the rescaled time 

r. 

We now turn to a discussion of results obtained for the Liapunov exponents for 

the diamagnetic Kepler problem. In generating both the trajectories and the stability 

matrix it is useful to adopt the Taylor-series expansion method outlined by Meyer.77) 

This procedure is suggested by the fact that, as in his problem of quartic oscillators, 

the potential appearing in the Hamiltonian (III ·53) has a very simple polynomial form 

and hence higher-order derivatives can easily be determined analytically using the 

Table III-1. Scaled energies ev where the orbit lm 

becomes unstable (with increasing e) and 

energies Sv where stability is regained. The 

energies iv give the onset of instability for the 

periodic orbits /2, /a, ···, /1. 

ll 

2 

3 

4 

5 

6 

7 

8 

ev Sv 

-0.392 -0.328 

-0.273 -0.238 

-0.216 -0.195 

-0.182 -0.167 

-0.160 -0.150 

-0.142 -0.134 

-0.130 -0.123 

0.4 

.ilK 

(units oft~) 

0.3 

0.2 

0.1 

0 

-0.5 

iv 

-0.295 

-0.244 

-0.202 

-0.174 

-0.157 

-0.140 

-

-0.4 -0.3 

equations of motion. In the numerical 

computations of the trajectories with 

sufficiently small step sizes of rescaled 

time r the elapsing of "physical" time t 

is followed by simultaneously integrat~ 

ing the relation (III ·52). 

The simplest periodic orbits are the 

straight line orbits /1 perpendicular and 

leo parallel to the direction of magnetic 

field. As shown by Wintgen80> the orbit 

!1 is stable up to a scaled energy €1, and 

the product of the Liapunov exponent A1 

and the period T1 of the orbit is then 

accurately proportional to the square 

(\ 

-0.2 -0.1 0 

Fig. III-11. Liapunov exponent .1. for the orbit Im parallel to the magnetic field as a function of scaled 

energy. 
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~ 
2.0 

(unitS of t~) 

1.6 

12 

c 

(a) 

-18 -15 -12 -15 -0.6 -0.3 0 
E 

AK 
0.80 

(units oft;;'l 
(b) 

0.64 
c 

0.48 

D.32 

0.8 1.2 1.6 2.0 
IEI":VZ 

Fig. III-12. Liapunov exponent ..1. of the almost circular orbit as a function (a) of e and (b) of lel-312• 

root of r;- e1. Present calculations yield e1 = -0.1272 and 

,h2T12=13.61(.s-.sl). (III·68) 

(Note that by the in variance property (III· 66) this result is independent of whether the 

computations are performed in "physical" or rescaled time.) For the periodic orbit 

I"' parallel to the magnetic field, the dependence of the Liapunov exponent on the 

scaled energy is much more complicated. Up to an energy c-2= -0.392 the orbit is 

stable. Then intervals of instability and stability alternate*> and accumulate at the 

escape threshold c-=0 where the orbit becomes regular. The Liapunov exponent of 

the orbit I"' as a function of e is displayed in Fig. III-11. The energies e2, es, e4, ··· 

where the orbit becomes unstable, and the points s2, ss, S4, · · · where it regains stability 

are given in the first two columns of Table III-1. Also note that the product A"' T .. , 

which was plotted by Wintgen,80> increases as a function of .s, while the Liapunov 

exponent A.. itself, shown in Fig. III-11, decreases as e tends to the ionization thresh

old. 

As pointed out in Ref.80), and fully clarified in § V.3, the points of onset of 

instability ev coincide with the "cut-off points" where the periodic orbits I2, Is, h · · · 
begin to exist (see below), and these cut-off energies can be written as: 61>.so> 

ev= _ _l(v-av)-213 

2 
(III ·69) 

with a weakly 11-dependent and converging set of "defect parameters" av (see§ V. 3). 

Before we discuss the orbits h Is, h · · · we turn our attention to the "almost 

circular" orbit C, which reduces to a circle in the field-free limit. As shown in the 

preceding subsection the orbit C corresponds to a hyperbolic fixed point, and can be 

considered the "germ" for chaos. As a matter of fact, the orbit C is unstable for all 

finite values of .s, as is also borne out by the explicit calculation of the Liapunov 

exponent. Figure III-12(a) shows the Liapunov exponent Ac as a function of .s and 

*> This result was first obtained by Sumetskii'9> by linearizing the second-order differential equation of p 

with respect to z and considering its "Bloch-like" solution. 
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248 H. Hasegawa, M. Robnik and G. Wunner 

Fig. III-12(b) shows Ac as a function of lcl-312 for negative energies. Towards the 

field-free limit £--"-co, Ac is well reproduced by 

Ac=0.55Isl-3' 2 • (III·70) 

Benettin et al.81>-s3> have studied various types of billiards and calculated Liapunov 

exponents. For systems which are regular for vanishing value of a non-integrability 

parameter p and become ergodic for finite values of p, Benettin83> finds a universal 

behaviour of the maximal Liapunov exponent, which for all billiards increases as /P 
for small P. For a hydrogen atom in a uniform magnetic field it is actually the 

square, y, of the field strength parameter which appears as the coefficient of the 

nonintegrable term in the Hamiltonian (III ·18). Rewriting Eq. (III ·70) as 

Ac=0.55IEI-3' 2/( r 2) (III ·71) 

shows that the hydrogen atom in a uniform magnetic field obeys Benettin's square

root law if we regard r2 as the non-integrability parameter for fixed energy E.*> 
As mentioned above, the orbits /2, Is, ··· are born at certain energies where the 

orbit Ioo becomes unstable and bifurcates (see below). Liapunov exponents of the 

orbits h ······, /1 are shown as functions of scaled energy in Fig. III-13. The orbits are 

born stable but subsequently become unstable at the energies i2, ···, i1 which are 

tabulated in the last column of Table III-1. We make a comment on the dependence 

of Liapunov exponents on representation. Figure III-14 shows the Liapunov expo

nents As of the orbits /2, ···, /1 in the u-v-representation. A striking feature is that, 

after the initial sharp rise following the onset of instability of each orbit, the values 

of As rapidly converge to a common limiting curve. This indicates, that the rather 

large spread of the Liapunov exponents Akin the j5- z-representation (see Fig. III-13) 

is related to the singular nature of the Coulomb potential. 

*> There is an unpublished conjecture118' by Robnik from 1985 that generalizes Benettin's result in the 

following way : The square root scaling applies to the Liapunov exponent A on every stochastic 

component, when a certain natural nondegenerate parametrization of the perturbation is chosen. One 

such natural nondegenerate parametrization P is defined by the requirement that at least one periodic 

orbit's period deviates linearly with p from its value at p=O for small p. (Benettin has considered the 

systems that instantly become ergodic-there is only one stochastic component- upon an arbitrarily 

small perturbation P*O. A generic KAM-system on the other hand has many stochastic components.) 

The conjecture can be easily understood ih terms of area preserving maps. The eigenvalues of the 

linear part of the iterated map near a periodic point are given by 

a=~ {TrM±/(TrM)2 -4}, 

where M is the linear part of the iterated map. Recall that the longest periodic orbits, which are dense 

in a stochastic component, approximate the chaotic orbits asymptotically. Therefore we look at the 

behaviour of IJ as a function of the perturbation parameter p. Assuming analyticity of M, specifically 

TrM=2+p+h.o.t., we find from the above equation that 15=1±/P +h.o.t., so that 

..1=ln(l±/P)cx:/P, 

which completes Robnik's demonstration. The numerical evidence in support of that was given by 

]. ]. Burnett in 1986 in his unpublished Project Work123' on heart-shaped billiards.124' 
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..tK 
2.4 

(units oft~ 1 l 12 

1.8 

1.2 

r 0.6 

0 

-0.4 -032 -0.16 0 0.16 0.32 0.4 

Fig. III-13. Liapunov exponents A. of the orbits I., 

I., ···, !1 as functions of scaled energy. 

,------------------·-
0.8 

0.6 

0,4 

0.2 

... 
-0,2 

-0,4 

-0.6 
- .. ~ ~ .. 

-0.8 

-o.f-;,42"-"o.4 .. o'-OJ"a"-OJ"'6"-~-03""2"-0."'3o"-"'o.2"'a -"'0.2"6 -•o.2"'4"-0."'22"-o.2"'o"'-O.'"ta'-o.""t6 

Fig. III-15. Bifurcation of the periodic orbit loo into 

lz at ez, then regaining the stability at Sz, and 

into /3 at e3, then regaining stability at S3, etc. 

(from Al-Laithy and Farmer112>). 

As 
(units of t~ 1 ) 

0 

-0.4 -032 -0.16 0 0.16 0.32 0.4 

Fig. III-14. Liapunov exponents As (obtained in the 

semi-parabolic representation with rescaled 

time) of the orbits lz, !3, .. ·, !1 as functions of 

scaled energy. 

The present result is now sup

plemented by an independent work by 

Al-Laithy and Farmer,112> who did not 

use the concept of Liapunov exponents 

but still considered the behaviour of the 

stability matrix M by means of the 

residue,113> R=(l/4)(2-TrM), to investi

gate the instability of the leo-orbit (birth 

of the others) and its recovery. Their 

result relevant here for presenting the 

bifurcation can be shown most conve

niently by the initial angle e (in the 

cylindrical coordinates) of the orbit with 

respect to the B-axis, i.e., 8 = arctan 

(dp/dz)t=o=arctan(PP/Pz)o, and is illustrated in Fig. III-15 with the present notation cv 

and Sv. For more details see Ref. 111) which is closely connected to the Bielefeld 

experiment discussed in § V.2. 

Appendix to III.2: The elliptic cylindrical coordinate66>·69> 

A three-dimensional sphere of unit radius 5 3 embedded in the four-dimensional 

coordinate space R 4 (u1, U2, us, u4) satisfying 

can be described by the elliptic cylindrical coordinate (a, /3, ¢)-type I: as> 

U1 =sn(a, k)dn(/3, k')cos¢, 

us=dn(a, k)sn(/3, k'), 

u2=sn(a, k)dn(/3, k')sin¢, 

u4=cn(a, k)cn(/3, k'), 

(III· AI) 

(III·A2) 

where Jacobi's elliptic function for the a-variable has the modulus k (O~k~l) and 
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250 H. Hasegawa, M. Robnik and G. Wunner 

that for the ,8-variable has the modulus k', which is the complementary modulus of that 

for the a-variable, i.e., k'=./1-k2. The elementary relations for these elliptic func

tions, sn2(a, k)+cn2(a, k)=1, k2sn2(a, k)+dn2(a, k)=1, etc., are shown to satisfy the 

condition (III· A1). The following association of the u-variables with the ordinary 

phase space (p, r)=R3 XR3, i.e., 

where n=( -2E)-lt2' (III·A3) 

establishes that the unit sphere condition (III· A1) is equivalent to the stationary 

bound Kepler motion (1/2)p2 -1/r=E(<O): This is the origin of the name Fock 

hypersphere for (III-A1). 

The classical equations of Kepler motion, r = p and p =- r/r3, can be expressed 

in terms of the equations for the u-variables, in particular, in the canonical form, if 

the conjugate momenta Pu are defined by 

(III·A4) 

which also enable one to represent the angular momentum L and the Runge-Lenz 

vector A as (subscripts i = 1, 2, 3 meaning the first three components) 

L( = rXp)=(uXpu)i=1,2,s; 

The equations of the Kepler motion are thus formally written as 

. 1 
u= n2rPu, 

. 1 
Pu=--:yu, 

but under a certain condition that should reduce them to the original set. 

(III·A5) 

(III·A6) 

Lakshmanan and Hasegawa69> have shown that the elliptic cylindrical coordinate 

introduced by (III· A2) can be enlarged to a phase space equivalent canonically to the 

original R 3 X R 3• Namely, the following definition: 

Pa,p=n2r(k2cn2a+k'2cn2,8)(a, /3), 

P;= n2rsn2adn2 .B¢ 
(III·A7) 

yields the canonical momenta of (a, ,8, ¢)by means of which the map R 3 XR 3 ~(S 3 X 

R 3) is a canonical transformation associated with the (bound) Kepler motion, where 

the three independent constants of motion can be given by P;=m (the angular 

momentum z-~omponent) plus 

Pi+Pl + P./ 
k2cn2 a+ k'2cn2 ,8 sn2 adn2 ,8 

(III·A8) 

k'2cn2,Bpi-k2cn2aPl + k'2cn2acn2.BP./ k'n2A. 
k2cn2 a+ k'2cn2 ,8 sn2 adn2 ,8 

(III·A9) 

(III-AS) is the eccentricity relation A 2 +n-2V=1 whereas (III·A9) is shown to be the 

Runge-Lenz hyperboloidal relation (III·31) so that the choice k=1//5 is adapted to 
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surviving the weak diamagnetic perturbation upon the motion. 

It can be checked easily that both left-hand sides of (III·8, 9) are mutually 

involutive and that these two constants of motion reduce to two independent relations 

Pa2=k2 n2(1 + A)+m2 - k2 n2sn2(a, k)-m2 /sn2(a, k), 

P/=-k2 n2(1+A)-m2+n2dn2(,8, k')+k2m2/dn2(,8, k'). 

But they can be singled out into one complex-analytic function 

p{2=k2n2(1 +A)+ m2 - k2 n2sn2s- m2 /sn2 s, (III·A10) 

if s =a on the real axis and s = i.B + K + K' on the shifted imaginary axis. 

This constitutes our basic recognition that the two-dimensional map on the Fock 

hypersphere (a, .B)~(Pa, pp) can be regarded as a complex analytic map: This fact 

assures that the action integration is described as the Cauchy integration (III ·38b) 

from which all the important properties such as the sum rule can be deduced. 

§ IV. Transition from regular to chaotic spectra 

One of the positive contributions to knowledge of spectral fluctuations in the 

random-matrix theoretical framework19>'84> from the investigation of the diamagnetic 

Kepler system is a direct observation that the regular spectrum (quadratic Zeeman 

spectrum) undergoes a smooth transition to a chaotic spectrum. In 1986, three groups 

of investigators85>-B?> reported a result of comparison between the computed frequency 

histogram of the energy level nearest-neighbour spacing (NNS) and theoretical 

formulas of the distribution for the spacing, all in agreement with the so-called 

Wigner surmise84> in the fully developed chaotic regime (see Fig. IV-6). The concept 

of the spectral rigidity 19> expressed by the quantity 3a (Dyson-Mehta statistics84>) was 

also considered as an important indicator of the correlation properties of the spacings, 

and was found in general agreement with the prediction by the Gaussian Orthogonal 

Ensemble (GOE) theory19>·84> in such a chaotic regime. However, more detailed 

comparisons have revealed that an appropriate theoretical formula which inter

polates between the regular and the chaotic limits is lacking. In particular, Wintgen 

and Friedrich41 > reported an explicit evidence that, near the regular limit, the comput

ed frequency histogram does not fit the prediction by Berry and Robnik37> whose 

formula was devised on a sound basis of probability theory. Robnik,40> also 

Hasegawa, Mikeska and Frahm,42> argued a possible reason of this discrepancy. In 

particular, the latter authors proposed a remedy of the Berry-Robnik formula, which 

provided a considerable improvement of the fit to the computed histograms. This 

section is devoted to an account of the story with the aim towards a possible further 

development. 

IV.l. Some concepts from random matrix theory 

We consider a sequence of real numbers {xi, X2, ···, Xn, --·}consecutively labelled, 

Xn :-:=:: Xn+I :-:=:: • • ·, which has the physical meaning of the eigenvalue energy sequence of a 

quantum system. All the Xn's are regarded as random variables, that is, they appear 
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k levels 
~ 

E ( k; S I 

k levels 
,-----"-------

F ( k; S l 
0 XI Xz ---- Xk 

k levels 
~ 

p ( k; s) • • • • 
0 XI Xz---- Xk 

s 

s 

ll 

s 
• I( 

S+dS 

Fig. IV-1. Schematics to show the meaning of the 

three kinds of probabilities (or probability 

densities) E(k ; S), F(k ; S) and P(k ; S). 

by chance so that for any subset of the sequence a probability P({xn,})dxn,···dxnr is 

supposed to exist. It can be regarded also as a stochastic process with the discrete 

index set {nEN}, and we assume that it is stationary with unit mean of the adjacent 

level-spacing 

(a) P( {xn,}) = P( {xn,+m}) 

(b) <(xn+l-xn)>= jsP(S)dS=l with jP(S)dS=l, where 

S=xn+l-Xn. 

A typical class of such probability densities (or, in a respect, probabilities) is of 

those deduced from a fixed distribution of the Gaussian Ensembles, specifically, the 

GOE distribution.*) Mehta and des Cloizeaux88J investigated a set of probabilities 

denoted by E(k; S)(k=O, 1, 2···), also two other related probabilities (and probability 

densities) F(k; S) and P(k ; S), which have the following meaning: 

E(k ; S) : probability that an interval of length S contains k levels of the 

sequence {xn} (a level means any such xn). 

F(k ; S} : probability that an interval of length S which starts at a level 

contains k levels. 

P(k; S) (density of a spacing distribution): P(k; S)dS represents the proba

bility that an interval of length S which starts at a level contains k 

levels and, further, the (k+ l)th level lies in the interval (S, S+dS). 

These definitions are illustrated in Fig. VI-1. We note that, once the definitions are 

fixed, these three probability sets are not necessarily restricted to those of the GOE 

origin. In general, the three sets are related to one another as follows (note that all 

these probabilities vanish for S-+ oo) : 

*l Some artifices are necessary for the deduction, because the GOE distribution by itself does not satisfy 

(a) and (b). For example, the "unfolding map" of the sequence is introduced to assure the constancy 

of f P({x.,})dx,···dxn-Idxn+I···dxN (see Ref. 19)). 
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Classical and Quanta! Chaos in the Diamagnetic Kepler Problem 253 

F(k; S)= ;;oo[P(k; x)- P(k-1; x)]dx, 

E(k; S)= ;;oo[F(k; x)- F(k-1; x)]dx, 

k=1,2, ... ' 

k=1,2, ... ' 

(IV ·1) 

(IV ·2) 

which can be extended to k=Obydefining P(k; x)=F(k; x)=Ofor k<O. Or, converse
ly, 

d k • 

P(k; S)=- dS JdF(;, S), 
d k • 

F(k; S)=- dS JdE(;, S) 

and hence 

d2 k • • 

P(k; S)= dS 2 i~ 0 (k- J + 1)E(;; S). 

If we specialize to the nearest-neighbour spacing, k=O, we have 

d2 
P(O; S)= dS2 E(O, S) 

or 

E(O; S)= ;;
00 

dx 100 d~P(O; ~)= ;;
00 

xdxP(O; x)( 1- ~), 

the second representation yielding a simple probabilistic interpretation.37> 

(IV ·3) 

(IV ·4) 

(IV ·5) 

In the beginning stage of the random matrix theories84> the NNS distribution was 

expressed in the form 

P(O; S)=[e-fgp<x>d.X]·.u(S), 

where .u(S) has a probability assignment such that 

.u(s)ds=prob. [a level lies in (S, S+dS), given one at 0]. 

Assuming that .u(S) satisfies lims-oofO'.u(x)dx=oo, we also have 

(oo P(O · x)dx( =F(O · S))=e- jgp<x>d.X 
Js ' ' 

=prob. [there is no level in (0, S), given one at 0] 

so that a functional equation can be set up for P(O, S)19> as 

P(O; S)= .u(S) · ;;
00 

P(O; x)dx. 

(IV ·6) 

(IV ·7) 

(IV ·8) 

(IV ·9) 

This says that the probability of the 1\11\T-spacing is the product of two probabilities: 

prob. [a level in (S, S+dS)] Xprob. [no level in (0, S)] under the condition of one level 

given at 0. Two typical examples are (hereafter, the number 0 will be omitted for the 

indication of 1\11\T) : 

Passion distribution P(S)=e~s, .u(S)=1 (IV ·10) 
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254 H. Hasegawa, M. Robnik and G. Wunner 

and Wigner surmise P(S)=; se-<"14>52 , p(S)=; S. (IV ·11) 

These satisfy two kinds of normalization as 

<1>=1, <S>=l. (spacing normalization) (IV ·12) 

For each, the two related probabilities F(O, S) and E(O, S) are given by 

Poisson distribution : F(S)=E(S)=e-5 , (IV ·13) 

Wigner surmise : F(S)=e-<"t4)52' E(S)=erfc( If S), (IV ·14) 

where erfc(x)=}; 1"' e-t 2 dt. (IV ·14a) 

Berry and Robnik37> introduced an ansatz concerning E(S) to investigate intermediate 

situations between the two typical cases (IV ·10) and (IV ·11). 

Consider that the phase space of a dynamical system (say, with two degrees of 

freedom) is partially filled by invariant tori and the rest by a chaotic domain, i.e., 

those situations we have seen in preceding sections, so that it is divided into two 

regimes, denoted by 1 (regular regime) and 2 (chaotic regime). 

Ansatz. A sequence of (semiclassical) levels {xnh (computed from regular orbits) 

and a sequence of those {xnh (from chaotic orbits) are statistically independent of each 

other so that any sequence of mixed levels has a probability E(S) of no level in (0, S) 

given by 

E(S)=El(S)Ez(S), (IV ·15) 

where 

(IV ·15a) 

and 

Ez(S)= ;
2 
erfc( /f Pz) ( H(S)=; pzSe-<"14lP 252 ), (IV ·15b) 

in which the two constants p; (i = 1, 2) measure the weight of the respective regime of 

the phase space (p1 =0 corresponds to fully chaotic). 

Thus the ansatz provides us with an interpolation formula of P(S) by 

from <S>=1, (IV ·16) 

as a one-parameter family of densities with the parameter Pl(O::o;;pl::o;;1). This is 

shown in Fig. IV -2. The characteristic feature of this family lies in the probability 

density at 0-spacing P(O)=pl(2-pl),37> which shows that the level repulsion occurs 

only for the limit of the full chaos. This is in contradiction to the intuitive under

standing that no matter how small a perturbation causes a level repulsion: What one 
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0 s- 2 

Fig. IV-2. One-parameter family of the nearest

neighbour spacing distribution according to the 

formula due to Berry and Robnikm for an 

interpolation between the Poisson (p, = 1) and 

the Wigner (p, =0) distribution. 

s-
Fig. IV-3. One-parameter family of the nearest

neighbour spacing distribution according to the 

formula due to Hasegawa et al.42> for an inter

polation .between the Poisson (A=O) and the 

Wigner (A}>l) distributions. Still another pa

rameter exists, a, which is fixed to be unity. 

really expects is that P(O)=I=O only for the regular limit pr=1, and any deviation from 

this value makes P(O)=O as shown in Fig. IV-3, and that the transition from the 

regular to chaotic spectra is nonanalytic in distribution at 5=0. This must be the 

consequence of an appropriate inclusion of level fluctuations into the Berry-Robnik 

formulation. 

IV.2. Effect of level fluctuations on the spacing distribution 

Our starting point is the equation which relates the NNS distribution to the 

(conditional) level density p(S), i.e., (IV ·6), which we rewrite as 

(IV ·17) 

We consider the spacing variable S as a stochastic process with a continuous index 

set which is denoted by t as if it were a time variable, and the right-hand side of the 

above equation is equated to a random force just like writing a Langevin equation for 

a Brownian motion.89> In the form of stochastic differential equations (SDE),90> 

therefore 

(IV ·18) 

where B(t) stands for the Brownian motion of unit strength (the strength is represent

ed by a constant 6) defined by the expectation properties 

<B(t)>=O, <(B(t+dt)- B(t))2>=dt. (IV ·18a) 

We show two results about the stationary distribution of such a stochastic process 

defined by SDE: !(St)dSt=t5dB(t). 

1st result. The SDE f(St)dSt=t5dB(t) can be converted into the standard form, 

i.e., dSt=[!(St)]- 16dB(t), if the multiplication of the differentials dSt and dB(t) by 
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256 H. Hasegawa, M. Robnik and G. Wunner 

any function of St (so-called multiplicative noise) is interpreted as in the Stratonovich 

sense (sometimes denoted as odSt, etc.).91> 

2nd result. The standard SDE dSt=a(St)adB(t) (Stratonovich), when rewritten 

in the equivalent Ita SDE dSt=(cf/2)a' adt+aadB(t), a'(S)=(d/dS)a, has the station

ary distribution of St (the stationary solution of the resulting Fokker-Planck equa

tion), P(S)ocla(S)I-1. 

If the above results are applied to (IV ·18) in the Stratonovich sense, the stationar

Y distribution for St is just the originally assumed distribution for NNS, i.e., P(S) 

=[e-fgp<x>d.r]J.t(S). This implies the fact that the NNS distribution, when affected by 

a single Gaussian white noise, remains unchanged on the average. The purely 

regular regime, or purely chaotic regime, can be-regarded as this situation. Hence, 

for an intermediate situation of both regimes to coexist, we are led to the following : 

Ansatz for fluctuations: Two Brownian motions a1B1(t) and azBz(t), independent of 

each other, are associated to the regular regime with Poisson distribution (IV •15a) 

and to the chaotic regime with Wigner surmise (IV •15b), respectively, which affect the 

process St additively. 

By this ansatz we now write a new form of SDE for the process St as 

(IV ·19) 

i=1, 2' 

i.e., n (S) =.!I_ S -(1l/4)p22S2 rz 2 Pz e . (IV ·19a) 

(Again, each multiplicative noise is understood as Stratonovich.) 

The stationary solution of the resulting Fokker-Planck equation is shown to be given 

by 

P,(S)=N'{a12{Pr(S)}-2+ az2{Pz(S)}-2]-112 , 

N 
/{Pz(S)}2+112{Pr(S)}2 Pr(S)P2(S) 

with A= az/a1 . 

(IV ·20) 

(IV ·20a) 

We note that the right-hand side expression of (IV ·20) for the stationary solution is 

the inverse square-root of the diffusion coefficient D of the Fokker-Planck equation 

where D=D1 + Dz of the constituent coefficients D; associated with the respective 

noise dB;(t), i=1, 2. 

It can be observed in the above formula that an important correlation property 

arises between the two regimes through the inverse square-root in (IV ·20) in spite of 

the assumed independence of the two noises. Thus, for the two limiting cases: 

P•=o(S)=Pl(S) and PA=oo(S)=Pz(S). The feature of this correlation is that it is 

capable of exhibiting the expected discontinuity at the 0-spacing which Fig. IV-3 in 

fact demonstrates. 

Detailed analyses of the formula applied to the hydrogen atom in a magnetic field 
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Classical and Quanta! Chaos in the Diamagnetic Kepler Problem 257 

are discussed in the next subsection. Here we only mention that PA(S) is actually a 

two-parameter family of the NNS distributions: Besides A.=adar, it depends on the 

ratio a= P2/Pr, i.e., the ratio of the average spacings, but our emphasis is that the key 

parameter to govern the regular-to-chaotic transition is). which measures the relative 

strength of the noises, not of the spacings as was considered to be the case in the 

Berry-Robnik formulation. Some further remarks on the result relevant at the 

present stage are now in order. 

(a) First, one may well ask if the regular regime of the diamagnetic Kepler system 

would really be subject to the Poisson statistics. The question should be examined 

in the context of Berry and Tabor's theory92> because this predicts some important 

non-generic examples for which the NNS distribution differs from the Poisson, or 

even it does not exist. Indeed, the pure classical Kepler system must be precisely 

their non-generic case of non-existing statistics (equivalent to three harmonic oscil

lators of a common frequency). In order to assure the generic Poisson statistics it is 

necessary to examine the scaled level-density which includes the quadratic Zeeman 

spectra : A convincing answer to this question must be postponed. 

(b) Interpolations between the regular to chaotic spectra for the correlation prop

erties of the spacings (i.e., Lh-statistics) have to be deferred also, because it is 

necessary first to establish a reliable asymptotic form of the function f.J.(x) for x~oo 

for the long-range correlation, which has been well studied by the GOE theory (the 

Wigner surmise, f.l(x)cxx is irrelevant since it only concerns a small x). We note that 

the recently developed dynamical theory by Pechukas,30> Yukawa,31> Nakamura and 

Lakshmanan93> which succeeds to Dyson's Brownian motion modeF9a> is promising for 

this purpose.*> The stochastic formulation94>'95> by which the result (IV ·20) has been 

obtained is actually a consequence of the context of Yukawa's formulation; his 

equation of 'motion' on the same time-axis as Dyson first introduced. An important 

point is that the transition parameter A.=112/11r in the formula (IV•20) can be identified 

with Yukawa's temperature ratio31> !3/r so that A.2=/3/r holds. 

(c) The Gaussian ensemble theory covers not just the GOE: Another important 

category is GUE (Gaussian unitary ensembles) which applies to quantum systems 

without time reversal. In principle, diamagnetic Kepler systems must belong to such 

only because of the presence of the linear Zeeman term, but this commutes with the 

rest part of the Hamiltonian implying that the regular-to-chaotic transition occurs to 

GOE not to GUE. For these topics, the readers are referred to the description by 

Robnik.33> The stochastic formulation should, however, be considered on an equal 

footing of both categories. It must be important when the statistics is extended to 

that of transition strengths for which the Porter-Thomas distribution84> is a new 

subject of investigations. 

IV.3. Tests from the quanta! diamagnetic Kepler problem 

In this subsection we discuss the quantum aspects of the transition from regular

ity to irregularity for the diamagnetic Kepler problem, or synonymously, the hydro

gen atom in a strong magnetic field. We will present computed spectra of highly 

*> Yukawa's theory31> suggests that t-t(x)=x[A2+x2]-112 which has the asymptotic property t-t(x)~ 1. 

This is shown to yield the GOE characteristic of Lla(L) for a large spacing L. 
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258 H. Hasegawa, M. Robnik and G. Wunner 

excited states in strong laboratory fields (a few Tesla) and use them to search for 

symptoms of "quantum" chaos in the classically chaotic regime. In doing so, we will 

also test the concepts developed in the foregoing subsection. This will highlight the 

fact that the hydrogen atom in a strong magnetic field is indeed an ideal example of 

a simple but real physical system displaying all the features which are currently 

causing so much excitement in the classical and quantum mechanical study of noninte

grable systems. 

The basic difficulty in solving the Schrodinger equation belonging to the 

Hamiltonian of the diamagnetic Kepler problem for arbitrary diamagnetic strength 

lies in the fact that the spherical symmetry of the Coulomb potential, on the one hand, 

and the cylindrical symmetry of the magnetic field on the other, prevent a separation 

of variables so that closed-form analytical solutions are not possible in general. One 

is therefore forced, in the complete quantum theoretical treatment of the problem, to 

resort to numerical methods. To obtain "exact" (as opposed to variational) solutions 

it is suggestive to invoke basis function expansions which are inspired by the symme

tries of the limiting cases B---"0 and B-"oo. These are, in the first case, expansions in 

terms of oscillator functions in semi-parabolic coordinates (adapted to the S0(2, 2) 

=S0(2, 1)EBS0(2, 1) dynamical symmetry of the Coulomb problem, cf. Englefield,96> or 

expansions in terms of spherical harmonics and a set of complete radial functions 

(ordinary S0(3) symmetry), while the case B-"oo suggests expansions in terms of 

Landau functions with a complete longitudinal basis. The different expansions are 

employed depending on whether one approaches the intermediate-field regime from 

the side of low or intense fields, and overlapping results are expected in the transi

tional region. 

Except at very high fields (r;;:::0.05),97l calculations using the Landau function 

expansion have confined themselves so far to low-lying states. The longitudinal 

parts of the wavefunctions were determined by direct integration of the system of 

coupled differential equations that follow from Schrodinger's equation.98> By contrast, 

calculations using expansions based on the field-free group properties have been 

performed for both low-lying and highly excited states, and in this case energies and 

wavefunctions were obtained by either direct integration, or diagonalization of the 

Hamiltonian matrix in large basis sets. In our own computations in this regime we 

expanded the wavefunctions in terms of spherical harmonics, c/Jm="'2.hz(r) Yz,m(B, ¢) 

(m is the magnetic quantum number), and the radial functions in the complete, 

orthonormal set of functions 

(IV ·21) 

where s denotes an inverse-length parameter, and the Ln<21+2> are generalized Laguer

re polynomials. Matrix elements with respect to this basis can be expressed in closed 

analytical form and give rise to a banded Hamiltonian matrix which can be diagonal

ized by efficient standard algorithms. Our choice of basis bears some resemblance 

with the Sturmian basis used previously by Edmonds15> and Clark and Taylor14> but 

avoids the difficulties associated with the nonorthogonality of the latter. As compar

ed to the oscillator basis in semi-parabolic coordinates (used, e.g., by Delande and 
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Gay,99> and, extensively, by Wintgen and Friedrich100>), where the diagonalization 

produces eigenstates each of which belongs to a different value of the magnetic field 

strength (solutions are obtained in the E-B plane along straight lines E/B=const), in 

our basis one diagonalization procedure yields the spectrum at fixed B, in accordance 

with most experimental situations. In our calculations we used basis sizes of up to 

220000 for determining both eigenvalues and eigenvectors of all states up to the 

~950th excited state in given m-parity subspaces in the strong-field regime. Conver

gence was established by varying the size of the basis and the scale parameter S. 
As a result of our efforts we are able to calculate the energies and oscillator 

strengths of Rydberg states in laboratory fields of a few Tesla up to the field-free 

ionization threshold E=O. To demonstrate the quality of our computations we 

present, in Fig. IV-4, a comparison, in different energy intervals, between the exper

imental spectrum of Llm=O Balmer transitions to m=O, even-parity Rydberg states of 

deuterium taken by the Bielefeld group (Holle et al.18>) at B=5.96 Tesla, and the 

corresponding theoretical spectrum computed by us. The interval considered in Fig. 

IV-4 covers a range of energy where one lies deeply in the n-mixing regime. The 

agreement between theory and experiment can be considered excellent; moreover, 

theory reveals where neighbouring lines were no longer resolved in the experiment. 

We note that the comparison of relative intensities is slightly marred by the fact that 

saturation effects occurred in the experiment in strong lines. As one moves further 

up in energy in Fig. IV-4, the line density clearly grows and tlie structure of the 

spectrum becomes increasingly complicated. Nevertheless it is also here that we find 

practically complete agreement between theory and experiment, with the experiment 

being limited, as regards the number of detectable lines, by the finite resolution. This 

is particularly evident from Fig. IV -5, which shows a direct comparison between the 

experimental and theoretical spectra in the range -24 cm-1 to -12 cm-1 at 6 Tesla. 

The broad. experimental feature around -13 cm-r, e.g., is found to be composed of 

~ 10 lines of different intensities. 

All in all we have compared successfully more than 1800 lines so far in the 7r and 

a spectra in the strong-field regime, and this certainly can be considered a hallmark 

of modern quantitative spectroscopy in magnetic fields. 

Taking a look at Fig. III-8 one recognizes that in the ranges of energy covered by 

Figs. IV -4 and IV -5 the classical counterpart of the quantum system under investiga

tion undergoes the transition from regularity to chaos. It is suggestive, then, to ask 

whether or not fingerprints of this transition are visible in the quantal spectra. 

Evidently, the oscillator strength spectra convey a qualitative impression of the 

increasing complexity of the quantal spectrum as one penetrates into ranges of energy 

where classical motion becomes more and more chaotic. 

To put the notion of increasing complexity of the quantal spectrum in the 

classically chaotic region on a more quantitative footing, however, it is useful to 

undertake a statistical analysis, in the spirit of Bohigas et al.28> of the level fluctua

tions of the sequence shown in Fig. IV -4. Our results for the distribution of the 

spacings of adjacent energy levels, and the results of the Dyson-Mehta Lis statistics for 

the nearest-neighbour spacings, in three successive energy intervals have been 

presented elsewhere (Wunner et al.87>). The histograms of the nearest-neighbour 
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~r---------------------------------------, 
lheory 

8 = 6.0 Testa m= 0 

-21 

(a) 

Fig. IV-4. Deuterium Rydberg atoms in a mag

netic field of 5.96 Tesla: comparison between 

the theoretical oscillator strength spectrum 

and the experimental photoabsorption spec

trum (Holle et aJ.l9l) for Llm=O Balmer transi

tions to m=O, even-parity final states, over the 

range of energy from -80 em-• to -20 em-•. 

The oscillator strengths are given in units of 

10-6, the experimental intensity scale is in 

arbitrary units. A total of 267 theoretical 

lines contributes to the spectrum shown. Note 

that at the end of the energy range classical 

motion becomes completely irregular (cf. Fig. 

III-8). (The exact value of r for which the 

theoretical calculation was performed is r= 
2.5350·10-5, and the mass scaling for deuterium 

is taken into account.) 

even parity 

ENERGY (cm-1) 

Fig. IV-5. Comparison between the experimental spectrum and the theoretical photoabsorption 

spectrum of Llm=O transitions from 2Po to even parity final Rydberg states with energies between 

-12 cm-1 and -24 em-• in a magnetic field of 6 Tesla. For the theoretical results (straight lines) 

the ordinate respresents the oscillator strength in units of 10-6• The experill_lental results have 

kindly been provided by the Bielefeld group70>. Note that the wealth of theoretical spectral 

structure can no longer be resolved by the experiment. The range of energy shown lies in the 

domain of chaotic motion of the corresponding classical system. 
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P(S) E =- 0.4 

0.8 ,.... 

0.4 I 
I o .• 

0.2 

0.1 

o.a 

O.B 

0.1 

E =- 0.3 

q,= 0.53-

q,= 0.21 ........ 

q,= 0.95 ---

1.,= 0. 699E-02 

q,a 0,71 -

q,= 0. 38 .......... 

q,- 1.09 ---

1.,= 0.13BE+OO 

o.ol-~-~-~-~~-~-~__:.:.:~===· 

0.0 

0.1 f =- 0.2 
q,- 0.93 -

q.- 0.93 .... 

QH:II 1,25 ---

).H -t -

q,= 1.00 --

q, = 1.00 

q, = 1. 25 - - - . 

2.8 3.5 

Fig. IV -6. Nearest neighbour energy spacing histo

grams for hydrogen Rydberg levels calculated 

at different values of the scaled energy c. The 

smooth curves show the results of least-squares 

fits to the histograms using different fit formu

lae (solid line : Berry and Robnik formula, 

dotted line : Brody formula, dashed line : 

Hasegawa's stochastic formula, evaluated for 

a=l). The q and A values denote the corre

sponding best fit parameters. 

1,0,---------------. 

0,9 lot E.=-0.4 

O.B 

0.7 

- 0,6 

~ 0,5 

lr: 0.4 

0,3 

0.2 

0,1 

0.0_~~~-~-~------~ 
0.0 0,3 0,7 1,0 1.4 1,7 2.1 

5/D 

1.0 ,-------------~ 

0.9 

0.8 

0.7 

0 0,6 

"0 0,5 

a.t<. 0.4 

0,3 

0,2 

0,1 

(bl [.= -0.3 
f-,0,425 

a, t.326 

0,0 ':----::':--::-':---,L-_ _L _ __l_ _ ____j _ _J 

0,0 0.3 0. 7 1,0 1,4 1,7 2.1 

5/D 

Fig. IV-7. Same as Fig. IV-6, but with the results 

of the stochastic fit formula obtained by vary

ing both A and a. Note that the overshooting 

near maximum is slightly mitigated by addi

tionally varying a. 

distributions exhibit a clear transition from a Poisson-like to a Wigner-like distribu

tion as one proceeds to intervals of energies where classical motion becomes increas

ingly irregular. In an analogous manner the 2h statistics display a transition from 

the Poisson case to that characteristic of the predictions of random-matrix-theory 

(Gaussian orthogonal ensemble, GOE). A Poisson form of the nearest-neighbour 

histogram implies maximum probability, and a Wigner form zero probability, for 

finding two levels at the same energy value. Therefore level clustering ( ~ uncor-
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energy (cm-1 ) 

Fig. IV-8. Oscillator strength spectrum of Llm=O Balmer transition from 2Po to evenparity Rydberg 

states with energies between -20 cm-1 and the field-free ionization limit at a field strength of 5.96 

Tesla (oscillator strengths in units of 10-6). In our computations convergence of the f values is 

obtained to within a few percent. The range of energy shown lies in the domain of chaotic motion 

of the classical hydrogen atom. 

related energy levels) proves characteristic of quantum systems in the classically 

regular regime, while level repulsion (~correlated levels) proves typical of quantum 

systems in the classically chaotic regime. The universality of the characterization of 

the onset of "quantum" stochasticity by these level fluctuation rules, which had before 

only been found in model systems such as the stadium problem or the Sinai billiard, 

is thus reinforced also in magnetic Rydberg atoms. This finding was confirmed by 

independent work of Wintgen and Friedrich85l and Delande and Gay.86J 

Here we will concentrate on the test of the fit formula for nearest-neighbour 

spacing histograms derived in the foregoing subsection adopting a stochastic 

differential equations approach (see (IV ·19a, 20a)). The normalisation constant, N, 

and P1 can be eliminated from (IV ·19a, 20a) by the conditions <D=l, <S>=l (Sis the 

level distance). Limiting forms of the stochastic formula are the Poisson distribution 

(.-1=0) and the Wigner distribution (.-1--Hx>). The formula does contain the desired 

nonanalytic behaviour at S=O: PA(O) is finite for .-1=0, while PA(O)=O for any t1=FO. 

The parameter a(= P2IP1) can be interpreted as representative of the nonuniversal 

behaviour of the specific system under consideration in the transition region between 

complete regularity and irregularity. 

We have tested the usefulness of the stochastic formula by performing least

squares fits to the histograms for the nearest neighbour-distributions of the energy 

levels of the hydrogen atom in a magnetic field at fixed scaled energies e= -0.4, -0.3, 

-0.2, and -0.1 as given by Wintgen and Friedrich.41 J Figure IV-6 shows the results 

obtained choosing a=l. It is seen that the stochastic formula is indeed able to 

produce reasonable fits to the histograms also in the near-regular regime. Also 

shown in Fig. IV-6 are the results which we obtained using the Berry-Robnik37l 

formula, and the empirical Brody101l formula. The "overshooting" effect of the 

stochastic formula near maximum is mitigated if in addition to t1 we also vary a in the 

fitting process. The results obtained in this way are shown in Fig. IV-7, and reveal 

the potential of the stochastic formula. Further tests involving larger data sets are 

under way. 

As a final point we want to report results of the search for a signature of classical 
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12.-------------------,------, 

l-250,-SO)cm-1 

v = 2.1 

l-82, -25lcm-1 

11 &r-------~4 ______________ ~o ____ __,2 

-6 

[-20, 0 )cm- 1 

v = 1.03 

-4 -2 0 2 
LOG(NORM. OSCILLATOR STRENGTH) )OQ y 

Fig. IV·9. Three histograms of computed Balmer 

transition strengths at 5.96 Tesla and their fits 

(continuous curves) by the Alhassid·Levine 

form of P(y ). Each panel gives the energy 

range of the final Rydberg states. In the clas· 

sica! system, motion changes from near·regular 

over near· irregular to irregular, as one passes 

through these intervals. In the quantum sys· 

tern we find a decrease of 11 towards a value 

close to 1 (the Porter·Thomas limit). Oscil· 

lator strengths have been scaled by the secular 

variation prior to binning and normalized in 

such a way that y = 1. On the vertical axis, 

P(logy) is given in units of 10-2• 

chaos in the statistical properties of transition strength spectra of hydrogen atoms in 

strong magnetic fields in the chaotic regime, that is we go beyond investigating energy 

level sequences and look at quantities that are related to wavefunctions in a sensitive 

way. 

Figure IV-8 shows, for a magnetic field strength of 5.96 Tesla, our computed 

oscillator strength spectrum of the L1m=O dipole transitions from 2Po to even-parity 

Rydberg states with energies from -20 cm-1 up to the field-free ionization limit. 

Remember that at this field strength, classical motion becomes irregular around -25 

cm-1• In quest of further manifestations of chaos in quantal spectra we have anal

yzed the fluctuations of oscillator strengths of Balmer transitions to Rydberg states in 

the near-regular, near-irregular, and irregular regime. Following Alhassid and 

Levine102l we consider the probability P(y)dy of finding a value y of the strength of an 

allowed transition from a given state to an arbitrary final state between y andy+ dy. 

For a structureless spectrum the maximum-entropy principle, together with the 

completeness relation of the states and the normalization condition, implies the 

Porter-Thomas form*l for P(y), viz., P(y)ocexp( -y/251)//Y. For situations where 

structures in the spectrum impose additional constraints we adopt the form P(y)oc 

y<v- 1)12exp(- vy/2 y) / /Y. Here v denotes a parameter characterizing the deviance of 

*l This is cited from the paper by C. E. Porter and R. G. Thomas, Phys. Rev. 104 (1956), 483 given in Ref. 

84). 
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264 H. Hasegawa, M. Robnik and G. Wunner 

y from its averaged value y (see Ref. 102) for details). Figure IV-9 shows three 

histograms of computed oscillator strengths of Balmer transitions to Rydberg states 

in a magnetic field of 5.96 Tesla and their fits by this functional form. In the three 

energy ranges of the final states covered in Fig. IV -9 classical motion changes from 

almost completely regular to irregular. The results presented in Fig. IV-9 reveal an 

increase in the spreading of the fluctuations of the quantal oscillator strengths as this 

change takes place in the classical system. Correspondingly 11 decreases from top to 

bottom in Fig. IV-9, and in particular, we find that the fluctuations in the spectrum 

shown in Fig. IV-8 are best fitted by a value of v=l.03, that is a value very close to 

the Porter-Thomas limit for the GOE chaotic spectra. The characteristic differences 

in the distributions of transition strength fluctuations between classically regular and 

chaotic parameter ranges evident from Fig. IV-9 confirm findings102J for transition 

strengths in a Henon-Heiles-type model system. Our results thus point to another 

universal signature of classical chaos in the spectra of quantal systems. 

§ V. Current topics 

V.I. Aspects of recent experiments--regular spectra 

--Problem of Semiclassical Quantization--

Experimental and theoretical investigations of the diamagnetic Stark spectra 

(parallel fields) on Li atoms have been performed and reported by the Orsay group 

(Cacciani, Luc-Koenig, Pinard, Thomas and Liberman)/03J'104l which are one of the 

finest spectroscopy at present relevant to the 'pre-chaos' diamagnetic Kepler (DK) 

problem. In the pure diamagnetic case, the reported experiments revealed the exis

tence of the two regions of the DK motion first predicted by Solov'ev12J in terms of the 

Runge-Lenz hyperboloid. The underlying semiclassical quantization by which the 

authors obtain a theoretical tool for analyses is Solov'ev's formula (III-38c), which 

should be clarified from the analytic viewpoint in § III : There was a puzzling feature 

of this formula in that the action integral contains a discontinuity at A =0, i.e., at the 

hyperbolic point of the unique separatrix line to separate the two regions. Conse

quently, the above authors adopted a special device of modifying the formula so that 

a unique, continuous universal relationship can be constructed between the normal

ized action variable x and the hyperboloidal value, A, i.e., A=A(x). This matter is 

discussed here with a view of possible necessity of consolidating the theory of Maslov 

indices. 

Solov'ev's action integral is recited with an indication of the integration ranges, 

which consist of three ; I, II and III (following Cacciani et aU04l), denoted by j1, ju and 

jm, respectively. In the absence of an electric field, j1= ju and 

and 
. 1184 ;m(A)=- L.1.(rJ; A)drJ, 

7i o. 
(V·1) 

where 
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with k2 =1/5 in (III·38c). See Fig. V-1. 

For m=O, jl reduces to an integral over the range 8E[O, 8z]. Then, 

1 . 118
•; A -;I(A)=- 1 + 1 5 · 28 d8, 

n TC o - sm 
(V ·2a) 

[non-zero, real value only for A sO, with 8z=sin-1 /(1 + A)/5] 

and 

1. ll'Hs~ A -;m(A)=- 1 + 1 5 · 2 8 d8, 
n TC as - sm 

· -1 1 ---- .a < 1C sm -.::::,.vs -
/5 2 

(V·2b) 

[non-zero, real value only for A2:0, with 8s=sin-1/(1+A)/5]. 

(a} Ueff ('!!} 

A<O 
--------- _II_ 

I I 
I I 
I I 
I I 
I I 

( b} 

Fig. V-1. Indication of the ranges of Solov'ev's 

integration (V ·1) in terms of the effective 

potential U.u(8): Lj_(8)=,/ n2 - Ueu(8). 

and (V-2b) vanishing at A=O, in view of 

1 · (O)- 8o _ 1 . - 1( 1 ) -;I -----sm -
n TC TC /5 and 

1 . (0) 2 . -1( 2 ) 
n]lll =;rsm /5 . 

Twice of 2NA)( = j1+ ju) and jm(A) are 

drawn in Fig. V-2(a) in the range -1sA 

s4, which exhibits a conspicuous dis

continuity at A =0. Since A is the quan

tity proportional to the diamagnetic 

energy shift to first order (in r 2), the 

discontinuity of the action variable vs A 

could be regarded as spurious, i.e., a 

relabelling of the energy terms versus a 

parameter of an otherwise smooth varia

tion of the energy. A simple remedy of 

this situation which Cacciani et aU04> 

devised is to replace 2ji(A) by its comple

ment: 2ji(A)H n-2NA). This makes 

the gap between the two integrals (V-2a) 

(V·3) 

Consequently, a smooth, continuous curve is obtained of the function x=x(A), -1s 

As4, as in Fig. V-2(b) which, upon interchange of the abscissa and ordinate, could be 

regarded as a consecutive relabelling of the energy terms against the variable x. The 

crosses plotted associated to the resulting curve show, as a matter of fact, a good 

agreement of the observed peaks (n=32, odd parity manifold of Li given in Fig. V-3) 

with the curve thus obtained. 

We now show that the modified relation between the action x and the diamagnetic 

energy shift A which the Orsay group has adopted, aiming at the unique universal DK 

structure in any Rydberg multiplet, can be put in a single, analytic formula in § III, i.e., 
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where (), *- 7r o-2 

H. Hasegawa, M. Robnik and G. Wunner 

4-A-4sin2 0* * 
5 4 . 20* dO ' - sm 

for -1<As0, 

=sin-1/1- !A for OsA<4. 

(V·4) 

(V ·4a) 

(V ·4b) 

Or, by the sum rule presented in (III ·49) and proved successively, 

· 2 18o 
1-x= 1 ~ =7r 0 

1 +A -sin2 0 dO 
5-sin2 0 ' 

(V·5) 

where Oo=sin-1Jl +A for -1<As0, (V ·5a) 

7r 
for OsA<l. (V·5b) 

2 

This shows that the unique, universal DK structure of the energy vs action (here the 

universality referring to the irrespectiveness of the principal quantum number of each 

multiplet) is fully expressed in the integral along one elementary cycle (either ra or 

YP in Fig. III-4) for any allowed value of A. If conversely speaking, Solov'ev's action 

integral can be regarded as exhibiting a transfer from the integral along one cycle to 

the other by a change of the sign of A, then, what characterizes this transfer? The 

answer is: It always retains a contour-integration type with two caustics. Namely, 

both j1- and jm-integrations involve two caustics where the integrand vanishes and its 

derivative with respect to A becomes singular, as can be seen in Fig. V-1. However, 

-I 0 A 4 

(b) 

Fig. V-2. Relation between Solov'ev's action inte· 

gral (V ·1) and the analytic action integral 

(V ·4a) (or V ·4b). (a) Solov'ev's one given 

piecewise for -l<A~O and for O~A<4 with 

a discontinuity at A=O. (b) Analytic action 

integrals j~(A) and jz(A)=n- jiA). It is cus· 

tomary to associate A with the third quantum 

number K defined consecutively from the top 

value of the diamagnetic splitting energy (i.e., 

4 Amax=4) downwards, which amounts to the 
A identification K = je. 
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A 

+4 

0,6 ~E· EK-EK-1 

em-• 

+3 

0.5 

0,4 

0,3 

0,2 

0,1 

+2 

+I 

Fig. V-3. Comparison of the observed energy 

terms of Li (n=32, odd parity multiplet) with 

the universal diamagnetic-Kepler relation 

between A=A(x) (after Cacciani et al.103>). 

Curve (a) shows a spacing between the con

secutive energy terms which exhibits a cusp

like minimum at A=O to be compared with a 

theoretical prediction from (V ·4, 5). Curve 

(b) shows the direct comparison of the plot A, 

experimentally deduced, with the predicted 

curve A=A(x) with nx=k The spectral 

-I profile cited is in the same reference, but n=31. 

this raises a rather difficult question about the theory of Maslov indices as discussed 

below. 

The Maslov index a for a given action integral is defined by the number of 

(directed) caustics along the closed trajectories by which the integration is carried 

out, and a=2 means that the motion involved is libration-like while a=O rotation-like, 

which gives the distinction between a half-integer quantum number and a full integer 

one in the associated semiclassical quantization rule. 105> The question about which 

characteristic the regular DK motion does possess has been discussed with a view that 

the motion of the Runge-Lenz vector A is libration-like for A< 0 and rotation-like for 

A >O (along the B-axis-see, for example, the review article by Gay11>). This view 

must be modified now to say more precisely that 

the major component z shows a libration, but associated with it exists 

a rotation of the minor component p for -1 <A< 0 

and 

the major component p shows a libration, but associated with it exists 

a rotation of the minor component z for 0 <A< 4 . 

One can state the situation rigorously for the special case m=O (then, pis replaced by 

the full-plane coordinate c;) by profiting the z-.; duality in §III which extends to the 

libration-rotation characteristic. 
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--T ·--.-r------r--·--··- ·r--------""'-

(a) 

3 

3 

Fig. V-4. Photoabsorption spectra of L1m=O Bal

mer transitions from 2Po (a) and ZP-1 (b) to 

even-parity Rydberg states of the hydrogen 

atom in a magnetic field of 5.96 Tesla. Note 

that classical motion is practically fully cha

otic in the energy range covered (cf. Fig. III-8). 

E=O is the field-free ionization limit, E1P is the 

actual ionization potential including the Lan

dau zero-point energy, EP gives the size of the 

(paramagenetic) linear Zeeman shift. (From 

Main et al.70l) 

10 

TIME (T I Tc) 

Fig. V -5. Fourier transforms (squared) of the spec

tra (a) and (b) of Fig. V-4. The labels v=l, 2, 

· · · correspond to the recurrence times of the 

classical orbits fv. (From Main et al_7°l) 

The nature of the rotation or libration in the regular DK motion has been 

discussed in a series of papers by Delos et al.106> with a conclusion107> that the Maslov 

index a should be 2 irrespective of the presence of the rotation component, and the 

same conclusion has been reached by other authors. 108> We agree with it. However, 

then there should be a remark about action integrals like (V ·4, 5) which involve a 

libration-rotation transition. There must exist a rule by which such a transition can 

be judged as real or spurious, and at present the answer is lacking. 

V.2. Aspects of recent experiments-resonances in chaos 

The most challenging problem of the diamagnetic Rydberg atoms for the past two 

decades-since Garton and Tomkins7>-has been to establish a satisfactory under

standing of the resonances of photoabsorption spectra in a range near the ionization 

limit which belongs, as is clear now from the foregoing analyses, to the full classical

chaos regime. Latest progress of laser spectroscopy has attained a revision of the 

original Garton-Tomkins experiment on Ba I such that the ultra-high excited states 

with principal quantum numbers ~500 can be resolved on which up to 180 quasi-
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Landau resonances are measurable for a weak field of 0.0736 Tesla : Rinneberg and 

coworkers109' reported this result, confirming the almost equal resonance-spacing L1E 

~ 1.5nmc around E=O associated with the typical periodic orbit. Prior to this report, 

however, an essential progress in the understanding of the nature of such quasi

Landau resonances has been provided by the Bielefeld group :18''70> Namely, the 

periodic orbits are not restricted to the Garton-Tomkins type, instead essentially an 

infinite set of those exist which correspond to h !2, .. ·, /., of the discussion in § III· 4 

and possibly more, where /1 of the planar periodic one is associated with the Garton

Tomkins resonance (see Fig. III-6). Such an additional resonance has been observed 

in Ba I also by Rinneberg et al. 109> Hence we will discuss this subject here and in the 

next subsection. 

Welge and coworkers18''70> excited hydrogen (or deuterium) Rydberg states by 

resonant two-photon absorption (vuv, vacuum ultraviolet; uv, ultraviolet), H(n=1) 

"' 

... 

6.11 ... 

... 

Fig. V -6. Fourier spectra of the theoretical 

photoabsorption spectra with m=O in the 

range -35 cm-1 to -13 cm-1 for four slightly 

different magnetic field strengths around 6 

Tesla. Peaks are indicative of corresponding 

quasi-periodic classical orbits with different 

frequencies (given in units of tbe cyclotron 

frequency in tbe top frame). Note tbe struc

tural change in tbe transforms at small varia

tions of the magnetic field strength. 

+vuv~ H(n=2)+uv~ H*, in magnetic 

fields from ~4 to 6 Tesla. Figure V-4 

shows ;r excitation spectra of H-atom 

Balmer transitions to Rydberg states 

around E=O taken at B=5.96 Tesla. 

The additional quasi-Landau resonances 

become visible in the Fourier transforms 

of the photoabsorption spectra as obvi

ous peaks (see Fig. V -5). The peak 

denoted by 1 corresponds to the Garton

Tomkins resonance (L1E=1.5nmc) while 

the spacings of the new resonances are 

found to be given by 0.64, 0.39, 0.28, 0.22, 

0.18 nmc, respectively. 

The resonances were first rational

ized in terms of a model by Reinhardt110' 

who proposed an interpretation of the 

Garton-Tomkins oscillatory behaviour 

of the photoabsorption cross section in 

Heller's linear-response formula of the 

dipole f.i., 

a(m)oc 2 ~ 1: eiwt<Oif.J.(O)jl(t)IO>dt, 

(V·6) 

by considering the recurrent peak -off of 

the autocorrelation function of f.1. whose 

Fourier transform yields a(m): The 

physical process of the atomic electron 

initially localized in the low-lying or

bital in response to the optical excitation 

into the near-ionization regime would be 
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270 H. Hasegawa, M. Robnik and G. Wunner 

a constant repetition of tracing a large orbit ejected from the core returning again to 

it whose period, designated as a recurrent time T, just characterizes the resonance : 

(1)=2;r/T. Reinhardt demonstrated in his simplified calculation of the autocorrela

tion function (assuming that it is zero after the first recurrence), and hence the cross 

section, that the proposed picture really holds. 

The important result now is that, being motivated by the model, the Bielefeld 

group extended the idea to non-planar orbits, which in the present notation corre

spond to 12, Is, · · · up to 11 for interpreting the observed additional resonances. The 

Bielefeld group then constructed61> both by means or numerical integration and of a 

simple analytic model the expected orbits and their quantization to deduce several 

characteristic numbers which are to be compared with the observed data. A 

significant point in connection with Reinhardt's idea is that the initial condition of the 

integration they chose was p=O, z=O for the coordinate (i.e., the atomic electron 

initially located at the atomic core) together with their momenta on which the 

condition of recurrence was imposed, thus expressing the actual physical situation. 

The same model to predict additional resonances was proposed also by Al-Laithy et 
al.Ill),112l 

One should bear in mind that according to Fig. III-13, the classical orbits Ir, Is, ... 

assume nonvanishing Liapunov exponents in the range of parameters used in the 

experiment. That is, unstable classical periodic orbits present in the otherwise 

completely irregular regime are found to give rise to modulations in the quantal 

spectra with frequencies equal to their classical orbital frequencies. The peaks are 

of course also present in the Fourier transforms of the computed theoretical spectra. 

Moreover, the Fourier spectra of the theoretical photoabsorption spectra shown in 

Fig. V-6 for four slightly different magnetic field strengths reveal a strong sensitivity 

of the strengths of the peaks to small variations of the magnetic field, indicative of the 

fact that the photoabsorption spectra themselves are highly sensitive to small varia

tions of an external parameter (here the magnetic field strength) in the classically 

near-irregular and chaotic regime. The point is related to a highly important issue 

concerning the difference between classical and quantal chaos involving the break 

time, as discussed in § II, and to the question whether the observed spectra are to be 

classified into the quasi-periodic spectra or something beyond it of the 'intrinsic' 

chaos. 

At this time, however, we have to postpone a relevant judgement after more 

clarification of the information from experiment, and we outline in the next subsection 

the analytic model of the periodic orbits : We aim to substantiate many matters in § III 

in terms of the observational reality. 

V.3. A simple model of periodic and quasi-periodic orbits 

The model is based on a truncation of the Hamiltonian (III ·18) by the expansion 

of the Coulomb potential 

1 
J p2+z2 

valid for 

-fzr+ 2,13 + O(p4/zs) 

IP!zl< 1. 

(V·7) 

(V·7a) 
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The discussion to follow stems from Main, Holle, Wiebusch and W elge61> supplement

ed by the present authors (Hasegawa and Kuwata).U4> The first term of the expan

sion in (V · 7) yields the truncation into two fully separate dynamics consisting of a (2-

dimensional) harmonic oscillation and a !-dimensional Kepler motion: For P"'=O, H 

=Hp+Hz with 

H _ 1 2 + 1 ( r )2 
2 _ E 

p=2PP 2 2 p - P ' 

H _1 2 1 -E 
z=2Pz -lZf- z . 

(V·8) 

(V·9) 

If one goes to the next higher-order term in the expansion, HP in (V ·8) is replaced by 

H _ 1 2+ 1 (( r)2 
+ 1 ) 2 

p-2PP 2 2 lz3 l P ' (V ·8') 

which amounts to a modulation of the harmonic-oscillator frequency r/2 by the 

time-dependent perturbation, 1/lzl3, of the z-motion: The effect makes the frequency 

r/2 tend always to increase. We will take into account this effect by an adiabatic 

approximation later, and before doing so first let us examine the possible periodic 

orbits under the aforementioned initial condition, i.e., starting at the origin at t=O, 

assuming the full separation. 

For the harmonic oscillation, one simply has 

p=poSin( f t), (V ·10) 

which can be reorganized by the action fp and the energy EP as 

(V ·lOa) 

(Note that the allowed phase space consists of the positive half p-pp plane.) For the 

Kepler motion, one can exploit a parameter representation of the coordinate vs time 

by means of an angle ¢(the so-called eccentric anomaly with eccentricity unity) such 

that 

z=Zosin2_t_ 
2 ' 

P =- cotL-( 2 )1/2 ,/, 

z Zo 2' Zo is related to the energy Ez by 

Ez( = ~ Pz2_ 1;1 )= ~1 (zo > 0 assumed) < 0 . 

Here, the time variable t is related to ¢ via dt=(Zo/2)3122sin2¢/2 d¢ by 

t=( ~ r2
(¢-sin¢) 

=]}(¢-sin¢), 

this second representation being a consequence of the action ]z as 

(V·ll) 

(V ·lla) 
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272 H. Hasegawa, M. Robnik and G. Wunner 

]z=-1-i Pzdz=(:zo/2)112=( -2Ezt112 
2 7r ( z <0 half plane) 

1 
Ez=- 2Jz2. 

or 

(V·llb) 

Thus, by virtue of (V ·lla), one can show the orbit in the ¢-representation: 

z= "'~sin 2 _£_ 
""' 2' 

(V ·12) 

which provides us with a means to express the condition of recurrence. Namely, let 

the electron be ejected at ¢=0. Then, the first recurrence of z occurs at ¢=2;r on 

which p=O is imposed. This results in all the simplest recurrent orbits characterized 

by an integer v so that 

rf}= v, v=l, 2, ··· which is designated as "v-type" . (V ·13) 

By this is meant that, during the completion of one Kepler orbit along z, the motion 

of p executes v-times oscillation, for which the total action must be defined by 

(V ·14) 

It can be seen that Eqs. (V ·13, 14) together with the individual energy vs action 

relation are sufficient, in principle, to find the answer to the condition of resonance. 

We need, however, to take into account the p-z coupling by adopting the Hamiltonian 

(V · 8') for improving purpose. 

Our approach is the "adiabatic perturbation", so to speak. By the adiabatic 

approximation we mean that the effect of the z-motion on the p-oscillation will be 

treated by regarding z(t) as a slowly-varying external field, and by the perturbation 

that the coupling, (1/2)lzl-3p2 in (V·8'), is weak: This latter condition is clearly not 

true for lzl :S p, but we think it still worthwhile to investigate this approach. 

Consider the action integral (V ·lOa), and the effect of such an adiabatic modula

tion of the frequency r involved. The adiabaticity implies that the effect is expressed 

entirely as a change of energy EP( r)--" EP( r +or) without modifying fp (just the 

adiabatic invariance of the action!), thus 

(V ·15) 

We compute the correction of energy or!P by the perturbation theory in classical 

mechanics,49> obtaining 

(V ·16) 

where< >rp is an average over the trajectory of p-oscillation in an appropriate period 

Tp. This period TP is generally different from the minimum unperturbed period 

4;ry-1 of the oscillation because of the presence of lz(t)l-3 which is not periodic with 

this period: The appropriate period can be selected from the condition (V ·13) of the 

v-type periodic orbit to be given by 
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Classical and Quanta! Chaos in the Diamagnetic Kepler Problem 273 

(consistently to T"'=2;r for z( ¢) in (V ·12)). (V ·17) 

Apart from the change (V ·15) and (V ·17), the foregoing analysis to deduce the 

resonance condition is unchanged, which is now summarized : 

total action ] = ll]p + ]z , 

condition of recurrence v=(1)*, 2, 3, ··· . 

(*Case v=1 must be replaced by the two-dimensional model in § III.l.) 

(V ·18a) 

(V·18b) 

(V ·18c) 

We introduce the "v-th defect parameter", Bv following Main et al.,61 > to represent 

the condition for "v-type resonance": Bv is a negative shift of the integer v( =2, 3, ···) 

which is regarded as induced by the positive frequency shift Br, and we define it as 

(V ·19) 

Then, from (V ·18c) 

and hence r+Br=_v_ 
r v-Bv ' 

(V ·20) 

which enables us to dispose ]z and hence fp from (V·18b) to get the E vs ] relation 

as follows: 

E=__ir__]_(_r_)2'3 
v-Bv 2 v-Bv . 

We have two equivalent ways of representing the above result, namely, 

(V ·21a) 

(V ·21b) 

The second version is just the extended scaling law of Feneuille, i.e., (III ·13) with the 

universal function f defined for each v-type resonance as 

e=!v(/3), e=PE and /3=Pr with !v(/3)= v!_Bv- ~ ( !1!_8J213 . 

(V ·21b') 

Graphs of these representations are shown in Fig. V-7 from Ref. 61). Note that the 

v=1 Feneuille function is given exactly in terms of the (/)-function in § III.l. 

An important aspect of Fig. V-7 is the ability of the two formulas (V·21a, b) to 

indicate the "birth" of the v-th periodic orbit Iv as a consequence of the instability of 

the special orbit/"', as discussed in§ III. 4 (Fig. III-15112> and Eq. (III·69)): 

(v=2, 3, ···) (V ·22) 

which occurs at the scaled. cut-off energy 
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(a) 

H. Hasegawa, M. Robnik and G. Wunner 

Table V-1. The "defect parameter" av (or 6'v6'>) from experi

ment and computations. 

!I av(exp) av(calc)a> av(calc)bl av(calc)c> 

2 0.43 0.56 0.56 0.35 

3 0.42 0.49 0.52 0.33 

4 0.40 0.46 0.48 0.31 

5 0.38 0.44 0.45 0.30 

6 0.39 0.43 0.48 0.29 

7 0.34 0.42 0.39 0.28 

av(exp) from Ref. 70): It is related to the cut-off energy sc<"> 

=-1/2(v-av)-213• av(calc), a) from Ref. 80), b) from Table 

III-1, c) from (V ·23)."4> 

Sr-~~--.-~~--~~-. 

nr"l 
4 

(b) 

E r .m 
Fig. V-7. Two ways of representing the relation 

between the total energy E and the total action 

J for the "v-type" resonance after Main et al.6 '> 

(! = n in the present notation). (a) The encir

cled number represents the lines for v=l, 2, ···, 

7, fitted by (V •2la) with b'v computed from the 

EBK quantization. The dashed line shows the 

pure Rydberg relation n:r' 13 =( -2E:y-213)-"2 • 

(b) The same fit by (V ·2lb) (dashed lines). 

Arrows indicate the cut-off point fJc<">=v-b'v. 

Case v=l is based on the Feneuille function 

(ad hoc) in the "2-dimensional model". 

In Fig. V-7(a), the] vs E relation for the pure Kepler orbit along the B-axis, ]z=( -2 

E)- 112, appears as the envelope of the straight tangent-lines of (V ·21a) showing that 

a change of orbit takes place along each tangent line, while Fig. V-7(b) shows that this 

occurs at the cut-off energy (V · 22a) as the minimum of each Feneuille function !v 
against (3 at (3/vl=v-8v, where lv is "born". In this connection, we present an 

analytic formtila 114l for 8v based on (V ·16, 19, 20): 

8 =-1- [ 2 ~<sin 2 [v(¢-sin¢)/2] d¢ 
v. 2v;r Jo sin4( ¢/2) · 

(V ·23) 

Table V-1 summarizes their numerical values together with those in the literature. 

The present discussion suggests an extended construction of more complex 
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Fig. V-8. Examples of scars in the stadium. (Taken from Heller.••>) 

periodic orbits or quasi-periodic*> orbits in which, e.g., the first recurrence of the z

Kepler motion does not allow the recurrence of the p-oscillation but the l-th z

recurrence meets the m-th p-one with land m being incommensurate. Studies in this 

direction have been undertaken,75>.m> not just for imagination, but for assigning 

purpose115> of the actual peaks in the spectra. These must lend themselves to a future 

description, and we will turn to the subject of eigenfunctions next. 

V.4. The eigenfunctions of the classically chaotic systems 

The bound state eigenfunctions of classically ergodic Hamilton systems possess 

a much less organized structure than those of the classically integrable systems. In 

fact they have been predicted to be random such that according to V oros116> the 

corresponding mean probability density is determined by the microcanonical Wigner 

(phase space) function in the semiclassical limit when 1i ~ 0. 

It is easy to extract the essential information from the semi-classical eigenfunc

tions of the integrable systems (II· 34). It must be recalled that the actual eigenfunc

tion is a sum of finite numbers of contributions of the form (II· 34), each contribution 

being associated with a projection of the given quantized torus onto the configuration 

space. It follows (when the action S(q, I) is locally Taylor expanded) that the 

semiclassical eigenfunction of an integrable system locally is a superposition of a 

finite number of plane waves, which is the origin of the ordered structure. There are 

as many contributing plane waves as there are projection leaves of the corresponding 

torus. 

This picture is changed in an ergodic system in so far that now any conceivable 

*> A "quasi-periodic" function is a special "almost-periodic" function in that, when Fourier decomposed, 

only a finite number of linear-independent frequencies arise. 
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nonisolating integral of motion has infinitely many projection leaves. In other words 

in almost every point in the configuration space of an ergodic system there are 

infinitely many possible velocity directions for classical trajectories passing through 

that point. The correspondence principle then suggests that in the semiclassical limit 

the eigenfunctions can be locally represented as a superposition of infinitely many 

plane waves propagating along the rays-the classical trajectories. If their phases 

are random (Berry's assumption117>) then one has a random superposition of infinitely 

many plane waves, giving rise to a Gaussian random function by the central limit 

theorem. 

However, Robnik118> has argued that Berry's random phase hypothesis breaks 

down on dynamical grounds, a result of the analysis of the quantum integrability and 

of its consequences. He has demonstrated, using the arguments from the perturba

tion theory, that "almost every quantum Hamilton system with purely discrete spec

trum is quantum integrable, but its quantum integrals of motion generically do not 

have a classical limit when -n~o". Further, as a consequence of the quantum inte

grability at any non-zero n there would be correlation between the phases on dynami

cal grounds. Such correlations would give rise to deviations from the Gaussian 

randomness of the eigenfunctions of the classically ergodic (and nevertheless quantum 

integrable) systems. 

The early numerical evidence by McDonalds and Kaufman119> seemed to agree 

with the property of Gaussian randomness. But then came the important discovery 

by Heller43 > of the scars (of the classically periodic orbits) in the eigenfunctions of the 

stadium. It became clear that scars exist in the eigenfunctions of arbitrarily highly

ing states, although the counting measure of scarred states might vanish with increas

ing energy in consistency with the results of Shnirelman120> (see Fig. V-8). By a scar 

we mean a region of enhanced probability density in the neighbourhood of a classical 

periodic orbit. Heller42> has elaborated on a theory of scars based on the considera

tion of wave packet dynamics propagating along the classical periodic orbit, and 

obtained the following result for the probability density on the scar in the phase space, 

(V ·24) 

where <1¢12> is the microcanonical mean probability density, il is the instability 

exponent (Liapunov exponent) and r is the period of the orbit. Thus the shorter and 

the less unstable the periodic orbit, the more pronounced is its scar. 

A similar result has very recently been derived also by Robnik118> in a different 

Table V-2. Orbital frequencies and Liapunov theory based on the semiclassical cal-
exponents of the periodic orbits lv at energy culation of the Green function in terms 
s=O. 

)I morb/Wc Arc/7r 

1 1.50 0.63 

2 0.64 0.59 

3 0.39 0.46 

4 0.28 0.38 

5 0.22 0.32 

6 0.18 0.27 

Arorb 

1.32 

2.90 

3.70 

4.26 

4.57 

4.71 

of classical periodic orbits. For two 

degrees of freedom the result is (in 

configuration space) 

. nSt 
,1,2 00 stn~ 

'/'SC~=JI~ n (V·25) 
< ¢' ) n=l • h nil r ' sm - 2-
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0 

900.00 

z 
600.00 

300.00 

0 

900.00 p 

Fig. V ·9. 3d-plot and contour plot of prjJ* r/1 of the state that can diabatically be traced back to the state 

n=36, K=O in the low·B limit at a magnetic field strength of B=5.96 Tesla (E~ -32 cm-1). 

Length scales are in Bohr radii. Evidently the wavefunction of this strate is strongly concentrated 

along the periodic orbit that runs perpendicular to the direction of the magnetic field, which is still 

stable at this energy. 

where S1 is the classical (Maupertuis) action of the underlying periodic orbit, and l.l 

is the effective number of contributing orbits. It is now clear that the quantization 

condition for the classical action of the scar orbit 

m=O, 1, 2,··· (V ·26) 

is important especially at very small values of tlr, because a departure from the 

quantization condition would result in a certain averaging away of the terms 

contributing to the sum (V · 25). 

With the numerical wavefunctions of the hydrogen atom in strong magnetic fields 

at hand it is an obvious task to also take a look at their spatial structure. A 

motivation is of course the theory of scars discussed above. At small tlr the intensity 

ratio for a scar that must satisfy the quantization condition (V · 26) is according to 

(V · 25) reduced to 

rp ~CAR_ 1Cl/ 

< ¢ 2) - 2.-lr ' 
(V ·27) 

This result is in agreement with the original scaling by Heller as given by (V · 24), 

when projected onto the configuration space. (His result is the average of the intensity 

ratio, due to the assumption of the uniform scar intensities over an energy range.) 

For details see Ref.118) 

In Table V-2 we present explicit sample results for the size of Liapunov expo

nents of the first 6 periodic orbits of the series L (characterized by their orbital 
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frequency) at E=O. Surprisingly the orbit running in the plane perpendicular to the 

direction of the field is found to be most unstable at this energy, while the degree of 

instability decreases as one goes up the series. On the other hand, the "discrepancy 

per period", ..lr, is seen to be smallest for the planar orbit and to increase for the 

longer-periodic orbits. Thus if scarring occurs in these states around E=O, one 

would expect that the orbit running in the plane perpendicular to the direction of the 

magnetic field (which is associated with the quasi-Landau resonance of ~ 1.5coc 

around E=O) should most prominently scar the wavefunctions, while the scarring 

should become less pronounced for the longer-periodic orbits. 

Wavefunctions around E=O in this problem have not yet been fully analyzed with 

respect to the presence or absence of scars, but we can present results of our analyses 

of wavefunctions below this limit. Figure V -9 shows the wavefunction of the state 

which can diabatically be traced back to the state n=36, K =0 in the low-B limit at 

a magnetic field strength of 5.96 Tesla (the energy of the state at this field strength is 

E~ -32 em-\ corresponding to a scaled energy of e~ -0.15, and thus lies in the 

near-irregular regime, cf. Fig. III-8). This state can be associated with the periodic 

orbit in the plane perpendicular to the direction of the magnetic field, although the 

neigbourhood of the classical orbit also contributes to the wavefunction of course. 

Even though most of classical phase space has become irregular at this energy, the· 

Liapunov exponent of the planar orbit is still found to vanish (stable orbit), and hence 

the very pronounced concentration of the wavefunction along the classical periodic 

orbit is the expected correspondence familiar from situations where WKB (or EBK) 

quantization is still applicable. In the light of scar theory this correspondence can be 

considered the limiting (.1-+0) case of scarring. Figure V-10 gives an example of a 

wavefunction in the completely irregular regime (E~ -15 cm-1). The contour plot 

shows vague indications of enhanced probability of presence along both the planar 

orbit and the first nonplanar orbit, which are both found to be unstable at this energy. 

Obviously the instability has grown so large as to wash out the precise tracks of the 

periodic orbits over a extended fraction of space in the wavefunction. 

W. e have also represented pictorially hydrogen atoms in strong magnetic fields 

using the graphics display media available today. The starting point is of course the 

quantum mechanical interpretation of the squared modulus of the wavefunction as the 

spatial probability of presence of the electron. Imagining the equivalence of this 

scalar field to an optically thin self-radiating gaseous nebula, that is, assuming that 

the scalar field emits "light" with an intensity proportional to the local numerical 

value of the scalar field, and which propagates without absorption, the intensity a 

distant observer receives from such an object out of a specific direction is simply the 

integral along the line-of-sight of the intensities emitted towards the observer. By 

scanning the whole object with the line-of-sight moving across it in a fine grid, a raster 

image can be computed which is a good approximation to what the observer actually 

sees. The raster image is mapped onto the bit planes of a raster graphics display 

using an intensity or a colour-coding scheme to yield a true picture of the self

radiating object. In our computations we employed a raster of 575 X 575 lines-of-sight 

and 256 intensity levels. 

In Fig. V-11 we present first examples of pictures of hydrogen Rydberg states with 
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Fig. V-10. Same as Fig. V-9 for a state in the completely irregular regime (B=5.96 Tesla, E~-15 

cm-1). The contour plot reveals vague scars caused by both the planar and the first nonplanar 

periodic orbit (solid curve), which are unstable at this energy. 

Fig. V-11. Pictures of the probabilities of presence of the electron in different highly excited m=O 

states, with energies in the classically chaotic regime, of the hydrogen atom in a magnetic field of 

5.96 Tesla. The spatial extent of the bizarre atomic structures shown is on the order of 10-• mm. 

m=O in a magnetic field of 5.96 Tesla. The energies of the states lie in the range 

between -30 and -10 em-\ and thus in the classically chaotic regime. The pictures 

demonstrate that the atoms have become extended objects along the direction of the 

magnetic field (linear dimensions ~ 10000 Bohr radii), and are more or less delocal-
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Fig. V-12. Magnetic field dependence of the absorption spectrum of the barium atom near the first 

ionization threshold reported in 1978 (after Lu, Tomkins and Garton7•>). 

ized, in the sense that they fill most of the configuration space available on account of 

the remaining conservation laws. Patterns in the shape of the atoms are caused by 

the nodal structures of the wavefunctions. We have not yet analyzed the pictures 

with respect to the presence or absence of "scars" along classical periodic orbits, but 

evidently an analysis of this type-is an obvious application of the optical visualization 

of the states_ 

Figure V-11 demonstrates that hydrogen atoms in strong magnetic fields contain, 

in addition to both chaos and order, a high element of beauty. 

V.5. Concluding remarks 

We may emphasize that the hydrogen atom in a strong magnetic field is an 

elementary and generic system exhibiting all the important features of the stationary 

problem in quantum chaos. Since it is not an artificial model but a real system, 

having applications in astrophysics (strongly magnetic white dwarfs) and being 

studied in laboratory spectroscopic experiments, we can regard it as a paradigm of 

quantum chaos, especially, as it is so fundamental. This is well demonstrated by the 

number of profound results reported in the past two or three years,48l and thus 

confirms the predictions and the line of thoughts proposed in 1982.2l Among the 

results the most striking are the r6le of unstable periodic orbits in the resonance 

spectra and the statistical aspects of the energy levels in classically regular vs chaotic 

regimes. Actually, these two aspects are the very questions in quantum chaos which 

are apparently interfering with each other. Thus, in concluding the present review, 

we wish to remark on the issue for clarifying the questions in a unified context of 

quantum chaos. 

5.1. A brief survey on the understanding of the quasi-Landau resonances 

The first theoretical attempt to understand the discovery of Garton and 

Tomkins7l (see Fig. V-12) was the semiclassical quantization of the planar orbits by 
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Edmonds8l and followed by Starace58l (its explicit demonstration), Rau58aJ (an intuitive 

model in terms of "strong-field mixing"), Feneuille55l (the adiabatic hypothesis of the 

orbit which results in the possible scaling law) and Hasegawa et al.54l (establishing the 

scaling law). The question of why and how such a two-dimensional model could give 

stable quantum eigenstates was raised and investigated first by Fano121 l who discussed 

the problem in terms of the concept of standing-wave formation on the potential ridge 

(the diamagnetic binding superimposed upon the Coulomb attraction results in a 

"ridge" of the potential down to the magnetic field direction). This was apparently 

the first motivation to investigate the problem from the stability viewpoint and 

stimulated Clark and Taylor's numerical work14l to test the idea. 

Fano's question of the standing-wave formation can be regarded as solved at least 

for the regular regime, i.e., the regime of no inter-n-mixing, where the well-defined 

KAM tori yield the exact EBK (torus) quantization with the uppermost quantized 

level that provides the answer. What should be explored as remaining unsolved is 

that such a formation of the standing wave holds even in the classical full-chaos 

regime, and moreover, the formation is ncit restricted to such a series of the planar 

orbits but extends, though less prominently, to systematic groups of non-planar orbits. 

It has now been recognized that those periodic orbits with the simpler structure 

and the shorter period play the more decisive r6le in the quasi-Landau resonance 

phenomena as predicted from the theory of scars. Surely,46 l if the scars of classically 

periodic orbits exist in the bound state eigenfunctions of classically ergodic Hamilton 

system, and if their structure is correlated over a sufficiently large number of states, 

then firstly, their existence implies clustering of the energy levels, and secondly, for an 

appropriate polarization of the photons the dipole matrix elements are enhanced so 

that the modulations show up in the photoabsorption cross section : This is the 

quasi-Landau resonances below the ionization threshold. However, our understand

ing in this context is still in a qualitative stage waiting for a more precise analysis. 

Its importance cannot be stressed too much in view of the exponentially growing 

number of the periodic trajectories contributing to the semiclassical quantization in 

the full-chaos regime. 

To date, the most elaborate theoretical work on the quasi-Landau resonances 

reported has been the series of papers by Delos and his colleague, 126l who examined 

some sixty periodic orbits of the recurrent type (in the sense of § V.3) which may 

contribute to the Green's function formula of the optical spectra, i.e., the linear 

response formula (V · 6). Being unable to go into details, we here make two possible 

comments: (1) These authors do not refer to the concept of scars, and therefore it 

would be highly desirable to examine these orbits with respect to their stability index 

(i.e., the Liapunov exponent) to see the relative importance. (2) They introduce a 

special averaging procedure of the Green's function to cut the time scale by a 

maximum period, or, to restrict the frequency by a minimum resolution (of the 

exciting laser frequency). This seems to ensure the stability of their calculation of 

the spectra, which should be enlightened from the fundamental aspect of "quantum 

chaos" whose controversial point will be discussed to an extent. 

We note that very recently the photoabsorption cross section for the quasi

Landau resonances has been calculated semiclassically in terms of classical periodic 
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orbits by Bogomolny.126al 

5.2. The dynamic vs stationary dual aspect of the optical spectra 

We have so far been retaining the standpoint that the diamagnetic Kepler system 

is the paradigm of quantum chaos in the stationary aspect. There exists another 

aspect of the quantum-chaos disciplines, i.e., the dynamical aspect, its present status 

being seemingly not transparent. We argue here that the optical spectra 

-specifically, the ones involving the quasi-Landau resonances-cannot be free from 

such a dynamical aspect. This is because the optical absorption belongs typically to 

those irreversible phenomena for which the applicability of the linear-response for

mula depends crucially on the decay property of the autocorrelation function (J)(t)= 

<f1.(0)fl.(t)>: If the time evolution of the dipole, fl.(t), is either according to an integra

ble classical Hamilton dynamics or to the Heisenberg motion with a Hamiltonian of 

a discrete spectrum (a bounded system), then (J)(t) must be an almost-periodic func

tion which never exhibits an asymptotic decay behaviour. 

The question about a possible 'imitation' of a classical-chaos dynamics by its 

bounded quantum analogue in a finite transient period was initiated by studies of the 
kicked rotator model by Casati et ai_l27 l (see a review by Chirikov et al.128l) and 

expounded by a number of investigators (see a recent review by Toda et al.129l). Two 

characteristic times of scaling are accepted to exist, i.e. the random time Tr (the 

quantum dynamics simulates the classical one for t < Tr) and the discrete time Td (it 

attains the stationarity of almost periodicity for t > Td), the latter being identified 

with the 'break time' mentioned in § II.2. We will not inquire further their true 

meanings, but we wish to point out that the optical spectra of the diamagnetic 

hydrogen atom in the classical full chaos apparently acquire both the characteristics. 

On the one hand, the quantum mechanical autocorrelation function (J)qm(t) (for 

which the average bracket means <0//0>) should exhibit a typical oscillation reflecting 

the recurrence in the sense of Reinhardt :110l If it were computed according to the 

classical-chaos dynamics, the classical (J)ci(t) (for which < > means the average over 

the classical density) would never show the recurrence without decay. 

On the other hand, the (J)qm( t) is also expected to possess an asymptotic decay 

whose mathematical description should be sought in a kind of the mixing of the 

underlying quantum dynamics. This is because, otherwise, the beautiful correspon

dence between the classical chaos and the GOE statistics elucidated actually in our 

system must be impossible (recall an extended study of the kicked rotator where the 

quantum integrable regime-in a variation of the Planck constant-actually leads to 

the Poisson statistics130l). We expect that the precise correspondence between the 

classical chaos and the GOE statistics verified in a number of examples would be a 

manifestation of the potential mixing proposed by Adachi et al.131 l This would yield 

a promising possibility of combining the dynamical and statistical aspects of the 

theory of small quantum systems132l by the name of quantum chaos. 
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