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Abstract

Gyroscopic systems in classical and quantum field theory are characterized by the presence of at least
two scalar degrees of freedom and by terms that mix fields and their time derivatives in the quadratic
Lagrangian. In Minkowski spacetime, they naturally appear in the presence of a coupling among fields
with time-dependent vacuum expectation values and fields with space-dependent vacuum expectation
values, breaking spontaneously Lorentz symmetry; this is the case for a supersolid. In a cosmological
background a gyroscopic system can also arise from the time dependence of non-diagonal kinetic and
mass matrices. We study the classical and quantum dynamics computing the correlation functions on
the vacuum state that minimizes the energy. Two regions of stability in parameter space are found:
in one region, dubbed normal, the Hamiltonian is positive defined, while in the second region, dubbed
anomalous, it has no definite sign. Interestingly, in the anomalous region the 2-point correlation
function exhibits a resonant behaviour in a certain region of parameter space. We show that as
dynamical a dark energy (with an exact equation of state w = −1) arises naturally as a gyroscopic
system.

http://arxiv.org/abs/2207.02950v3


1 Introduction

The study of quadratic Lagrangian systems is the starting point for the analysis of classical/quantum
solvable systems. Gyroscopic systems are a particular class of Lagrangians/Hamiltonians, character-
ized by rather surprising features even at linear level dynamics. The above systems [1] (defined on a
Minkowski background) are characterized by N -degrees of freedom with N > 1 and their dynamics is
described by the following Lagrangian and corresponding equations of motion

L =
1

2
ϕ̇t K ϕ̇+ ϕt D ϕ̇− 1

2
ϕt Mϕ → K ϕ̈− 2D ϕ̇+Mϕ = 0 , ϕt = (ϕ1, · · · , ϕN ) ; (1.1)

where K, D and M are N ×N constant matrices with the following properties: K is symmetric and
positive defined, D is antisymmetric while M is just symmetric.
The defining property is the presence of non-dissipative velocity-dependent forces, described, in the
classical mechanics picture, by the antisymmetric matrix D 6= 0. Gyroscopic systems can be found in
many area of physics and engineering1, for a fascinating review see [2]. Such systems have a number
of unusual features.

• Stability is realized in a peculiar way. Beyond a normal stability region where the mass matrix
M is positive defined (we call such a parameter space region, the normal stability region), it
exists a stability region also for negative defined mass matrix M and the matrix D results larger
that a critical value Dc (D ≥ Dc); we call such a parameter space region, the gyroscopic or
anomalous region.

• Despite of the fact the Hamiltonian is time-independent and then system is conservative, time
reversal symmetry is violated by the presence of single time derivative operator ϕ ϕ̇ proportional
to the D matrix [3] in the Lagrangian.

• On a Minkowski background, as a consequence of the spontaneous breaking of Lorentz invariance
down to the rotational group, the elementary excitations can be interpreted as phonon-like modes
of a supersolid; namely a solid coupled with a superfluid. Symmetry arguments imply the term D
in the quadratic Lagrangian exists only when scalar fields with non-trivial vacuum configurations
are coupled together.

• The quantisation of the system with a Fock representation of the canonical commutation rela-
tion is feasible only after a suitable diagonalisation of the Hamiltonian which can be written as
a set of decoupled harmonic oscillators. In the Lagrangian approach such a decoupling cannot
be achieved. As a general result, while in the normal stability region the Hamiltonian is posi-
tive defined, in the gyroscopic (or anomalous) region the Hamiltonian results negative defined
showing an intriguing connection of a gyroscopic system with the Pais-Uhlenbeck oscillator. In-
terestingly, the long standing problem of the stability for interaction Pais-Uhlenbeck oscillator
was recently reconsidered [4] and the resonant behavior of the 2-point correlation that we found
in the anomalous region plays an important role.

On a generic time-dependent background the matrices K, D and M are naturally time-dependent and
the definition of a gyroscopic system is ambiguous due to the possibility of performing time- dependent
field transformations. Focusing on the case of two scalar degrees of freedom, which represent the
minimal field content for a gyroscopic system2, we show that it possible by a suitable set of time-
dependent Lagrangian field transformation to bring the system in a canonical form where the kinetic
matrix K is the identity, the mass matrix is diagonal and Dc = dc ǫab where ǫab = −ǫba, a, b =
1, 2 and ǫ12 = 1. In its canonical form, a system is unambiguously gyroscopic if dc 6= 0 and it is
characterized by three time dependent parameters: dc and the diagonal entries of the mass matrix.
In this framework we study when dc 6= 0. Generally speaking, gyroscopic systems can manifest when
some of the fields acquire a non-trivial background spacetime dependent “vacuum”, a behavior present

1Dissipation can be described by adding to D a symmetric part.
2The result be generalised to the case a generic even number scalar fields.
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in many multi-field systems, see for example the effective description of media [5, 6, 7, 8], massive
gravity [9, 10, 11] single [12] and multi-field inflation [13], solid and supersolid inflation [14, 15, 16]
and holography [17, 18].

2 Scalar Fields and Vacuum Configurations

We are interested in the study of systems characterized by a set of N scalar fields {ΦA, A = 1, · · · , N}
such that some of them acquire a non-trivial spacetime dependent vacuum expectation value (vev) that
describes the background configuration of the system. Therefore the fields are split in a background
configuration φA plus a fluctuation ϕA

ΦA = φA + ϕA . (2.1)

The fields {ϕA} are associated to the classical/quantum small fluctuations. For instance, in the
effective description of fluid dynamics, the background configuration of the fluid is described by φA

while the phonon excitations are described by ϕA. It is useful to distinguish the fields according to
the nature of their vev; namely

• fields with zero vev φA = 0 and fluctuations ϕA ≡ ZA;

• fields with a time-dependent vev, for example φA = cA t, and fluctuations ϕA ≡ TA;

• fields with ~x-dependent vev φA = cAj xj and fluctuations ϕA ≡ SA.

Our goal is to study the dynamics of ϕA. We shall consider the case where the underlying symmetry
group of the background spacetime is partial broken by scalar fields configuration φA in such a way
that spatial translations and rotations stay unbroken. Barring accidental cancellations, translational
invariance requires that spatial derivatives ∂iφ

A must be constant. In the case of fields with ~x-
dependent vev it implies that φA ≡ φi

n = xi. In order to automatically implement such a constraint,
we always require a shift symmetry for the fields with an ~x-spatial vev, namely

Spatial vev fields : Φi
n → Φi

n + constant if φi
n = xi , i = 1, 2, 3 (2.2)

where now n denote the number of different fields. In other words, being interested in systems where
spatial rotations are always unbroken, in 3+1 dimensions the minimal number of ~x-spatial vev fields
is three. A triplet of scalar fields {Φa, a = 1, 2, 3} is transforming as the fundamental representation
of an internal SO(3)I symmetry group of the system. The vev induces the following spontaneous
breaking pattern

SO(3)× SO(3)I → SO(3)D . (2.3)

In general the total number of fields with an ~x-spatial vev consists of n triplet of SO(3)I . Then for
each fluctuation we can use the Helmholtz decomposition

ϕA ≡ ϕi
n = Si

n ≡ ∂i
√

~∇2
Sn + V i

n, ∂iV
i
n = 0, i = 1, 2, 3 (2.4)

to extract the scalar Sn and the vector V i
n components. Being interested in the scalar sector, only Sn

will be relevant for us.
For the fields with a time dependent vev, a shift symmetry is not strictly necessary, in particular when
also the background is breaking time diff as in FRW. On the contrary when we work in a Minkowski
spacetime and as soon as we require an EFT with thermodynamical properties [7], also the temporal
vev fields have to be shift symmetric.
The dynamics of the fluctuations can be found by studying the structure of all operators (with up to
two derivatives) consistent with rotations. At the quadratic level we have the following classification
scheme:

• Operators with no derivatives:
OAB

0 = ϕA ϕB . (2.5)
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• Operators with one derivative:

OAB
x = ∂iϕ

A ϕB , OAB
t = ϕA ϕ̇B . (2.6)

• Operators with two derivatives:

OAB
xx = ∂iϕ

A ∂jϕ
B , OAB

xt = ∂iϕ
A ϕ̇B , OAB

tt = ϕ̇Aϕ̇B . (2.7)

To produce a rotational invariant quadratic Lagrangian L, the indices in {On} should be saturated
by using the only two available invariant tensors δij and ǫijk. The result is

L = L2 + L1 − L0 ; (2.8)

where

L2 = K · Ott ; (2.9)

L1 = D(t) · Ot +D(tx) · Oxt ; (2.10)

L0 = M(0) · O0 +M(x) · Ox +M(xx) · Oxx ; (2.11)

and · stands for rotational invariant contractions of the relevant indices. The term L2 has two time
derivatives and represents the kinetic term while L0 with no time derivatives is a mass term. Beside
a rather standard kinetic matrix KAB and a mass matrix MAB, the peculiar term is the one linear
in the time derivative of the fluctuations and proportional to DAB; the presence of such a term is the
defining property of a gyroscopic system. Notice that the kinetic matrix K and the mass matrix M
are symmetric by construction, while one can take D = −Dt by adding/subtracting a total derivative
term. Indeed, by splitting D as a symmetric D(S) and an antisymmetric D(A) part, the former can
be cast into a mass term up to a total derivative

D(S)
AB ϕ̇A ϕB =

1

2
D(S)

AB

d

dt
(ϕAϕB) =

1

2

d

dt

(

D(S)
AB ϕA ϕB

)

− 1

2
Ḋ(S)

AB ϕA ϕB . (2.12)

When the structure of the Lagrangian is further restricted by imposing a shift symmetry on all scalar
fields, namely

ΦA → ΦA + constant, (2.13)

then all operators with a single or zero derivatives (temporal or spatial) are forbidden and the structure
of the shift symmetric Lagrangian reduces to

Lshift = K · Ott +D(tx) · Otx −M(xx) · Oxx . (2.14)

Notice that even if (2.13) is imposed, the presence of D(xt) breaks time reversal symmetry. In table 1
we show the structure of the quadratic Lagrangian depending on the type of vevs and on the internal
shift symmetries imposed. In the general case the Lagrangian L contains all the operators. In the
Lorentz invariant (LI) case, when the very same symmetries of Minkowski space are imposed, the
system cannot be gyroscopic.

The special cases with only t-dependent vev fields TA (case LT ), ~x-dependent vev fields Sn (case
LS) or both (case LTS) is presented. For the rest of the paper we will assume the presence of two
scalar degrees of freedom (N = 2) so that all matrices will be 2×2. In Fourier space where

ϕ(t,xxx) =

∫
d3k

(2 π)3/2
ϕkkk(t) e

ikkk·xxx , ϕ =

(
ϕ1

ϕ2

)

(2.15)

the reality of the fields ϕ(t,xxx) = ϕ(t,xxx)∗ imposes that ϕkkk(t) = ϕ−kkk(t)
∗ or ϕ−kkk(t) = ϕkkk(t)

∗. The
Lagrangian (where only the time derivatives of the fields appear) takes the form (see 8 for more
details)

L =
1

2
ϕ̇†
kkk K ϕ̇kkk + ϕ†

kkk D ϕ̇kkk − 1

2
ϕ†
kkk Mϕkkk ; (2.16)
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Table 1: Structure of the quadratic Lagrangian. The suffix shift indicates the presence of the complete

shift symmetry (2.13). T (S) stands for field with only time-dependent (space-dependent) vev while TS

underline that fields with both time-dependent and space-dependent vev are present. In the Lorentz

invariant (LI) case the very same symmetries of Minkowski space are imposed.

K D(t) D(tx) M(0) M(x) M(xx)

L X X X X X X

Lshift X X X

LI X X

LT X X X X

Lshift
T X X

LS X X X

Lshift
S X X

LTS X X X X

Lshift
TS X X X

where the K, D and M matrices absorbed the kkk dependence of the spatial derivative of the fields.
Further, the structure of the D matrix is fixed to be

D = d J , J =

(
0 1
−1 0

)

; (2.17)

and d is a real parameter (where the integration by parts (2.12) has been used to have D antisymmet-
ric). Few comments are in order. Spatial derivatives ∂x in Fourier space are replaced by i k and the
“mass” matrix M, kinetic mixing term D and the kinetic matrix K are both time and k-dependent.
In the following we will study the k dependence of (2.16) in detail. To end up this chapter we see
that a gyroscopic system with D 6= 0 can be generated essentially

• when D(t) 6= 0: in this case we need interactions between TA fields that are not protected by
shift symmetry (typically present in FRW backgrounds and not in Minkowski space);

• when D(tx) 6= 0: in this case we need interactions between TA and Sn fields and are present also
for shift symmetry Lagrangians (i.e. in Minkowski background and for the description of the
Goldstone modes of ideal thermodynamical system).

This definition of gyroscopic systems is then valid both in Minkowski space and in FRW backgrounds.

3 Canonical form of a Gyroscopic system

Taking into account the presence of non-trivial vacuum configuration, one finds that the most general
structure for the quadratic Lagrangian is of the form (2.16). We stress again that to get the form
(2.16) we have used only integration by parts without modifying the original equations of motion.
Consider now a general linear Lagrangian field transformation ϕ → F (t)ϕ, with F an invertible time-
dependent matrix. Obviously, a time-dependent transformation will lead again to a Lagrangian of the
form (2.16) but with different matrices K̃, D̃ and M̃; in particular such a transformation can induce
an effective D̃ that characterises a gyroscopic system, even if it was zero in the original field variables.
Indeed, the effect of the above transformation on the equations of motion is the following

ϕ = F (t)Q ⇒ (K F ) Q̈− 2 (DF −K Ḟ )
︸ ︷︷ ︸

D̃

Q̇+ (MF +K F̈ +D Ḟ )Q = 0 . (3.1)
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When Ḟ 6= 0 an effective D̃ generically arises. As shown in appendix A, in order to remove such
ambiguity one can always make a suitable linear Lagrangian field redefinition (time-dependent in
general) to put the matrices entering (2.16) in the following canonical form

K → III, D → D = dc J , M → M =

(
m2

1 0
0 m2

2

)

; (3.2)

where III is the identity matrix. The argument can be generalised to the case of N ≥ 2 degrees of
freedom. Once the matrices in (2.16) are in their canonical form (3.2), we define a system “gyroscopic”
if D 6= 0. A non-vanishing D 6= 0 can originate from the “canonisation” of (2.16); in particular a non-
trivial dc is generated by a time-dependent diagonalisation of the original kinetic and mass matrices K,
M with time-dependent rotation angles θK and θM respectively (see appendix A for details); namely

dc =
d

det(K)1/2
− Tr(K)

det(K)1/2
θ̇K − 2 θ̇2M . (3.3)

Thus, a system is gyroscopic when at least one of the following conditions are satisfied:

• the original D 6= 0;

• a non-trivial time dependence of the kinetic matrix such that θ̇K 6= 0;

• a non-trivial time dependence of the mass matrix such that θ̇M 6= 0.

In a cosmological background, a typical situation where {θ̇i} are zero is when the matrices K or M are
3: diagonal, there is an overall time dependence, the diagonal entries are equal, the difference between
the two diagonal elements is proportional to the off-diagonal one. The cases where the matrices are
time-independent (and thus θ̇i = 0) include Minkowski space background and, more in general, a
regime where momenta are much higher than the inverse of the curvature scale. This is the case for
the definition of the Bunch-Davies vacuum in a de Sitter background (see chapter 9). Unless explicitly
stated we will consider a gyroscopic system in the canonical form (3.2). One might think that after
all the system (2.16) is rather simple. However, as pointed out humorously by Coleman [19], quantum
field theory is based on different variations of the harmonic oscillator. The first evidence that (2.16)
is less trivial than it looks is that, as shown in appendix B, there is no Lagrangian field redefinition to
set D = 0 and at the same time having a diagonal mass matrix; indeed, in a Minkowski background,
setting D = 0 through a further time dependent linear transformation of the canonical fields generates
a mass term with periodic time dependence (Floquet system). While to find classical solutions is not
a problem, the quantisation is not straightforward.

4 Stability of a time-independent Gyroscopic System

In this section we will focus on the simplest case where the canonical D and M matrices are time
independent. As we already discussed, this will be the case when shift symmetry is imposed for all
the fields and the metric is time-independent. The equations of motion are the following

ϕ̈−2 D ϕ̇+M ϕ = 0 . (4.1)

Solutions of (4.1) are of the form ϕ = e−i ω t v where v is suitable vector and ω satisfies the following
algebraic equation given in terms of the linear operator L(ω)

detL (ω) ≡ det
(
−ω2

I+ 2 i ωD +M
)
= 0 ⇒ ω4 − ω2

(
4 d2 +m2

1 +m2
2

)
+m2

1 m
2
2 = 0 ; (4.2)

thus

ω2
1,2 =

1

2

(

4 d2 +m2
1 +m2

2 ±
√

(m2
1 +m2

2 + 4 d2)
2 − 4m2

1m
2
2

)

. (4.3)

3The mixing angle θλ for a generic 2 × 2 matrix λ, is given by tan(2 θλ) = 2λ12
λ22−λ11

with its time derivative given by

θ̇λ = (λ22−λ11) λ̇12−λ12 (λ̇22−λ̇11)

4 λ2
12+(λ22−λ11)2

. It is easy to identify when θ̇λ = 0.
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Some simple general properties of ωi can obtained by taking the transpose and then the complex
conjugate of L(ω) and taking into account that Dt = −D. In particular we get L(−ω) = L(ω)
and L(−ω∗) = L(ω)∗. Thus, if ω is a solution, also ω∗, −ω and −ω∗ are solutions. The system is
stable only when ω is purely real. The region of stability can be described by using the m1,2, d or
equivalently ω1,2, d as independent parameters and it is given by

(a) m2
1,2 ≥ 0, d2 > 0 ⇐⇒ 0 ≤ d2 ≤ (ω1 − ω2)

2

4
; (4.4)

(b) m2
1,2 ≤ 0, d2 ≥

(√

−m2
1 +

√

−m2
2

)2

4
, ⇐⇒ d2 >

(ω1 + ω2)
2

4
. (4.5)

One can also rescale ωi by d by defining ω̂i ≡ ωi/d, then the two stability regions corresponding to
ω̂1 ≥ ω̂2 ≥ 0 can be rewritten as

(a) ω̂1 − ω̂2 ≥ 2 (4.6)

(b) ω̂1 + ω̂2 ≤ 2 . (4.7)

Our notion of stability corresponds to what it is called marginal stability in [1]. The region of

stability in parameter space is plotted in Figure 1. The intermediate range (ω1−ω2)
2

4 < d2 < (ω1+ω2)
2

4

is forbidden by stability. We note 4 that stability can be also achieved when the rather peculiar limit

-4 -2 0 2 4

-4

-2

0

2

4

m1

m2

Stability Parameter Space

Figure 1: For d = 1, in yellow the parameter space corresponding to (4.4), in red the region corresponding

to (4.5).

K → 0 in (2.16) is taken; namely the standard kinetic term which gives rise in the canonical form
to φ̈ is sub-leading when compared to the gyroscopic one. In such a limit, from (4.1) one find that
ω2 = m2

1 m
2
2/(4d

2) > 0. Of course by taking the limit K → 0 the number of degrees of freedom is
changed and the equations of motion are not anymore second order differential equations; see [20] for
an application to inflation.

It is interesting to interpret the stability conditions in Hamiltonian terms. The conjugate momenta
are

π = ϕ̇−Dϕ , π =

(
π1

π2

)

. (4.8)

4We thank the anonymous referee for pointing out such a limit.
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Working in Fourier space, the Hamiltonian H can be written as

H =

∫

d3k Hk =

∫

d3k

[
1

2

[

π†
kkk πkkk + ϕ†

kkk (M −D2)ϕkkk

]

+ π†
kkk Dϕkkk

]

= (4.9)

∫

d3k
1

2

[

(πkkk +Dϕkkk)
†(πkkk +Dϕkkk) + ϕ†

kkk M ϕkkk

]

.

The system is stable in two disconnected regions in parameter space.
The first one, that we call normal, is given by (4.4) and the Hamiltonian Hk is positive defined as one
can infer from (4.10). More surprising is the existence of a second region (4.5) (that we call anomalous
region) where Hk is not positive defined, but the system is still stable. Thus the positivity of Hk is
only a sufficient but not necessary condition for stability. Notice that the stability in the anomalous
region is possible only if D 6= 0. We have focused on the case of two degrees of freedom, but more
in general one can show that stability in the anomalous region can be achieved if and only if the
number of degrees of freedom is even and by taking D non-singular and sufficiently large [21]; indeed
the generalization of (4.3) leads to

4DtD −
(√

−M +
√
Dt M D−1

)2

> 0 . (4.10)

Another surprising property is that even if D and M are time-independent, taking ϕ(t) as a solution
of (4.1), then ϕ̃(t) = Tϕ(−t) is not a solution for any choice of a constant 2×2 matrix T unless
D = 0. In other words in a gyroscopic system time reversal symmetry is broken even if the energy is
conserved. The reason behind the lack of time reversal symmetry is the form of (4.8) that generates an
Hamiltonian that is not an even function of the conjugate momenta π. For a recent critical discussion
of time reversal symmetry see [3].
It is important to say some words about the effect of dissipation on a gyroscopic system where a lot
of literature is present (see [2]). According to the Thomson-Tait-Chetayev theorem, for a gyroscopic
system defined in the region 4.5 with a “large” D, stability is destroyed by the introduction of an
arbitrarily small dissipative force.

5 Symplectic Classical Dynamics

As discussed in the previous section the impossibility to get rid of D at the Lagrangian level makes
the Hamiltonian formalism the ideal tool both to study the classical dynamics and to quantize the
system. Following the approach described in [22, 23], it is convenient to introduce a compact notation
to denote a generic point in the phase space described by a 4-dimensional vector z(t, ~x) or equivalently
its Fourier transform zkkk(t) defined by

zkkk =

(
ϕkkk

πkkk

)

, ϕ =

(
ϕ1

ϕ2

)

, π =

(
π1

π2

)

. (5.1)

The Hamiltonian can be written as (for quadratic systems see also [24], [25], [26])

H =

∫

d3k
1

2
zt−kkk Hk zkkk =

∫

d3k
1

2
z†kkk Hk zkkk (5.2)

The Hamiltonian density matrix in Fourier space can be read off from (2.16) and (4.10) in the canonical
form as

Hk =

(
M −D2 Dt

D III

)

=







m2
1 + d2 0 0 −d
0 m2

2 + d2 d 0
0 d 1 0
−d 0 0 1







(5.3)

with k = |kkk|. The Poisson brackets among the basic variables can be written as

{zm(t,xxx), zn(t,yyy)} = Ωmn δ
(3)(xxx− yyy), ⇒ {zkkk,m(t), z∗qqq,n(t)} = Ωmn δ

(3)(kkk − qqq) , (5.4)
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where Ω is the following 4×4 antisymmetric matrix that encodes the symplectic structure

Ω =

(
0 III
−III 0

)

. (5.5)

The Hamilton equations can be written in terms of the Poisson brackets as a set of linear first order
differential equations

żkkk(t) = {zkkk(t), H} = Ω Hk zkkk(t) (5.6)

that are equivalent to (4.1). From now on for notation simplicity we will omit the suffix kkk in zkkk.
We exploit the freedom in the choice of canonical variables to find a symplectic transformation5 that
diagonalises the Hamiltonian Hk

St Hk S = ΛH (5.7)

where ΛH is a diagonal matrix and the symplectic matrix S, namely

St ΩS = Ω . (5.8)

The symplectic decomposition (5.7) is different from a similarity transformation used in the standard
diagonalization procedure. Once S is found, time evolution is rather simple in the new basis z̃ defined
by z = S z̃ where the system can be interpreted as a collection of decoupled harmonic oscillators and
then quantization becomes standard. To find S we consider the following ansatz

S =

(
III B
C J

)

, J =

(
j11 0
0 j22

)

, C =

(
0 c
c 0

)

, B =

(
0 b
b 0

)

. (5.9)

Imposing that S is symplectic produces a 2-parameter family of symplectic matrices; the parameters
b and c can be fixed by imposing that ΛH is diagonal and one gets

ΛH =









2 ω2
1 (ω2

1−ω2
2)

T11
0 0 0

0
2 ω2

2 (ω
2
1−ω2

2)
T22

0 0

0 0 T11

2 (ω2
1−ω2

2)
0

0 0 0 T22

2 (ω2
1−ω2

2)









; (5.10)

where6

T11 = 4 d2 +m2
1 −m2

2 + ω2
1 − ω2

2 , T22 = −4 d2 +m2
1 −m2

2 + ω2
1 − ω2

2 ,

T33 = 4 d2 −m2
1 +m2

2 + ω2
1 − ω2

2 , T44 = −4 d2 −m2
1 +m2

2 + ω2
1 − ω2

2 ;
(5.11)

and

j11 = j22 = 1 + b c , c =
m2

1 −m2
2 − ω2

1 + ω2
2

4 d
, b =

2 d

ω2
1 − ω2

2

. (5.12)

Notice also that

T11 T33 = 16 d2 ω2
1 → ΛH11 ΛH33 =

ω2
1

4
, T22 T44 = 16 d2 ω2

2 → ΛH22 ΛH44 =
ω2
2

4
. (5.13)

The system is classically stable when ω1,2 ∈ R and ω2
1 ≥ ω2

2 ≥ 0; however as discussed in the previous
section stability does not implies that the Hamiltonian is positive definite. Indeed

T11 ≥ 0 and T33 ≥ 0 for 0 ≤ d2 ≤ (ω1 − ω2)
2

4
and d2 ≥ (ω1 + ω2)

2

4
;

T22 ≥ 0 and T44 ≥ 0 for 0 ≤ d2 ≤ (ω1 − ω2)
2

4
.

(5.14)

5According to the Williamson theorem, given a positive definite and symmetric Hamiltonian H , it always exists a

symplectic transformation that diagonalises H ; see appendix C and [27] for a recent discussion.
6Note thatm2

1−m2
2 =

√

(4 d2 − ω2
1 − ω2

2)
2 − 4ω2

1 ω
2
2 and ω2

1−ω2
2 =

√

(4 d2 −m2
1 −m2

2)
2 − 4m2

1 m
2
2, that allow to express

all the quantities as functions of the independent parameters d, ω1,2 or d, m1,2.
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For 0 ≤ d2 ≤ (ω1−ω2)
2

4 the diagonal Hamiltonian is positive defined and corresponds to the normal
region (4.4) of stability.

In the anomalous region (4.5), d2 ≥ (ω1+ω2)
2

4 and the system is still stable, but now T11,, T33 > 0 while
T22,, T44 < 0 and the Hamiltonian can be written as the sum of one standard harmonic oscillator plus
a second ghost-like harmonic oscillator.
This can be shown explicitly by exploiting the fact that we can still perform a further canonical
transformation to reduce the oscillators Hamiltonian to the standard form

z̃ = N± zc , N± =
1√
2

(
n± 0

0 n−1
±

)

; (5.15)

exploiting (5.13), the 2×2 submatrix is taken as

n± =





√
T11

2ω1 (ω2
1−ω2

2)
0

0
√

±T22

2ω2 (ω2
1−ω2

2)



 ; (5.16)

the notation ± refers to the case where T22 is positive or negative according to (5.14). The integrand
that defines the Hamiltonian in (5.2) reads

Λ(±)
c = N t

±ΛH N± =







ω1 0 0 0
0 ±ω2 0 0
0 0 ω1 0
0 0 0 ±ω2







, H
(±)
k =

1

2
z†c Λ(±)

c zc . (5.17)

The explicit expressions for the Hamiltonian is then given by

H
(+)
k =

1

2

∑

i=1,2

ωi

(
π2
ci + ϕ2

ci

)
, H

(−)
k =

ω1

2

(
π2
c1 + ϕ2

c1

)
− ω2

2

(
π2
c2 + ϕ2

c2

)
. (5.18)

The quantization of the system in the anomalous region that corresponds to H
(−)
c has a ghost char-

acter. The complete canonical transformation that relates the original variables z and zc is given
by

z = S z̃ = S N± zc , Λ(±)
c = N t

± St HS N± . (5.19)

The time evolution of zc is very simple

zc(t) = eΩΛ(±)
c t zc(0) ≡ G(±)

c (t) zc(0) ,

G(±)
c (t) =







cos (t ω1) 0 sin (t ω1) 0
0 cos (t ω2) 0 ± sin (t ω2)

− sin (t ω1) 0 cos (t ω1) 0
0 ∓ sin (t ω2) 0 cos (t ω2)







.
(5.20)

The matrix G
(±)
c is also symplectic. From G

(±)
c the evolution of the original variables z(t) can be also

found by using (5.19):

z(t) = G(t) z(0) , G(t) = S N± G(±)
c (t)N−1

± S−1 . (5.21)

6 Quantization

One of the problem in the quantization of classical field theory is that, contrary to the case of system
with a finite number of degrees of freedom, the procedure is not unique [28]; indeed, given two
representations of the canonical commutation relations, in general it is not guaranteed that they are
unitary equivalent. The most widely used quantization scheme is based on the Fock space construction
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according with when a suitable set of creation and annihilation operators are defined, physical states
are built by acting with them on the vacuum state. While in flat spacetime Poincare’ symmetry allows
a natural selection of the vacuum state, in general this is not the case and different set of creation
and annihilation operators can be constructed related by a Bogolyubov transformation. A well known
example is the study of quantum field in a non-trivial gravitational background [29, 30, 31, 32].
Typically the first step is to write the non-interacting Hamiltonian of the system as a set of decoupled
harmonic oscillators; given a quadratic Hamiltonian, one can introduce creation and annihilation
operators starting from a set of canonical variables zkkk and the classical Poisson brackets by promoting
them to quantum operators (zkkk → ẑkkk) which satisfy the equal time canonical commutation relations
(CCR) [33] (see [22, 23] for notations and method)

[ẑ(t,xxx)m, ẑ(t,yyy)n] = iΩmn δ
(3)(xxx− yyy) . (6.1)

The easiest way to construct a Fock representation of the CCR is to start from the diagonal form of
the Hamiltonian (5.17) in terms of canonical variables zc. In the Heisenberg picture we define

bkkkj
(t) =

1√
2

(
ϕ̂kkkcj + i π̂kkkcj

)
, b†kkkj

(t) =
1√
2

(
ϕ̂kkkcj − i π̂kkkcj

)
j = 1, 2 , (6.2)

which leads to
[
bkkkm

(t), b†qqqn(t)
]
= δmnδ

(3)(kkk − qqq) . (6.3)

In an equivalent and more compact matrix notation

Bkkk(t) = U ẑkkkc
(t) ; (6.4)

where

Bkkk(t) =
(

bkkk1
(t), bkkk2

(t), b†−k−k−k1
(t), b†−k−k−k2

(t)
)t

, U =
1√
2

(
III i III
III −i III

)

; (6.5)

with the corresponding inverse relation

ẑkkkc
(t) = U † Bkkk(t) . (6.6)

It is easy to show that
bkkkj

(t) = e−i ωj t bkkkj
, j = 1, 2 . (6.7)

The vacuum state relative to the b operator is defined as

bkkkj
(t0) |0b〉 = 0 , 〈0b|0b〉 = 1 .) (6.8)

Actually, given the time evolution (6.7), setting t0 = 0, (6.8) holds for any t. The Hamiltonian
in terms of these creation and annihilation operators has the standard form for two independent
harmonic oscillators

H
(+)
k =

2∑

i=1

ωi

2

(

bkkki
b†kkki

+ b†kkki
bkkki

)

(6.9)

in the normal region and

H
(−)
k =

ω1

2

(

bkkk1
b†kkk1

+ b†kkk1
bkkk1

)

− ω2

2

(

bkkk2
b†kkk2

+ b†kkk2
bkkk2

)

(6.10)

in the anomalous region of stability. The correlation function for canonical fields can be easily obtained
[22, 23] as

〈0b|ẑkkkcm(t) ẑqqq
†
cn(t)|0b〉 = U †

mr 〈0b|Bkkkr
(t)Bqqqs(t)|0b〉Usn

= δ(3)(kkk − qqq) U †
mr (δr 1 δs 3 + δr 2 δs 4) Usn ≡ δ(3)(kkk − qqq) Σmn

Σ =
1

2
(III + iΩ) =







1
2 0 i

2 0
0 1

2 0 i
2

− i
2 0 1

2 0
0 − i

2 0 1
2







(6.11)
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The same correlation function for the original fields can be also computed by using (5.19), namely
ẑkkk(t) = S N± ẑkkkc(t)

〈0b|ẑkkkm
(t) ẑ†qqqn(t)|0b〉 = δ(3)(kkk − qqq)Zmn ;

Z = S N±ΣN t
± St ≡ Z +

i

2
Ω;

(6.12)

with Z hermitian matrix with entries:

Z =
1

(ω2
1 − ω2

2)








4 d2 ω2

±T22
+ T11

4ω1
0 0 Z14

0 4 d2 ω1

T11
+ ±T22

4ω2
Z23 0

0 Z23 Z33 0
Z14 0 0 Z44








; (6.13)

where

Z14 =
T11

(
m2

1 −m2
2 − ω2

1 + ω2
2

)

16 dω1
+

dω2

(
m2

1 −m2
2 + ω2

1 − ω2
2

)

±T22
;

Z23 =
dω1

(
m2

1 −m2
2 + ω2

1 − ω2
2

)

T11
+

±T22

(
m2

1 −m2
2 − ω2

1 + ω2
2

)

16 dω2
;

Z33 =
1

64

[

±T22

(
m2

1 −m2
2 − ω2

1 + ω2
2

)
2

d2 ω2
+

16ω1

(
m2

1 −m2
2 + ω2

1 − ω2
2

)
2

T11

]

;

Z44 =
1

64

(

T11

(
m2

1 −m2
2 − ω2

1 + ω2
2

)
2

d2 ω1
+

16ω2

(
m2

1 −m2
2 + ω2

1 − ω2
2

)
2

±T22

)

;

(6.14)

While both Σ and Z are symplectic matrices with the same symplectic eigenvalues, the canonical
transformation (5.16) is singular in the limit ω2 → ω1 and it is interesting to see what happens to the
correlation. From (4.3), ω2 = ω1 is possible when







d = dcr =

(√
−m2

1+
√

−m2
2

)

2 anomalous region m2
1,2 < 0

d = 0, m2
2 = m2

1 > 0 normal region m2
1,2 > 0

. (6.15)

In the anomalous region when d = dcr, we have that ω2
1 = ω2

2 = ω̄2 ≡
(
m2

1 m
2
2

)1/2
, then setting

d = dcr+
ǫ2

2 it gives ω2
1 = ω̄2+2 ω̄ dcr ǫ, ω

2
2 = ω̄2−2 ω̄ dcr ǫ, where ǫ is a dimensionless small parameter

measuring the distance of d from dcr. The non-trivial part Z of the correlation function (6.12) has
the following behavior at the leading order in ǫ

Z =














1

2 ǫ
√

−m2
1

0 0

√
−m2

2−
√

−m2
1

4 ǫ
√

−m2
1

0 1

2 ǫ
√

−m2
2

√
−m2

1+
√

−m2
2

4 ǫ
√

−m2
2

0

0

√
−m2

1+
√

−m2
2

4 ǫ
√

−m2
2

(m2
1−m2

2)
2

8 ǫ
√

−m2
2

(√
−m2

1+
√

−m2
2

)

2
0

√
−m2

2−
√

−m2
1

4 ǫ
√

−m2
1

0 0
(m2

1−m2
2)

2

8 ǫ
√

−m2
1

(√
−m2

1+
√

−m2
2

)

2














.

(6.16)
Thus Z shows a resonant singular behavior when ω1 ≈ ω2 in the anomalous region of stability, which
is peculiar also from a classical point view: even a very small coupling can trigger a runaway behavior
of classical solutions that far from ω1 ≈ ω2 are well behaved at least when interactions are not too
big [4]. On the other hand when d → 0 in the normal region of stability no resonant behavior is
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present; indeed we get

Z =







1
2m1

0 0 0

0 1
2m1

0 0

0 0 m1

2 0
0 0 0 m1

2







. (6.17)

The entries Z11 and Z22 are particularly important, since they represent the autocorrelations ( power
spectra) of the original fields ϕ1 and ϕ2, whose behavior in both the stability regions is shown in
figure 2.
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Figure 2: Contour plot of Z11 and Z22 for d = 1.

From the fact that S and N± are symplectic they have unit determinant, we get

Det (Z) = Det (Σ) ⇒ Det (Z) =
1

16
. (6.18)

As shown in [23] the part Z of the correlation matrix Z is relevant to study decoherence once one
of two modes is traced out. In particular, the so called purity γ is a measure of the entanglement
between the two dof.

γ2 ≡
[
4 (Z11 Z33 −Z2

13)
]−1

. (6.19)

In particular for a pure state we have γ = 1 while for mixed states we have 0 ≤ γ ≤ 1. The limit
γ → 0 corresponds to the maximally decoherence case [23]. For our gyroscopic system in particular
we get in the two regions of stability the following results

γ2
± =

ω̂1 (ω̂1 ± ω̂2)
2ω̂2

4 [(ω̂1 ± ω̂2) 2 − 4] (ω̂1ω̂2 ± 1)
, (6.20)

that we show in figure 3. We give also the following limits on the boundaries of the parameter space

lim
d→0

γ2
+ = 1, lim

d→∞
γ2
+ =

4
√
m1 m2

(
√
m1 +

√
m2)2

(6.21)

lim
d→dc

γ2
− = 0, lim

d→∞
γ2
− =

4
√
m1 m2

(
√−m1 +

√−m2)2
(6.22)

lim
m1→m2

γ2
± = 1 (6.23)

As discussed at the beginning of the section the Fock representation is by non means unique.
Indeed given a set a canonical variable one can define an alternative set of creation/annihilation
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Figure 3: Contour plot of the square for the purity γ2 once we fixed d = 1.

operators by applying the above construction for ẑc to ẑ. Similarly to (6.2) we can define a new set
of creation/annihilation operators a and a† such that

akkkj
(t) =

1√
2 yj

(
y2j ϕ̂kkkj + i π̂kkkj

)
, a†kkkj

(t) =
1√
2 yj

(
y2j ϕ̂kkkj − i π̂kkkj

)
j = 1, 2 , (6.24)

or, in matrix representation
Akkk(t) = U Y ẑkkk(t) ; (6.25)

where

Akkk(t) =
(

akkk1
(t), akkk2

(t), a†−kkk1
(t), a†−kkk2

(t)
)t

, Y =

(
y 0
0 y−1

)

, y =

(
y1 0
0 y2

)

, (6.26)

together with the obvious inverse relations. The important physical difference is that we do not have
a unique option in the choice of the y matrix; the choice of N± in the definition of ẑc (and that of B)
was instrumental to get the Hamiltonian in the standard form (6.9) for an harmonic oscillator. As
before, the a-type operators also define the associated vacuum state by

akkkj
(t0)|0a〉 = 0 , 〈0a|0a〉 = 1 . (6.27)

The Hamiltonian in the new basis is the following

Hk =
1

2
A†

kkk(t)HA Akkk(t) , HA = U Y −1t Hk Y
−1 U † . (6.28)

As before Akkk(t) are in the Heisenberg picture and

Akkk(t) = GA(t)Akkk(0) ≡ GA(t)Akkk , GA(t) = U Y G(t)Y −1 U † , (6.29)
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and G(t) gives the time evolution of zkkk according to (5.21). By using (6.29), (5.21), and that

G†
c Λ

(±)
c Gc = Λ

(±)
c , the Hamiltonian can be written in terms of Akkk instead of Akkk(t)

Hk =
1

2
A†

kkk HA Akkk , (6.30)

which shows that Hk is time-independent. In general, Hk can be written in terms of ten real pa-
rameters which can be interpreted as squeezing and rotation parameters [22, 23] or equivalently as
Bogolyubov coefficients. Explicitly we get

HA =

(
P Q
Q† P

)

where P = P † =

(
F1 F12 e

i φ

F12 e
−i φ F2

)

, Q =

(
R1 e

iΘ1 R12 e
i ξ

R12 e
i ξ R2 e

iΘ2

)

; (6.31)

with

F1 =
d2 +m2

1 + y41
2 y21

, F2 =
d2 +m2

2 + y42
2 y22

, F12 =
d
(
y21 + y22

)

4 y1 y2
, φ =

π

2
(6.32)

R1 =
d2 +m2

1 − y41
2 y21

, R2 =
d2 +m2

2 − y42
2 y22

, R12 =
d
(
y21 − y22

)

2 y1 y2
,

Θ1 = Θ2 = 0 , ξ =
π

2
.

(6.33)

Thus

Hk =

2∑

i=1

[

Fi

(

a†kkki
akkki

+ a†−kkki
a−kkki

+ h.c.
)

+Ri

(

eiΘi a†kkki
a†−kkki

+ h.c.
)]

+ (6.34)

F12 e
i θ
(

a†kkk1
akkk2

+ a†−kkk1
a−kkk2

)

+ h.c. +R12 ei ξ
(

a†kkk1
a†−kkk2

+ a†kkk2
a†−kkk1

)

+ h.c. . (6.35)

The physical interpretation of the various terms is the following [22, 23]

• Harmonic: Fi=1,2 non-standard normalization of the number operator;

• Parametric: Ri=1,2 gives rise to particle creation;

• Transferring: F12 transfers particles from one sector to the other;

• Entangling: R12 represents cross-sector particle creation.

By a suitable choice of y1,2, one can set R12 = 0 and R1 = 0 or R2 = 0.
Let us discuss the relation between the quantization performed by using the above explicit covariant

symplectic formalism and the more traditional one that makes an ansatz for quantum fields according
to which they can be written, in Fourier space, as linear combination of creation and annihilation
operators [22]; for instance in the case of a single scalar field

ϕ̂kkk(t) = φk(t) bkkk + φk(t)
∗ b†kkk , (6.36)

where φk(t) is a solution of the linear equation of motion in Fourier space. The requirement that
the field ϕ̂(t,xxx) together with its conjugate momentum π̂(t,xxx) satisfy the equal time canonical com-
mutation rules gives a condition on the Wronskian of the solutions φk(t) and φk(t)

∗ of the equation
of motion of the field. As matter of fact such condition is equivalent to the symplectic character of
the transformations relating the field variables, the matrices S and N in our case. The symplectic
treatment is particular useful when the conjugate momenta are not simply proportional to the time
derivative of the fields; this is the case in a gyroscopic system, see eq. (4.8). To write the quantum
field in the form (6.36) we can use (6.4) and (5.19) to get

ẑkkk(t) = S N± U †Bkkk(t) , Bkkk(t) = U ẑkkkc(t) = U G±c(t) ẑkkkc(0) = U G±c(t)U
†Bkkk(0)

⇒ ẑkkk(t) = S N± G±c(t)U
†Bkkk(0) ≡ E(t)Bkkk(0) .

(6.37)
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The time-dependent 4×4 symplectic matrix E(t) is determined by U , the canonical transformations S
and N± and the symplectic time evolution matrix G±c(t) and can be written in terms of the suitable
“classical modes” that can be read out from E(t); in particular the expression for the quantum fields
ϕ̂1,2 is the following

(
ϕ̂kkk1

(t)
ϕ̂kkk2

(t)

)

= L(t)

(
b1(kkk)
b2(kkk)

)

+ L∗(t)

(
b1(kkk)

†

b2(kkk)
†

)

,

L(t) =

(
E11 E12

E21 E22

)

=






√
T11 e−i ω1 t

2
√
ω1

√
ω2

1−ω2
2

− 2 i d
√
ω2 e∓ i ω2 t

√
±T22

√
ω2

1−ω2
2

− 2 i d
√
ω1 e−i ω1 t

√
T11

√
ω2

1−ω2
2

√
±T22 e∓ i ω2 t

2
√
ω2

√
ω2

1−ω2
2




 .

(6.38)

Clearly the matrix L and L∗ are just submatrices of E. One can check that the quantum fields satisfy
the equations of motion (4.1). Of course the same representation can be used for the quantum fields
expressed in terms of the alternative set of creation and annihilation operators (6.2) and their modes

ẑkkk(t) = Ẽkkk(t)Akkk(0) ; (6.39)

by using (6.29) and (6.25), the symplectic matrix Ẽkkk(t) is given by

ẑkkk(t) = Y −1 U †Akkk(t) = Y −1 U † GA(t)Akkk(0)

⇒ Ẽkkk(t) = Y −1 U † GA(t) .
(6.40)

The classical modes in Ẽkkk(t) are solutions of the classical equations of motion, namely ˙̃
Ekkk = ΩH Ẽkkk.

It is interesting to note that the initial conditions at t = 0 can be related to the freedom in the choice
of the matrix Y , see [22]. The initial conditions on GA(t) is related to the initial conditions for the
classical modes

GA(0) = III ⇒ Ẽkkk(0) = Y −1 U † =








y1√
2

0 y1√
2

0

0 y2√
2

0 y2√
2

− i√
2y1

0 i√
2y1

0

0 − i√
2y2

0 i√
2y2








(6.41)

The relation among the classical modes Ekkk and Ẽkkk and the corresponding sets of creation and anni-
hilation operators is a Bogolyubov transformation [29, 32, 31, 22].

7 Gyroscopic Systems and the Pais-Uhlenbeck Oscillator

It is intriguing to relate the anomalous region of stability of a gyroscopic system with the Pais-
Uhlenbeck oscillator [34]. The Pais-Uhlenbeck higher derivative Lagrangian can be written as

LPU =
1

2

[
ϕ̈2 −

(
ω2
1 + ω2

2

)
ϕ̇2 + ω2

1 ω
2
2 ϕ

2
]
. (7.1)

that gives the following fourth order equation of motion

ϕ(4) + (ω2
1 + ω2

2) ϕ̈+ ω2
1 ω2

2 ϕ = 0 . (7.2)

The solution is of the form ϕ ∼ exp(i ω t) and ω satisfies exactly (4.2). Though a gyroscopic system
has at least 2 degrees of freedom, it is easy to see that (7.2) is equivalent to a system of second order
coupled equations [35]

ϕ̈1 + µ1 ϕ1 − ρ1 ϕ2 = 0, ϕ̈2 + µ2 ϕ2 − ρ2 ϕ1 = 0 (7.3)
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where the real constants µi and ρi are constrained by

µ1 + µ2 = ω2
1 + ω2

2 , µ1 µ2 − ρ1 ρ2 = ω2
1 ω

2
2 . (7.4)

Exploiting the freedom in the choice of µi and ρi it is easy to realize that the Pais-Uhlenbeck oscillator
admits different classically equivalent Lagrangian formulations [35, 36]. Depending on the choice of
ρi, the two second order equations can be derived by two different Lagrangians of the form

LPUa/b
=

1

2

[

ϕ̇1
2 ± ϕ̇2

2 − 1

2

(
µ1 ϕ

2
1 ± µ2 ϕ

2
2 − 2 ρ1 ϕ1 ϕ2

)
]

for ρ1 = ±ρ2 ; (7.5)

After a Lagrangian field redefinition, LPUa leads to an Hamiltonian that is positive defined7, while
LPUb

leads to an Hamiltonian that is not positive defined. Our representation of the Pais-Uhlenbeck
oscillator is rather different, as it is evident form the equations of motion (4.1)

ϕ̈1 +m2
1 ϕ1 − 2 d ϕ̇2 = 0, ϕ̈2 +m2

2 ϕ2 − 2 d ϕ̇1 = 0 ; (7.6)

nevertheless they are still equivalent to (7.2), moreover the Hamiltonian H is positive definite in the
region of normal stability (4.4) or indefinite in the anomalous region of stability (4.5). It is interesting
to realize that the equivalence at the level of equations of motion of the PU oscillator and LPUa

,
LPUb

in general is altered when interactions are introduced [37]. For instance, if one introduces an
interaction potential of the form λ ϕ2

1 ϕ2
2, only the Lagrangian LPUb

generates equations of motion
that are equivalent to a PU oscillator with the same interaction. This is not the case for LPUa

and for
our gyroscopic system. However, by introducing a non-dynamical field, one modify the Lagrangian to
extend the equivalence also to other cases [4].

8 Examples of Gyroscopic Systems

In this section we give a number of specific examples of gyroscopic system considered on a Friedmann-
Robertson-Walker (FRW) cosmological background. When perturbations of the metric are considered,
departing the homogeneous FRW metric the gyroscopic nature of such a system is not altered but
the treatment is more involved; see [38, 16, 15] for the discussion in the context of inflation and the
computation of primordial non-Gaussianity. On general grounds in 1+3 dimensions we can define out
of N scalar fields the following set of composite operators shift symmetric but in general not invariant
under internal SO(3)

CAB = gµν ∂µΦ
A ∂νΦ

B , A,B = 1, 2, · · · , N . (8.1)

Depending of what kind of vev the fields develop one can distinguish the following cases giving a
sketch of the operators involved.

• All fields have time dependent vevs and CAB is a singlet under internal SO(3) for any choice of
A,B and we have N(N + 1)/2 operators.

• All fields have space-dependent vev and to be consistent with the unbroken SO(3)d diagonal
group as discussed in section 2 the fields must be arranged in n triplets of SO(3)d, namely
ΦA → Φa

i with a = 1, 2, 3 and i = 1, 2, · · · , n = N/3. The basic combination of fields is

Bab
ij = gµν ∂µΦ

a
i ∂νΦ

b
j , a, b = 1, 2, 3 i, j = 1, 2, · · · · , N/3 (8.2)

from which one can form a number of SO(3)d invariant operators

X
(S)
i1,...,in

= Tr[Bi1i2 ...Bin−1in ] . (8.3)

7This is possible when ω2
1 6= ω2

2 .
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• Finally, the most involved case is when the fields develop both space and time dependent vevs.
For simplicity let suppose that there is a single field Φ0 that has a time dependent vev and the
N − 1 = 3n remaining fields arranged as triplets: Φa

i with vev φa
i = xa. This time the basic

building block conveniently organized according to the SO(3)d transformations are, besides (8.3),

Xi1j2,...,in = Tr
(
Zi1j2 · · ·Zin−1in

)
, (8.4)

where
Zab
ij = (gµν ∂µΦ

0 ∂νΦ
a
i ) (g

αβ ∂αΦ
0 ∂βΦ

b
j) . (8.5)

The above operators showed here does not exhaust the list of possible single derivative SO(3)d in-
variant operators. Indeed, many others can be built out of uµ

ijk = ǫµνρσ ǫabc ∂νΦ
a
i ∂ρΦ

b
j∂σΦ

c
k. Given

the complexity of the most general case and to illustrate the general picture described in section 2
we consider the case of two scalar fields Φ1 and Φ2 in a 1 + 1 dimensional FRW background8. The
generalization to the case of 1+3 dimensions is not very difficult. In 1+1 dimensions a single scalar
field can develop a spatially dependent vev still preserving homogeneity and spatial translational in-
variance while to do same in 1+3 dimensions in a rotational invariant way we need at least three dof.
In 1+1 we have just three basic operators.

Taking the metric
gµν = a2 ηµν , (8.6)

the most general action is of the form

S =

∫

d2x
√−g U(∂Φ, Φ) . (8.7)

The number of operators is limited to

X1 = gµν ∂µΦ
1 ∂νΦ

1 X2 = gµν ∂µΦ
2 ∂νΦ

2 , X3 = gµν ∂µΦ
1 ∂νΦ

2 . (8.8)

8.1 Time dependent vevs

Consider first the case where both scalars have a time-dependent vev, namely

Φ1 = φ1(t) + T1 , Φ2 = φ2(t) + T2 . (8.9)

The Lagrangian U has the form U = U(X1, X2, X3,Φ1,Φ2). The kinetic matrix K has the following
matrix elements

K =
1

a2

(
K11 K12

K12 K22

)

;

K11 = −2 a2UX1 + 4 φ̇2
1 UX2

1
+ φ̇2

[

4 φ̇1 UX1X3 + φ̇2 UX2
3

]

;

K12 = −a2 UX3 + 2 φ̇2
1 UX1X3 + φ̇2

[

φ̇1

(

4UX1X2 + UX2
3

)

+ 2 φ̇2 UX2X3

]

;

K22 = −2 a2UX2 + φ̇2
1 UX2

3
+ 4 φ̇2

[

φ̇1 UX2X3 + φ̇2 UX2
2

]

.

(8.10)

D =
1

2

[

φ̇1 (UΦ1X3 − 2UΦ2X1) + φ̇2 (2UΦ1X2 − UΦ2X3)
]

J . (8.11)

M = −
(

2 UX1 UX3

UX3 2 UX2

)

k2 +

(
α11 α12

α12 α22

)

; (8.12)

the explicit expressions for αij are omitted for sake of brevity and will be not relevant for the discussion.
The main features are the following

8For simplicity we take the spatially flat case.
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• The kinetic matrix is k-independent and the off diagonal elements are related to the presence of
the operators X3 and UX1X2 6= 0.

• In the presence of shift symmetry: UΦi = 0 and then automatically D = 0.

• The mass matrix is k-dependent.

As a physical example in 1+3 dimensions, we can consider two scalar fields fluids such that K is
diagonal (no kinetic mixing) and with constant sound speeds;

U(X1, X2,Φ1,Φ2) = A1 X

1+c2s1
2 c2s1

1 +A2 X

1+c2s2
2 c2s2

2 + V (Φ1,Φ2) ; (8.13)

which at the background level gives φ̇1,2 = a
1−c2s1,2

K =






(1+c2s1)a
1+c2s1

c2s1
0

0
(1+c2s2 )a

1+c2s2

c2s2




 , D = 0 , M =






(1+c2s1 )a
1+c2s1

c2s1
k2 a4 m2

12

a4 m2
12

(1+c2s2)a
1+c2s2

c2s2
k2




 .

(8.14)
The canonical fields can be introduced to get rid of K by ϕ = K−1/2ϕc; as a result the new quadratic
Lagrangian has K = I, still D = 0 and

Mc =






c2s1 k
2 − 1

4 (1 + c2s1)
2H2 − 1

2 (1 + c2s1)H′ a
2−c2s1

−c2s2 cs1 cs2 m2
12

(1+c2s1)
1/2(1+c2s2)

1/2

a
2−c2s1

−c2s2 cs1 cs2 m2
12

(1+c2s1)
1/2(1+c2s2)

1/2 c2s2 k
2 − 1

4 (1 + c2s2)
2H2 − 1

2 (1 + c2s2)H′




 . (8.15)

The mass matrix can be diagonalized by an orthogonal transformation with a time dependent mixing
angle θ which will inevitably lead to a gyroscopic system with

D =

(
0 −θ̇

θ̇ 0

)

; tan(2 θ) =
8 cs1 cs2a

3−cs1/2−cs2/2

(c2s1 − c2s2)(1 + c2s1)
1/2(1 + c2s2)

1/2
[
2H′ + (2 + c2s1 + c2s2)H2

] .

(8.16)
Even the case of two non-canonical scalar fields with a mass mixing in a FRW background is a
gyroscopic system in disguise [13].

8.2 Space-dependent vevs

In this case it is convenient to define as in four dimensions Φi = xi+ ∂x√
~∇2

Si (i = 1, 2) and, as discussed

in section 2, we need shift symmetry; thus the generic Lagrangian has the form U(X1, X2, X3) and
for the matrices K, D and M we get

K = −
(

2 UX1 UX3

−UX3 2 UX2

)

D = 0 ; (8.17)

M = −k2
(
M11 M12

M12 M22

)

;

M11 =
4
(

UX2
1
+ UX1X3

)

+ UX2
3

a2
+ 2UX1 ;

M12 =
4UX1X2 + 2 (UX1X3 + UX2X12 ) + UX2

3

a2
+ UX3 ;

M22 =
4
(

UX2
2
+ UX2X3

)

+ UX2
3

a2
+ 2UX2 .

(8.18)

In this case
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• the off diagonal elements are induced by the presence of the operator X3;

• we have always D = 0;

• the mass matrix is quadratic in k and it is not diagonal when the operator X3 is present and
UX1X2 6= 0.

An explicit example in Minkowski spacetime can be found in [39] where the effective field theory for
the interactions between acoustic and gapped phonons was studied. In a FRW set up, we see that
the non diagonally kinetic and mass matrices will induce an effective D matrix once the Lagrangian
will be rewritten in the canonical form (3.3).

8.3 Mixed vevs

Finally, in the mixed vevs case we have

Φ1 = φ(t) + T , Φ2 = x+
∂x
√

~∇2
S . (8.19)

Now the SO(3) invariant operators are X1 and X2 of (8.8) and

X̃3 = X2
3 . (8.20)

as can be by deduced by (8.4,8.5) and the Lagrangian is then of the form U(X1, X2, X̃3,Φ1). Omitting
for simplicity the kinetic matrix, we have

D =
k
(
2 UX1X2 − UX̃3

)
φ̇

a2
J ; (8.21)

M = −





2 k2
(
a2UX1 + UX̃3

)
k β12

k β12 2 k2
(

UX2 + 2
U

X2
2

a2

)

+ k2 γ



+

(
α11 α12

α12 α22

)

; (8.22)

once again the expression of αij , β12 and γ are not relevant for the discussion. The main features are

• the kinetic matrix is always diagonal;

• The system is genuinely gyroscopic being D 6= 0 when UX̃3
6= 0 and UX1X2 6= 0 with an overall

k dependence.

The present case is the most interesting one and will be further studied in 1+3 dim in the following.

9 Bunch Davies vacuum

The Bunch-Davies (BD) vacuum is the vacuum of election to set the initial conditions for cosmological
perturbations during a de Sitter or quasi de Sitter period. A simple and physical way to define the
BD vacuum is to invoke the equivalence principle according with at very small scales gravity does not
influence local physics. In this context, by choosing conformal time as in (8.6), we impose that at
early time, namely when a → 0, the gyroscopic system behaves as in a Minkowski space, namely the
Lagrangian in such limit is time independent. By taking a = t2/(1+3 w), the required time-independent
Lagrangian at early time is obtained when the matrices entering the gyroscopic system are of the form

K =

(
κ̄1 aξ1 0

0 κ̄2 aξ2

)

, d = d̄ aς+
ξ1+ξ2

2 , Mij = m̄ij + m̂ij a
ηij ; θ̇k = 0 ;

all quantities with a bar are constant in time and

η11 = ξ1 ≤ 0, η22 = ξ2 ≤ 0, η12 ≥ ξ1 + ξ2
2

, w < −1

3
, ς ≤ 0 . (9.1)
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By using the procedure of appendix A to reach the canonical form (3.2) for the matrices of a gyroscopic
system, we get in the limit a → 0

L(BD) =
1

2
ϕ̇t ϕ̇+ dc ϕ

t J ϕ̇− 1

2
ϕt M (BD) ϕ ;

dc =

{

0 ς 6= 0
d̄√

κ̄1 κ̄2
ς = 0

;

(9.2)

the constant mass matrix M (BD) is given by

M (BD) =





m̂2
1,1

κ̄1

m̂2
1,2√

κ̄1
√
κ̄2

δ
(ξ1+ξ2)/2
η12

m̂2
1,2√

κ̄1
√
κ̄2

δ
(ξ1+ξ2)/2
η12

m̂2
2,2

κ̄2



+ δ0ξi





m̄2
1,1

κ̄1

m̄2
1,2√

κ̄1
√
κ̄2

m̄2
1,2√

κ̄1
√
κ̄2

m̄2
2,2

κ̄2



 . (9.3)

Notice that the d is different from zero only when ς = 0. In a rotational invariant theory, the
dependence of spatial momentum of the mass terms is of the form

m̂2
i,i = c2si k

2 κ̄i ; (9.4)

and c2si play the role of non-trivial sound speeds. At small scales for which k is very large, D is relevant
only if d̄ ∝ k. This is the case when fields which develop both space and time dependent vev. An
example is supersolid inflation [16, 15] where w = −1, ξ1 = −ξ2 = 4, η12 = 1, ς = 0. On the contrary,
when only fields which develop time-dependent vev are present, the matrix D is not important in the
limit of large k used in the selection of the BD vacuum [13].

10 Dynamical Dark Energy as a Gyroscopic System

One of the open questions in modern cosmology is the nature of dark energy that is driving the present
expansion of our universe. The simplest option is to add a non-dynamical cosmological constant to
the Einstein equations. Alternatively one may try to device a dynamical model for dark energy
associated with a medium of some sort with pressure p, energy density ρ and an equation of state
p ≈ −ρ. A perfect fluid with a single scalar degree of freedom9 does not work: the energy momentum
conservation forces ρ to be a constant and one gets back to a cosmological constant. To move on one
needs to go beyond a perfect fluid and/or add degrees of freedom. As matter of fact, four scalar fields
{ΦA, A = 0, 1, 2, 3}, three {Φa, a = 1, 2, 3} with an ~x-dependent vev and Φ0 with a time-dependent
vev can be used to describe the most general non-dissipative self-gravitating medium at the leading
derivative expansion and the analysis of section (2) applies. In particular, a genuine D term is present
and we are dealing with a gyroscopic system. The action is

S = M2
pl

∫

d4x
√−g U(b, y, χ, τY , τZ) ; (10.1)

where

b = (Det[Bab])1/2 , y = uµ∂µΦ
0 , χ = (−gµν∂µΦ

0∂νΦ
0)1/2 ,

Bab = gµν ∂µΦ
a ∂νΦ

b , τY =
Tr(B2)

Tr(B)2
, τZ =

Tr(B3)

Tr(B)3
a, b = 1, 2, 3

(10.2)

and

uµ = − ǫµναβ

6 b
√−g

ǫabc ∂νΦ
a ∂αΦ

b ∂βΦ
c , u2 = −1 . (10.3)

9Two additional degrees of freedom corresponding to a single transverse vector are present, however, thank to the

conservation of the vorticity, their dynamics is trivial.
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The energy-momentum tensor (EMT) has the form

Tµν = (U − b Ub)gµν + (y Uy − b Ub)uµ uν + χUχ vµ vν +Q(Y )
µν UτY +Q(Z)

µν UτZ ; (10.4)

with
vµ = χ−1 ∂µΦ

0 . (10.5)

In flat space or on a spatially flat FRW spacetime10 ūµ = v̄µ, Q
(Z)
µν = Q

(Y )
µν = 0 and the EMT is the

one of a perfect fluid with

ρ̄ = −U + χ̄ Uχ + ȳ Uy , p̄ = U − b̄ Ub . (10.6)

Depending on che choice of U , different equation of state for the medium can be considered. In [40]
there were studied models, dubbed Λ-media, featuring an exact equation of state p + ρ = 0 (i.e.
w = p/ρ = −1), valid not only at the background level in a FRW metric but also at the non-
perturbative one; this is the case by taking

U(b, y, χ, τY , τZ) ≡ b1+w Uw(b
−w χ, b−w y, τY , τZ) . (10.7)

To study stability, away from any possible Jeans instability, it is sufficient to consider the limit of very
large spatial momentum k and forget about the expansion of the universe and metric perturbations11.
The scalar fields fluctuate according with

Φ0 = φ(t) + π0 , Φa = xa + πa . (10.8)

The πa excitations are decomposed according to πa = πa
⊥ + ∂aπL. The transverse part πa

⊥ with
∂aπ

a
⊥ = 0 describes vector modes that are not considered here while πL represents phonon modes.

As discussed in section 2, the structure of the vevs of the scalar fields is such that the quadratic
Lagrangian derived from (10.1) has precisely the form (2.16) and reads

Lph =
(p̄+ ρ̄+M1)

2
Ṡ2 +M0 Ṫ

2 +
(M1 − 2M4) k

2

(

S Ṫ − T Ṡ
)

+ (M3 −M2) k
2 S2 +

M1

2
k2 T 2 ,

(10.9)
where we have set S = k πL, T = π0 and

M0 =
1

2
(Uχχ + 2Uyχ + Uyy) , M1 = −Uχ , M3 =

1

2
Ubb , M2 =

UτY + UτZ

27
,

M4 = Ubχ + Uby −
1

2
Uχ − Uy .

(10.10)

By defining the dimensionless associated parameters ci through Mi = ρ̄ ci we have that a Λ-medium
with w = −1 gives the constraints12

w = −1, c0 = c4, c2 = 3 (c3 − c4) . (10.11)

The positivity of the kinetic terms imposes

c1 > 0, c0 > 0 . (10.12)

In the normal region of stability (4.4) the positivity of the mass matrix requires that

(c3 − c2) ≤ 0, c1 ≤ 0 (10.13)

10The bar denotes background quantities and in Minkowski spacetime b̄ = χ̄ = ȳ = 1.
11As shown in [41] one gets the very same result by the full analysis of quadratic perturbation in perturbed FRW universe.
12This can be seen as the consequence of a Lifshitz scaling symmetry [14].
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which is clearly incompatible with (10.12); thus there is no room for stability in the normal region.
Stability in the anomalous region defined by (4.5) requires that

(c3 − c2) = 3 c4 − 2 c3 ≥ 0, c1 ≥ 0 , (10.14)

0 < c1 ≤ c4 −
√

c4 (3 c4 − 2 c3) , (10.15)

and no inconsistency is present and one easily check that U of the form (10.7) does the job. A point
worth to be stressed is that stability with w = −1 requires c2 6= 0 which signals the presence of a solid
component in the medium associated to the operators τY and τZ ; incidentally the very same operators
turn on an anisotropic stress part in the EMT (10.4) and by the gravitational Higgs also generate
a mass for the graviton. Thus there is no fluid-superfluid medium that is stable with w = −1. At
the same time the actual realization of stability also requires that c4 6= 0 together with c1 6= 0 which
means stability also needs for the presence of a superfluid component related to the operator χ. The
bottom line is that one can model a dynamical dark energy with w = −1 that is stable at the quadratic
level, the price to be paid is that the Hamiltonian is not positive definite and is connected with the
Pais-Uhlenbeck oscillator. The results in [4] indicates that even in the presence of non-linearities the
existence of unavoidable pathologies are far from being automatic.

11 Conclusions

We analyzed the classical and quantum dynamics of quadratic non-dissipative gyroscopic system that
are characterized by a Lagrangian with a term of the form ϕ ϕ̇ that is non-trivial when at least two
degrees of freedom are present. In Minkowski spacetime such a term naturally appears when one
consider a set of coupled scalar fields in which some fields acquire a space-dependent vev and others
a time-dependent one, spontaneously breaking the Lorentz group down to the rotation group SO(3).
The minimal number of scalar degrees of freedom for a gyroscopic system is two and they can be
interpreted as the Goldstone modes for the spontaneous breaking of temporal and spatial translations
but also as the phonon-like excitations of a supersolid, a medium which has a superfluid and a solid
component. We studied the classical and quantum dynamics by using symplectic techniques. The
system is classically stable in two different regions in parameter space. In what we call normal region,
the Hamiltonian is positive defined while in the anomalous region the Hamiltonian is not positive
defined; indeed, after a suitable canonical transformation can be written as the sum of a standard
harmonic oscillator and a ghost-like oscillator. As a result, a gyroscopic system in the anomalous
region of stability is related to the physics of the Pais-Uhlenbeck oscillator. In the anomalous region
of stability a resonant behavior in the 2-point correlation function can take place and it is intriguing
that it is behind the slow instability found in [4] when the modes of the standard and the ghost modes
are coupled. The very same resonant behavior is behind the maximization of the entanglement when
the ghost mode is traced over.
On a time dependent background as FRW (we always retain rotational invariance), the definition of
gyroscopic systems becomes ambiguous due to the possibility of performing a time-dependent field
redefinition, however it is possible to identify a set of field redefinitions such that a generic Lagrangian
with two scalar fields can be brought in the canonical form (3.2) for which the kinetic matrix is the
identity, the mass matrix is diagonal and there is a gyroscopic term that mixes the fields with their
time derivative through the antisymmetric matrix D. The presence in the canonical form of the
Lagrangian of a non zero matrix D is taken as the definition of a gyroscopic system. It turns out
that a non-trivial D can be induced by a time-dependent non-diagonal kinetic and/or mass matrix in
the original Lagrangian which can be important for the existence of the Bunch-Davies vacuum. As
a result, in a time-dependent background, two coupled fluids/superfluids and two coupled solids can
also be gyroscopic, see (8.13) and (8.2). Finally, we have shown that dynamical dark energy can be
described as a gyroscopic system in the anomalous region of stability.

ACKNOWLEDGMENTS

23



We thank Marco Celoria and Rocco Rollo for participating to the early discussions concerning the
subjects analyzed in this paper. D.C. is grateful for pleasant discussions with Thomas Colas during
the Hot topics in Modern Cosmology Spontaneous Workshop XIV May, 2022, IESC Cargese, France.

A Canonical Form

A generic symmetric time-dependent matrix T can be diagonalized by an orthogonal transformation

Rt T R = Td =

(
τ1 0
0 τ2

)

, R =

(
cos θ sin θ
− sin θ cos θ

)

. (A.1)

The kinetic matrix K in (2.16) is positive definite with eigenvalues κ1 > κ2 > 0 and Kd = Diag(κ1, κ2).
By using (A.1), after the following field redefinition

ϕ = AK ϕ′, AK = RK K−1/2
d , (A.2)

one gets the Lagrangian

L′ =
1

2
ϕ̇′ K′ ϕ̇′ + ϕ′ D′ ϕ̇′ − 1

2
ϕ′ M′ ϕ′ ; (A.3)

where

K ′ = III, (A.4)

D′ = At DA− θ̇K
Tr(K)

Det(K)1/2
J ≡ d′ J , d′ =

d− θ̇K Tr(K)

det(K)1/2
; (A.5)

M′ = At MA− Ȧt K Ȧ+
1

2

d

dt

(

Ȧt KA+At K Ȧ
)

. (A.6)

One can also diagonalize the mass with M′ = Diag(m̃2
1, m̃

2
2) to arrive to the canonical form given in

(2.16) by a final field redefinition
ϕ′ = RM ϕ′′ = A−1

M ϕ . (A.7)

The structure of the Lagrangian in the canonical form for a gyroscopic system is given by

L′′ =
1

2
ϕ̇′′ ϕ̇′′ + ϕ′′ D ϕ̇′′ − 1

2
ϕ′′ M ϕ′′ ; (A.8)

where ϕ′′ = R−1
M K1/2

d R−1
K ϕ and

D = D′ − θ̇K J = dc J , dc =
d

Det(K)1/2
− θ̇K

Tr(K)

Det(K)1/2
− 2 θ̇2M, (A.9)

M = M′ − 2 θ̇2M III =

(
m̃2

1 − 2 θ̇2M 0

0 m̃2
2 − 2 θ̇2M

)

≡
(
m2

1 0
0 m2

2

)

. (A.10)

B Lagrangian Transformation

When the matrices are in the canonical form (3.2) but time-dependent, the equations of motion derived
from (2.16) are the following

ϕ̈− 2Dϕ̇+
(

M + Ḋ
)

ϕ = 0 . (B.1)

Let us now show that is not possible by a Lagrangian field redefinition to set D = 0. Taking ϕ = L ϕ̃,
we get the following new form for the matrices in (2.16)

III → Kn = Lt K L , D → Dn = L̇t L+ Lt DL ,

M → Mn = LtM L− L̇t L̇− 2LtD L̇ .
(B.2)
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To find Dn = 0, L has to satisfies

D̃ = LtDL+
1

2

(

L̇tL− LtL̇
)

= 0 ⇒ 2D + LL̇t − L̇Lt = 0 . (B.3)

Clearly there is no solution if L̇ = 0. If L is orthogonal then the solution is

L̇ = DL . (B.4)

However, by a time-dependent field redefinition of the form

L =

(
cos θ(t) sin θ(t)
− sin θ(t) cos θ(t)

)

, θ̇ = d , (B.5)

the resulting Hamiltonian takes the form

Hn =
1

2
P tP +

1

2
ϕ̃tMn(t)ϕ̃ (B.6)

and it is inevitably time-dependent. The time dependence is rather special and it is of the Floquet
type, namely

H̃(t) = Hn(t+ T ) , T =
2π

d
. (B.7)

Such time dependent Hamiltonian is often found in condensed matter physics. In the canonical form
M is diagonal and thus we get

Mn =

(
d2 +m2

1 cos(d t)
2 +m2

2 sin(d t)
2

(
m2

1 −m2
2

)
sin(d t) cos(d t)

(
m2

1 −m2
2

)
sin(d t) cos(d t) d2 +m2

2 cos(d t)
2 +m2

1 sin(d t)
2

)

. (B.8)

C Hamiltonian Diagonalization

The Hamiltonian diagonalization requires a symplectic decomposition (congruence transformation).
According to the Williamson theorem [27], if H is a real symmetric positive matrix of order 2n,
there exists a symplectic matrix S such that C.3 holds and given ΛH = diag (λj = i ωj) we have
det (ΩH± i ωj I4×4) = 0 and the matrix S admits the decomposition

S =
√

ΛHO

√
H−1 ; (C.1)

where O is an orthogonal matrix satisfying

O
√
HΩ

√
HO

t = ΛH Ω . (C.2)

All the eigenvalues of the matrix ΩH are purely imaginary and

St · Ω · H · S = diag (i ω1, −i ω1, i ω2, −i ω2) . (C.3)

Classical Stability requires that the fundamental frequencies Ωi ∈ C and λ∗
i = −λi. Once the Hamil-

tonian is diagonal, the Hamilton equations (5.6) are simple to solve. Imposing the initial conditions
zkkk(t = 0) = z0, we can formally write the solution of the above system as

z~k(t) = Gk(t, t0) · z0 ; (C.4)

where Gk(t, t0) satisfies

∂tGk(t) = Ω · Hk ·Gk(t, t0), Gk(t0, t0) = I4×4 . (C.5)

The solution is
Gk(t, t0) = Tτ e

∫ t
0
dτ Ω·Hk(τ) . (C.6)
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When Hk is time independent the T ordering disappears and we have

Gk(t) = eΩ·Hk t . (C.7)

The time evolution matrix G is symplectic:

{z, z†} = G · {z0, z†0} ·G† ⇒ Ω = G · Ω ·G† = G · Ω ·Gt, ; (C.8)

with a real G.
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