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1. - INTRODUCTION AND OUTLINE

The subject of high energy scattering in string theory has been receiving
increasing attention recently [1-5]. There are many motivations for such an

interest,

1) High energy (i.e., energy much larger than 1/¥e') is a regime in which the
string loop expansion parameter ag. is enhanced by factors 0(a's) >> 1. Thus lcop
corrections become non negligible even for aSL<< 1 and are actually crucial in
order to recover s-channel unitarity bounds which are violated at tree level

(4,5].

2) High energies produce large gravitational fields (i.e., non~trivial space-time
metrics). These should induce classical general relativity effects which are,
however, absent in tree-level calculations around flat space-time. Do string loops

account for these expected classical effects?

3} String theory is supposedly a scheme in which quantum gravity effects are calcu-
lable. Thus, we do not only expect to reproduce classical general relativity in
some large-distance regime; we also expect to learn about quantum and string cor-
rections to general relativity at not-so-large distances, in particular to learn 1if
and how some of the ubiquitous singularities of classical general relativity are

avoided in string theory.

4) Finally, if one ceould combine large-momentum transfers and high energies, one
could perhaps understand the short-distance structure of string theory and of

space-time itself.

In a recent letter [1] (hereafter referred to as 1) we have discussed some
results, especially on the issues 1) and 2) meonticoned above. The purpose of this
paper is twofold: (i) we wish to give a more complete account of the methods used
and of the results given in I, and (ii) we shall discuss some new results especial-
ly about peint 3). It will be evident that, at some point (i.e., at sowe scale) we
shall reach the limit of our present understanding of what goes on in the scatter-
ing process. Beyond that limit could lie some very interesting new phenomena

bearing on the fundamental issues alluded to above in point 4).

In order to be able to distinguish classical general relativity effects from
those due to string and quantum corrections, it is useful to digress a moment oun
the various scales appearing in string theory in general and in our scattering

problem in particular.



String theory possesses a fundamental classical constant, a' = dJ/dM?2, which
in units ¢ = 1 (but not & = 1) has dimensions 1/E. Its inverse is the string

tension. A convenient system of units in string theory is one [6] in which ¢' is

used to convert energies into lengths:

, —
F — 20 E = £ (1.1)
in analogy with (D=4) classical relativity (E+GNE).

In this system of units the usual quantum constant 4 is replaced by a funda-

tal g t 1 th A defined by:
mental quantum leng ; defined by

2
ZO(’PLl = ,\5 (1.2)

and all observables become functions of ks, ¢ and of dimensionless coupling

constants.

In order to make contact with more familiar guantities, let us recall [7] that
the double expansion of the string effective action in o-model and string loops

takes the form:

- ! 2 ~— 2 L2
-—"5!{{ = —’— 5 = -l { - ?[ X L"g (Q, R -+ Qz Js ﬁ'f'"') -
k (H' A: °{p /1;,“

2 2 [ofake) 4o

. ;\'{D-e gp/f V%[é,?»&é)ﬁ*“') + 3%_# o % Iz ke (1.3)

< 5
where D is the number of effective (i.e., uncompactified) dimensions at the scale
of the problem under study; hz is the usual parameter of the g-model loop-expansion
(i.e., an expansion in derivatives of the background fields, see BRef. [7],
Chap. 3.4); o« is the effective string loop expansion parameter in D dimensions,
taking into account the volume V of the compactified space through
l1o-p
O(D = O(SL -——‘5/—- ’ °<SL.-=- °<IO (1.4)

and T is the already mentioned string loop, or topological expansion, parameter.

10

Both « and VKSDH are related to the expectation values of dimensionless

SL
scalar fields. Here we shall regard them as free parameters, to be adjusted in
order to define convenient regimes, even if, ultimately, they might be dynamically

determined [8]. We have also assumed that no cosmological constant appears in

Seff'
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At sufficiently low energies and sufficiently small o the first term in
{1.3), the usual Einstein term, dominates and the relevant classical dimensionful

constant for gravitational interactions becomes:

2 \D"’_ 1617 Gy,
Jo = %0 s 7 (1.5)

The relevant length associated with an energy B is the corresponding Schwarzschild

(or gravitational) radius Ry (E) given by

p-3 > F
R(E)"'ai-f: 0() 5525/!/ (1.6)

s 16 /m’-

apart from numerical constants discussed further on,

The quantum gravity scale RP is given by

N y lp-z
g.vt = J° ’\5 = o7 (1.7)
327 ve T

We are now ready to define the high energy regime that we shall analyze. We

always assume that

o(D 1 (. €. ’\p<< A’ {1.8a)

and we look at energies for which the tree amplitude is large, 1.e., in the c¢.m.

frame,

- — —_—2
oLy 221 ( = £ (1.8b)

Al ral

or o (a s) 21, in usual notation. We are therefore interested in the region

(E/As) e (As/),.)p 27> 1 (1.9)

D—2
'
's 2 (M) >7
We also work (to start with) at fixed t, i.e.,
- 4
—_ 2 i
H"f:_jr/ ";gz (lH‘é /\5‘?5-2 ) (1.10)
< '3
Vl/lO-D

av

where the second restriction (in which Rc } is there to ensure that

compactified momenta are not appreciably excited.

We shall see, however, that these conditions can be somewhat relaxed. The real
limitations of our approach are better given, in impact parameter (b) space, by the

conditions
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b? A.—, ; A> RS(E) (1.11)

which are weaker than (1.10) and cover also the region of small, but fixed, angles

(Section 6).

The smallness of an, allows us to define a hierarchy of contributions, in the
high emergy limit, corresponding to the various spin values (Regge trajectories) of
the exchanged string states. Since the leading (graviton) trajectory 1is at
xlt) = 2+(a'/2)t, we expect that graviton exchanges will dominate energetic,
light-string scattering amplitudes for any number of loops, the gravitino, dilaton

and "charged" state exchanges being subleading by at least one power of s.

The nature of this expansion is best clarified by going to impact parameter
space and by observing that the leading loop corrections contain powers of the

dimensionless quantity g (g/hé) = ch(oc's/‘ﬁ). For a single string state, s is

naturally quantized in uni?ts of ?\2 and the loop corrections are O(aD). Instead, if
we regard s as a classical energy, remaining 0(1) as ?\g ~<h + 0, each loop contains
an extra inverse power of ?\i (#), which is just the analogue of eZ/4mwhc per QED
loop. The sum over the leading corrections then exponentiates in a typical eikonal
fashion, giving exp(i/}\z §) = exp(i/fh 8), with an eikonal "phase"*)that can be

expanded as
- = NITRV i
S. £S5 a, (&) [k "

A; /\: f19,r %0 7 b b P (1.12)

L

4D f‘.b{Rs(E)/b]D“3 is the leading classical eikonal phase, while

Here 59 ~ g% s b
P 74 0 and q # 0 terms correspond, respectively, to string-size and classical
corrections. In the following, the r # 0 terms will be neglected throughout because

of our assumption (1.8).

We shall be able to resum in closed operator form all terms with p ;/O, q =20,
i.e., those corresponding to the strimg corrections to the leading classical term.
For classical corrections (i.e., q # 0 terms) we shall only be able to discuss
semiquantitatively the leading term, which turns out to have q = 2. This will
enable us to identify the region in b in which our previous resummation can be

trusted. Such region will depend on whether Rs is smaller or larger than 7\S {(both

%) We use inverted commas to underline the fact that this phase is occasionally
complex.



- 5 -

cases being a priori possible in cur regime) and it is obviously in the former case

that our results will have a wider region of validity.

The outline of the paper is the following. In Section 2 we present a
“"standard" computation of the asymptotic behavicur of the one-string-lcop diagram
(the torus) in the region of interest, using and correcting a recent paper Dby
Sundborg [9]. In Section 3 we show how the result of Section 2 can be exactly
reproduced by using old-fashioned Regge-Gribov techniques. In Section 4 we
generalize this method to the generic multiloop case and formally resum the loop
series in closed operator form. In Section 5 we analyze the result - including
string corrections — in impact parameter space, while in Section 6 we transform the
result into momentum transfer (or scattering angle) space showing the emergence of
classical relativity effects. This section describes the main features of the
resunmed amplitude in a self-contained form, for those who are not interested in
the detailed calculationms of Sections 2-5. In Section 7 we discuss subleading
corrections, typically non-leading classical effects. Finally, in Section 8 we
discuss our results - which include small fixed-angle scattering = recognizing the
importance of string and classical effects at intermediate distances even in

comparison with the short-distance contributions discussed by Gross and Mende [2].

7. — ASYMPTOTIC BEHAVIOUR OF THE ONE-LOOP AMPLITUDE

in this section we shall obtain the large s, fixed t asymptotic limit of the
graviton-graviton scattering amplitude (Fig. 1) wup to one leop in Type II

superstring theory. Similar results will hold in any clesed superstring theory

which is one~loop fimite,

1f 10-D dimensions are compactified, this amplitude, in units aé = 3

9 ) -4
i) Tle$) Tre2)

=5 = ¢

= 1, is given by [7]

Alf = Zj‘: [(C!

.f.

? 3 2 4, ks
+ gfoz ! ’_,’_/_fl’, F (T E- ) T O/Eyr //]b/.trs (2.1)
(T () @ e Tres E

where the normalization of the loop term has been taken from Ref. [10].

In this equation, Kcl is the standard superstring kinematical factor [7] whose

asymptotic behavicur is
4
/JJ "(g) £ & &-& (2.2)



As already discussed, g% (deroted simply by g2 in the fellowing) and g%o are Lthe

D-dimensional and ten-dimensional gauge couplings respectively, and are related by

2
2_0 = jV (2.3)
Vor
where V is the volume of the compact space.

10-p

In the integral representing the loop countribution, ¥ is the fundamental

region:

[R{’f’éé / )EFVI'}<£ (r:Q,‘,c)

o_c:zag,gju,t ) 1< %t < o (2.6)

while Fp is the compactification factor for closed strings [7]. This depends on the
details of the compact manifold and in particular, for toroidal compactification,

on the radii R, . However, in the limit we consider:
c,1

-2

é—(d Q(’; (2.5)

the details of compactificaticn do not enter. The relevant limit in parameter space

is, as we shall see, Im T > « and there we find simply:

5%

¢

9T Ff k) s glbntiie) Y = g5 (TR

Ip-p
R %) (2.6)

i.e., the dependence of Fp on the radii is just the right one needed to convert g%o

into g% [or to make the leading loop effects we consider O(g%) as expected]. The

residual D-dependence of {2.6) is just in the power of Im tv and will be given a
wiv,-v,) 2niv

momentum phase space interpretation below. Finally, x,.. = x(e r ye } is

given in terms of the Jacobi @-function by

X{ezln‘p (zm'r) _ o @1(1111') MP(_ Tf(f’ml’)e S
‘ - ' %"' t Ty toe
@1 (0/'[') YY0 fixeef

. 4
2 ¥/ 14 S res
- (oa.sf.abs!’o[~ﬂ“__(;2‘_‘_‘.£} + p,(;'?”sz(’ + _ezm(r ))J (2.8)
et T

where we have given the asymptotic behaviour of y that will be relevant for our

calculation.



Since the expression (2.1) for the amplitude on the mass shell (s+t+u=0) is
properly convergent for imaginary s, we shall compute its s » i=m asymptotic

behaviour. The s and t dependence in the integrand of (2.1) appears in the factor

-5

—

{ 7(5,5 Icr/. Vic Aaet - (}g{:‘f)

xac I{,a{ 7(@( zb‘/

It is thus easy to realize that, for s » +ie, the relevant integration region

(2.9)

is the one around the points
O"“(]f; _;2) =0 ; 74«« (Z'—‘é) =0 (2.10)
and, by (2.8), of large Im v = 0(log s).

By using the asymptotic form of x in (2.8), we find that the integral over

*
VeV and T-v in the region (2.10) is governed by the factor )

gof‘.'ta(r-i.;) 0{]4«(%-‘2) opl- 5 = Z“(rp) A P

oot
‘,'Lq‘([ M(:sglﬂ”) — Z_S;'_'I-«r (2.1
(s o ¥

Following Sundborg [9], we them introduce the variables a,b,c and x by

/?.Ué = Re l"-—(éﬂ) R(Vé,:’ &(,(a..() 1 &l{-_— f(('—("ﬂ‘)

7

_ S (%) (2.12)
2 Nau T
se that, by setting Im(vb—vc) = Im(t—va) = 0, the facter (2.9) takes the form

X

-t :
;: [4 U 0. Rp {ZITX(I-X]ZM l’)] M}p[fv(-c’ odlla  +

+ <€ am(ix)Be rmzfl'[fe r-a) ) b U;OT-] ) Ty | v N'(éic)l (2.13)

Similarly, we perform the integrations over Re 7 and a, which are simple and

provide, each, a Bessel function.

Finally, by inserting the various factors (2.2), (2.6), (2.11) and (2.13) into
the loop representation (2.1), we cbtain

*) The spurious log s factor present in the computation of Ref. [9] was due to an
impreoper subdivision of the integration region.
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- 2w x(1x) fur T .
et dee Jritfix) deee ¥
* 2 P4 € ](4:'59:0_‘_-? ’ y, Jo-(lf.‘sﬂ;a:z )
LEXy) 6

Here the integrations over Im 1t and x will be dominated, for s + ie=, by
Im 7 = 0(logs) » = and by a saddle point at x = 4. We prefer, however, to recast
Eq. (2.14) into a form directly invelving powers of s, that will then be
interpreted as a Regge cut. Indeed, the 04,0~ and Im T integrations can be

explicitly performed by a series expansion of the Bessel functions, yielding the

expression .

1_-_ | D—l ( 1) %)2("*-‘*) 42’441»?“" BZ(/-‘{‘@.M. ,;—.’)
BRI P rpry ey

where 52 = |t|, B is the usual beta-function, and the (D-2)-dimensional transverse

integration dk replaces the x-integration by the identity

P

o/x 7« F(‘ ) = A4
[‘7 x( —x)+241x+2"‘f"").] z [2“*(%21%)1][2‘“*(5!1“&)] (2.16)

Finally, we caan sum the series ian (2.15) by a double Sommerfeld-Watson
transform [Il1] in the n,m complex planes [i.e., picking up the poles at

n = —(%3+5)2 = +t;, Im = —(igjg)z = +t5] and we obtain



o-2 iy tietr
A(l":‘_)___) & bt & & ‘,(3)3(7?-)’-_,-[’/ £ (S-e <
$-3 W 2 ¢ (27 b2 2
. .
rey) ey [ 1etotyt)
) (2.17)

rest) Tio%) v test)

where we have continued the phase in the integrand to the physical s-axis.

Equations (2.16) and (2.17) show that the factor (/Imr)lO-D arising in (2.6)
from the compactified dimensions corresponds to reducing the transverse phase space

integration to (D-2) physical dimensions.

The final expression (2.17) contains a superpositiom of powers of s, typical
of a Regge cut, with a maximum power (given by ty=tp=t/4} at J = 3+t/2. Its leading

asymptotic behavicur is

. + 2 ?
A(w L) 5y Loy

> &.& &€ 7 ¥ &/
2

soe (o7 %5) S\G) [ fg)

(2.18)

This behaviour is valid for |t]|log s >> 1 and comes from the region x = % in
(2.16), or t] = tp = t/4 in (2.17). In the opposite situation, i.e., t =+ 0, the

region of small t),ty (or »0,1) dominates and we obtain

2 7 D
A(L:’L—) 2:'({-}3;¢ A% N L[ﬁ;‘) . /?M}/(Tg_;}j
>0 et R ) T

D<)
(2.19)

This shows the existence of a singular t = 0 behaviour for D < 6, and of an

infra-red singularity at D = &, Both are related Lo the (massless) graviton

exchanges in the loop diagram.
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3. - THE REGGE-GRIBOV METHOD AT ONE-LOOP LEVEL

Having obtained the large s behaviour of the one-loop (closed) superstring
amplitude, we want to propose here a direct construction of its asymptotic form

through a simpler method which can be extended to multiloops.

Let us first see how the Regge-Gribov method {12] - that was originally
proposed in strong interaction physiecs - can be applied to strings, which are known
to be Regge-behaved at tree level. We know that the one-loop amplitude can be
obtained by a sewing procedure [13] (with a complete set of string intermediate
states) in which each element is a tree (Fig. 1). The same element gives rise to,

say, a six~point graviton tree amplitude (Fig. 2a).

When s » o and t are kept fixed, this sewing precedure simplifies, because

*
only the (non-degenerate) leading Regge trajectory contributes ) (Figs. 2b and 3).

The Regge-Gribov method for strings consists therefore of extracting, by
factorization, this leading behaviour from the explicit tree expansion (Fig. 2b) in

order to construct the loop behaviour (Fig. 3).

The fact that this methed correctly gives the asymptotic behaviour of loop
amplitudes rests on the very structure of string theory. We will be nevertheless

conforted by reobtaining in this way the one-loop result of Section 2.

It is known that the tree amplitude is Regge-behaved. For graviton-graviton

scattering we have, from Eq. (2.1},
- . <,
Atru(qé-aca/).. &€ &§& ag(st)

+ £
At) ¢ ) T _one
a(st) —> fBs = 27"[? Z(2) "
bec 5 >0 F(/f_f;‘)

where g. are the graviton polarization tensors.
i

(3.1)

The corresponding Regge amplitude is a simple pole in the t-channel angular

momentum at J = a(t) = 2+t, i.e.,
b4
ale)~ 7% (3.2)
J

*) Note that only physical states contribute to the leading Regge trajectory.
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corresponding to the graviton trajectory exchange. It is a simple matter to show
[5] that the impact parameter tramsform of (3.1) [given below, Eq. (5.2)] violates
partial wave unitarity at high energy, thus indicating that loop corrections are

important.

The asymptotic form of the loop amplitude is givem by the double graviton

Regge exchange of Fig. 3, which reads, in the J plane,

--IJ (A.:"/

A ICEE fo/s ST Afst)

—— !+ T " S
7/!-:4 A (Sr {'/ - 2 (Z]T)D"z (1 Z‘ ﬁ)

ﬂ((h/-f-ajff'l} p
£

(perf €)) .

i X,

2 2 o 4;
.[’fﬂa?’/ﬂ; §($~ Ma”a’) Z« /} (/fu?,H- -g'“"é} (ff{r (3.3)
s

where we have related the s-discontinuity of A(h=l) to the ones of the gravi-

Reggeon {GR) amplitudes 4%1%2  The latter are defined by the asymptotic behaviour

of the six-point function (Fig. 2b), as

/
A, —> €6 &L (5’(&.}2 ‘S(éz)s'{h) A (#le

S 1S. 2>
' 2
;= —7,2:"(£f1£l)2 , ét:"fll: "(é’fl“) (3.4)

By inserting the definition (3.3a) into (3.3b) and taking into account the

phase space boundary, we obtain the J-plane amplitude

v
A ig. Bparge)) [ A <:i]

where dq; denotes the transverse momentum integration in D-2 dimensions, and
g2 = g-qL- Note the shift J » J-g1-wz in the angular momeatum of the GR

amplitudes.

Our connection with string theory is provided by the expression of the

ayaz

six-point function from which, by (3.5), we shall calculate A . As is well

known, Ag is given in terms of the matrix element (Fig. &)

(6. h, } (A 1) VV&(I{”,&’) u{;ﬂ(’/ }tl) %ﬂb/ fz,ez) IE”"‘{> (3.6)
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where WE is the string vertex for graviton emission {7]

C A~ ch. X /?")
VVE(‘)?}) = g;)’ B BJ £ ((*)"' @) (3.7)

and, in light-cone notation, the expressions

B . P'_ R"i/«j = X,_L;——(o* ’] S(e) 5(@J

¢ _ ¢ . ¢ . g 5\/4, -
K@) =3 % - /"“/7’}*‘4.#";,*8
S(qe_) — ? S‘Mq 2_--“»1‘ (3.8)

(3.9)

represent the usual left-moving operators, and similar expressions hold for the

. . . ~1 ~a
right-moving ones in terms of g n and Sn

The s) and s) asymptotic behaviour of Ag in Fig. 4 is determined, as usual, by
the z) » 1 and 23 + 1 behaviour of the matrix element in Eq. (3.6). This is given
in turn by the leading singularity in the operator product expansion (OPE) of

pairs of vertices wg, that we shall now determine.

From their expression in (3.8) we find the OPE

Fce) F("’) ~ .. 2w

t

Z— (E— MV)

Ch.Kw)
Y b =

2w 2w

(3.10)

Pé) <
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Then, from their definition in Eq. (3.7), we obtain

<
We (k,,2) W (k,,w) ~ €. (/.fe,.ée)e =/ Wihb,,2)
2

2 -W/ 4 -;{,?lf‘g) 2

a . L&ej~f 225)]
W,(q.8 = e | -

(3.11)

Let us briefly discuss the physical content of Eq. (3.11). The operator Wo is
an off-shell scalar vertex: it occurs here because the helicity of the external
gravitons (1,2) is conserved, so that the exchanged graviton (q) is emitted in a
well-defined helicity state [++, say, if k) is alomg the (D-1) axis]. The {(1-k;kp)2
factor cancels the would-be tachyon pole of the scalar vertex and is due to a
compensation*) of the boscnic and fermionic (X and R) contributions to WE in

Eq. (3.7).

We finally note that

— 4 +(é;'r/lz)z _-2——9(/{511-‘:);)
f&-wf = [2-w]

(3.12)

so that the behaviour (3.11), inserted in (3.6), correctly gives Cthe asymptotic

behaviour (3.4). This provides the expression for %192,

2

7.
AM? = &by qﬂ('(;l.r?u?z/ =[S (Q,AQ)WJ%’”S/ W, (5.91Eked=
Tyl

2 -“??ft) 2 7b-€?z
“eg [T -8
m- (3.13)
which is simply tree-like, with poles in M? starting at M? = 0.

In order to go to the t-channel angular momentum, used in Eq. (3.5), it is

convenient to define, for dual amplitudes like (3.13), the beta-transform [14]

%) A similar compensation holds for the heterotic string, with a single power of
(l—klkz) .
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tde

s~ A
g = L oap b)) Bfse, ) ()
a‘:r(} Zeg 2TY ( 3( ’

C((g,(-) :It::’ 3{ (')[B('J,-.ZE)-t B(-J,-g)] (D

ide T

(3.14)

where B(x,y) is the usual beta function. This transform, for the 1leading
singularities, is simply related to the Mellin tramsform (3.3a) by
A

O(J_ = GJ /%J.,.:) (3.15)

The beta tramsform of (3.13) can then be given in closed form

S [ 7+t +dien)-ate))  [rer)
qj [?U?z) i} 2 (3.16)
r‘( T+ + X&) +&(br) -d(f'))

Z

showing a Regge pole at

T = K(H-—-d(ﬁ)-—d(&-‘) :--Z+!‘-é:~t‘ :"‘?"'2%'?!

and a fixed pole at J = -1,

(3.17)

Note that, because of the shift AJ = =(aj+xp) of Eq. (3.17) (due to the
peculiar helicities of the exchanged gravitons in Fig. 1b), the fixed pole is
leading over the moving one at small L, . Lts residue, that we shall call the
two-gravi-Reggeon vertex Vz(qyqp), is given by

(e
4

l/z = r’[”’f’*éz'f)  ['F9900%) = ﬁlqnﬁﬂ'z{”j?’/%)

i} ll-2.9) | [.;”"

= Y

Y=

(3.18)

Here the sum over string states reproduces the usual sum rule of the last
x1&o
J=-1"
integral expression (3.13) by setting || = 1 and has therefore the equivalent

equality which is just a The latter shows that Vp is obtained from the

form
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2T .oon : - 2 29,.
».(c3 9. ko) R ¥/

l/ _ /o._éol:e‘i { ::e :I0> :/_0_/_0‘/1_.8 l

: ) S pE2/4 (3.19)

0

where x{c¢) is the non-zero mode contribution to the usual closed string position
*
operator ) at T = 0, i.e.,

' \.Vn e (- _(‘V‘"
A =~ [0( | . ; }
- - £
Ny = ¢ < “ * %
# £0 (3.20)
We then see from (3.19) that V, is operatorially factorized, with a spectrum

of massive excitations given in (3.18). For qi,q2 » 0, V2 = 1+0((q142)%), and thus

the inelastic channels decouple in the soft graviton limit.

We are now ready to discuss the loop asymptotic behaviour. By inserting (3.15)

and (3.16) into (3.5) and by using the explicit form of B(t) in (3.1}, we find

=t) D-2
1‘\(;(“ :_Z[’ £,.L0 6.6 |7 20 [Ee) Mety)

D-2 f ‘
(2n) T-34-t [T+84) (T1+¢%)
i)~ ¢ ~¥
27 drﬁ)c#?(ﬂ%iﬁj [(7-2-& /—’(7’2“ fuefrt) (3.21)

We recognize in Eq. (3.21) the two-graviton cut at J =a_ = aft) yvae(ty)-1,
with tip at J = 3+t/2. It is easy to check that its J-plane discontinmuity is given
by the square of the two-gravi-Reggeon vertex V;(qj,qp) just discussed. We find
also simple and double poles at J = a(t) = 2+t, which are thus subleading. We
notice that the pole residues vanish at 2q1,qp = ti+tp-t = 0 due to Lhe r~% factor

. . . . *%
in (3.21), consistently with the noen-renormalization of the graviton mass ).

Note, however, that cut and pole contributions will become comparable for

Qg2 = 0(1), i.e., away from the cut tip. Indeed, for Zq)qz = tp+tz-t = -1, i.e.,

@ = a, the pole contributions happen to cancel the spurious singularity, appearing
c

%) The zerc mode at T = 0, i.e. |[{] = 1, provides the momentum and helicity conser-
ving facter e_.g4 é(ka+kd+2qi).

*%) The exact vanishing at t = 0 of the pole residues according to superstring no-
renormalization theorems needs a compensation with subleading terms, at

J; = a(ti)—ni, that we have not considered here.
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in the cut discontinuity accerding to Eq. (3.18), and absent in (3.21). A similar
mechanism is responsible for the cancellation of the spurious pcles at positive L,

appearing in the asymptotic expression (2.18).

The cut generates, for t ¢ 0(1), the leading asymptotic behaviour of the loop

which [inverting the Mellin transform (3.3a)] reads

(L:IJ

. b-2 o-2 o
(S,i’)-—) o o fé-& t ”/ﬂ’/zzd’ i )
25 ) ——% (2-2-2) -
2{2 )P
a(53) ¢
. thyir) t":fz [l/z(g,,%)] (3.22)
By recalling the explicit expressions for Al Lee [Eq. (3.1)] and vy

[Eg. (3.18)] we see that this result is identical to the one cbtained in Section 2

from the integral representation over the torus.

We have obtained here the additional information that the cut discontinuity
has an operatorially factorized form. In fact, by interpreting the Vp2 in (3.22) as
a Vp factor for each of the two strings exchanging graviReggeons in Fig. 3, we can

write from Eq. (3.19)

4

Uy (9.,0) = <o )= 2l - 1)
2(2:02) =

il J?“tm-/&%)
o 19

(277}3 (3.23)

where u(d) refers to the upper {(lower) string in Fig. 3.

Therefore, the torus asymptotic behaviouir (3.22) reduces teo a convolution 1in

q-space of tree amplitudes times a string vertex exp[iq-(xu(ou)-xd(cd)], averaged

over string angles o's. The fact that this vertex is evaluated at To T Ta T 0 stems
from the |Z]| = 1 constraint on each of the tree amplitudes described by Eq. (3.13).
This is equivalent to the restrictions Im(vbﬂvc) = Im(T—va) = ( found on the torus

[Eq. (2.10)].

4, = MULTILOOPS, RESUMMATION AND UNITARITY

4.1 Extension to multiloops

The Regge-Gribov method of Section 3 can be simply extended to h loops
(Fig. 5) . The sewing procedure involves, in this case, the analysis of the

2N+2-point tree amplitude, where N = h+l gravi-Reggeon trajectories are exchanged
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this Regge limit defines the N-~GR amplitude

(Fig. 6). aAnalogously to Egq. (3.4),
Ay .. .0
A N by
(&) o, 2
_— ”I P /4 (MI)'"M”_.;Q'“-‘?”) (4.1}
IVt $,502 \ T '
Such amplitudes have then to be iaserted in the h-loop integral over the
momenta 95 of Fig. 5. In the c.m. frame, for large s and fixed £, we have
(4.2)

b P = O3F)

denote the loungitudinal momentum components, and the

A

+
where p~ = p tpD 1

intermediate masses are

(M})" V’Z 7"+ 009, 99)
(4.3)

PARS -
(M.) /A 2 L+ 0(7+7~:?-?)
‘ S
5b will turn ocut to be dominated by values of

Since the loop integral in Fig
M?+1—M% ~ 0(1), this implies that q;, q; = 0{1/¥s), and therefore that the momentum
g :
In the loop integrations we can then use the

transfers are essentially transverse
replacement

- DT ) e )
T Ag. 0/7; ¢4 « (4.4)

to obtain JAW,
a LS T, RGES
A(S'H e (be?)! | czr s(2m)F )
bt
ar - '(-rl T “- (""t
7 ol (‘Hr-M‘;it) /4 (’74 /.74’4}

ﬁ
:rl F{?’ ‘3[2;;‘) A

in front of the integral has the meaning of the Bose counting

where the 1/(h+1)!

factor of (h+l) identical Reggeons
of the right-hand and

around the

The M2 integrals in (4&.5) rum over the physical regions
for s » =,

al...a .
N and can therefore be distorted

left-hand cuts of A .

right-hand cut, to yield
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s 2my 2 ” ’

N-1 N el & o, -y,
M) A% [ 0, ™™ )

This M2 integral defines the general N-GR vertex. As in the one-loop case it

- - a
is related to the residue of the t-channel partial wave amplitudes AJl 3
reaYN—]

the multiple fixed peole 33 = 15 = ... JN-I = -1, I being conjugate to ME.

al..-aN

The explicit calculation of A and Vi completely parallels the one of

Section 3. We can write A2N+2 in terms of 2N graviton emission vertex operators as
in Eq. (3.6). The 8.7 behaviour of Eq. {(4.1) is again given by a chain of N

off-shell scalar vertices W)(Ci), as in Eq. (3.13) (Fig. 6}.

Finally, the M? integrations defining VN in Eq. {(4.6) fix ]Cil = 1 in the
. . Ay ... .
integral representation of A N, as was the case in Eq. (3.19) for V». We thus
obtain

P CQ 20‘:)
l/v{q,,--%) = co| |1l Ar; - ¢ 24 :

v 2

N
T yeieten .7

By then replacing the expressions (4.5) and (4.7} of VN into the loop integral
(4.4) we obtain the h~loop asymptotic behaviour

(h) ‘” ‘)‘2 p-2)
Ast) — €& & 6 A g .?,,,j( 5o
U () (he)! (2 ){D'/;M (3-¢7)

h+! ) “y Y of
’n" C( (s f) (0/ /)“0/0 /p‘ Cp ‘.?j'(r(ﬁ)"x(';? {0>
r(t J ()n)l

(4.8)

Equations (4.7) and (4.8) for the N-GR vertex and the h-loop amplitude, being

written in operatorial form, show very interesting properties.
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To start with, the N~GR vertex VN is operatorially factorized as in the
one-loop case, and is symmetrical in the N Reggeon momenta. The latter property is
a simple consequence of the fact that the equal time operators X(¢) commute, and is
anyway expected in a theory of closed strings. Furthermore, VN shows the infra-red

{IR) decoupling, in the sense that

~/
=
A
A
i —
~
Y
(-

VN-H(i’ - 'i'w')

(4.9)

4.2 Resummation in impact parameter space

(h)

The operator factorization implies that A in Eq. (4.8) is a multiple

convolution in g-space, thus diagonalized by an impact parameter transform. By

defining in general

-;A(& {") = EQ'&( é}o'gc (fJa/f_é-

we obtain

[1 - Ay A L\-ﬂ
afop = @) ol [TebE A o>
(L-H).

F4

Jg.b
e 72 Q(gf [,) (4.10)

(4.11)

with

A “u 40{
J- (A5 &g edadry e"ﬁ'(‘é*f’f“’"/"a{“’?fﬂ.
en)?™ s L)

AT, A0 . g (s, b +ﬁ£)—,{(¢.})}:
(éﬂ}z tre¢e T

u

(4.12)

-
being an operator functional of X(o).
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Summing Eq., (4.11) over leops yields the final result for the amplitude

o

oulsb) = Zoa%s’.w = Lol L[ Seshasi-1) o)

-

S = Lxp 2.0 (4.13)

which has an operator eikonal form. This fact, together with the simple dependence
-~ -

of the "phase" & on X, shows that the collision process can be interpreted as a

rescattering series at displaced impact parameter (b+Xu—xd), as depicted in

Fig. 7.

4.3 DUnitarity

We Thave discussed so far graviton-graviton scattering (or, similarly,
gravitino and dilaton scattering). It 1s, however, clear that an analogous
treatment ceould be performed for two-body scattering of string excitations of

masses Ma and M as long as Ma,Mb <{ ¥s. The resummed amplitude will be a matrix

b’
element like the one in Eq. (4.13), but between the correspending excited states,

1t is clear, on the other hand, that the Regge-Gribov construction does not
apply to high energy processes in which the produced states have sum of masses of
order ¥s, and therefore small velocities. Both kind of states appear of course in
string amplitudes and will be correlated by unitarity relations. It is therefore
legitimate to ask ourselves how (s-channel) umitarity is satisfied by our result

{(4.13) that concerns only a limited class of amplitudes.

This preoblem 1is solved by the AGK [i2]

discontinuity rules which connect
s—-channel cuts corresponding to sum of masses of 0(vVs) ("inelastic™ cuts) to
two-body ("diffractive') cuts, i.e., with small masses, which are under control,

i.e., are directly treated by Eq. (4.13).

In our treatment, such inelastic states imvolved by unitarity give rise to an
imaginary part of the 3 operator {(4.12) (g"€+=0). If for some value of b such
states do not centribute, 8 i1s hermitian, and the g operator is explicitly unitary.
As we shall see, this is the case for b > 0(logs), where unitarity is satisfied by
diffractive intermediate states only.

For b values for which 8 is not hermitian, 1ts discontinuity is given in terms
of a cut Reggeon, correspending to inelastic string states [with sum of masses

0(¥s)]. For h loops, the number N of cut Reggeons ranges from zero up to h+l, and
c
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the AGK rules (generalized to our operator case) give the amplitude discontinuity

as a sum over N , as follows (Fig. 8):

%(q.,-af%Z 5_[ JJH; J,
AJ /

Here, S (Sg ) is the rescattering operator with N,(N_)} exchanged Reggeons to the
+ O No

right {left) of the discontinuity cut, and £' runs over the non-negative values of

A/ N +N, (4.14)

Nos Ny, N, satisfying N +N4+N_ = N except for the values N, = Ny = 0 {N_=N) and

the symmetric one, which corresponds to "discomnected” terms.
In our case, we can set operatorially, as in Eq. (4.11)
A})}V
2ca -_—5: CQ‘J (4.15)
N N —
M/
and it is a simple matter to check that Eq. (4.14) is identically satisfied. A

simplifying point is the fact that & and &*, being functionals of the 1 = 0 field
x(g), commute, and therefore (4.14), by Eq. (4.15), reduces to the identity:

.'J_z{cf‘:.g(,f_{ 2 (—efﬂf/ (2 J/ Z(JJ}

n !

N(‘f‘”-f"'A/__:N

In particular, in the one-loop case, Eq. (4.14) follows from the q-space

identity

_ 177 & - . ‘ , 2o I, e,

Tt vt) = @9 L(%%) o (- st IT 4 903 f )+ 2 #6625,
? 2 (4.16)

in which the three terms in the right-hand side correspond to N, = 0,1,2,

respectively. We recognize here the relation between the phase of the two-Reggeon

cut [left-hand side of (4.16)] and the sum over different s—channel intermediate

states (diffractive for N =0, inelastic otherwise).

From the example just given it is clear that the various terms 1in the
right-hand side of the AGK rules (4.14) do not have a definite sign. This feature
is due to the fact that they refer to a fixed loop number h = N-1, and disappears
by summing over N. If we do that, by isclating the NC = (0 term and using

Eq. (4.15), we obtain



A+,\

1-5s =25
M, =t

which gives indeed the unitary defect (in the space of diffractive states) as a sum

(4.17)

of non-negative inelastic terms, provided Imd is semi-positive definite.

-
In our <case, by (4.12), the functional form of & depeands on the Bessel
transform of the tree amplitude atr(s,b) which has, as it should, a positive

Fal
imaginary part [Eq. (5.2)]. It can be seen that, from this, Im& > 0 follows.

-~
We therefore conclude that our & operator (4.,13) satisfies inelastic s channel
unitarity in the sense of Eqs. (4.14) and (4.17). In particular, it is explicitly
. . A . - - - - .
unitary for those b-values for which & is hermitian, i.e., when diffractive

intermediate states are the only important ones.

5. — IMPACT PARAMETER ANALYSIS

In this section we shall discuss the physical content of the basic expressions
{(4.13) and (4.12) for the resummed S-matrix in impact parameter space. We shall
leave to Section 6 the task of converting the results into momentum transfer or

scattering angle variables.

5.1 Semi-classical field theory limit

From the point of view of our general considerations of Sectiom 1, this limit,
corresponding to b >> KS, is obtained by keeping ounly the p = r = Q terms of
Eq. (1.12), i.e., neglecting string-size corrections. Furthermore, our leading s
resummation is only able to take into account terms with q = 0. The higher order
terms in the parameter Rs(/s)/b - that may be interpreted as classical corrections
- will be discussed in Section 7, where we show that they arise from a particular

class of subleading corrections to afs,b). The p = q = r = terms of (1.12)

by ©

”~
corresponding to b >> R_and b >> Ks’ correspond to neglecting u—Xd with respect

. . *) A A
to b in the eikonal operator é(s,b+xu—xd).

*) The eikonal representation in this pure field theory framework has been inde-
pendently discussed in Ref. [3].
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Let us start by noticing that indeed the eikonal representation (4.13) takes a
semi-classical form _
. . LS,
20 £ Se %7
S=e¢e = € = &7 (5.1

where Sy ™ GNS/bD_4 >> M plays the rdle of a classical gravitational action.

In fact, by using the results of Section 4, we find

2 4-D '/4-3_/( - ) W-3
- s 4 2
oo= lsP)= z&;‘rv? b [de o ¢

> b 7w Fe by ° 4

b —
b>» (-igaz) * SéﬂT'\()gﬁ-l / ‘T,=; dﬂ S (5.2)
where

P-4 A
b, = gs (5.3)
81r.§:lo_q_

and Qd is the solid angle in d dimensions

Q= 2 w4 /() (5.4)

Note that Red is power—-behaved for large b (due to the long-range graviton
exchange), but 1is also finite for b + 0, being cut off by the string soft
behaviour for large g, so that Re$ 2o gzs(a'Y)_(D_A)/z. Therefore, string effects
‘play a crucial rSle in cutting-off short distances, so that the classical limit can

be recovered for gER >> M. The magnitude of Red at large b's is governed by bc’
which, according to (5.3), has a pole at D = &. This pole is connected with the
well-known [15] infinite Coulomb phase and will give rise to a Red ~ -2 g2s logh

behaviocur after subtraction (see Section 6).

On the other hand, Imd has an exponentfal form, dying out for b > bI = 2 logs.
Since clearly bC > bI one can define three regions in impact parameter space
(Fig. 9):

(i) b > bc {D>4). Here & is small and perturbation theory is valid. It corres-
ponds to very small t physics as discussed in Section 6,

(1i) bI < b < bc. In this intermediate region Red is large while Im§ is small, A
large phase signals, as usual, a semi-classical 1limit and, indeed, in
Section 6, we shall see how to recover in this region some known (or
expected) classical relativity results,

(iii) b < b_. In this region, Im& is large and inelastic absorption dorinates

21

{8~e +0, a»i/2) leading to an absorbing, logarithmically expanding black
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disc, with an inelastic cross-section given by:
- Z

U.(2) = (ffﬁfﬁ;(!- 5(55)) ~ 2 0, (245) (5.5)
D=2

which increases therefore with s.

It is clear, however, that this is a region where string corrections are bound

to be substantial. We shall have control over this region for RS << KS

5.2 String corrections

Let us now take into account the string corrections to the eikonal operator
(4.12), whose expansion in powers of X corresponds, as we shall see, to the Lerms
with p # 0 in Eq. (1.12). It is intuitive that, for b >> 2Y = bI’ where 5 has a
power dependence on (b+iu—§d), a Taylor series 1in (X —X ) can be meaningful, being

controlled by the small parameter X/b ~ Ks/b.

Although this seems to be indeed the case (see Section 5.5 below) we hasten to
point cut that effects 0(X2/b?) can be very ilmportant, even at b >> hs, if they
effectively induce imaginary parts in &, which are absent in the leading c-number
term. For Imd the competition will rather exist between string-size effects and the

classical relativity corrections to be discussed in Section 7.

With this 1in mind, we now consider the Ffirst non-trivial term of the

expansion:

N -~ “ 4 Ay Du Aot Aa{
J (s, beX"-X") < J(b) - _e'._d,__f)_ (RAF"+ X ,')“"-

-

where, in general, we define:

.
O = z..";rfofa”:oalq,: (5.7)
o

u,p{

and we here used tne fact that Xu,a = X, X4 = 0. It is easy to see that (for
b >> b_):
> b))

A, ;) “u) « 4 E——éf AU A// (5.8)

— = ‘) b bt

-4
A -2 J“__b_a-,e(gc)”;__ﬂ 4,504 e
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- . - -,
By inserting (5.8) into (5.6), the 0{X%2) terms take the form

(A X l’ “'A//X// 4 "’(ue’d))"zd P(JX +X,X}. (5.10)

Z L-\..—L

where the index j runs over the (1+D-3) X-components parallel and transverse to b.

We then obtain

-~ A A ¢ /s, .y ZfC%;fé}
.e/;c/az;J(s,b-rX"—X'{}: e FUS’”.—_ £ .

TN op ooy (o0 T2 QL)

-! Azt a-’k

5.11)

In order to evaluate matrix elements of S we have to normal order the operators in

{5.11). This we do by noticing that, for every j and n, the operators
— R - l' " Al‘f\l.
- { .
l;_;dt"o(in , 2l, = 1+ ;’(m/-ﬁdu.‘-o(_uo(m)(ilﬁ
satisfy the SU(l,1) algebra:
[I, , lt] =¥ ]vt ; [L‘/ T"] = -2 4, (5.13)
Using the known identity: .
L,
.(7/)(,9 t'w(ZIo—I+-l-) = 4 (;..iw) 2 (5.14)

we finally get P N
A R

SV TT (- 4 /”."(.{.Q_i). (1- f‘Af} )

l)f .} '7T ’
A' P .,t—J
) J 7) h
- Mlﬁ[-l __é dd‘\" Q/ﬁ ) . £ , (5.15)
*—'A)' [._.I,A/j
n

where the label a = u,d has been suppressed for notational simplicity. We also find

the action of S on the ground (i.e., two-graviton)} state to be

u,} “JJ 4,}- '{oj.
A; x| l{ ..a d-q

-~

A 1-J,6) ""A"/‘n ""—':-
S loy < <" e e 7 107

. ot

| n (5.16)
Note that only states with equal left and right occupation numbers, i.e., with
v_ = v _ are produced by 5(2). This restriction is a feature of the second—order

n n
expansion which leads to bilinear expression in creation coperators.
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5.3 Elastic channel

Two-graviton scattering is governed by the ground state expectation value of

(5.16). By performing the product over parallel and transverse modes we find

200, ¢ = A2 -8\ 2
ol So> = e ‘(: zzo?b’s}l/l\’_ll f——-‘.—: =
A=ty T - -7:’
zc'J 2(D-3) 2
= £ F(,_(AJ F(!-t’A//) (5.17)
and
D-3

-ZLij°{;’ 2% [ pp ™
- _ i V4
l<015!0>{ = % = £ [44 n4,) Ana, (518

Imé being given in Eq. (5.2). Recall that for b »> bI’ A
and that A = 8'(s,b}/b.

) = (0-1A | = (D-DAb,s)

We can see from (5.18) that, even in the region where Im& has died out (i.e.,
b > bI=210gs), still 1m6e2 > 0 because A(b,s) only falls off like a power. Quanti-
tatively, by replacing in Eq. (5.18) the explicit value of A in Eq. (5.9), we

obtain

- 2 -3)A
S fgra

!,chcbp

2 U
e 2 8
44° £, D¢ (5.19)

This absorption of the elastic channel is due to diffractive excitation of
massive string states induced by the X-dependent part in the §$ operator {5.15)
which, in this region, is explicitly unitary, due to the hermiticity of §. By

(5.19b), it extends, in impact parameter, up to a radius bD such that

A(.L.D,S) - 1 :) "Qo_l LD *4, 5~ 5 (5.20)
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The corresponding diffractive excitatiom cross-section is given by the surface of

L ad
ﬁ(ﬂrfrf%%/l-f ) ~ Gus

and has therefore the same energy dependence as the tree amplitude.

. *) .
radius bD s L.e.,

(5.21)

The t-dependence corresponding to the amplitude (5.17) will be discussed in
the next section. We note now, however, that the absorption radius ?D(s) becomes
large for GNs % 1. For instance, in four dimensions, bD = /ﬁ;g = aqaiRS(E), which
is larger than the Schwarzschild radius RS(E) = GNE corresponding to the c.m.
energy E = Vs. Therefore, at very high energies, string effects may be felt at
large distances. This is because in this regime, graviton exchange provides a

long-range (and strong-coupling) excitation vertex.

A final point to notice is that the large absorption provided by (5.19) is due
to the cumulative effect of a large number <h> of loops, i.e., of rescatterings
contributing to the absolute value of the amplitude (5.18). Since the loop series

is exponential, we have, by (5.2) and (5.9)

chy, = 2t 2 g, beh

Chs = Ahs) = n° b> b

D D-2 ! (5.22)
2,,5

for inelastic and diffractive absorption respectively. Thus <h>I can be interpreted
as the average number of cut gravi-Reggeons, while (h)D represents the average
number of loops with excited diffractive states. The (large) values (5.22) help

clarifying the features of the corresponding spectra.

5.4 Diffractive channels and excitation spectrum

In the region b, < b < b, the unitary § operator (5.15) completely describes
the physics of diffractive states, i.e., those with masses Mu,Md <{ ¥s. For an
incoming ground state (of twe gravitoms) we can compute from Eq. (5.16) the

excitation probability of a configuration of upper (lower) string states with

J h} . .
occupation numbers [v ul ({vnj}) which are the same for left and right movers,
Ty

%) The integral in Eq. (5.21) is convergent because of the behaviour
Imd, o ~ A2(b,s) given by (5.18) in the large b region b >> by.
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PUiwi), d) < [cueil 530 5 Los]*= Prii) PéY)

P({:&’?:‘(O §!o>f fk[.—l—.
” ') (5.23)

From this, one obtains the probability distribution of masses Mu (Md) in the

Plu.n,) = Feu) An
P = 2 Fot) I (13- 2 00 =

1] ) e ~by)
(e A ] et

27y
where we have used the expression of [<0)8]0>} in (5.17) and introduced the

S-function constraint by a Fourier transform.

The behaviour of (5.24) can be evaluated by saddle point methods in the two
limiting cases M << A, M >> A, to yield

o P malo-
HM) — (WV— ) e el

NCCA

3 ~'A _M
5 B A /"[(D-e)(o-aﬂ oy, 1Y
MO m 1(0-2](0-—3) (5.25)

We thus see that, up to M = 0(A), the diffractive spectrum increases exponentially,
i.e,, like the number of closed string states with identical right and left
occupation numbers, but is sharply cut off at larger M values. Therefore, the
average excitation mass is (M = A = GNS/(QD_ZmeZ),which increases quite rapidly

with energy.

One can understand this increase of <(M2> = <vn><n> for A > 1, as due to both

<{n> and v > being 0(A), the first one because of the excitation probability
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~A2/(A?+02), and the second one because of the number of rescatterings which,
according to (5.22) is again <h>D ~ A. In fact, the § operator im (5.11), which
governs the elementary scattering, can only provide transitions with ]Avnl =1,
corresponding to [AM| = 1l: hence, <vn> = A because of the number of transitions,

which 1s ~A too.

When A becomes large, we have to require, for internal consistency, that

<My = Af{b,s) << Vs, and therefore that
o-%

D-2
‘09-2 b » gwlf‘; ~ !?5(5) (5.26)

This condition is automatically satisfied if b > 1, b > RS(E), i.e., in the region
(1.11) of validity of our basic expansion {1.12). We shall alsc see in the next
section that Eq. (5.26) is indeed satisfied by the b values that dominate the

scattering amplitude, provided the associated scattering angle is not too large.

One may wonder at this point whether, for mass values which are close to 4,
the individual scatterings which build up the resummed amplitude (5.17) may still
occur at small t-values, as assumed before resunming. One can see that this is
indeed the case, due to the previous remark that IA\)n | = |AM] = 1, so that the
phase space boundary is Itminl « (MAM)2/s = A?/s, i.e., small if (5.26) is

satisfied.

5.5 Higher string corrections

In order to estimate the magnitude of the neglected terms in the expansion
(5.7) of the string corrections, let us first recall that the second-order
3(2) operator (5.11) commutes with (a_naHJE_nEn), i.e., conserves the difference of
the numbers of right- and left-moving wmodes for each n and each string (upper or

A(2)

lower). This means that matrix elements involving, besides 5 , an odd number of

iu's or ﬁd's must vanish, because R and L modes are to be excited in pairs.
Therefore, the first neglected terms in (5.7) are of the type §§; Eg-or xixﬁ. By

expanding the exponential, we find fourth-order matrix elements of type
- A
A(2) t 7 k
WDy o] §7) dadie dudm [0>
- gl

"

(5.27)

(4)

where A ~ gzs/bD gives the magnitude of the fourth-order derivatives of &, and

the superscripts i,j,k,l refer to a choice of parallel and transverse modes to be

identified in pairs.
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From the normal-ordered form (5.15) it is easy to prove the commutation

relation

. . .

) 4 S C AL AL J Yy o4
e L R CREL L gy >

———

b MH(.A' ﬂ_;.A' Y (5:28)
J /
which implies
(a) ‘
y) "(2)/ 2 ¢ 4; /
MY - cols®lo> A o7
"o M-l (5.29)
. (4) . (4} . _ .
We thus realize that M is 0(A loghA), and is therefore negligible, with respect
to the corrections exponentiated in 8(2), if A(a)/A = 1/b2 << 1, as naively

expected.

We thus see that, while the quadratic string terms played a crucial rBle by

providing the first absorptive contributions for b » b_, higher orders just give

I’
rise to small corrections.

6. — MOMENTUM TRANSFER ANALYSIS AND SMALL ANGLE SCATTERING

Here we want to discuss the physical picture of light string scattering as
function of the momentum transfer t, by keeping in mind that the rough relation
/Tt] = q¢ = 1/b is not always valid. Thus we shall identify, for various t-values,
the regions in b-space that give the most important contribution. To this purpose,
we start recalling the main features of the amplitude in b-space, found in

Section 5.

6.1 Summary of impact parameter properties (Section 5)

The resummed amplitude in b-space takes an operator eikomal form [Eq. (5.11)]
-

-
- . s Dof 2ok, -
Szeztor‘(£|$;x:x}:fzoy‘} S'(z)
(6.1)
where, from Eq. (5.2}, & is the Bessel transform of the tree amplitude given by

(Fig. 9):
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3 =
= ’ (6.2)

~{2 . . . . .
and the operator S( ), given in Eq. (5.11), represents the string cerrectlons 1in 8,
- . Ll - ~ - - - - -
to second-order in the string position operator X(g). This is a valid approximation

for b »> KS = 1, i.e., outside a radius of the order of the string size.

In the elastic channel, string corrections are given by the expectation values

[Eqs. (5.17), (5.18)],
2(D-3) 2
2 c'cf (

1 z,;'or -
So= e o1 ST1e> - (r-cay) (M(-7)
: - _erwa(o-
2 i, A (ITA)D 2(0'3) € e i} ax1
&S ol SV lexl =

Z
- -3 4 Ak 1
¢ (6.3}
and are thus governed by the quantity
s o,
- 290’255} A 427
Afbs) = -2228Y =

2b b>by 2 'Qp_zb (6.4)

From (6.1)-(6.3), the following features were derived:

(a) The elastic channel is absorbed (i.e., Im5e2>>l) (Fig. 9), because of
production of (i) mostly "imelastic" (i.e., many-body or very massive) string
states for b < bI and (ii) mostly "diffractive" (i.e., energetic two-body) states

for bI < b < bD where bI = Zlogs and bD is the diffractive excitation radius given

by A(b,s) = 1, i.e.,
p-2

2
ED = j_i (6.5)
‘QD-—L
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(b) The corresponding production cross-sections are

D-2

~ {2». PR
o Zapal” g ey

(6.6)

The large value of o compared to g_, is due to the fact that diffractive

D’ I
excitation goes through graviton exchange and dies out as a power in b [Eq. (6.4)],

while Imé due to inelastic production dies out exponentially [Eq. (6.2)].

(¢) For bc >b > bD’ elastic scabtering dominates ([Sellzl) and the amplitude has a

large real phase 6e = &(b,s), decreasing as a power of b, for I > 4. The phase

2
becomes small, and therefore perturbation theory is valid, only for b > bC ~

(ggs)ll(n-a)_

well-known subtraction of its infinite part [1] and therefore becomes logarithmic

For D = 4, the phase shows an IR singularity, thus requiring the
(~logb) and is never small for g?s > 1.

(d) The region bI b < bc’ including the diffractive excitation region, is
characterized by a phase whose real part is large and dominating (Imael/Rgéez ~
Ki/bz) and will be called the eikonal region in the following.

The scales bc’ b and bI (the latter two involving powers of the string size

b
KS=¢ 'i}), are introduced naturally by our leading s vesummation results. Let us
point out, however, that the analysis of the subleading terms in Section 7
introduces a further scale, the classical Schwarzschild radius Rs’ corresponding to

the ¢.m. energy ¥s, i.e.,

Pf"-% _ /(WﬁNV;
b2 Q.

e R‘) :25,,(/; for DEX

(6.7)

Since this scale parametrizes the most important subleading terms - which are of

relative order (Rs/b)Z(D_Bl

fully reliable [cf. Eq. (1.11)].

we have to require that b > RS for our results to be
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6.2 Small t region

Let us evaluate the elastic scattering amplitude in g-space, given by the
Bessel transform (4.10). It is convenient to perform an integratioa by parts, to

gel:

A
< L — =

> 2o,
gﬂ‘(il—’?g'zofvfé Bg"Jé;_z(aU P

1

2.;

ol S f5.8)
2. 2. 2igfnbl s o
_[,/3_?7"’ ofébel_);’(oléj'e /“'——f( L)
9 . 3 (6.8)
For D > 4 and q < b"é ~'(Gs)wl/(D_4), i.e., in a region of very small |t]| = 2,

shrinking with s as a power, Eq. (6.8) is dominated by large impact parameters
b > bc, where 632 = 8(s,b) is small. By isolating the leading terms for t > 0, we
obtain, by (6.1),

I
2-2 -2.2
2 22 ["Q-t'/ "™
1apy) = 9%s [ 1+ 2-1) [ x x
> ¢£->0 /t'/ o

Zl.dr ﬁ,’) 1
- J 0 [{ s ..1) + O €]
—_1
z (6.9)
where we have also indicated the order of magnitude of the small string

contributions obtained from Eq. (6.3).

We can see from (6.9) that the graviton pole is still there, with
unrenormalized residue, thus showing that unitarity is consistent with gauge
invariance, which guarantees the 1/t pole for spin-2 exchange (masslessness of the
graviton). As we have seen, the effect of unitarity is to shrink with energy the

region of t in which this pole dominates [t(((gzs)_z/(D_h)].

The loop expansion (in powers of éex) of the subleading terms of (6.9) is
complicated by the occurrence of IR singularities in t, starting at D = 4+2/h at
h-loop level. In particular, it is never valid for D = 4, a case that requires a

specific treatment (Section 6.3},



- 34 -

For 4 < D ¢ 6, the one-loop term [~6§R in (6.8)] gives the leading

contribution to Ima, which reads
-e(p-4) -
22 2 M) ()
! -Z;f C?(é ‘?/) ( : -] =3
tro 2 f7E T%F F(Qf')

(6.10)

and is therefore singular at t = 0. This is not a problem, however, because T is
also infinite due to the 1/t pole in Rea. The result (6.10) checks of course the

one obtained from the explicit one-loop calculation [Eq. (2.19)].

For D > 6, the q = 0 limit in the integration of Eq. (6.8) can be directly

done, to yield 0—2 -2 z“d‘?m[zfc’r)
L Suafro) = 0= 2)T LIS

S (6.11)

Let us remark that the loop expansion of (6.11) is not deminated by large b only.
In fact, by using the behaviour of Red in (5.2), we obtain from (6.11), for

odd h. po bt

Pré

Q*lf)f | (6.11')

This shows the expected power behaviour for N = h+l gravi-Reggeon exchange. Nﬁtice,
however, the inverse power of a', which exhibits the important rdle of the soft
small distance behaviour of the string in cutting off the field theory behaviour at

= Yo', instead of b = 1/vs.

On the other hand, the eikonal resummation turns out to suppress short
distances automatically. In fact, the large s behaviour of the resummed amplitude
can be obtained directly from (6.11), by rescaling b = bcx. By noticing that

Dnéex(bcx,s) ~ b;z + @, we obtain the finite expression

(6.12)

-2
04 D -0
7 5]~ < Gu s oA x (165 x*")
'120-4

which is dominated by x = 0(1), i.e., b = O(bc) >> 1.
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This high energy behaviour violates the Froissart bound [11], or, more
precisely, higher-dimensional bounds based on polynomial boundedness and om the
existence of a mass gap [16]. Again, this is not surprising here in view of the

exchange of the graviton, which remains massless.

6.3 Intermediate t region. Eikonal scattering

For larger values of t, i.e., b;i <¢ q { 1, the diffractive phase of the

Bessel function becomes large encugh to yield a saddle point of the integral im

(6.8b) at
b, s
7:-’29(}‘/(9) . 2 2__{(_{,)
9 b 55 9 b b, (6.13)

where we have neglected the string corrections to (d/db)aek by assuming that, at

the saddle point, bs > 1.

Equation (6.13) defines, in general, a classical relatiom between impact
parameters and momentum transfers, if 28 is 1identified as the classical

Hamilton—-Jacobi functiom. In our case, due to {(6.1), we obtain

6377_4;;/ kh "ﬁ
é,p-;ﬁo-z (6.14)

In a general collinear frame for the incoming gravitoms, with

!z = E, 0 é;) , éb:(é;"e'-é;) (6.15)

~ !

P4
= _%?LJZ—> - —
"‘] 0 LDB
p-2 Vs

we have %s = k. .k, = 2EaE Therefore, Eq. (6.14) corresponds to the deflection

b

4 . UG & % 167G s
“ ' ' - o
‘Qo-z 6:-3 52 ASD >

for the two gravitons a, b respectively. This result for ea(eb) happens to

(6.16)

coincide, for every D, with the classical deflection suffered by particle a(b) in a
Schwarzschild metric generated by a particle at rest of mass 2Eb(2Ea), to first
non-trivial order in the corresponding radii, defined in Eq. (6.7). Indeed, the

well-known result for D = 4 [17]
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9= 2Ks

b

can be easily generalized to arbitrary D, to yield Eq. (6.16).

(6.17)

The correct classical inmterpretation of Eq. (6.16) is presumably different,
however: in first approximation, each particle should experience the metric of a
massless particle with given energy, the Aichelburg-Sexl (AS) metric [18] rather

than the static one of Schwarzschild.

The problem of classical gravitational scattering of two relativistic
particles has actually been considered very recently by 't Hooft [19], who,
reducing the problem to the one in an external AS metric, implicitly obtains our
Eq. {6.17). A confirmation that our particles do not feel a Schwarzschild metric
comes from the absence of 0(82) corrections to Eqs. (6.16) and (6.17), as discussed
in Section 7. ‘This absence of 0(82) corrections is very mnatural in the AS metric,
and, furthermore, can be used to find an amusing link [20] between the mutual
focusing of two graviton beams and the singularities found in the classical

collision of two infinite gravitational waves [2],22].

It is not clear, however, that even the AS metric is fully adequate for
describing the collisions. The results of Section 7 on the 0(83) corrections to
(6.16) indicate that other non-linear phenomena, which cannot be described by

scattering in an external field, set in beyond the leading approximation.

Let us now discuss the expression of the scattering amplitude at the saddlie

point (6.13). A standard analysis shows that
Laf(s,3) =2 o " [ arb49€
QK. {3;:?; Ei
_-a)
s o e (g2 oA VP i)

Cu)(2¢
/6[ 2.12-5-2_ L)( ' D-S

‘-Tr/z_ D/?.— !

(6.18)
where the phase , -2-2 .51-:—3-
(;5 E}S ff'[ D-3
eck. 20 D- 4
p-z (6.19)

is IR divergent at D = 4.
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Note that this amplitude, apart for the phase (6.19), has a fixed power

(p/2)-2

behaviour in the quantity g2s|t] which is the effective loop expansion

parameter. Furthermore, in the overlap region with small t's, i1.e.,

t = OI(gZS)Fz/(D_A)], the eikonal amplitudes and the small t expressions (6.10) and

{6.12) join smoothly, being all of the same order ~(gzs)(D—2)/(D_h).

The D = 4 limit of (6.18) is obtained by subtracting the infinite part of

¢ to get

S(st)= G, Lok , D=4

eik’

g a,(s,q){w.

- _g?%é%ii— ,Qpcf;(t (gws -@)&(1‘}‘1‘-{5}.014))
(6.20)

Therefore, for D = 4, higher order effects just build up an s- and t-dependent

phase, as in the well-known Coulomb scattering case [23].

The cross—section corresponding to (6.18) and (6.20) turns out to be of
Rutherford type for any D, since one can check that

. ji
_ I L= =
OLOEQ ) C[’r\ < 46) le:,k (2m)P*

D-2
85 Ubs fo oS - d b (2)

e et

T 29 2 125.2 (6.21)
where the last expression indicates the surface element in (D-2) dimensions

implied by the relation bs(q) in (6.14}.

We have neglected in the preceding discussion of fixed-t eikonal scattering

the string contributions to both Red and ImcSe We have already noticed that the

el '
first omes are always negligible, but the second ones are to be looked at, because
they give rise to Iméel £ 0 for bI <{b<« bD. It turns out that for fixed t, they
are also small, because the b integral is dominated by the saddle point

bs(q,s) > bD(s). In fact one has
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provided

!
¢ £D(S) = 1 [——LL ] T
7 2 2. -Qa-z_ (6.22)

which includes the fixed-t region (q¢1).

6.4 Extension to small fixed angles. Diffractive string absorption

The fixed-t condition that we have imposed on each loop in order to guarantee
the leading graviton behaviour can be somewhat relaxed for the resummed amplitude.
We have indeed realized in Section 5 that our eikonal scattering is due to a large
number of rescatterings. For the elastic scattering amplitude, which is dominated

by the saddle point (6.13), such a number is
<h>, * 2ds b)) b2 g (.29

Therefore, the average momentum transfer <qi> of each individual scattering will

be
-1

Sy = 2 (
<8 = 5 (¢5)

ek

I

(6.24)

which is small, provided bs(q,s) > 1, i.e., larger than the string size.

On the other hand, let us recall that the condition implied by the absence of
(non-leading) classical corrections was bS > Rs(/s), with R given by Eq. (6.7).

Therefore, our procedure is justified if

b (9,5) > | L R <
b (9,5) > K ;o Rs > (6.25)

By inserting in (6.25) the value of bs in Eq. (6.16), we find the conditions for
*)

the c.m. scattering angle

D-3
E} < fzg (<) P fégs < (a)

H <old) ;o R >

*) The condition (6.26a) will be better discussed in Section 6.5 where we take
into account a modification of the saddle point for R, < 1.
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Thus, we see that our analysis applies to small angle, but large t, scatter-
ing. We must, however, supplement the results of Section 6.3 by considering also
string effects (diffractive excitations) that will cccur if bI <b_ < bD, il.e.,

s

inverting the inequality (6.22), if

p-3
B2, sqothe o BRI
b

(2 4 (6.27)

The saddle point procedure applies to this case too. The string contribution to

ReéER and to its wvariation is, for b > bI still negligible, so that the saddle

point position bS is not appreciably modified. Therefore, Lhe amplitude is simply

multiplied by the string correction factor (6.3), evaluated at b = bS

2 (5) (T) = q(s'f){é <O[ §(;)6$(7,9)) /0> /

'

I

] _271[0-3)
| '1)/- “rr b(a,s)

D2 p’f—'-
s =3 |03

= !ﬁ(s)ﬁ)/m_kf/ﬁ[" i (f_;;_— (6.28)

/Ct(s,‘f)l ~

1< b < by “

where we have used the fact that, at the saddle point,

2
_ 93 . L
A(Slé) - 2 b:-?-(zp_z - L’(%’} (6.29)

The exponential factor exp(-cq/bs) occurring in (6.28) represents the
absorption due to preoduction of diffractive states. Note that, in the regilon
(6.25), it is always larger than exp(-cq) and therefore it is larger than the
short-distance contribution [2], which, loop by loop is ~exp(-q2/N). This point
will be discussed further in Section 8, i.e., after analysis of the classical

corrections.

6.5 The RS(/S) < A, case. Inelastic string absorption

We have considered so far string absorptive effects due to diffractive
excitation, which occurs at intermediate distances, i.e., bI < bs < bD,
corresponding to the angular region (6.27). If RS(JS) > A {i.e., at extremely high

. . -1/D~ 2
energies) the relevant impact parameters are around bs ~ RSG /D 3, and therefore
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are more sensitive to classical corrections (Section 7) which occur around b = R ,

rather than to string inelastic effects, which occur for b ¢ bI = 2lslogs.

Ou the other hand, one can also consider energies which are high, but net

extreme, such that 5 J— < -—{ /L =l)
Rﬁ(w-;)</\5 , ?<IE 72,(;

In this regime, our approach allows wus to investigate the angular region

(6.30)

1>8 > (RS/Zlogs)D_S, for which the saddle point value enters the imelastic region
b < bI. Here the phase 8(b,s) in (6.2) starts being sensitive to the soft
behaviour ~exp(-$3?) of the string tree amplitude which turns the power behaviour

of Red for b > bI intco the smooth small b behaviours

2 ! ! éz _ s)
{ez J(b}s}b: 4 Dy D4y r %{

N2
vy 87T (’*"’7/)"' :

/W? S(b,s) “;S_’E_(Ei'%g/*bzﬁr

8 (4y)"%! (6.31)

Correspondingly, the saddle point relation {6.13) changes from the classical

formula (6.14) to the relation

o et p-3
AL Rs b

b_:ﬁ (b-z)(z(;)v-z' 23V Y '2}\5[; (6.32)

which is typical of scattering by an extended object of size A Y [20].
: s

Therefore, the deflection G(B,s) (Fig. 10a), interpolating between (6.14) and

(6.32), has around b ~ 2/Y a maximum value

D-3
G = R_S_. (6.33)
i 7

This means that, for 8 eM’ there are two saddle points in (6.8), the cne at
larger b dominating because the absorption is of diffractive type; while for 8 > BM
there is none, and the integral in (6.8) is controlled by the eadpoint b = 0, i.e.,
by inelastic absorption. By using Eq. (6.28) for @ < SM and Eq. (6.31) for § > GM,

we then obtain
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The last expression in (6.34) gives a form of limiting absorption, reached

already at § = GM, because Imd in (6.31) is roughly b-independernt for b ¢ /Y. The

distinction between inelastic and diffractive absorption becomes meaningless at

—1 —
8 =6, because at b = 2/Y, A(b,s) and Imd are of the same order ~gZs(Y) 2D 2),

M’
We thus see how the finite string size effects modify classical gravity for
R < AS. Diffractive excitation gives absorption along the classical trajectory at
rather large distances 2/Y < b < bD(s). However, at shorter distances RS < b < 2Y
inelastic absorption takes over and the deflection angle deviates from the
classical one, reaching its maximal value precisely at b = 2/Y. The maximal
{(inelastic) absorption, occurring for b < ZJTEE;: is given by (6.34b) and gives an
amplitude which, for R_s ¢ AS, i.e., g&%s < 1, is still larger than ~exp(-cq), i.e.,

of the Cerulus-Martin bound [11].

This picture is confirmed by the analysis of inelastic unitary in Eq. (4.17).
For b < 2/Togs the latter is saturated by inelastic cuts, with <nc> = 4Imb =

gzs/(Z/Y)D—Z, corresponding to an average energy per cut Reggeon

b-2
CE>= = ~ 2] > T

<> 7 s Rs<As

which is still consistent with Regge behaviour.

The previous arguments show that, although our method is adequate only for
b < /Y neither string short-distance effects [2] nor classical corrections
{Section 7) are likely to modify, for R < b < ks, the basic soft behaviour of the
string im (6.34). For 6 > 0y this is due to inelastic absorptiom which, by

shrinkage effects, is already maximal at b = 2hsffog .

Another, possibly related, consequence of the smoother b > O iimit of &(s,b)

in string theory is that the curious poles found [19] at GNS = -iN (¥=1,2,...; D=4)

can be shown to disappear as long as A, # 0.
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7. = CLASSICAL CORRECTIONS: A SEMIQUANTITATIVE ANALYSIS

In this section we turn te the description of classical, general relativistic

corrections to the expressions used in the preceding sections.

Our analysis is, for the moment, rather limited in scope, aiming essentially
at establishing the regions where these corrections can be neglected and at finding

the leading qualitative effects when they cannot.

7.1 Regge-Gribov diagrams for classical corrections

Because of eikonalization (i.e., of exponentiation) it 1s not immediately
obvious how to classify a given non-leading contribution to a{s,b). In a sense, one
has to define suitable 2PI (two-particle irreducible) diagrams, i.e., diagrams, or
better contributions, that do not correspond to two-body—diffractive intermediate
states (in the s-u chammnels). Let us elucidate this point at thne one-loop level

where one or two Reggeons can be exchanged in the t-channel,

The (cbvicusly 2PI) single GR exchanges (Fig, 1la) are absent because of the
non-renormalization of the Newton constant and of the graviton mass in superstring
theory (see discussion in Sectiom 3). Non-leading Regge poles are negligible in our
high-energy limit. Turning to two-Reggeon exchanges (Fig. 11b), one finds, besides
the already considered 2GR cut, contributions from non-leading Regge cuts such as

the one due to two gravitinos. This exchange behaves as

2/3)-1 2
"/S (z.) :.D(D SL

a(st) ~ 9

Z 3!’;»;(‘1‘1:95 , ,
7.1

Being 2PI, it has to be compared te the GR Born term (3.1) and is non-leading by a

power of @n- In order to identify a classical correction at order a%, we would need
L
terms O(GDSZ) relative to Born, but such terms appear to be excluded by relati-

vistic invarilance.

. . D-3
This fact allows us to conclude that there are no corrections 0((Rs/b) ) to
the leading deflection formula (6.16) confirming the expectation that the effective
metric experienced by each graviton is not of a Schwarzschild type. It 1is instead

consistent, to this order, with scattering in an AS metric [18].

At two-loop level (Fig. 12), we find several possibilities corresponding to

one (Fig. 12a), two (Figs. 12b,d) or three (Fig. 12c) Reggeons being exchanged in
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the t-channel. Diagrams of type (a) can be discarded by the same non-remcrmaliza-
tion arguments invoked at the one-loop level. As for the three Reggeon exchanges of

Fig. 12c, these are either reducible (e.g., the 3GR exchange) or non-leading.

We are thus left with two GR cuts at the two-loop level (Figs. 12b,d). These
give contributions to a(s,t) which are 0(G§s3) = O(GNSZ(GN/S)Z)’ i.e., O(RZ(D 3))
relative te the Born term. The corresponding corrections to the eikomal phase can
be O(Rsfb)Z(D_3)), i.e., typical of a classical correction [see Eq. (1.12)].

Extracting the classical correction, however, turns out to te far from
trivial. The point is that long-distance, classical, effects get intertwined with

short-distance quantum effects on which we only have, at present, limited control,

In the rest of this secticon, we shall examine, as far as we shall be able to

go, the leading corrections due to Figs. 12b,d.

7.2 The H diagram

The twoe diagrams of Figs. 12b,d are there to represent the fact that the one-
loop correction to Vy (denoted by Vg )) can itself contain a 2GR intermediate state
in the t channel, giving rise to the diagram 12d. All other contributions are
lumped into Fig. 12b, which contains, for instance, contributions with the same
structure as in Fig. 12d, but where the two upper GRs are replaced by non-leading
Regge poles. It is obvious that the only genuine, long-distance, classical contri-
bution must come from the diagram containing four graviton poles (Fig. 12d).
Considering diagram 12d in the field theory limit gives the H diagram of Fig. 13,
where the horizontal lines stand for massless particles only. On general (Regge-

Gribov) factorization grounds, we expect such a diagram to have an imaginary part

given asymptotically by:

e ags (5.¢) ~§ [ [ oty b Mp[-( wiag-a )y - (20 g
0

g_..g,} (- 3, (7.2)

where y is the rapidity of the particle produced in the niddle and P, is a fourth
order polynomial in the qi's arising from the derivative self-interaction of the
gravitons. The detailed structure of Py is not very crucial. We have arguments

suggesting that Py ~ ql(q"qi)qz.(q—qz) in which case Eq. (7.2), transformed into

b-space, gives:
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S s, ) ~ G s /dm ,0(5,b) 3 &(y,b) 3 A(Fg,hbe)

%D((F'?/é“.é} (7.3)

where afy,b)' is atree(s,b) of BEq. (5.2) with the factor g2?s removed and
3, = 3/3b..
i i

However, even the expression (7.3) contains important short-distance contribu~
tions to be subtracted out, In fact, if we replace in (7.3) the long-distance part

of @ ~ b0

>

Ja” F(g'z)(bz) k

[1?__:9) (7.4)

we get the formal result:

which shows poles for even D > 4 and zeros for odd D > 5. When performing the sub-
traction procedure (which can be explicitly done in terms of known integrals) the
poles will turm into ~logb behaviour, while the zeros signal that no long-distance

* - . -
part is present for odd D ). For even D » 4, the finite, long-distance contribution

of (7.3) turns out to be of the form:

0 w..;p L2 ‘?_)AE Rs 3P—3)
Tmayss) ~ Bys 3 b G L S ey lee

t'ar,( b

(7.5)

On the other hand, the subtraction terms [which come from 912 or (thl)z ~
0{a'Y) are of the form

(9 5)1[(5 [4‘9)2‘%0/; +(b bl Dfug);_%o/; t- ] (7.6)

and start appearing for D » 4, D> 6, and so on.

. % . - .
They correspond, therefore, to divergent ) terms in the limit o' > 0, which
will be interpreted as renormalizations of the two-particle 2GR vertices at one-

loop level.

*) This is because (7.3) admits an asymptotic series in inverse powers of b?,
while (7.4) would contain a fractional exponent for odd D.

%%} This divergence is not actually present in Ima, because of the phase space cut-
off b » 1/¥s. However, the energy dependence would be substantially different
for ' » 0 and true divergences would occur in Rea.
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If we compare the contributions (7.6) to the cone-loop 2GR cut ~g“52(b2)4“D, we
find that they give correctioms of relative order g2 ~ s pessibly times a power
of {a'/b%). They correspond, therefore, to a redefinition of the diffractive
states, to take into account two phenomena: (i) imstability of string states at
O(aD), and (ii) graviton bremsstrahlung, which is particularly important for

D= 4.

We see therefore that, due to the string cut-off, the short-distance terms
(7.6), which for large b are larger than (7.5), can be interpreted as reducible

contributions, and are therefore under control.

A similar interpretation would be much more difficult in a pure field
theoretical framework, due to the fact that the phase space cut-off b > 1/vV's gives
rise for a' » 0 to drastically different energy dependences in Egq. (7.6), of type
~sD/2_2. In other words, due to the unquenched large momenta circulating in virtual
loops, large corrections may occur for sufficiently large D, altering perhaps even

the large-distance classical results.

Oon the contrary, taking into account the string cut-off, the only irreducible,
large-distance effect left cver is the contribution (7.5) which, for b > Rs’ gives
rise to small, but non-trivial classical corrections. String theory may well be the

only way to rescue classical relativity as a limit of the full quantum theory!

7.3 Physical consequences of classical corrections

In order to discuss the effects implied by a term of the type (7.5) on our
scattering process it is essential to determine the phase of such a contributien.
This can be done by using dispersion relations and crossing. More simply we can
notice that the only way to have (7.3) out of a real analytic, s «» u symmetric

amplitude is to have:
(s,&) “9 "275 < (se) = rrj [[75+U)+<7o(:>

i,e., a real part which is down by a single power of logs.

Exponentiating this ansatz gives the modified, field-theory-limit eikenal

fqrmula

b-3

A6q) = f"“”"f (fa-fE & [+0 z{“/]wEé /us%l’z]

(7.8)
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Equation (7.8) shows that, whereas the deflection angle is practically unchanged at
b >»> Rs > ?\.S, inserting the saddle point value bs(q) in the imaginary part of the
eikonal phases induces an exponential damping factor given by:
_Eb, T
-2

{7.9)

This classical absorption becomes strong at large enough scattering angles, 1.e.,

for: P2 _J_n
As 310
‘97 > ﬁg.a- = - D2
o(y £ ‘ (7.10)

The origin of this absorption is similar to the one due to diffractive string
excitations, They both come from the appearance of a large imaginary part to be

added to a leading, but purely real, eikonal phase.

7.4 Comparison with string diffractive absorption

It is interesting to compare the result (7.9) with the one obtained 1in

Sections 5 and 6 on string-induced absorption:

op (- £ (5 ] oxep(-£ ‘9”') o

giving strong damping as scon as:

o2 -2
'5'—>'9 = As (7.12)
5.a. D

One thus finds: 2 -3)

-6 (p-e)@l’"
9‘"’%9(_4_ [o/ 5/5 ) (7.13)

As a consequence, for D » 6 and even, string absorption becomes important before
classical absorption (recall that aD<<l, E))RS) while, in D = 4, this only happens
for Rs < KS. Thus in D = 4 classical absorption dominates at Eixed @ and
sufficiently large energies. For odd D)string effects are always dominant with
respect to the leading classical correction since the latter vanishes. We can also
ask which of the two effects dominates at a given scattering angle. One finds that,
at D = 4 (and at any 6), string (classical) absorption dominates for Rs < hs

(R >\ )}, while, for D » 6, the condition for string dominance becomes
s s
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l

-

Jf’ﬁ' ———

o-4 4y

ﬁ < ((\’/ﬁ ~ __V%. d (7.14)
5 o

which includes the fixed-t region. At fixed small angle, classical effects dominate

for s » =,

8.

1)

2)

3

4)

- DISCUSSION

Let us now try to summarize what we have learnt by listing our main results.

We have found no apparent difficulty in recovering unitarity at high energy.

As expected, very high genus surfaces play a crucial r&le in that recovery.

After loop corrections, the graviton pole still dominates at sufficiently

small t, being distorted by a typical Coulomb phase at D = &,

Elastic scattering is the dominant process at fixed t and also at sufficiently
small angles. In this region, cune obtains relations between deflection angles
and impact parameter which are typical of particle propagation in an external

metric. Again, loops are essential for producing the effect.

Absorption - via opening of inelastic channels - starts already at a small,
critical angle or, equivatently, at a large, critical impact parameter. There
is both classical absorption and string absorption and the relative importance
of the two crucially depends on whether the classical scale RS is larger or
smaller thanm the quantum, string scale AS (see Section 1). Let us thus
distinguish two cases.

a) RS > Ks - In this case we are limited by our ignorance to b > R_- As
b » R;, classical corrections (not quantitatively studied as yet) become
jmportant and we expect the amplitude to be roughly absorbed as exp(—RS/s). At
smaller angles, diffractive string absorption can be evaluated and, for I > 4,
is important even at angles where classical corrections are negligible.

b) RS < KS - In this case (which excludes infinite energy at fixed coupling),
string effects - that we are able to estimate - dominate over classical
corrections and actually medify classical general relativity expectations. In
particular, the diffractive excitation region ks/Y <b < bD is followed, at
smaller b, by an inelastic absorption region in which string effects "soften"

classical gravity, preventing deflection angles larger than a critical value.
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Let us finally discuss the possible implications of our results on the work by
Gross and Mende [2] om high energy fixzed-angle scattering. These authors discuss
the asymptotic limit of the four-point function at fixed genus obtaining a simple

and suggestive result:

= (k) (k) bt

A=A
k=o

s

hy! (8.1)

where f£(8) is a simple function of 8 extracted by the tree-level calculation and

c P_ are numbers whose evaluation is not straightforward.

h’ "h

As pointed out in Ref. [2], this result implies that, at fixed angle, large
genus (h) contributions become very important. This is analogous to our conclusions
in the small-angle regime ((h}vbsq). Indeed, a simple saddle point approximation to
{8.1) would suggest that
5

(A>~U? / A~ 2 (8.2)

Unfortunately, if <h> grows like ¥'s the average momentum transfer per collision is
of order ¥s/<h> = 0(1) and it is therefore a fixed t, and not a fixed angle, dyna-
mics that dominates. Such a conclusion 1is confirmed by our results: precisely
because of the extreme softness of string theory, the most efficient way to reach a
finite scattering angle is through an enormous number of soft processes. As we have

seen, these can be estimated and lead to a fixed (small) angle damping of the type

A~

-—

A bt S -4
197‘/0 - Hox (XDME %'5)(,“9) , %o 2 E M?(z[&)) (8.3)

Typically, at fixed 9 and aD(~GN) and at sufficiently high energy, the first term
(classical absorption, Section 7) dominates and the damping goes like

{(p-2/D-3)

exp(-E £f1(8)) giving an elastic amplitude larger than Born but still

smaller than the Cerulus-Martin bound exp(—s).

In our view, the behaviour that we have found reflects some very physical,
classical gravitational phenomena occurring already at large distances (RS)>AS)
because of the high energies involved. It is not obvious to us that an approach
based on order by order fixed angle calculations can effectively take Crhese

phenomena into account,
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FIGURE CAPTIONS

Fig. 1 Representation of the torus as a sum over t-channel intermediate states.

Fig. 2 The six-point tree amplitude as given by:
{a) sum over t-chammel states, and

(b) 2GR amplitude A™'%2 in its asymptotic form.

Fig. 3 The torus s-channel discontinuity, as given asymptotically by
2-gravi-Reggeon exchange. Mu(Md) denote the masses of the upper (lower)

string intermediate states.

Fig. 4 Factorization pattern and corresponding Koba-Nielsen variables for the

integrand (3.6) of the six-point tree amplitude.

Fig. 5 Asymptotic form of the genus h contribution in terms of N = h+l
gravi-Reggeon exchanges, with transverse momentum transfers KPR

Fig. 6 Asymptotic form for the 2N+2Z-peoint tree amplitude for s, @ and

corresponding Koba-Nielsen variables Ci for the gravi-Reggeon amplitude
o) ...(IN

Fig. 7 1Impact parameter picture of the genus h = N-1 contribution to asymptotic

string scattering, as given by N-GR vertices Vu, Vd

N N in terms of the

b~displacement X (o )-X, (5.).
u u d d

Fig. B ©Notation for the AGK cutting rules of Eq. (4.14). Nc is the number of cut
Reggeons and N, {(N.) is the one of those to the right (left) of the cutting

plane.

Fig. 9 Qualitative impact parameter behaviour for the Bessel transform of the tree
amplitude &(s,b) (Red,Imd) and for Iméeg, which includes the diffractive
string corrections., At the critical values bc, bI, bD such amplitudes
exceed the unitarity bound.

Fig. 10 Qualitative modification of the saddle point deflection angle for
b < Max(bI,Rs) for the cases: (a) R_< AS and (b) RO KS. The full
(dotted) line includes (excludes) the string or classical corrections for

the cases (a) or (b) respectively.

Fig. 11 Classification of one-loop diagrams in terms of: (a) vertex corrections to

single~GR exchange and (b) 2GR exchanges.
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Fig. 12 Classification of two-loop diagrams in terms of: {(a-b) subleading vertex
corrections to 1GR and 2GR exchanges, {c} leading 3GR exchange, and (d)

new, "irreducible" 2GR contribution providing the classical corrections.

Fig. 13 Diagram 12d in the field theory limit. Solid lines represent the massless
sector of superstring theory aumd the dashes on them correspond to taking

the imaginary part of the amplitude.
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