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1 Introduction

Soft theorems [1–12] have been analyzed recently from different perspectives, both using

asymptotic symmetries [13–36] and also by direct analysis of amplitudes in field theory and

string theory [37–87]. There are general arguments establishing their validity in any space-

time dimensions in any theory as long as one maintains the relevant gauge symmetries

— general coordinate invariance for soft graviton theorem and U(1) gauge invariance for

soft photon theorem [81, 83, 84]. However these arguments break down in four space-time

dimensions due to infrared divergences [41] where more care may be needed [27, 44]. Indeed,

since the S-matrix itself is infrared divergent, it is not a priori clear how to interpret a

relation whose both sides are divergent.

Although soft theorem is a relation between quantum scattering amplitudes — ampli-

tudes with soft photon or graviton to amplitudes without soft photon or graviton — one can

also relate soft theorem to classical scattering amplitudes. In four space-time dimensions

this can be done via asymptotic symmetries [16, 31, 34]. Ref. [88] produced a more direct

relation between soft theorem and classical scattering in generic space-time dimensions by

directly taking the classical limit of a quantum scattering amplitude. This relates various
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terms in soft theorem to appropriate terms in the radiative part of the electromagnetic

and gravitational fields in classical scattering in generic space-time dimensions. Reversing

the logic, one can use the classical scattering data to give an alternative definition of the

soft factors.

Since classical scattering is well defined even in four space-time dimensions, one can

hope to use the classical definition of soft factors to understand soft theorem in four dimen-

sions. Since in higher dimensions the soft theorem expresses the low frequency radiative

part of the electromagnetic and gravitational fields in terms of momenta and angular mo-

menta of incoming and outgoing finite energy particles, the naive guess will be that the

same formula will continue to hold in four dimensions. However in carrying out this proce-

dure we encounter an obstacle [89, 90]. The subleading terms in the soft theorem contain a

factor of angular momentum jµν of the individual particles involved in the scattering, with

the orbital contribution to the angular momentum given by xµpν − xνpµ, where xµ(τ) and

pµ(τ) label the asymptotic coordinates and momenta of the particle as a function of the

proper time. In dimensions larger than four, pµ approaches a constant and xµ approaches

the form cµ+αpµ τ with constant cµ and α as τ →∞. Therefore jµν is independent of τ as

τ →∞ and we can use the asymptotic value of jµν computed this way to evaluate the soft

factor. However in four space-time dimensions the long range gravitational and/or electro-

magnetic forces acting on the particles produce an additional term of the form bµ ln τ in the

expression for xµ. This gives a logarithmically divergent term of the form (bµpν−bνpµ) ln τ

in the expression for jµν , making the subleading soft factor divergent.

Since we do not expect the radiative component of the metric or gauge fields to diverge

in classical scattering in four space-time dimensions, this suggests that the divergence in

the subleading soft factor is a breakdown of the power series expansion in the energy ω

of the soft particle. Therefore the soft factor must contain non-analytic terms in ω. The

natural guess is that the soft factor at the subleading order is given by replacing the factors

of ln τ in the naive expression by lnω−1. This has been tested in [89] by considering several

examples of classical scattering in four space-time dimensions.1

The purpose of this paper is two fold. In all the examples considered in [89] the scat-

tering process considered had one heavy center producing the long range Coulomb or grav-

itational field, and other particles carrying smaller masses were taken to be moving under

the influence of the long range fields produced by the heavy center. In this paper we relax

this assumption and consider a general scattering process where all particles involved in the

scattering have masses of the same order, and then determine the logarithmic terms in the

classical soft factor using the ln τ → lnω−1 replacement rule. We also analyze directly the

quantum subleading soft factor by considering one loop scattering of charged scalar fields

in the presence of gravitational and electromagnetic interaction. The difference with the

previous analysis, e.g. in [41], is that we do not insist on a power series expansion in ω and

calculating the coefficients of the power series expansion. Instead we allow for possible non-

analytic terms of order lnω−1 in the soft expansion. This analysis yields results consistent

1The existence of various logarithmic terms in classical scattering has been known earlier [91–94]. Soft

theorem provides a systematic procedure for computing the coefficient of the logarithmic term in the

subleading soft factor without detailed knowledge of the forces responsible for the scattering.
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with the classical results, although the quantum results contain additional real part which

we interpret as the result of back reaction of the radiation on the motion of the particles.

Since [81, 83, 84] gave a general derivation of soft theorem including loop corrections as

long as 1PI vertices do not generate soft factor in the denominator, one could ask to what

extent we could derive the results of the current paper using the result of [81, 83, 84]. To

this end we note that there are two distinct sources of logarithmic terms in the soft theorem.

The first is the region of integration in which the loop momentum is large compared to the

energy of the external soft particle. In this region we expect the arguments of [81, 83, 84]

to be valid, and we find that the contribution from this region can indeed be obtained by

applying the usual soft operator on the amplitude without the soft graviton. The other

source is the region of integration in which the loop momentum is small compared to the

external soft momentum. The contribution from this region cannot be derived using the

usual soft theorem, and need to be computed explicitly.

The rest of the paper is organized as follows. Section 2 contains a summary and a

discussion of our results where we also discuss various special cases of our classical result.

Section 3 describes the analysis of the logarithmic terms in the soft expansion for gen-

eral classical scattering. Section 4 describes some general strategy for dealing with the

infrared divergent part of the S-matrix and extracting the quantum soft factor by mak-

ing use of momentum conservation. Section 5 describes one loop quantum computation

of the logarithmic terms in the soft photon theorem in scalar quantum electrodynamics

(scaler QED). Section 6 describes a similar computation in the soft graviton theorem in

a theory of charge neutral scalars interacting with the gravitational field. In section 7 we

consider charged scalars interacting via both gravitational and electromagnetic interaction,

and determine the one loop contribution to the quantum soft graviton factor due to elec-

tromagnetic interaction and one loop contribution to the quantum soft photon factor due

to gravitational interaction.

Classical gravitational radiation during a high energy scattering process has been an-

alyzed in [95, 96]. We have been informed by G. Veneziano that for massless particle

scattering, results related to the ones described here were found in [97], and also that the

logarithmic terms in the classical scattering have been derived in [98] by taking the soft

limit of the results of [95, 96].

Note added. The papers quoted above have now appeared in the arXiv [97, 98]. In

particular the results of [98] can be shown to be in perfect agreement with our results for

scattering of massless particles.

2 Summary and analysis of the results

In this section we shall first summarize our results and then discuss various aspects of the

results. Finally we shall consider some special limits and compare with known results. We

shall use ~ = c = 8πG = 1 units.
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2.1 Summary of the results

In order to give a uniform treatment of the classical soft photon and soft graviton theorem,

we shall denote by φ(~x, t) the radiative part of the metric or electromagnetic field at a

point ~x at time t for a scattering event around the origin. For electromagnetic field, φ can

be directly identified with the gauge field. For the gravitational field we define

hµν = (gµν − ηµν)/2, eµν = hµν −
1

2
ηµν h

ρ
ρ , (2.1)

and take φ to be eµν . For both electromagnetism and gravity we define classical soft factor

S(ε, k) in D space-time dimensions via the relation:∫
dt eiωt ε.φ(~x, t) = eiωR

( ω

2πiR

)(D−2)/2 1

2ω
S(ε, k)

= − i

4πR
eiωR S(ε, k) for D = 4 , (2.2)

where ε is the polarization tensor of the soft particle so that ε.φ = εµAµ for gauge fields

and εµνeµν for gravity, and

k = −ω(1, n̂), n̂ ≡ ~x/|~x|, R = |~x| . (2.3)

On the other hand the quantum soft factor S(ε, k) is the ratio of an amplitude with an

outgoing soft photon or graviton with momentum k and polarization ε and an amplitude

without such a soft particle. It was shown in [88] that in the classical limit the quantum

soft factor reduces to the classical soft factor for D > 4. Our interest will be in analyzing

the situation in D = 4.

We consider the scattering of n particles carrying electric charges {qa} and momenta

{pa} for a = 1, · · ·n. In our convention the momenta/charges carry extra minus sign if

they are outgoing. The particles are taken to interact via electromagnetic and gravitational

interactions besides other short range interactions whose nature we need not know. The

symbol ηa takes value +1 (−1) if the a-th particle is ingoing (outgoing). Then the classical

result for the soft photon factor Sem(ε, k), containing terms of order ω−1 and ln ω−1, is2

Sem =
∑
a

εµp
µ
a

pa.k
qa−i lnω−1

∑
a

qa εµkρ
pa.k

∑
b 6=a

ηaηb=1

qaqb
4π

m2
am

2
b {p

ρ
bp
µ
a−pµb p

ρ
a}

{(pb.pa)2−m2
am

2
b}3/2

+
i

4π
(lnω−1+lnR−1)

∑
b

ηb=−1

k.pb
∑
a

εµp
µ
a

pa.k
qa

+
i

8π
lnω−1

∑
a

qa εµkρ
pa.k

∑
b 6=a

ηaηb=1

pb.pa

{(pb.pa)2−m2
am

2
b}3/2

(pρbp
µ
a−p

µ
b p

ρ
a)
{
2(pb.pa)

2−3m2
am

2
b

}
.

(2.4)

2In this and subsequent expressions R arises as an infrared cut-off. For the classical result the lnR terms

arise due to long range gravitational force on the soft photon or graviton during its journey from the scatter-

ing center to the detector over a distance R. For the quantum part, the natural infrared cut-off is provided

by the resolution of the detector. For a detector placed at a distance R from the scattering center, the best

energy resolution possible is of order 1/R. Therefore it is again natural to take R as the infrared regulator.
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Since for real polarization the subleading contribution is purely imaginary, it does not affect

the flux to this order. However the flux for circular polarization and/or the wave-form of

the electromagnetic field do receive subleading contribution. An identical situation prevails

for gravity.

The quantum result for Sem has additional terms:3

∆Sem =
1

16π2
lnω−1

∑
a

qa
εµkν
pa.k

{
pµa

∂

∂paν
− pνa

∂

∂paµ

}
∑
b 6=a

{2 qaqbpa.pb + 2 (pa.pb)
2 − p2ap2b

}√
(pa.pb)2 − p2ap2b

ln

pa.pb +
√

(pa.pb)2 − p2ap2b

pa.pb −
√

(pa.pb)2 − p2ap2b


− 1

8π2
(lnω−1 + lnR−1)

∑
a

qaεµp
µ
a

pa.k

∑
b

(pb.k) ln

(
m2
b

(pb.k̂)2

)
. (2.5)

The classical results are universal, independent of the theory and the nature of external

particles. We expect that the quantum results are also universal, but we have derived them

by working with one loop amplitudes in scalar QED coupled to gravity. It is easy to check

that (2.4), (2.5) are invariant under gauge transformation εµ → εµ+ξ kµ for any constant ξ.

As will be discussed in section 2.2, the quantum correction (2.5) should not be directly

added to (2.4) and substituted into (2.2) to compute the radiative component of the classical

electromagnetic field. Rather, when the contribution (2.5) is small compared to (2.4), we

can substitute (2.4) into (2.2) to compute the classical electromagnetic field produced by

a scattering event.

As discussed in section 4, the quantum results are ambiguous and are defined up to

addition of a term to Sem of the form lnR−1 k.U S
(0)
em where S

(0)
em is the leading soft factor

given by the first term on the right hand side of (2.4) and U is a vector constructed out of

the pa’s. By choosing U = (8π2)−1
∑

b pb ln(m2
b/µ

2), we can replace the lnm2
b term in the

coefficient of lnR−1 in the last line of (2.5) by lnµ2 for any mass parameter µ. This makes

manifest the fact that the coefficient is not divergent in the mb → 0 limit. The coefficient

of lnω−1 cannot be changed this way, but in this case the finiteness of mb → 0 limit follows

as a consequence of cancellation between the second and third line of (2.5) and momentum

conservation.

If we want to consider the situation where we ignore the effect of gravity, then we need

to set the terms proportional to lnω−1 that are linear in qc’s to zero. On the other hand if

we want to consider the situation where we ignore the effect of electromagnetic interaction

between the particles during scattering (but still use electromagnetic interaction to compute

soft photon emission process), we have to set the terms proportional to ln ω−1 that are cubic

in the qc’s to zero.

3Note however that when we express the results in terms of the frequency/wavelength of the soft pho-

ton/graviton and momenta of the finite energy particles, neither the classical nor the quantum result has

any power of ~. We shall discuss later the conditions under which we expect the quantum results to be

small compared to the classical results.
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The classical result for soft graviton factor takes the form

Sgr =
∑
a

εµνp
µ
apνa

pa.k
−i lnω−1

∑
a

εµνp
ν
akρ

pa.k

∑
b 6=a

ηaηb=1

qaqb
4π

m2
am

2
b {p

ρ
bp
µ
a−pµb p

ρ
a}

{(pb.pa)2−m2
am

2
b}3/2

+
i

4π
(lnω−1+lnR−1)

∑
b

ηb=−1

k.pb
∑
a

εµνp
µ
apνa

pa.k

+
i

8π
lnω−1

∑
a

εµνp
ν
akρ

pa.k

∑
b 6=a

ηaηb=1

pb.pa

{(pb.pa)2−m2
am

2
b}3/2

(pρbp
µ
a−p

µ
b p

ρ
a)
{
2(pb.pa)

2−3m2
am

2
b

}
.

(2.6)

The quantum result has additional terms

∆Sgr =
1

16π2
lnω−1

∑
a

εµρp
ρ
akν

pa.k

{
pµa

∂

∂paν
− pνa

∂

∂paµ

}
∑
b 6=a

{2 qaqbpa.pb + 2 (pa.pb)
2 − p2ap2b

}√
(pa.pb)2 − p2ap2b

ln

pa.pb +
√

(pa.pb)2 − p2ap2b

pa.pb −
√

(pa.pb)2 − p2ap2b


− 1

8π2
(lnω−1 + lnR−1)

∑
a

εµνp
µ
apνa

pa.k

∑
b

pb.k ln
m2
b

(pb.k̂)2
, (2.7)

where k̂ = −k/ω = (1, n̂). Again the classical results are valid universally. The quantum

results are obtained from one loop calculation in scalar QED coupled to gravity, but we

expect them to be universal. As in the case of (2.5), the lnm2
b term in the coefficient of

lnR−1 in the last line of (2.7) can be replaced by lnµ2 by exploiting the ambiguity in

the definition of the soft factor discussed in section 4. One can check that (2.6), (2.7) are

invariant under gauge transformations εµν → εµν + ξµkν + ξνkµ for any constant vector ξµ.

If we want to consider the situation where we ignore the effect of electromagnetic

interactions, then we need to set the terms proportional to ln ω−1 that are quadratic in qc’s

to zero. On the other hand if we want to consider the situation where we ignore the effect of

gravitational interaction between the particles during scattering (but still use gravitational

interaction to compute soft graviton emission process), we have to set the qc independent

terms in the coefficient of lnω−1 to zero.

2.2 Discussion of results

First we shall briefly outline how these results are derived; more details can be found in

later sections. The classical results (2.4) and (2.6) are the result of direct application of

classical soft theorem to subleading order. As described in [89], the soft factor involves

orbital angular momenta of initial and final particles and these diverge logarithmically in

the elapsed time τ in four dimensions due to the long range gravitational/electromagnetic

force on the incoming and outgoing particles that generates a term proportional to ln |τ |
in the trajectory. We follow the prescription of [89] of replacing ln |τ | by lnω−1 to arrive

at the first and third lines of the classical results (2.4), (2.6). The second lines of (2.4)

– 6 –
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and (2.6) arise from additional phases that are not directly determined by soft theorem.

They represent the effect of long range gravitational force on the outgoing soft photon or

graviton which causes the soft particle to slow down and also backscatter.

Quantum results are the result of direct one loop computation in a field theory of

multiple charged scalars, coupled to electromagnetic and gravitational fields. We simply

evaluate the order ω−1 and lnω−1 terms in the scattering amplitude of multiple finite

energy scalars and an outgoing soft photon or graviton of energy ω, and express this as the

product of the amplitude without the soft photon or graviton and a multiplicative factor

that we call the soft factor. The latter is given by the sum of (2.4) and (2.5) for soft photon

and the sum of (2.6) and (2.7) for the soft graviton. Even though the S-matrix elements

with and without the soft particle are infrared divergent, much of this cancels when we take

the ratio of the two. The remaining infrared divergent part is regulated by the infra-red

length cut-off R and is responsible for the terms proportional to lnR in these expressions.

This is related to the quantity σ′n introduced in [41].

The different terms proportional to lnω−1 in (2.4), (2.5) and in (2.6), (2.7) have dif-

ferent origin. We shall explain them in the context of the soft graviton factor, but the case

of soft photon factor is very similar.

1. We begin with the classical result (2.6). The term proportional to qaqb in the first

line represents the effect of late time gravitational radiation due to the late time

acceleration of the particles via long range electromagnetic interaction. The term in

the last line of (2.6) represents the effect of late time gravitational radiation due to

the late time acceleration of the particles via long range gravitational interaction. We

expect the scale of these logarithms to be set by the largest length scale involved in

the classical scattering process, e.g. the typical distance of closest approach between

the particles involved in the scattering. This is taken to be larger than or of the

order of the Schwarzschild radii of the particles and much larger than the Compton

wave-lengths of the particles involved in the scattering. In the quantum one loop

computation both these terms arise from the region of loop momentum integration

where the loop momentum is large compared to ω but small compared to the energies

of the other particles. In this case the scale of these logarithms is again set by the

largest length scale involved in the quantum scattering which is the inverse of the

typical energy carried by the finite energy external states. For one loop result to be

reliable, this needs to be taken to be large compared to the Schwarzschild radii of

these particles.

2. The term in the second line of (2.6) proportional to (lnω−1 + lnR−1) represents

the effect of gravitational drag on the soft graviton due to the other finite energy

particles in the final state. This has the effect of causing a time delay, represented

by the lnR−1 term, for the soft graviton to travel to a distance R. This also has

the effect of inducing backscattering of the soft graviton, represented by the ln ω−1

term. In the quantum computation these terms arise from region of loop momentum

integration where the loop momentum is smaller than ω and larger than the infrared

cut-off R−1. This term has appeared e.g. in [91, 93, 94]. As mentioned in footnote 2,

– 7 –
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the scale of these logarithms is set by the effective infrared cut-off, e.g. the distance

R to the detector for the classical scattering and the resolution of the detector for the

quantum scattering. The latter in turn has a lower limit set by R−1 since we cannot

measure the energy of the outgoing particle with an accuracy better than R−1 if the

detector is placed at a distance R from the scattering center.

3. We emphasize that the classical results are obtained by replacing in the classical soft

theorem the logarithmically divergent terms by ln ω−1 and not by direct calculation

of electromagnetic and gravitational radiation during classical scattering. In special

cases the equivalence of these two procedures was tested in [89] by direct classical

computation. In principle similar tests can be done for the general formulae (2.4)

and (2.6), but we have not done this.

4. We now turn to the additional terms (2.7) that arise in the quantum computation.

First note that both these terms are real for real polarizations unlike the classical

result where the coefficients of lnω−1 terms are imaginary for real polarizations. The

terms in the first two lines come from regions of loop momentum integration where

the loop momentum is large compared to ω but small compared to the energies of the

other particles, while the term in the third line arise from region of loop momentum

integration where the loop momentum is small compared to ω and large compared

to the infrared cut-off R−1.

5. In the quantum computation the terms that arise from loop momenta large com-

pared to ω, namely the terms in the first and third line of (2.6) and the first two

lines of (2.7), can be generated using a simple algorithm. As discussed earlier, the

amplitude without the soft graviton has an infrared divergent factor multiplying it.

Let us call this the IR factor. If in the integration over loop momenta of this IR factor

we restrict the loop momentum integration to be large compared to ω and apply the

usual subleading soft differential operator that arises in higher dimensions to this IR

factor, we recover precisely the results given in the first and third line of (2.6) and

the first two lines of (2.7). The rest of the contribution that arises from integration

region where the loop momentum is small compared to ω cannot be recovered this

way. This indicates that the general argument of [81, 83], based on general coordi-

nate invariance of 1PI effective action and power counting assuming that loops do not

generate inverse power of soft momentum, remain valid in four dimensions as well as

long as the loop momentum is large compared to the external soft momentum.

Since the real infrared divergent part of the amplitude reflects the effect of real graviton

emission, our interpretation of the extra contributions (2.7) in the quantum theory is that

they reflect the effect of backreaction of soft radiation on the classical trajectories. To this

end note that the validity of the classical limit described in [88] requires that the total

energy carried by soft radiation should remain small compared to the energies of the finite

energy objects taking part in the scattering. Here ‘soft radiation’ represents those particles

which are not included in the sum over a in (2.6). Therefore we should expect that the

extra terms arising in the quantum theory should be small in the limit when the total

energy carried by the soft radiation is small.

– 8 –
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In order to test this hypothesis we need to consider a scattering where the energy

carried away by soft radiation remains small compared to the energies of finite energy

objects. One way to achieve this is to consider scattering at large impact parameter so

that each incoming particle gets deflected by a small amount and the energy radiated during

this process remains small. In this case the momenta {pa} come in approximately equal and

opposite pairs — the incoming and the corresponding outgoing particle. Now in eq. (2.7)

the last term changes sign under pb → −pb and also under pa → −pa. This shows that it is

small for small deflection scattering. The first term on the right hand side of (2.7) changes

sign under (pb, qb) → −(pb, qb) and also under (pa, qa) → −(pa, qa), due to the argument

of the log getting inverted under each of these operations. This shows that the terms

approximately cancel making the result small. There is one exception to this that arises

when qb = −qa, pb ' −pa, i.e. the pairs (a, b) represent the incoming and the corresponding

outgoing particle. In this case there is no other term that cancels this since the sum does

not include the b = a term, and we need to explicitly evaluate this and show that it

vanishes. This can be checked explicitly by first evaluating the derivatives in the second

line of (2.7), then setting pb = −pa+ε and then carefully evaluating the result in the ε→ 0

limit. Even though individual terms diverge in the ε → 0 limit, a careful analysis shows

that the result vanishes. This confirms that quantum corrections are small in this limit.

Another situation discussed in [88], where the radiated energy remains small compared

to the energies of the hard particles, is the probe limit in which one of the particles has

a large mass M and the other particles are lighter carrying energy small compared to M .

We shall now verify that in this case too the quantum corrections (2.7) are small compared

to the classical result (2.6). For this we shall work in a frame in which the heavy particle

is initially at rest, and using gauge invariance choose the polarization tensor ε to have

only spatial components. After the scattering the heavy particle acquires a momentum

but it is small compared to M . In this case the dominant contribution to (2.6), of order

M , comes from choosing a to be one of the light particles and b to be the heavy particle

in the second and third line of (2.6). However in the quantum correction (2.7) similar

contribution cancels between the choice of b as the initial state heavy particle and the final

state heavy particle, and we do not get any contribution proportional to M . This again

shows that quantum corrections are small compared to the classical result in this limit.

We must emphasize however that the quantum analysis is carried out for single soft

graviton emission. If we want to relate the quantum result to the radiative component

of the classical gravitational field as in [88], then we need to first consider multiple soft

graviton emission and then take the classical limit. The analysis of [88] relied on the fact

that the soft factors associated with different bins in the phase space are independent of

each other, i.e. the probability of emitting certain number of soft particles in one bin does

not depend on how many soft particles are emitted in the other bin. This independence

breaks down when the total energy carried by the soft particles becomes comparable to

the energies of the hard particles — precisely when the quantum correction (2.7) becomes

comparable to the classical result (2.6). Therefore we should not use (2.7) to modify the

classical result (2.6). Instead we should use the smallness of (2.7) as a test of when the

classical result (2.6) is valid. An identical discussion holds for electromagnetism.
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2.3 Special cases

As a special case we can consider the situation described in [90] where a neutral massive

object of mass M at rest decays into a heavy object of mass M0 'M and a set of neutral

light objects carrying mass ma � M and momentum pa = −ea(1, ~βa) with ea � M for

a = 1, · · ·N . Our goal will be to write down the classical soft graviton factor for this case.

We shall take the polarization tensor of the soft graviton to have components only along

the spatial direction, since the result for the other components may be found by using

invariance under the gauge transformation εµν → εµν + ξµkν + ξνkµ for any vector ξ. If

we denote the momentum carried by final state heavy object of mass M0 by pN+1, then

we have p0N+1 ' −M0 and |piN+1| � M0. Examining (2.6) with qa = qb = 0 we see that

dominant term proportional to lnω−1 comes from the terms where we choose b = N + 1

and a labels any of the N finite energy states. Using the relation e2a = m2
a/(1 − ~β2a), the

net contribution takes the form:

i

4π
lnω−1M0

N∑
a=1

ea
εijβaiβaj

1− n̂.~βa
+

i

8π
lnω−1M0

N∑
a=1

ea
εijβaiβaj

1− n̂.~βa
(−ea)(2e2a − 3m2

a)

(e2a −m2
a)

3/2

=
i

8π
lnω−1M0

N∑
a=1

ea
εijβaiβaj

1− n̂.~βa
2~β3a + 1− 3~β2a

|~βa|3
+ · · · , (2.8)

where · · · contain terms without a factor of M0 and are therefore smaller in the limit of

large M0. This agrees with the results of [90]. As discussed in [90], this produces a late

time tail in the gravitational wave-form that falls off as inverse power of time.

Note that when all the final state light particles are massless, so that |~βa| = 1 for

1 ≤ a ≤ N , the expression (2.8) vanishes. This would be the situation during binary

black hole merger when the final state particles are only gravitons. However since in such

processes the radiation carries away an appreciable fraction of the mass of the parent

system, the · · · terms in (2.8) could be significant even though their contribution will be

suppressed by the ratio of the total energy carried away by radiation to the mass of the

parent system. We shall now evaluate the result without making any approximation. In

this case in the sum over a and b in (2.6), either a or b (or both) represents a massless

particle. Recalling that when pa and pb are both outgoing then pa.pb is negative, we can

express the terms in (2.6) proportional to lnω−1 as

i

4π
lnω−1

N+1∑
a=1

εijpaipaj +
i

4π
lnω−1

N+1∑
a=1

εijpai

N+1∑
b=1
b 6=a

pbj = 0 , (2.9)

where in the last step we have used conservation of spatial momentum
∑N+1

b=1 pbj = 0.

Therefore we see that even without making any approximation, the coefficient of the ln ω−1

term in the classical soft graviton factor continues to vanish.

Another special case we can consider is when a charge neutral object of mass M at

rest breaks apart into two charge neutral objects of masses m1 and m2, spatial momenta

~p and −~p and energies e1 =
√
m2

1 + ~p2 and e2 =
√
~p2 +m2

2. In this case if we take the

polarization tensor of the soft graviton to have components only along the spatial direction,
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then the contribution from the initial state to (2.6) vanishes and we need to only compute

the contribution from a pair of final states. This can be easily evaluated and the terms

proportional to lnω−1 take the form

i

8π
lnω−1 εijp

ipj (e1 + e2)

{
1

e1 − n̂.~p
+

1

e2 + n̂.~p

}
×
[

e1e2 + ~p2

{(e1e2 + ~p2)2 −m2
1m

2
2}3/2

{
2(e1e2 + ~p2)2 − 3m2

1m
2
2

}
− 2

]
. (2.10)

Next special case we shall analyze is that of scattering of massless particles, again

focussing on the classical result (2.6). Defining

P ≡
∑
ηa=1

pa = −
∑
ηa=−1

pa , (2.11)

and the fact that pa.pb is negative for ηaηb = 1, we can express the term proportional to

lnω−1 in (2.6) for massless particles as

− i

2π
lnω−1 k.P

∑
a,b

b 6=a,ηa=ηb=1

εµνp
µ
apνa

pa.k
+

i

2π
lnω−1 εµνP

µP ν . (2.12)

Note that this involves only the momenta of the initial state particles and is insensitive to

the momenta of the final state particles. This asymmetry is related to the fact that in our

analysis we are considering soft particle only in the final state and not in the initial state.

More generally one can show that for a general scattering process involving both mas-

sive and massless particles, the terms proportional to ln ω−1 in the classical formula (2.6)

is not sensitive to the details of the final state massless particles except through overall

momentum conservation. To see this let us first consider terms that could involve a final

state massless particle momenta and the initial state momenta. These come from choosing

a to be an initial state and b to be a final state massless state in the term in the second

line of (2.6). The net contribution from such terms is given by

i

4π
lnω−1

∑
bmassless
ηb=−1

k.pb
∑
a

ηa=1

εµνp
µ
apνa

k.pa
=− i

4π
lnω−1 k.(P−Pmassive)

∑
a

ηa=1

εµνp
µ
apνa

k.pa
, (2.13)

where −P denotes total outgoing momentum as defined in (2.11) and −Pmassive denotes

the total outgoing momentum carried by the massive particles. Therefore this does not de-

pend explicitly on the momenta of the outgoing massless states except through momentum

conservation.

Next we consider terms that involve a pair of final state momenta at least one of which

is massless. This term receives contribution from all three lines on the right hand side

of (2.6) with the restriction ηa = 1, ηb = 1, and either ma or mb or both zero. Therefore

the term proportional to qaqb vanishes. Also the coefficient of lnω−1 in the summand in

the last two lines simplifies to

i

4π

εµνp
µ
apνa

pa.k
pb.k −

i

4π

εµνp
µ
apνa

pa.k
pb.k +

i

4π
εµν p

µ
ap

ν
b . (2.14)
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In the first term the sum over a and b includes the term where b = a, but in the second

and the third term the sum excludes the b = a term. Therefore the first two terms almost

cancel, leaving behind a contribution where we set b = a. This left over contribution
i
4π εµνp

µ
apνa can now be added to the last term to include in the sum over a or b also the

contribution where b = a. The net contribution from the terms where either a or b or both

represent massless state is then

i

4π
lnω−1

∑
a,b;ηa=ηb=−1

either a or bmassless

εµν p
µ
ap

ν
b . (2.15)

This can be rewritten as

i

4π
lnω−1εµν

 ∑
a,b;ηa=ηb=−1

pµap
ν
b−

∑
a,b;ηa=ηb=−1
aandbmassive

pµap
ν
b

=
i

4π
lnω−1εµν

(
PµP ν−PµmassiveP

ν
massive

)
.

(2.16)

This also does not depend on the details of the momenta of massless final state particles

except for the total momentum carried by these particles.

3 Classical analysis

The goal of this section will be to calculate the logarithmic terms in the soft factors in four

space-time dimensions by examining them in the classical limit.

In dimensions larger than 4, the soft factors for photons and gravitons are given re-

spectively by

Sem =
∑
a

εµp
µ
a

pa.k
qa + i

∑
a

qa
εµkρJ

ρµ
a

pa.k
, (3.1)

and

Sgr =
∑
a

εµνp
µ
apνa

pa.k
+ i
∑
a

εµνp
ν
akρJ

ρµ
a

pa.k
. (3.2)

Here the sum over a runs over all the incoming and outgoing particles, and qa, pa and Ja
denote the charge, momentum and angular momentum of the a-th particle, counted with

positive sign for an ingoing particle and negative sign for an outgoing particle. Sem may

also contain a non-universal term at the subleading order. For S-matrix elements in quan-

tum theory, Ja is a differential operator involving derivatives with respect to the external

momenta. However in the classical limit in which the external finite energy states are

macroscopic, Ja represents the classical angular momenta carried by the external particles.

In this limit the soft factors describe the radiative part of the low frequency electromagnetic

and gravitational fields during a classical scattering [88] as described in (2.2).

In applying (3.1), (3.2) to four dimensional theories, the complication arises from the

contribution to Jµνa from the orbital angular momentum. They are computed from the

form of the asymptotic trajectories:

rµa (σ) = ηa
1

ma
pµa σ + cµa ln |σ|+ · · · , (3.3)
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where ηa is positive for incoming particles and negative for outgoing particles, ma is the

mass of the a-th particle and the proper time σ is large and negative for incoming particles

and large and positive for outgoing particles. The term proportional to ln |σ| represents the

effect of long range electromagnetic and/or gravitational interaction between the particles.

This gives, for large |σ|,

Jµνa ' rµa (σ)pνa − rνa(σ)pµa + spin = (cµap
ν
a − cνapµa) ln |σ|+ · · · . (3.4)

Here and in the following we shall use the convention that when a variable is followed by

an argument (σ) it denotes the value of the variable at proper time σ, but when a variable

is written without an argument, we take it to be its σ independent asymptotic value.

Therefore in (3.3), (3.4) the pµa ’s denote the asymptotic values of pµa , reflecting the fact

that the difference between pµa(σ) = maηadr
µ
a/dσ and pµa approaches zero asymptotically.

Analysis of [89] indicates that if we substitute (3.4) into (3.1) and (3.2) and replace

ln |σ| by lnω−1 — where ω = k0 is the frequency of the outgoing soft radiation — we can

recover the logarithmic terms in the soft factors up to overall phases. This gives, up to

overall phases:

Sem =
∑
a

εµp
µ
a

pa.k
qa + i lnω−1

∑
a

qa
εµkρ(c

ρ
ap
µ
a − cµapρa)

pa.k
, (3.5)

and

Sgr =
∑
a

εµνp
µ
apνa

pa.k
+ i lnω−1

∑
a

εµνp
ν
akρ(c

ρ
ap
µ
a − cµapρa)

pa.k
. (3.6)

Note that although Sem may contain a non-universal term at the subleading order, the

term proportional to lnω−1 comes from orbital angular momentum and is universal.

Irrespective of what forces are operative during the scattering, the coefficient cµa are

determined only by the long range forces acting on the incoming and the outgoing particles.

These will be taken to be electromagnetic and/or gravitational interaction. We shall now

compute cµa due to electromagnetic and gravitational interactions. We know from explicit

comparison with known results that in the case of scattering via electromagnetic interac-

tions there are no additional phases in the soft factor, but in the case of gravitational long

range interaction there is an additional phase reflecting the effect of backscattering of the

soft photon or soft graviton in the background gravitational field [91, 93, 94]. This phase

will also be determined below.

3.1 Effect of electromagnetic interactions

We shall first study the effect of logarithmic correction to the trajectory due to long range

electromagnetic interaction. For this we need to compute the gauge potential A
(b)
µ (x) at

space-time point x due to particle b. We have

A(b)
µ (x) =

1

2π

∫
dσ ηb qb Vbµ(σ) δ+(−(x− rb(σ))2), V µ

b (σ) ≡
drbµ(σ)

dσ
' ηb

pµb
mb

, (3.7)

where δ+ denotes the usual Dirac delta function with the understanding that we have to

choose the zero of the argument for which x0 > r0b (σ). Vb denotes the asymptotic four
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velocity of the b-th particle. In evaluating (3.7) we shall ignore the logarithmic corrections

to the trajectory and take rb(σ) ' Vb σ. This gives, using V 2
b = −1,

δ+(−(x−rb(σ))2) = δ+(−x2+2Vb.x σ+σ2+· · · ) ' 1

2|Vb.x+ σ|
δ(σ+Vb.x+

√
(Vb.x)2 + x2) ,

(3.8)

where the sign in front of the square root has been chosen to ensure that x0 > x0b(σ) at

the solution. Substituting this into (3.7) we get

A(b)
µ (x) ' 1

4π

ηb qbVbµ√
(Vb.x)2 + x2

. (3.9)

From this we calculate

F (b)
µν (x) = ∂µA

(b)
ν (x)− ∂νA(b)

µ (x) ' −ηb qb
4π

xµVbν − xνVbµ
{(Vb.x)2 + x2}3/2

. (3.10)

At the location ra = Vaσ = −Va|σ|ηa of the a-th particle we get, using V 2
a = −1

F (b)
µν (ra(σ)) ' ηa ηb

qb
4π σ2

VaµVbν − VaνVbµ
{(Vb.Va)2 − 1}3/2

. (3.11)

Now the a-th particle will feel the field produced by the b-th particle if either both a-th

and the b-th particle are outgoing or if both particles are ingoing. Therefore the equation

of motion for the a-th particle takes the form

dpaµ(σ)

dσ
= qa

∑
b 6=a

ηaηb=1

F (b)
µν (ra(σ))V ν

a (σ) ' 1

σ2

∑
b 6=a

ηaηb=1

ηa ηb
qaqb
4π

Va.VbVaµ + Vbµ

{(Vb.Va)2 − 1}3/2
. (3.12)

On the other hand we have

dpaµ(σ)

dσ
=
ma

ηa

d2raµ
dσ2

= −ma

ηa

caµ
σ2

, (3.13)

where in the last step we used (3.3). Comparing (3.12), (3.13) we get

cµa = − 1

ma

∑
b 6=a

ηaηb=1

ηb
qaqb
4π

Va.VbV
µ
a + V µ

b

{(Vb.Va)2 − 1}3/2
= −

∑
b 6=a

ηaηb=1

qaqb
4π

m2
b pa.pb p

µ
a +m2

am
2
b p

µ
b

{(pb.pa)2 −m2
am

2
b}3/2

,

(3.14)

and

cµap
ν
a − cνapµa = −

∑
b 6=a

ηaηb=1

qaqb
4π

m2
am

2
b {p

µ
b p

ν
a − pνbp

µ
a}

{(pb.pa)2 −m2
am

2
b}3/2

. (3.15)

Eqs. (3.5) and (3.6) now give4

Sem =
∑
a

εµp
µ
a

pa.k
qa − i lnω−1

∑
a

qa εµkρ
pa.k

∑
b 6=a

ηaηb=1

qaqb
4π

m2
am

2
b {p

ρ
bp
µ
a − pµb p

ρ
a}

{(pb.pa)2 −m2
am

2
b}3/2

, (3.16)

4Note that even if we assume that the logarithmic corrections to the trajectories are generated predom-

inantly by electromagnetic interaction, the resulting acceleration can generate logarithmic corrections to

the gravitational radiation during the scattering.
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and

Sgr =
∑
a

εµνp
µ
apνa

pa.k
− i lnω−1

∑
a

εµνp
ν
akρ

pa.k

∑
b 6=a

ηaηb=1

qaqb
4π

m2
am

2
b {p

ρ
bp
µ
a − pµb p

ρ
a}

{(pb.pa)2 −m2
am

2
b}3/2

. (3.17)

3.2 Effect of gravitational interactions

Let us now suppose that the logarithmic correction to the trajectories arise due to gravi-

tational interaction. We introduce the graviton field hµν and its trace reversed version eµν
via the equations

hµν ≡ (gµν − ηµν)/2, eµν = hµν −
1

2
ηµν h

ρ
ρ . (3.18)

Then the analog of (3.7) for the gravitational field produced at x due to the b-th particle is

e(b)µν (x) =
1

2π

∫
dσmb Vbµ(σ)Vbν(σ) δ+(−(x− rb(σ))2) . (3.19)

Using rb(σ) = Vb σ + · · · we get the analog of (3.9)

e(b)µν (x) ' 1

4π

mb Vbµ Vbν√
(Vb.x)2 + x2

. (3.20)

The associated Christoffel symbol is given by, in the weak field approximation,

Γ(b)α
ρτ (x) =−mb

4π

1

{(Vb.x)2+x2}3/2
ηαµ

[{
VbµVbτ+

1

2
ηµτ

}
{xρ+Vb.xVbρ}

+

{
VbµVbρ+

1

2
ηµρ

}
{xτ+Vb.xVbτ}−

{
VbρVbτ+

1

2
ηρτ

}
{xµ+Vb.xVbµ}

]
. (3.21)

From this we can write down the equation of motion of the a-th particle

d2rαa (σ)

dσ2
= −

∑
b 6=a

ηaηb=1

Γ(b)α
ρτ (ra(σ))V ρ

a (σ)V τ
a (σ) (3.22)

' −ηa
1

4πσ2

∑
b 6=a

ηaηb=1

mb
1

{(Vb.Va)2 − 1}3/2

[
−1

2
V α
a +

1

2
V α
b

{
2(Vb.Va)

3 − 3Vb.Va
}]

.

On the other hand using (3.3) the left hand side is given by −cαa/σ2. This gives

cαa = ηa
1

4π

∑
b 6=a

ηaηb=1

mb
1

{(Vb.Va)2 − 1}3/2

{
−1

2
V α
a +

1

2
V α
b

(
2(Vb.Va)

3 − 3Vb.Va
)}

, (3.23)

and

cρap
µ
a−cµapρa =

1

8πσ2

∑
b 6=a

ηaηb=1

mamb
1

{(Vb.Va)2−1}3/2
(V ρ
b V

µ
a −V

µ
b V

ρ
a )
{

2(Vb.Va)
3−3Vb.Va

}
=

1

8π

∑
b 6=a

ηaηb=1

pb.pa

{(pb.pa)2−m2
am

2
b}3/2

(pρbp
µ
a−p

µ
b p

ρ
a)
{

2(pb.pa)
2−3m2

am
2
b

}
. (3.24)
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Substituting this into (3.5) and (3.6) we get,5 up to overall phases:

Sem =
∑
a

εµp
µ
a

pa.k
qa +

i

8π
lnω−1

∑
a

qa εµkρ
pa.k

∑
b 6=a

ηaηb=1

pb.pa

{(pb.pa)2 −m2
am

2
b}3/2

(pρbp
µ
a − p

µ
b p

ρ
a)

×
{

2(pb.pa)
2 − 3m2

am
2
b

}
, (3.25)

and

Sgr =
∑
a

εµνp
µ
apνa

pa.k
+

i

8π
lnω−1

∑
a

εµνp
ν
akρ

pa.k

∑
b 6=a

ηaηb=1

pb.pa

{(pb.pa)2 −m2
am

2
b}3/2

(pρbp
µ
a − p

µ
b p

ρ
a)

×
{

2(pb.pa)
2 − 3m2

am
2
b

}
. (3.26)

In this case we expect the wave-form of the gauge field/metric to also have an additional

phase factor reflecting the effect of the gravitational drag on the soft particle due to the

other particles. For this let us characterize the asymptotic trajectory of the soft particle as

xµ(τ) = nµ τ +mµ ln |τ | , (3.27)

where τ is the affine parameter associated with the trajectory, n = (1, n̂) is a null vector

along the asymptotic direction of motion of the soft particle and mµ is a four vector to be

determined. Now substituting (3.27) into the equation of motion

d2xµ

dτ2
= −Γµνρ

dxν

dτ

dxρ

dτ
, (3.28)

and using the form (3.21) of Γµνρ, we get the following expression for mµ by comparing the

1/τ2 terms on the two sides of the equations of motion:

mα = − 1

4π

∑
b

ηb=−1

mb

|n.Vb|3
V α
b (Vb.n)3 =

1

4π

∑
b

ηb=−1

mb V
α
b = − 1

4π

∑
b

ηb=−1

pαb . (3.29)

Now eliminating τ in terms of t ≡ x0 using (3.27), we can express (3.27) as

xi = nit+ (mi − nim0) ln |t|+ finite . (3.30)

Therefore if we denote by k = (k0, k) = −ω(1, n̂) the four momentum of the soft particle,

the overall − sign reflecting the fact that it is an outgoing particle, the wave-function of

the particle will be proportional to

exp
[
−i~k.

{
~x− n̂t− (~m− n̂m0) ln |t|

}]
= exp[−iωt+ iωn̂.~x] exp[i(~k.~m+ ωm0) ln |t|] .

(3.31)

5Even if the logarithmic correction to the trajectory is generated by gravitational interaction, the parti-

cles can emit electromagnetic waves. This happens for example if we have a scattering of a charged particle

and a neutral particle.
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The second factor can be regarded as an additional infrared divergent contribution to the

soft factor. Using |t| ∼ R where R is the distance of the soft particle from the scattering

center, and eq. (3.29), we can express the second factor in (3.31) as

exp[ik.m lnR] = exp

− i

4π
lnR

∑
b

ηb=−1

k.pb

 . (3.32)

Since this is a pure phase it does not affect the flux. However it does produce observable

effect on the electromagnetic/gravitational wave-form [90].

It follows from the analysis of [91, 93, 94] that the effect of gravitational backscattering

of the soft photon/graviton actually converts lnR in (3.32) to ln(Rω). This has been re-

viewed in [89]. It is natural to absorb this multiplicative factor in the wave-form into the def-

inition of the soft factors. Expanding the exponential in a power series, picking up the term

of order ω ln(ωR) in the expansion, and multiplying this by the leading soft factor, we get

additional contributions to the soft photon and soft graviton factor at the subleading order

i

4π

(
lnω−1 + lnR−1

)
S(0)
em

∑
b

ηb=−1

k.pb, and
i

4π

(
lnω−1 + lnR−1

)
S(0)
gr

∑
b

ηb=−1

k.pb .

(3.33)

Adding these to (3.25) and (3.26) we get the net soft factors to be

Sem =
∑
a

εµp
µ
a

pa.k
qa+

i

4π

(
lnω−1+lnR−1

) ∑
b

ηb=−1

k.pb
∑
a

εµp
µ
a

pa.k
qa

+
i

8π
lnω−1

∑
a

qa εµkρ
pa.k

∑
b 6=a

ηaηb=1

pb.pa

{(pb.pa)2−m2
am

2
b}3/2

(pρbp
µ
a−p

µ
b p

ρ
a)
{
2(pb.pa)

2−3m2
am

2
b

}
,

(3.34)

and

Sgr =
∑
a

εµνp
µ
apνa

pa.k
+

i

4π

(
lnω−1+lnR−1

) ∑
b

ηb=−1

k.pb
∑
a

εµνp
µ
apνa

pa.k

+
i

8π
lnω−1

∑
a

εµνp
ν
akρ

pa.k

∑
b 6=a

ηaηb=1

pb.pa

{(pb.pa)2−m2
am

2
b}3/2

(pρbp
µ
a−p

µ
b p

ρ
a)
{
2(pb.pa)

2−3m2
am

2
b

}
.

(3.35)

3.3 Effect of electromagnetic and gravitational interactions

We now combine the results of last two subsections to write down the general expression

for the soft factor when both gravitational interaction and electromagnetic interactions are

responsible for the logarithmic corrections to the trajectory. The logarithmic terms get
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added up, yielding the results:

Sem =
∑
a

εµp
µ
a

pa.k
qa+

i

4π

(
lnω−1+lnR−1

) ∑
b

ηb=−1

k.pb
∑
a

εµp
µ
a

pa.k
qa

−i lnω−1
∑
a

qa εµkρ
pa.k

∑
b 6=a

ηaηb=1

qaqb
4π

m2
am

2
b {p

ρ
bp
µ
a−pµb p

ρ
a}

{(pb.pa)2−m2
am

2
b}3/2

+
i

8π
lnω−1

∑
a

qa εµkρ
pa.k

∑
b 6=a

ηaηb=1

pb.pa

{(pb.pa)2−m2
am

2
b}3/2

(pρbp
µ
a−p

µ
b p

ρ
a)
{
2(pb.pa)

2−3m2
am

2
b

}
,

(3.36)

and

Sgr =
∑
a

εµνp
µ
apνa

pa.k
+

i

4π

(
lnω−1+lnR−1

) ∑
b

ηb=−1

k.pb
∑
a

εµνp
µ
apνa

pa.k

−i lnω−1
∑
a

εµν p
ν
a kρ

pa.k

∑
b 6=a

ηaηb=1

qaqb
4π

m2
am

2
b {p

ρ
bp
µ
a−pµb p

ρ
a}

{(pb.pa)2−m2
am

2
b}3/2

+
i

8π
lnω−1

∑
a

εµνp
ν
akρ

pa.k

∑
b 6=a

ηaηb=1

pb.pa

{(pb.pa)2−m2
am

2
b}3/2

(pρbp
µ
a−p

µ
b p

ρ
a)
{
2(pb.pa)

2−3m2
am

2
b

}
.

(3.37)

These reproduce (2.4) and (2.6) respectively.

Note that the soft factors given in (3.36) and (3.37) depend only on the charges and

momenta carried by the external states. Therefore these can be reinterpreted as multi-

plicative soft factors in the full quantum theory — since there is no angular momentum

there is no derivative with respect to the external momenta. In the next few sections we

shall carry out some explicit quantum computations to examine to what extent this holds.

4 How to treat momentum conservation and infrared divergences

In quantum theory, single soft theorem is expected to relate an amplitude Γ(n,1) with n

finite energy external states carrying momenta p1, · · · pn and one soft particle of momentum

k to an amplitude Γ(n) with just n finite energy external states carrying momenta p1, · · · pn.

This relation takes the form

Γ(n,1)(p1, · · · pn, k) ' S(ε, k; {pa}) Γ(n)(p1, · · · pn) , (4.1)

where S(ε, k; {pa}) is the soft factor Sem or Sgr. There is however a potential problem.

While the amplitude Γ(n,1) has momentum conservation
∑

a pa + k = 0, the amplitude

Γ(n) has momentum conservation
∑

a pa = 0. Therefore we cannot keep the pa’s and

k as independent variables in (4.1). Usually this problem is overcome by including the

momentum conserving delta-functions in the definition of the amplitudes Γ(n,1) and Γ(n) and
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treating (4.1) as a relation between distributions. The soft factor S(ε, k; {pa}) appearing

in (4.1) is treated as a differential operator that also acts on the delta function and generates

the Taylor series expansion of δ (
∑

a pa + k) in power series of the momentum k of the soft

particle. The subleading term in this expansion, given by kµ{∂/∂pµb }δ (
∑

a pa) for any b,

is included in the full subleading soft theorem in dimensions D > 4. However since in

D = 4 we only analyze subleading terms containing ln ω−1 factors, the term proportional

to derivative of the delta function will not appear in our analysis.

In four space-time dimensions there are additional issues due to infrared divergence.

Both the amplitudes Γ(n,1) and Γ(n) have infrared divergences which can be represented as

overall multiplicative factors multiplying infrared finite amplitudes. For electromagnetic

interactions these factors are common and can be factored out of the amplitudes but for

gravity there is a residual infrared divergent factor in Γ(n,1) besides the ones that appear

in Γ(n). In any case we shall denote by exp[K] the infrared divergent factor of Γ(n) and

define regulated amplitudes via the relation:

Γ(n) = exp[K] Γ(n)
reg , Γ(n,1) = exp[K] Γ(n,1)

reg . (4.2)

K is in general a function of the momenta pa of the finite energy particles. This makes Γ
(n)
reg

free from infrared divergences, but Γ
(n,1)
reg still contains some residual infrared divergences

for gravitational interaction. Eq. (4.1) is now replaced by6

Γ(n,1)
reg (p1, · · · pn, k) ' S(ε, k; {pa}) Γ(n)

reg(p1, · · · pn) . (4.3)

The residual infrared divergences in Γ
(n,1)
reg will be reflected in the infrared divergent con-

tributions to S(ε, k; {pa}).
There is however a potential ambiguity in the definition of Γ

(n,1)
reg and hence of

S(ε, k; {pa}). This is due to the fact that in the definition of K we can add a term of

the form Q.
∑

a pa for any vector Q (which could be a function of the pa’s) since by the

momentum conserving delta function in Γ(n),
∑

a pa vanishes. However addition of such

a term changes the definition of Γ
(n,1)
reg in (4.2) by a multiplicative factor of exp[k.Q] since

the momentum conserving delta function in Γ(n,1) gives k+
∑

a pa = 0. This has the effect

of multiplying S(ε, k; {pa}) by exp[k.Q]. Expanding exp(k.Q) as (1 + k.Q) we see that the

additional contribution appears at the subleading order, and has the form of k.Q multi-

plying the leading soft factor. It does not affect the ln ω−1 terms that we are after since

the leading soft factor has no lnω−1 term and Q is ω independent. However this can affect

the genuine infrared divergent terms proportional to lnR in the expression for Γ
(n,1)
reg , since

in the definition of Q we can include terms proportional to lnR. Choosing Q = −U lnR

for some vector U constructed from the pa’s amounts to having an additive contribution

to S(1) of the form

− lnRk.U S(0)(ε, k; {pa}) . (4.4)

6The situation here is somewhat different from the one in [41]. Since the logarithmic term in S(ε, k; {pa})
that we are after is being represented as a multiplicative factor instead of a differential operator, the infrared

divergent factor on the right hand side can be moved past S to the extreme left.
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pa

k
pa + k

`→

pa + k − `

pb

pb + `

· · ·

(a)

γ

γ

γ γ
γ

γ

pa

k `→

pa + k − `

pb

pb + `

· · ·

(b)

pa

k
pa − `

`→

pa + k − `

pb

pb + `

· · ·

(c)

Figure 1. One loop contribution to Γ(n,1) involving internal photon line connecting two different

legs. The thick lines represent scalar particles and the thin lines carrying the symbol γ represent

photons. There are other diagrams related to this by permutations of the external scalar particles.

5 Soft photon theorem in scalar QED

Consider a theory containing a U(1) gauge field Aµ and n scalars φ1, · · ·φn of masses

m1, · · ·mn and carrying U(1) charges q1, · · · qn, satisfying
∑n

a=1 qa = 0. We further assume

that there is a non-derivative contact interaction between the n-scalars. Then the relevant

part of the action takes the form∫
d4x

[
− 1

4
FµνF

µν −
n∑
a=1

{
(∂µφ

∗
a + iqaAµφ

∗
a)(∂

µφa − iqaAµφa) +m2
aφ
∗
aφa
}

+ λφ1 · · ·φn + λφ∗1 · · ·φ∗n

]
. (5.1)

We consider in this theory an amplitude with one external outgoing photon of momentum

k and n external states corresponding to the fields φ1, · · ·φn, carrying momenta p1, · · · pn.

All momenta are counted as positive if ingoing so that if the a-th particle is outgoing it will

have negative p0a. Our goal will be to analyze this amplitude at one loop order, involving

an internal photon connecting two matter lines. The relevant diagrams have been shown

in figures 1 and 2. We denote by Γ(n,1) the sum over tree and one loop contribution to this

amplitude. Γ(n) will denote the amplitude without the external soft photon to one loop

order. One loop contribution to Γ(n) has been shown in figure 3.

In our analysis we shall ignore graphs with self energy insertions on external legs and

assume that we follow on-shell renormalization so that the mass parameters appearing in

the tree level propagators are the physical masses. The wave-function renormalization of

the external scalars cancel between Γ(n) and Γ(n,1).

We shall use Feynman gauge and decompose the photon propagator of momentum `,

connecting the leg a to the leg b for b 6= a, with ` flowing from the a-th leg to the b-th leg,

as [99]

− i ηµν

`2 − iε
= − i

`2 − iε

{
Kµν

(ab) +Gµν(ab)

}
(5.2)

where,

Kµν
(ab) = `µ`ν

(2pa − `).(2pb + `)

(2pa.`− `2 + iε)(2pb.`+ `2 − iε)
, Gµν(ab) = ηµν −Kµν

(ab) . (5.3)
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pa

k
`

· · ·

γ
γ

pa

k

`

· · ·

γ
γ

pa

k
`

· · ·

γ γ

pa

k `

· · ·

γ
γ

pa

k j̀
· · ·

γ γ

pa

k

· · ·

γ

Figure 2. One loop contribution to Γ(n,1) involving internal photon line connecting two different

points on the same leg. There are other diagrams related to this by permutations of the external

scalar particles. In the last term the + on the scalar line represents a counterterm associated

with mass renormalization that has to be adjusted to cancel the net contribution proportional

to 1/(pa.k)2.

pa

`→

pa − `

pb

pb + `

· · ·

γ

Figure 3. One loop contribution to Γ(n). There are other diagrams related to this by permutations

of the external scalar particles.

Note that pa and pb refer to the external momenta flowing into the legs a and b, and not

necessarily the momenta of the lines to which the photon propagator attaches (which may

have additional contribution from external soft momentum, e.g. in figures 1(a)). ` denotes

the momentum flowing from leg a to leg b. For a = b we do not carry out any decomposition.

Since the K-photon polarization is proportional to `µ`ν , it is pure gauge. This allows

us to sum over K-photon insertions using Ward identities

−i
p2c +m2

c

`µ i qc (2pcµ + `µ)
−i

(pc + `)2 +m2
c

= −qc
[

−i
(pc + `)2 +m2

c

− −i
p2c +m2

c

]
, (5.4)

and

qc [i qc ε.(2pc + 2`+ k)− i qc ε.(2pc + k)]− 2 i q2c ε.` = 0 , (5.5)

whose diagrammatic representations have been shown in figure 4. Sum over all insertions
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⇑ = f fpc

`

− ,

γγ
γ

+ +−

k

`

= 0f f
⇑

γ

γ

γ

γ

γ

γ

Figure 4. Diagrammatic representations of (5.4) and (5.5). The arrow on the photon line represents

that the polarization of the photon is taken to be equal to the momentum entering the vertex. The

circle denotes a simple vertex −qc with the polarization of the incoming photon stripped off.

of the K-photons to either Γ(n) or Γ(n,1) produces an exponential factor [99]

exp

[
i
∑
a<b

qa qb

∫
d4`

(2π)4
1

`2 − iε
(2pa − `).(2pb + `)

(2pa.`− `2 + iε)(2pb.`+ `2 − iε)

]
. (5.6)

Therefore we may write

Γ(n) = exp [Kem]
{

Γ
(n)
tree + Γ

(n)
G

}
, Γ(n,1) = exp [Kem]

{
Γ
(n,1)
tree + Γ

(n,1)
G + Γ

(n,1)
self

}
,

Kem ≡
i

2

∑
a,b
b 6=a

qa qb

∫
d4`

(2π)4
1

`2 − iε
(2pa − `).(2pb + `)

(2pa.`− `2 + iε)(2pb.`+ `2 − iε)
, (5.7)

where Γ
(n)
G and Γ

(n,1)
G are computed by replacing the internal photons by the G-photons in

figures 3 and 1 respectively and Γ
(n,1)
self denotes the sum of diagrams in figure 2 for which

we use the full photon propagator. Therefore a relation of the form Γ(n,1) = SemΓ(n) takes

the form

Γ
(n,1)
tree + Γ

(n,1)
G + Γ

(n,1)
self = Sem

{
Γ
(n)
tree + Γ

(n)
G

}
. (5.8)

Now it is easy to see that figure 3 vanishes when we replace the internal photon by

G-photon. Therefore Γ
(n)
G = 0, and we have:7

Γ
(n)
tree + Γ

(n)
G = Γ

(n)
tree = i λ . (5.9)

If we write Sem = S
(0)
em + S

(1)
em where S

(0)
em is the leading soft factor

∑n
a=1 qa ε.pa/k.pa and

S
(1)
em is the subleading multiplicative factor containing logarithmic terms, then eq. (5.8) can

be written as

Γ
(n,1)
tree + Γ

(n,1)
G + Γ

(n,1)
self = iλ

n∑
a=1

qa
ε.pa
k.pa

+ iλ S(1)
em , (5.10)

to one loop order. Now Γ
(n,1)
tree is equal to the first term on the right hand side up to terms

involving Taylor series expansion of the momentum conserving delta function in powers of

7Note that we are not explicitly writing the momentum conserving delta function, but are implicitly

assuming that both sides of (5.8) are multiplied by the appropriate delta functions. We also implicitly

assume that the delta function δ(
∑
a pa+k) on the left hand side has been expanded in a power series in k.
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k, but the latter are subleading contributions without any logarithmic terms and can be

ignored in our analysis. Therefore (5.10) can be rewritten as:

Γ
(n,1)
self + Γ

(n,1)
G = iλ S(1)

em . (5.11)

This is a simple algorithm for determination of S
(1)
em .

Therefore we need to focus on the evaluation of the one loop contribution to Γ
(n,1)
G and

Γ
(n,1)
self by summing the diagrams in figures 1 and 2, with the internal photon replaced by

G-photon in figure 1. We first consider the diagrams in figure 1. It is easy to see that the

G-photon contribution to figure 1(c) vanishes. Therefore we need to focus on figures 1(a)

and (b). The contribution from figure 1(a) is given by

I1 = λ q2a qb
ε.pa
k.pa

∫
d4`

(2π)4

[
2k.(2pb + `)− 2k.` (2pa − `).(2pb + `)

(2pa.`− `2 + iε)

]
× 1

`2 − iε
1

2pa.(k − `) + (k − `)2 − iε
1

2pb.`+ `2 − iε
, (5.12)

and the contribution from figure 1(b) is given by

I2 = −λ q2a qb
∫

d4`

(2π)4

[
2ε.(2pb + `)− 2ε.` (2pa − `).(2pb + `)

(2pa.`− `2 + iε)

]
× 1

`2 − iε
1

2pa.(k − `) + (k − `)2 − iε
1

2pb.`+ `2 − iε
. (5.13)

Both I1 and I2 are infrared finite since for small ` the integrands diverge as 1/`3. The

terms involving logarithm of k come from the region of ` integration where the components

|`µ| are large compared to ω ≡ k0 but small compared to the pa’s. In this range we can

approximate I1 and I2 as

I1 ' −λ q2a qb
ε.pa
k.pa

∫
reg

d4`

(2π)4

[
k.pb −

k.` pa.pb
pa.`+ iε

]
1

`2 − iε
1

pa.`+ iε

1

pb.`− iε

= −λ q2aqb
ε.pa
k.pa

[
k.pb + pa.pb k

µ ∂

∂pµa

] ∫
reg

d4`

(2π)4
1

`2 − iε
1

pa.`+ iε

1

pb.`− iε
, (5.14)

and

I2 ' λ qa qaqb
∫
reg

d4`

(2π)4

[
ε.pb −

ε.` pa.pb
pa.`+ iε

]
1

`2 − iε
1

pa.`+ iε

1

pb.`− iε

= λ q2aqb

[
ε.pb + pa.pb ε

µ ∂

∂pµa

] ∫
reg

d4`

(2π)4
1

`2 − iε
1

pa.`+ iε

1

pb.`− iε
, (5.15)

where the subscript reg indicates that the integration needs to be carried out over the

region where |`µ| is large compared to ω but small compared to the energies of the finite

energy particles. Adding I1 and I2 and summing over a, b we get the total contribution to
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pa

k

`f
−

· · ·

γ

γ

Figure 5. Sum of the first four diagrams in figure 2 with ε replaced by k.

Γ
(n,1)
G to one loop order:

Γ
(n,1)
G = −λ

∑
a,b
b 6=a

(qa)
2qb

[
ε.pa
k.pa

k.pb +
ε.pa
k.pa

pa.pb k
µ ∂

∂pµa
− ε.pb − pa.pb ε

µ ∂

∂pµa

]
∫
reg

d4`

(2π)4
1

`2 − iε
1

pa.`+ iε

1

pb.`− iε

= −λ
∑
a,b
b 6=a

(qa)
2 qb

εµkν
pa.k

{
pµa

∂

∂paν
− pνa

∂

∂paµ

}∫
reg

d4`

(2π)4
1

`2 − iε
pa.pb

(pa.`+ iε) (pb.`− iε)
.

(5.16)

The contribution to Γ
(n,1)
self from figure 2 can be analyzed using the following indirect

method. First of all we note that the net dependence on ε and k from the first four diagrams

must be of the form ε.pa f(pa.k) for some function f . To determine f , we can set ε = k and

sum over all insertions of the external photon using the Ward identities shown in figure 4.

The final result, given in figure 5, has the form:

C1

pa.k
, (5.17)

for some constant C1. Therefore we get

pa.k f(pa.k) =
C1

pa.k
⇒ f(pa.k) =

C1

(pa.k)2
. (5.18)

The fifth and sixth diagrams also have the form

C2

(pa.k)2
and

C3

(pa.k)2
, (5.19)

for appropriate constants C2 and C3. Now since we are using on-shell renormalization the

counterterm proportional to C3 is to be adjusted precisely so that the net contribution

proportional to 1/(pa.k)2 vanishes. Therefore we must choose C3 = −C1 − C2, and the

total contribution to Γ
(n,1)
self from all the diagrams in figure 2 vanishes. We have verified this

by explicitly computing the Feynman diagrams in figure 2.
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From (5.11) we now see that the net contribution to the logarithmic terms in S
(1)
em is

obtained by dividing Γ
(n,1)
G given in (5.16) by i λ. This can be written as

S(1)
em =

∑
c

qc
εµkν
pc.k

{
pµc

∂

∂pcν
− pνc

∂

∂pcµ

}
Kreg

em , (5.20)

where Kreg
em is the factor Kem defined in (5.7) with the understanding that integration over

the loop momentum ` will run over the range where |`µ| is larger than ω but small compared

to the momenta of the finite energy external states:

Kreg
em ≡

i

2

∑
a,b
b 6=a

qa qb

∫
reg

d4`

(2π)4
1

`2 − iε
(2pa − `).(2pb + `)

(2pa.`− `2 + iε)(2pb.`+ `2 − iε)
. (5.21)

So essentially we need to evaluate Kreg
em . For this we need to evaluate the integral:8

Iab ≡
∫
reg

d4`

(2π)4
1

`2 − iε
1

pa.`+ iε

1

pb.`− iε
(5.22)

= − 1

EaEb

∫
reg

d3`

(2π)3

∫ ∞
−∞

d`0

2π

1

(`0 − |~̀|+ iε)(`0 + |~̀| − iε)
1

`0 − ~va.~̀− iε
1

`0 − ~vb.~̀+ iε
,

where Ea = p0a, Eb = p0b , ~va = ~pa/Ea and ~vb = ~pb/Eb. In writing down the above equation

we have assumed that Ea and Eb are positive, i.e. both lines represent incoming states.

The integrand has simple poles at,

`0 = (|~̀| − iε) , −(|~̀| − iε) , (~va.~̀+ iε) , (~vb.~̀− iε) . (5.23)

So now if we close the contour in the lower half plane we have to take the pole contributions

from `0 = (|~̀| − iε) and `0 = (~vb.~̀− iε). This gives

Iab =
i

EaEb

∫
reg

d3~̀

(2π)3
1

2|~̀|
1

|~̀| − ~va.~̀
1

|~̀| − ~vb.~̀

+
i

EaEb

∫
reg

d3~̀

(2π)3
1

(~vb.~̀)2 − |~̀|2
1

(~vb − ~va).~̀− iε
. (5.24)

Note that we have removed the iε’s from the denominators that never vanish.

Let us first analyze the second term. Since the result should be Lorentz invariant, it

should not depend on the chosen frame. For simplicity choose a frame in which ~vb and ~va
are along the positive z-axis with |~vb| > |~va|. Denoting by θ the angle between ~̀ and the

z-axis, we can express the second term in (5.24) as

I ′ab =
i

EaEb(2π)2
1

|~va − ~vb|

∫
reg

d|~̀|
|~̀|

∫ 1

−1
d(cosθ)

1

|~vb|2cos2θ − 1

1

cosθ − iε
. (5.25)

8Since the `µ integration runs over a limited range, one might wonder why we are choosing the `0

integration range from −∞ to ∞. To this end, note that once we have imposed the range restriction on |~̀|,
we can let the `0 integral in (5.22) run over the entire real axis since the regions outside the allowed range

do not generate any logarithmic contribution.

– 25 –



J
H
E
P
0
2
(
2
0
1
9
)
0
8
6

Without the iε piece of the last term the integral vanishes since the integrand is an odd

function of cos θ. However the imaginary part of the last term makes the integral non-

vanishing. Using 1/(x− iε) = iπδ(x) + P (1/x) in the integral, and using the fact that the

value of |~̀| for which our approximation of the integrand is valid ranges from ω to some

finite energy, we get,

I ′ab '
1

4π EaEb
lnω−1

1

|~va − ~vb|
=

1

4π
lnω−1

1√
(pa.pb)2 −m2

am
2
b

, (5.26)

where in the intermediate stage we used |~pa||~pb| = |~pa.~pb|, since ~pa and ~pb are parallel.

If both the legs a and b are outgoing instead of ingoing, then Ea and Eb are negative

and the signs of the iε in the last two terms in (5.22) are reversed. But this can be brought

back to the form given in (5.22) by making a change of variables `µ → −`µ. Therefore the

net result for the residue at `0 = ~vb.~̀− iε will continue to be described by (5.26). Finally if

one of the momenta is outgoing and the other is ingoing, then both the iε’s in the last two

terms of (5.22) come with the same sign. By changing variables from `µ to −`µ if necessary,

we can ensure that both the poles are in the upper half plane and close the contour to the

lower half plane. In this case there will be no analog of the contribution given in (5.26).

We now turn to the contribution from the first term on the right hand side of (5.24),

which we will call I ′′ab. We will again evaluate this integral in the frame in which ~va and

~vb are parallel to the z-axis with |~vb| > |~va|. We get

I ′′ab =
i

EaEb

∫
reg

d3~l

(2π)3
1

2|~l|
1

|~l| − ~va.~l
1

|~l| − ~vb.~l

=
i

8π2EaEb
lnω−1

∫ 1

−1
d(cosθ)

1

vb − va

[
vb

1− vb cos θ
− va

1− va cos θ

]
=

i

8π2
lnω−1

1

|~pb|Ea − |~pa|Eb
ln

[
(Ea − |~pa|)(Eb + |~pb|)
(Ea + |~pa|)(Eb − |~pb|)

]

= − i

8π2
lnω−1

1√
(pa.pb)2 − p2ap2b

ln

pa.pb +
√

(pa.pb)2 − p2ap2b

pa.pb −
√

(pa.pb)2 − p2ap2b

 . (5.27)

It is easy to check that the form of the contribution remains unchanged even when both

legs are outgoing or one leg is incoming and the other leg is outgoing.

Combining these results we get

Kreg
em =

i

2

∑
a,b
b 6=a

qa qb
1

4π
lnω−1

pa.pb√
(pa.pb)2−p2ap2b

δηaηb,1− i

2π
ln

pa.pb+
√

(pa.pb)2−p2ap2b

pa.pb−
√

(pa.pb)2−p2ap2b

.
(5.28)

Using (5.20) we can now write down the expression for the logarithmic term in the sub-
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leading soft factor S
(1)
em

− i

4π
lnω−1

n∑
a=1

∑
b 6=a

ηaηb=1

q2a qb
εµ kρ
pa.k

m2
am

2
b

[
pµap

ρ
b−p

µ
b p

ρ
a

][
(pa.pb)2−m2

am
2
b

]3/2
− 1

8π2
lnω−1

∑
a,b
b 6=a

q2a qb ln

pa.pb+
√

(pa.pb)2−p2ap2b

pa.pb−
√

(pa.pb)2−p2ap2b

 p2ap
2
b

{(pa.pb)2−p2ap2b}3/2

{
−ε.pb+

ε.pa
k.pa

k.pb

}

+
1

4π2
lnω−1

∑
a,b
b 6=a

q2aqb
pa.pb

(pa.pb)2−p2ap2b

{
−ε.pb+

ε.pa
k.pa

k.pb

}
. (5.29)

The term in the first line agrees with the classical expression for S
(1)
em given by the second

term of (3.16). The rest of the contribution is extra.

We have also checked that (5.29) holds if instead of scalars we have interacting fermions.

This confirms that the logarithmic correction to the soft factor is independent of the spin

of the particle.

We end this section by making some observation on the results derived above:

1. Suppose we assume the validity of the naive version of the subleading soft photon

theorem:9

Γ(n,1) = {S(0)
em + Ŝ(1)

em}Γ(n) , (5.30)

where the ‘hat’ on S(1) denotes that we are using the differential operator form that

arises in the quantum theory:

S(0)
em =

∑
a

qa
ε.pa
pa.k

, Ŝ(1)
em =

∑
a

qa
εµkν
pa.k

{
pµa

∂

∂paν
− pνa

∂

∂paµ

}
. (5.31)

Then using (5.7) and the fact that Γ
(n)
G vanishes at one loop order, we get

Γ
(n,1)
tree + Γ

(n,1)
self + Γ

(n,1)
G = S(0)

emΓ
(n)
tree + {Ŝ(1)

emKem}Γ
(n)
tree + Ŝ(1)

emΓ
(n)
tree . (5.32)

Using Γ
(n)
tree = i λ, using (5.10) to replace the left hand side, and throwing away terms

like Ŝ
(1)
emΓ

(n)
tree which vanishes, we get

S(1)
em = Ŝ(1)

em Kem . (5.33)

In the definition of Kem the integration over loop momentum runs over all range and

we have an infrared divergence from the region of small `. However if we make an ad

hoc restriction that the loop momentum integral will run in the range much larger

than the energy ω of the external soft photon, then Kem reduces to Kreg
em defined

in (5.21) and we recover the correct logarithmic terms in S
(1)
em as given in (5.20). This

suggests an ad hoc rule for computing the logarithmic terms in the soft expansion

9Since the presence of the logarithmic term makes the finite part ambiguous, we consider only the

logarithmic terms in the subleading factor.
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in quantum theory — begin with the usual soft expansion and explicitly evaluate

the action of the differential operator on the amplitude, restricting the region of loop

momentum integration to lie in a range larger than the soft momenta but smaller

than the momenta of the finite energy particles. With hindsight, this prescription can

be justified by noting that the general arguments of [81, 83], that assumes existence of

1PI effective action with no powers of soft momenta coming from the vertices, breaks

down for the contribution where the loop momentum is smaller than the external

soft momenta. On the other hand we do not expect any large contribution from

the region of integration where the loop momentum is of the order of the external

momenta or larger.

This argument also suggests that although we have carried out the explicit calculation

only at one loop order, the result may be valid to all orders in perturbation theory,

since Kem is known to be valid to all orders in perturbation theory [99].

2. The second observation concerns the relation between the classical and the quantum

results. As already noted, compared to the classical result that agrees with the first

line of (5.29), the quantum result found here has an extra term given in the second

and third line of (5.29). If however we replace in (5.22) the Feynman propagator for

the photon by the retarded propagator, we get only the contribution from the first

line of (5.29), since the contribution from the pole at `2 = 0 can then be avoided

by appropriate choice of contour. Therefore at least for the soft photon theorem in

quantum electrodynamics, the rule for relating the quantum and the classical result

seems to be to replace the Feynman propagator of the photon in the loop in the

quantum result by retarded propagator.

We shall now write down the results for the other cases and test if the generalization

of observation 1 works. We shall also explore if the results satisfy the generalization of

observation 2.

6 Soft graviton theorem in gravitational scattering

We now turn to the analysis of the soft graviton theorem in the scattering of scalar particles,

interacting via gravity, to one loop order. The action is taken to be∫
d4x

√
− det g

[
1

16πG
R−

n∑
a=1

{
gµν ∂µφ

∗
a ∂νφa +m2

aφ
∗
aφa
}

+ λφ1 · · ·φn + λφ∗1 · · ·φ∗n

]
.

(6.1)

Even though in this case we could take the scalar fields to be real, we have kept them com-

plex in order to extend the analysis to the case where the scalars have both electromagnetic

and gravitational interaction. As in section 5, we shall postulate a relation of the form

Γ(n,1) =
{
S(0)
gr + S(1)

gr

}
Γ(n) , (6.2)

and try to determine the logarithmic terms in S
(1)
gr by comparing the two sides up to one

loop order.
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We shall carry out our computation in the de Donder gauge in which the propagator

of a graviton of momentum ` is given by:

− i

`2 − iε
1

2

(
ηµρηνσ + ηµσηνρ − ηµνηρσ

)
. (6.3)

For our analysis we also need the vertices involving the graviton. The scalar-scalar-graviton

vertex, with the scalars carrying ingoing momenta p1, p2 and the graviton carrying ingoing

momentum −p1 − p2 and Lorentz index (µν), is given by

− i κ
[
p1µp2ν + p1νp2µ − ηµν(p1.p2 −m2)

]
, (6.4)

where κ =
√

8πG = 1 in our convention. The vertex involving two scalars carrying ingoing

momenta p1, p2, and two gravitons carrying ingoing momenta k1, k2 and Lorentz indices

(αβ) and (µν) is given by10

2 i κ2
[
− ηαµ ηβν p1.p2 +

1

2
ηαβ ηµν p1.p2 − ηαβ p1µp2ν − ηµν p1αp2β

+ 2 ηαµ {p1βp2ν + p2βp1ν}+m2

(
ηµαηνβ −

1

2
ηµνηαβ

)]
. (6.5)

If we label the ingoing graviton momenta by k1, k2 and k3 = −k1 − k2 and the Lorentz

indices carried by them by (µα), (νβ) and (σγ) respectively, then the 3-graviton vertex

takes the form:

i κ
[(
k1.k2ηµαηνσηβγ + k2.k1ηνβηµσηαγ + k1.k3ηµαηνσηβγ

+ k3.k1ησγηµνηαβ + k2.k3ηνβηµσηαγ + k3.k2ησγηµνηαβ
)

− 2
(
k1σk2γηµνηαβ + k2µk3αηνσηβγ + k3νk1βηµσηαγ

)
− 4
(
k1.k2 + k2.k3 + k3.k1

)
ηανηβσηγµ

+
(
k1.k2ηµνηαβησγ + k2.k3ηνσηβγηµα + k3.k1ηµσηαγηνβ

)
+ 2
(
k1σk2µηανηβγ + k2µk3νησαηγβ + k3νk1σηµβηαγ

+ k2σk1νηµβηαγ + k3µk2σηνγηβα + k1νk3µησβηγα
)

− 1

2

(
k1.k2 + k2.k3 + k3.k1

)
ηµαηνβησγ

]
. (6.6)

In (6.5) and (6.6) it is understood that the vertices need to be symmetrized under the

exchange of the pair of Lorentz indices carried by each external graviton, e.g. µ ↔ ν and

α↔ β in (6.5) and µ↔ α, ν ↔ β and σ ↔ γ in (6.6). Even though (6.6) has a complicated

form, we shall need the form of the vertex when one of the external momenta (say k3) is

small compared to the others. In this limit it simplifies.

The vertex where a graviton carrying Lorentz index (µν) attaches to n scalar fields is

given by:

iκλ ηµν . (6.7)

10In writing this and other vertices we already include the symmetry factor related to exchange of identical

particles. Therefore if we were to use this vertex to compute tree level two graviton, two scalar amplitude,

no further symmetry factor is necessary.
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· · · · · ·

ggg
g

ggggg

Figure 6. This diagram shows various vertices induced from the action (6.1) that are needed for

our computation. Here the thinner lines carrying the symbol g denote gravitons and the thicker

lines denote scalars.

pa

← `

pa + `

pb

pb − `

· · ·

g

Figure 7. Diagram contributing to Γ(n).

· · ·

g

Figure 8. Another diagram contributing to Γ(n). We can also have a diagram where both ends of

the internal graviton are attached to the n-scalar vertex, but this vanishes in dimensional regular-

ization and so we have not displayed them.

The vertex where two gravitons carrying Lorentz index (µν) and (ρσ) attach to n scalar

fields is given by:

− i κ2λ (ηµνηρσ − ηµρηνσ − ηµσηνρ) . (6.8)

We also need the vertex containing two scalars and three gravitons for evaluating the fifth

diagram of figure 10. However even without knowing the form of this vertex one can see

that this diagram does not generate contributions proportional to ln ω−1. Therefore we

have not written down the expression for this vertex.

We can use these vertices to compute one loop contribution to the n scalar amplitude

Γ(n) and n-scalar and one soft graviton amplitude Γ(n,1). At one loop order Γ(n) receives

contribution from diagrams shown in figure 7 that are analogous to figure 3 with the internal

photon replaced by a graviton. There are also some additional diagrams shown in figure 8.

The relevant diagrams for Γ(n,1) include the analogs figures 1 and 2 with all photons

replaced by gravitons. This have been shown in figures 9 and 10. However there are also

some extra diagrams that we shall list below:
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pa

k
pa + k← `

pa + k + `

pb

pb − `

· · ·

(a)

g

g

pa

k ← `

pa + k + `

pb

pb − `

· · ·

(b)

gg

pa

k
pa + `
← `

pa + k + `

pb

pb − `

· · ·

(c)

g

g

Figure 9. One loop contribution to Γ(n,1) involving internal graviton line connecting two different

legs. The thicker lines represent scalar particles and the thinner lines represent gravitons.

pa

k
`

· · ·

g
g

pa

k

`

· · ·

g
g pa

k
`

· · ·

g g

pa

k `

· · ·

g g

pa

k

j̀ijih

· · ·

g
g

pa

k j̀iihj
· · ·

g g

pa

k

· · ·

g

Figure 10. One loop contribution to Γ(n,1) involving internal graviton line connecting two different

points on the same leg.

1. There are diagrams where the external graviton couples to the internal graviton via

the cubic coupling (6.6). Examples of these are shown in figure 11.

2. There are diagrams where one end of the internal graviton attaches to the n-scalar

vertex via the coupling (6.7). These have been shown in figures 12.

3. There are diagrams where the external graviton attaches to the scalar n-point vertex

via the coupling (6.7) or (6.8). These have been shown in figure 13. The first diagram

can be made to vanish by taking the external graviton polarization to be traceless:

ε ρ
ρ = 0. The second diagram has no logarithmic terms. Therefore we shall ignore

these diagrams in subsequent discussions.

4. There are diagrams of the type shown in figure 14 where two ends of the internal

graviton attach to the n-scalar vertex. In dimensional regularization these diagrams

vanish. Therefore we shall ignore these diagrams in our analysis.

Our analysis of these diagrams will proceed as in section 5, but there will be some

important differences that we shall point out below. For an internal graviton of momentum
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pa pb

· · ·

k

` k − `

pa + ` pb + k − `
g g

g
pa pb

· · ·

k
`

k − `
pa + `

g
g

g

· · ·

g

g
g

· · ·

g

g g

· · ·

g

g

g

Figure 11. Diagrams involving 3-graviton vertex.

· · ·

g
g

· · ·

g g

· · ·

g g

· · ·

gg

Figure 12. Diagrams where the internal graviton attaches to the n-point vertex.

· · ·

g

g

· · ·
g

g

Figure 13. Diagrams where the external graviton attaches to the n-point vertex. The first diagram

vanishes if we take the external graviton polarization to be traceless. The second diagram has no

logarithmic terms.

· · ·

g

g

· · ·
g

g

Figure 14. Diagrams where both ends of the internal graviton attach to the n-point vertex.

In dimensional regularization these diagrams vanish. Even if we use momentum cut-off, these

diagrams cannot have any contribution proportional to ln ω−1 since the soft momentum k does not

flow through any loop.
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`, whose two ends are attached to two scalar lines a and b with ` flowing from the leg b

towards the leg a, as in figures 7, 9, the analog of Grammer-Yennie decomposition of the

graviton propagator will be taken to be

Gµν,ρσ(ab) (`, pa, pb) =
(
ηµρηνσ + ηµσηνρ − ηµνηρσ

)
−Kµν,ρσ

(ab) (`, pa, pb) , (6.9)

Kµν,ρσ
(ab) (`, pa, pb) = C(`, pa, pb)

[
(pa + `)µ`ν + (pa + `)ν`µ

] [
(pb − `)ρ`σ + (pb − `)σ`ρ

]
,

where

C(`, pa, pb) =
(−1)

{pa.(pa + `)− iε} {pb.(pb − `)− iε}{ `.(`+ 2pa)− iε} {`.(`− 2pb)− iε}[
2(pa.pb)

2 − p2ap2b − `2(pa.pb)− 2(pa.pb)(pa.`) + 2(pa.pb)(pb.`)
]
. (6.10)

If one end of an internal graviton is attached to the n-scalar vertex and the other end is

attached to the a’th scalar leg as in figures 8, 12, with ` flowing from the vertex towards

the a’th leg, we express the propagator as:

− i

`2 − iε
1

2

{
Gµν,ρσ(a) (`, pa) +Kµν,ρσ

(a) (`, pa)
}
, (6.11)

where

Gµν,ρσ(a) (`, pa) =
(
ηµρηνσ + ηµσηνρ − ηµνηρσ

)
−Kµν,ρσ

(a) (`, pa) , (6.12)

Kµν,ρσ
(a) (`, pa) = C̃(`, pa)

[
(pa + `)µ`ν + (pa + `)ν`µ

]
ηρσ , (6.13)

and

C̃(`, pa) = − 2 pa.(pa − `)
{pa.(pa + `)− iε} { `.(`+ 2pa)− iε}

. (6.14)

For internal gravitons whose one end is attached to a 3-graviton vertex instead of a scalar,

as in figure 11, we do not carry out any Grammer-Yennie decomposition.

The decomposition into G and K-gravitons is not arbitrary but has been chosen to

ensure two properties:

1. The K-graviton polarization, being proportional to `, is pure gauge and allows us to

sum over K-graviton insertions using Ward identities. The relevant Ward identities

have been shown in figure 15, with the quantity A(p, k, `, ξ, ζ) is given by

A(p,k,`,ξ,ζ) = 2 iξ.pζµν
[
2(2pµ+`µ)kν+2kµkν−ηµν

{
k.(2p+`)+k2

}]
+2 iξ.(k+`)ζµν

[
−2pµ (p+`)ν+ηµν {p.(p+`)+m2}

]
+2 i(ξαkβ+ξβkα)ζµν

[
ηαµ ηβν p.(p+k+`)− 1

2
ηαβ ηµν p.(p+k+`)

+ηαβ pµ (p+k+`)ν+ηµν pα (p+k+`)β−2ηαµ pβ(p+k+`)ν

−2ηαµ pν(p+k+`)β+m2

(
ηµα ηνβ−

1

2
ηµν ηαβ

)]
. (6.15)

Due to this additional term, the sum over K-gravitons will leave behind some residual

terms that will be discussed below.
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⇑ = f fpc →

↑
k

− ,

gg g g

+ +−
pc →

` ↓

k ↑

= A(pc, k, `, ξ, ζ)i i
⇑
g

g

g

g

g

g

Figure 15. Analog of figure 4 for gravity. The arrow on the graviton line represents that the

polarization of the graviton carrying momentum k is taken to be equal to ξµkν + ξνkµ. The

polarization of the graviton carrying momentum k is taken to be ζρσ. In the first diagram the circle

on the left denotes a vertex −2 ξ.(pc + k) while the circle on the right denotes a vertex −2 ξ.pc.

A(pc, k, `, ξ, ζ) appearing on the right hand side of the second diagram is given in eq. (6.15).

2. In any one loop diagram contributing to the amplitude Γ(n) without external soft

graviton, the result vanishes if we replace the internal graviton by G-graviton.

With this convention the K-graviton contribution to figure 7 for gravity can be com-

puted as in section 5, leading to a contribution of the form iλKgr to Γ(n), where Kgr is

the gravitational counterpart of Kem. The relevant part of the expression for Kgr will be

described later. The K-graviton contribution to figure 8 can be carried out similarly, lead-

ing to an expression of the form iλK̃gr. K̃gr has no infrared divergence and we shall not

write down its expression explicitly although it is straightforward to do so. The G-graviton

contributions to figures 7 and 8 vanish by construction. Therefore the net contribution to

Γ(n) to one loop order may be written as iλ exp[Kgr + K̃gr].

The K-graviton contributions to figures 9 and 12 may be evaluated similarly, with

the factorized term giving iλ S
(0)
gr exp[Kgr + K̃gr]. There are however some left-over terms

arising as follows:

1. As shown in figure 15, in the sum over K-graviton insertions in Γ(n,1) there is a

residual contribution A that comes from lack of complete cancellation among terms

where a K-graviton is inserted to the two sides of a scalar-scalar-graviton vertex and

into the scalar-scalar-graviton vertex.

2. As explained in the caption of figure 15, the circled vertices are momentum dependent.

Therefore the two circled vertices shown in figure 16 are not the same, one carries a

factor of ξ.pa while the other carries a factor of ξ.(pa + k). The left hand figure is

relevant for Γ(n) while the right-hand figure is relevant for Γ(n,1). Therefore, even after

factoring out exp[Kgr + K̃em] factor multiplying Γ(n), we are left with an additional

contribution to Γ(n,1) from sum over K-gravitons that must be accounted for.
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h h
· · · · · ·

pa pa
k

g
g

g

Figure 16. Figure illustrating the difference in the factorized K-graviton contribution to Γ(n)

and Γ(n+1).

We shall denote the sum of these two types of residual contributions as Γ
(n,1)
residual. The G-

graviton contributions to figures 9 and 12 will be denoted by Γ
(n,1)
G and the net contribution

from figure 10 will be called Γ
(n,1)
self . Finally the contribution to the diagrams in figure 11

involving 3-graviton coupling will be denoted by Γ
(n,1)
3−graviton. In principle we should also

include the contributions from figure 13 and figure 14, but we ignore them since they do

not generate logarithmic terms. In this case the analog of (5.11) takes the form:

Γ
(n,1)
self + Γ

(n,1)
G + Γ

(n,1)
3−graviton + Γ

(n,1)
residual = iλ S(1)

gr . (6.16)

We shall now briefly describe how we evaluate these contributions and then give the

final result. First let us consider Γ
(n,1)
residual. This receives contribution from figure 9 and

figure 12. As explained above, there are two kinds of terms: one due to the right hand

side of the second figure of figure 15, and the other due to the momentum dependence

of the circled vertices in figure 15. It turns out that the residual part of the K-graviton

contribution from figure 12 does not have any logarithmic term. On the other hand the

residual part of the K-graviton contribution from figure 9 receives logarithmic contribution

only from the region where the loop momentum is large compared to ω. The result takes

the form:

Γ
(n,1)
residual =−(iλ)

i

2

n∑
a=1

n∑
b=1
b 6=a

[
2(pa.pb)

2−p2ap2b
] pa.ε.pa

p2a

∫
reg

d4l

(2π)4
1[

pa.l−iε
][
pb.l+iε

][
l2−iε

] .
(6.17)

This contribution may be evaluated following a procedure similar to the one used in

section 5.

Contribution to Γ
(n,1)
3−graviton arises from the five diagrams in figure 11, but only the first

two give terms proportional to lnω−1. Individually these diagrams suffer from collinear

divergence from region of integration where the momenta of the internal gravitons become

parallel to that of the external graviton, but these divergences cancel in the sum over

such graphs after using momentum conservation. Therefore we always work with sum of

these diagrams. The net contribution from these diagrams receive logarithmic contribution

from two regions — one where the loop momentum is large compared to ω and the other

where the loop momentum is small compared to ω. We shall analyze the contribution from

the region of small loop momentum later. Contribution from the region where the loop
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momentum is large compared to ω may be approximated as

− (iλ)
i

4

n∑
a=1

n∑
b=1
b 6=a

∫
reg

d4`

(2π)4
1[

pa.`− iε
] [
pb.`+ iε

] [
`2 − iε

]
[
−8 (pa.ε.pb) (pa.pb) + 2 (pa.ε.pa) p

2
b + 2 (pb.ε.pb) p

2
a − 2

{
2(pa.pb)

2 − p2ap2b
} `.ε.`

`2 − iε

]
− (iλ)

i

2

n∑
a=1

∫
reg

d4`

(2π)4
1

[pa.`− iε]2
1[

`2 − iε
] [− 2 p2a (pa.ε.pa) +

(p2a)
2

pa.`− iε
(pa.ε.`)

]
.

(6.18)

In arriving at this result we have used integration by parts and also conservation of total

momentum
∑n

a=1 pa = 0. We have also used the fact that in the expression for the

graviton propagator carrying momentum (k− `) in the second diagram of figure 11, we can

use the identity

1

(k − `)2 − iε
=

2`.k

{(k − `)2 − iε}{`2 − iε}
+

1

`2 − iε
, (6.19)

and ignore the contribution from the (`2−iε)−1 term, since the expression for the amplitude

involving this term has no k-dependent denominator and therefore cannot have a ln ω−1

term.11 Similar manipulations will be used in other terms as well.

Contribution to Γ
(n,1)
self given in figure 10 may be analyzed following the argument

given below (5.16). We assume a general form εµνp
µ
apνa f(pa.k) for this amplitude based

on Lorentz invariance and replace εµν by ξµkν + ξνkµ for an arbitrary vector ξ satisfying

k.ξ = 0. Then the amplitude reduces to 2 pa.ξ pa.k f(pa.k). On the other hand the diagrams

in figure 10 for this choice of polarization may be evaluated using the Ward identity given

in figure 15. Due to the presence of the non-vanishing right-hand side in figure 15, the

result does not vanish. Comparing this with the expected result 2 pa.ξ pa.k f(pa.k), we can

compute f(pa.k) and hence Γ
(n,1)
self . It turns out that it receives logarithmic contribution

from region of integration where the loop momentum is large compared to ω. The result is:

Γ
(n,1)
self = −(iλ)

i

2

n∑
a=1

p2a pa.ε.pa

∫
reg

d4`

(2π)4
1[

pa.`− iε
]2 [

`2 − iε
] . (6.20)

This cancels the term in the last line of (6.18).

One loop contribution from the diagrams involving G-gravitons in figures 9 and 12 may

be evaluated following the procedure described in section 5. We find that the G-graviton

contribution to figure 12 has no logarithmic contribution. Therefore we are left with the

G-graviton contributions to figure 9. These diagrams have the same structure as in scalar

QED and can be evaluated similarly. As in the case of scalar QED, these diagrams receive

significant contribution only from the region where the loop momentum is large compared

11This manipulation can be carried out only for terms containing at least two powers of ` in the numerator

so that each of the terms in (6.19) generates infrared finite integral.
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to ω and small compared to the momenta of finite energy particles. The net logarithmic

contributions from these diagrams is given by

Γ
(n,1)
G = −(iλ)

i

2

n∑
a=1

n∑
b=1
b 6=a

∫
d4l

(2π)4
1[

pa.l − iε
] [
pb.l + iε

] [
l2 − iε

]
[

8(pa.pb) (pa.ε.pb)− 2p2b (pa.ε.pa)−
[
2(pa.pb)

2 − p2ap2b
] (pa.ε.pa

p2a
+ 2

pa.ε.l

pa.l

) ]

+ (iλ)
i

2

(
pa.ε.pa
pa.k

)∫
d4l

(2π)4
1[

pa.l − iε
] [
pb.l + iε

] [
l2 − iε

][
4(pa.pb) (pb.k)−

[
2(pa.pb)

2 − p2ap2b
] k.l

pa.l

]
. (6.21)

The total logarithmic terms in Γ
(n,1)
G , Γ

(n,1)
self , Γ

(n,1)
residual and Γ

(n,1)
3−graviton from the region of

integration where the loop momentum is large compared to ω, can be expressed as12

(iλ) Ŝ(1)
gr Kreg

gr , (6.22)

where Ŝ
(1)
gr is the quantum subleading soft graviton operator

Ŝ(1)
gr =

∑
a

εµρp
ρ
akν

pa.k

{
pµa

∂

∂paν
− pνa

∂

∂paµ

}
, (6.23)

and

Kreg
gr ≡

i

2

∑
a,b
b 6=a

{
(pa.pb)

2 − 1

2
p2ap

2
b

} ∫
reg

d4`

(2π)4
1

`2 − iε
1

(pa.`− iε) (pb.`+ iε)
. (6.24)

Kreg
gr is the analog of Kreg

em for gravitational scattering, namely it is the factor that appears

in the exponent of the soft factor in the scattering of n scalars, with the understanding

that the integration over loop momentum is restricted to the region larger than ω. We

note however that the full expression for Kgr has more terms — (6.24) already involves an

approximation that the loop momentum is small compared to the energies of external lines

since this is the region that generates lnω−1 terms. Explicit evaluation gives the following

expression for the terms involving lnω−1:

Kreg
gr =

i

2

∑
a,b
b 6=a

1

4π
lnω−1

{
(pa.pb)

2− 1
2p

2
ap

2
b

}√
(pa.pb)2−p2ap2b

δηaηb,1− i

2π
ln

pa.pb+
√

(pa.pb)2−p2ap2b

pa.pb−
√

(pa.pb)2−p2ap2b

 .
(6.25)

At this stage the only remaining terms are the contributions to Γ
(n,1)
3−graviton from regions

of loop momentum integration where the loop momentum is small compared to ω. These

12It is natural to conjecture that this pattern continues to hold also for subsubleading soft graviton

theorem, i.e. the universal part of the subsubleading contribution is given by the action of the subsubleading

soft graviton operator Ŝ
(2)
gr acting on exp[Kreg

gr ]. But we have not verified this by explicit computation.
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come from the first two diagrams in figure 11. In the first diagram there are two relevant

regions: when ` is small and when k − ` is small, but they are related to each other by

` → k − ` and a ↔ b symmetry. In the second diagram the relevant region is when ` is

small. The net contribution from these regions may be approximated by

λ

n∑
a=1

n∑
b=1

∫
d4`

(2π)4
1[

2k.`+`2+iε
][
pa.`−iε

][
`2+iε

][2(pa.ε.pb) (pa.k)−2(pb.ε.pb)
(pa.k)2

pb.k

]
,

(6.26)

with the understanding that the integration over ` runs in the region where the components

of ` are small compared to ω. The result may be expressed as

iλ (lnω−1 + lnR−1)

 i

4π

∑
b

ηb=−1

k.pb
∑
a

εµνp
µ
apνa

pa.k
− 1

8π2

∑
a

εµνp
µ
apνa

pa.k

∑
b

pb.k ln
m2
b

(pb.k̂)2

 ,
(6.27)

where 1/R is an infrared lower cut-off on momentum integration and k̂ = −k/ω = (1, n̂).

Adding (6.22) to (6.27) and dividing by iλ we get the terms involving lnω−1 and lnR

in S
(1)
gr :

S(1)
gr = Ŝ(1)

gr Kreg
gr

+
1

4π
(lnω−1+lnR−1)

i ∑
b

ηb=−1

k.pb
∑
a

εµνp
µ
apνa

pa.k
− 1

2π

∑
a

εµνp
µ
apνa

pa.k

∑
b

pb.k ln
m2
b

(pb.k̂)2

 .
(6.28)

7 Generalizations

In this section we shall consider the case where the scalars interact via both electromagnetic

and gravitational interaction via the action:∫
d4x

√
− det g

[
− 1

4
FµνF

µν +
1

16πG
R−

n∑
a=1

{
gµν(∂µφ

∗
a + iqaAµφ

∗
a)(∂νφa − iqaAνφa)

+m2
aφ
∗
aφa

}
+ λφ1 · · ·φn + λφ∗1 · · ·φ∗n

]
. (7.1)

For this analysis we need two new vertices, the graviton-photon-photon vertex and the

graviton-photon-scalar-scalar vertex. If the graviton carries an ingoing momentum q and

Lorentz index (ρσ), and the two photons carry ingoing momenta k1 and k2 and Lorentz

indices µ and ν respectively, then the graviton-photon-photon vertex is given by:

− i κ
[
ηρσ

(
− k1.k2 ηµν + k1νk2µ

)
+ ηµν

(
k1ρk2σ + k2ρk1σ

)
+ k1.k2

(
ηµρηνσ + ηµσηνρ

)
−
(
k1σk2µηρν + k2σk1νηρµ + k1ρk2µησν + k2ρk1νησµ

)]
. (7.2)
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On the other hand the vertex with a pair of scalars carrying charges q, −q and momenta p1
and p2, a graviton carrying Lorentz indices (µν) and momentum k1 and a photon carrying

Lorentz index ρ and momentum k2, all counted ingoing, is given by

− i κ q
[
ηµρ(p1 − p2)ν + ηνρ(p1 − p2)µ − ηµν(p1 − p2)ρ

]
. (7.3)

In this theory we shall analyze the extra terms in both the soft graviton theorem and the

soft photon theorem.

There are two other vertices that are needed for our analysis. For example the sixth

diagram of figure 18 needs the vertex containing two scalars, two photons and one graviton,

whereas the sixth diagram of figure 23 requires the two scalar, two graviton and one photon

vertex. However even without knowing the form of these vertices one can see that these

diagrams do not generate contributions proportional to ln ω−1. Therefore we have not

written down the expressions for these vertices.

7.1 Soft graviton theorem

We first consider the soft graviton theorem. In this case besides the contributions analyzed

in section 6, we also have the diagrams of figure 17 and figure 18, obtained by replacing,

in the diagrams in section 5, the external photon by a graviton but keeping the internal

line as a photon. We also have an additional set of diagrams shown in figure 19 where the

external graviton connects to the internal photon. Diagrams in which the external graviton

attaches to the n-scalar vertex vanish for ε ρ
ρ = 0 and have not been displayed. We carry

out Grammer-Yennie decomposition for the internal photons in figure 17 following (5.3),

but not for diagrams of the form shown in figure 18 and figure 19. The sum over K-photons

factorize as in section 5 and gives the factor of exp[Kem] that cancels between Γ(n) and

Γ(n,1). In this case there is no residual contribution since the analog of figure 4 holds

with the upper photon in the second identity replaced by a graviton (see figure 20). This

leads to the analog of (5.11) with an additional contribution to the left hand side given by

diagrams of the form shown in figure 19. Denoting this contribution by Γ
(n,1)
γγg we arrive at

the relation

Γ
(n,1)
self + Γ

(n,1)
G + Γ(n,1)

γγg = i λ S(1)
gr , (7.4)

with the understanding that both sides represent contributions in addition to what already

appear in (6.16). None of the terms have any infrared divergence, and therefore there are

no logarithmic terms from the region of integration in which the loop momentum is small

compared to ω. We shall describe below the organization of the various terms and then

state the final result:

1. One can analyze Γ
(n,1)
self represented by the graphs in figure 18 by following the pro-

cedure described below (5.16). We replace the external graviton polarization by a

pure gauge form (ξµkν + ξνkµ) and apply Ward identity to evaluate the sum over the

graphs in figure 18. In this case the Ward identity has an additional contribution as

shown in the right hand side of the second diagram in figure 21. It turns out however

that its contribution to the amplitude does not have any logarithmic term. Therefore

Γ
(n,1)
self does not generate any logarithmic contribution.
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pa

k

pb

· · ·

(a)

g
γ

pa

k

pb

· · ·

(b)

g γ

pa

k

pb

· · ·

(c)

γ

g

Figure 17. Contribution to soft graviton amplitude due to internal photon whose two ends are con-

nected to two different scalar lines. Here the thickest lines denote scalars, lines of medium thickness

carrying the symbol g denote gravitons and the thin lines carrying the symbol γ denote photons.

pa

k
`

· · ·

g
γ

pa

k

`

· · ·

g
γ

pa

k
`

· · ·

g γ

pa

k `

· · ·

g γ

pa

k j̀
· · ·

g γ

pa

k j̀
· · ·

g
γ

pa

k

· · ·

g

Figure 18. One loop contribution to soft graviton amplitude involving internal photon line con-

necting two points on the same leg.

2. Γ
(n,1)
γγg receives contribution proportional to lnω−1 from the first two diagrams of

figure 19, from the region where the loop momentum is large compared to ω.

3. Finally, the G-photon contribution Γ
(n,1)
G from the first two diagrams in figure 17 also

has terms proportional to lnω−1 from the region where the loop momentum is large

compared to ω.

The net logarithmic contribution from Γ
(n,1)
γγg and Γ

(n,1)
G is given by:

(iλ) Ŝ(1)
gr Kreg

em . (7.5)

After removing the i λ factor, we have to add this to (6.28) to get the total logarithmic

contribution to S
(1)
gr :

S(1)
gr = Ŝ(1)

gr

(
Kreg

em +Kreg
gr

)
+

1

4π
(lnω−1+lnR−1)

i ∑
b

ηb=−1

k.pb
∑
a

εµνp
µ
apνa

pa.k
− 1

2π

∑
a

εµνp
µ
apνa

pa.k

∑
b

pb.k ln
m2
b

(pb.k̂)2

 .
(7.6)
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· · ·

γ γ

g

· · ·

γ
γ

g

· · ·

g

γ

γ

Figure 19. Diagrams containing graviton-photon-photon vertex that contribute to the soft photon

contribution to the soft graviton theorem.

+ +−

k

`

= 0f f
⇑

γ γγ

g gg

Figure 20. The Ward identity for the photon in the presence of a graviton-scalar-scalar vertex.

⇑ = f fpc →

↑
k

− ,

gg g g

+ +−

k

`

= −2 i qc {ξ.k ε.(2p+ k + `) + ξ.ε `.(2p+ k + `)}f f
⇑

g gg

γ γγ

Figure 21. Analog of figure 4 for graviton in the presence of a photon. The graviton carries a

polarization (ξµ`ν + ξν`µ) and the photon carries a polarization ε. The circled vertex has been

explained in the caption of figure 15.

This reproduces terms proportional to lnω−1 in the sum of (2.6) and (2.7) after using (5.28)

and (6.25).

7.2 Soft photon theorem

Next we shall consider the soft photon theorem. In this case we have all the diagrams

considered in section 5, but also extra diagrams where the internal photon of figures 1

and 2 is replaced by an internal graviton, as shown in figures 22 and 23, and two additional

sets of diagrams: one where one end of the internal graviton connects to the external

photon as in figure 24 and the other where one end of the internal graviton is attached

to the n-scalar vertex as in figure 25. There is also an additional diagram obtained by
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pa
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pb

· · ·

(a)

g
γ

pa

k

pb

· · ·

(b)

gγ

pa

k

pb

· · ·

(c)

g

γ

Figure 22. One loop contribution to soft photon amplitude involving internal graviton line con-

necting two different legs.

pa

k
`

· · ·

γ
g

pa

k

`

· · ·

γ
g pa

k
`

· · ·

γ g

pa

k `

· · ·

γ g

pa

k j̀jiih
· · ·

γ g

pa

k j̀jiih
· · ·

γ
g

pa

k

· · ·

γ

Figure 23. Diagrams in which the external photon and both ends of the internal graviton attach

to the same scalar leg.

· · ·

γ g

γ

· · ·

γ
γg

· · ·

γ
gγ

· · ·

γ
γ

g

· · ·

γ

γ
g

Figure 24. Diagrams involving graviton-photon-photon vertex that need to be included in com-

puting the soft graviton contribution to the soft photon theorem.
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· · ·

γ
g

· · ·

γ g

· · ·

γ g

· · ·

γ
g

· · ·
γ

g

Figure 25. Diagrams with external soft photon and an internal graviton where the internal graviton

attaches to the n-point vertex.

replacing in the first diagram of figure 14 the external graviton by the external photon, but

this vanishes in dimensional regularization.

We shall analyze the diagrams in figures 22 and 25 using Grammer-Yennie decompo-

sition for the internal graviton following the rules described in (6.9)–(6.14). The result of

summing over K-gravitons in Γ(n,1) will generate the factor of exp[Kgr +K̃gr] which cancels

a similar factor in the expression of Γ(n). However there will be residual part that will

be left over due to non-cancellation of the sum over K-graviton insertions reflected in the

right-hand side of figure 21. Another residual contribution arises due to the momentum

dependence of the circled vertices; as illustrated in figure 16, the factorized contribution

of K-gravitons for Γ(n) and Γ(n,1) differ. The only difference in the present case is that

the external graviton carrying momentum k in figure 16 is replaced by an external photon.

As in section 6, we shall denote these residual contributions in the sum over K-gravitons

by Γ
(n,1)
residual. The G-graviton contribution to figures 22 and 25 will be denoted by Γ

(n,1)
G .

The contribution from diagrams involving the coupling of graviton to photon, as shown in

figure 24, will be denoted by Γ
(n,1)
γγg , and the contributions from figure 23 will be denoted

by Γ
(n,1)
self . Then the generalization of (5.11) takes the form:

Γ
(n,1)
self + Γ

(n,1)
G + Γ(n,1)

γγg + Γ
(n,1)
residual = i λ S(1)

gr , (7.7)

again with the understanding that both sides represent additional contribution besides

those described in section 5.

Analysis of various terms on the left hand side of (7.7) goes as follows:

1. Γ
(n,1)
self can be shown to vanish using the same argument given below (5.16). In this

case the relevant Ward identities given in figures 4 and 20 do not have any left-over

extra contributions.

2. It turns out that Γ
(n,1)
residual, given by the left-over contribution after summing over

K-graviton insertions in figures 22 and 25, does not receive any logarithmic terms

either from the region of loop momentum integration small compared to ω or from

regions of loop momentum integration large compared to ω.
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3. Γ
(n,1)
G receives contributions proportional to lnω−1 only from the G-graviton contri-

bution to figure 22, from region of integration where the loop momentum is larger

than ω.

4. The individual diagrams contributing to Γ
(n,1)
γγg have collinear divergence from the

region where the momenta of the internal graviton and photon are parallel to the

momentum of the external photon. This cancels in the sum over all diagrams in

figure 24. The second and third diagrams of figure 24 each has contribution propor-

tional to lnω−1 from the region of integration where the loop momentum is large

compared to ω, but the sum of these contributions vanishes. Finally, Γ
(n,1)
γγg receives

contributions proportional to lnω−1 from the first two diagrams in figure 24, from

the region where the momentum of the internal graviton is smaller than ω.

The net logarithmic contribution from the region of integration where the loop momentum

is larger than ω is given by

i λ Ŝ(1)
em Kreg

gr . (7.8)

On the other hand the contribution to Γ
(n,1)
γγg from the small loop momentum region is

given by:

iλ(lnω−1+lnR−1)

 i

4π

∑
b

ηb=−1

k.pb
∑
a

εµp
µ
a

pa.k
qa−

1

8π2

n∑
a=1

qaεµp
µ
a

pa.k

n∑
b=1

(pb.k) ln

(
−p2b

(pb.k̂)2

) .
(7.9)

One difference from the previous diagrams of this type, e.g. the ones shown in figure 11,

is that the divergent contribution comes only from the region where the internal graviton

momentum becomes small, and not when the internal photon momentum becomes small.

This reflects the fact that while photons feel the long range gravitational force due to other

particles, the graviton, being charge neutral, does not feel any long range Coulomb force.

After removing the i λ factors from (7.8) and (7.9), we have to add them to (5.20) to get

the total soft factor S
(1)
em . This gives

S(1)
em = Ŝ(1)

em

(
Kreg

em +Kreg
gr

)
+(lnω−1+lnR−1)

 i

4π

∑
b

ηb=−1

k.pb
∑
a

εµp
µ
a

pa.k
qa−

1

8π2

n∑
a=1

qaεµp
µ
a

pa.k

n∑
b=1

(pb.k) ln

(
−p2b

(pb.k̂)2

) .
(7.10)

This reproduces terms proportional to lnω−1 in the sum of (2.4) and (2.5) after using the

explicit forms of Kreg
em and Kreg

gr given in (5.28) and (6.25).
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