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Abstract We observe that a wide class of higher-derivative
systems admits a bounded integral of motion that ensures the
classical stability of dynamics, while the canonical energy
is unbounded. We use the concept of a Lagrange anchor to
demonstrate that the bounded integral of motion is connected
with the time-translation invariance. A procedure is sug-
gested for switching on interactions in free higher-derivative
systems without breaking their stability. We also demonstrate
the quantization technique that keeps the higher-derivative
dynamics stable at quantum level. The general construction
is illustrated by the examples of the Pais—Uhlenbeck oscil-
lator, higher-derivative scalar field model, and the Podolsky
electrodynamics. For all these models, the positive integrals
of motion are explicitly constructed and the interactions are
included such that they keep the system stable.

1 Introduction

The higher-derivative dynamics is as good as the conven-
tional ones in many principal issues. In particular, the Noether
theorem still applies that connects symmetries and conserva-
tion laws. The Hamiltonian formulation is also known for
both nonsingular theories [1] and the most general higher-
derivative Lagrangians with singular Hessian [2]. For many
decades, a variety of higher-derivative models are studied
once and again. The well-known examples include the Pais—
Uhlenbeck oscillator [3], Podolsky electrodynamics [4-6],
various conformal field theories [7,8], Rz-gravity [9,10],
and many others. A vast literature exists on various higher-
derivative models, we mention the papers [11-43] and refer-
ences therein.

In many cases, the higher-derivative models reveal remark-
able properties. They often admit a wider symmetry than
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the first-derivative analogs. One more typical phenomenon
is that the inclusion of the higher derivatives in Lagrangian
can improve the convergence in field theoretical models both
at the classical and the quantum level.

A notorious difficulty of higher-derivative models con-
cerns instability of their dynamics. The Noether energy is
typically unbounded for higher-derivative Lagrangians, and
this fact is usually considered as evidence of a classical insta-
bility. At the quantum level, the instability reveals itself by
ghost poles in the propagator and a related problem with the
unbounded spectrum of the energy. In their turn, the prob-
lems of quantum instability are related to the fact that Ostro-
gradsky’s Hamiltonian, being the phase-space equivalent of
Noether’s energy, is unbounded due to the higher derivatives.

For the general acceleration-dependent Lagrangian, the
Noether energy

E =<£—££)q§i+£$i—L (1)
N=\o¢  drod ¢

cannot be positive because of a simple reason: it is linear in
¢'. The third derivatives are the independent initial data for
the fourth-order Lagrange equations whenever the Hessian

0’L(@. ¢, )

Apiap
is non-degenerate.

For the models with degenerate Hessian, the constraints
appear in phase space [2], which can restrict the third deriva-
tives. Itis a very special case, where the constraints are strong
enough to make the linear function positive, though it may
happen on some occasions [18,21]. The known examples of
this type include the higher-order theories of gravity [28,31—
33] and some models of higher-spin fields [38,39,42]. One
more example is given by the relativistic point particle, whose
Lagrangian linearly depends on the curvature of the world
line [43]. Because of positive Hamiltonian, these models are
stable classically and have no ghosts at the quantum level.
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The positivity of the canonical Noether’s energy is a suffi-
cient condition for classical stability, while it is unnecessary.
The simplest example is provided by the Pais—Uhlenbeck
oscillator. The Lagrangian is acceleration dependent and non-
singular. Therefore Noether’s energy is unbounded in this
model, while the classical stability is obvious, because the
motion is bounded. The point is that the Pais—Uhlenbeck
oscillator admits another integral of motion which is positive.
It is the integral which provides stability. Various specific
reasons can be seen for considering this positive conserved
quantity as a natural candidate for the role of energy in this
model. We elaborate on the details in the next section.

In this paper, we consider the issue of stability of the
higher-derivative theories from the viewpoint of existence
of a positive integral of motion. In a first instance, we con-
sider a class of linear higher-derivative systems. The fourth-
order operator of the equations is supposed to admit fac-
torization into a pair of different second-order operators
satisfying certain (not too restrictive) condition. Many of
known higher-derivative linear models fall into this class,
including the Pais—Uhlenbeck oscillator, Podolsky electro-
dynamics, and linearized conformal gravity. For the mod-
els of this type we construct the integral of motion which
is squared in third derivatives. It can be either bounded or
unbounded depending on signature, in contrast to the Noether
energy, which is almost always unbounded unless the theory
is not strongly constrained. Besides the general method of
construction, we explicitly present the positive integral in
several higher-derivative models with unbounded Noether’s
energy. As we further demonstrate, the concept of factoriza-
tion extends beyond the linear level providing the procedure
for inclusion of stable interactions in higher-derivative theo-
ries.

As the next step we establish a relationship between the
conserved positive quantity, being responsible for the classi-
cal stability of the higher-derivative dynamics and the trans-
lation invariance. The key tool allowing one to connect the
integral of motion with the symmetry is the concept of a
Lagrange anchor [44]. Originally, the Lagrange anchor! was
introduced as a tool for extending the BV-BRST quantiza-
tion procedure beyond the scope of Lagrangian theories [44].
Given not necessarily variational equations of motion, the
Lagrange anchor allows one to define the Schwinger—Dyson
equation [45] and the path integral representation for the par-
tition function [46]. It has been noticed later that the Lagrange
anchor maps conservation laws to symmetries [47] extend-
ing in such a way the Noether theorem beyond the class
of variational equations. Any Lagrangian system admits a
canonical Lagrange anchor, which is given by an identity
operator. The same system of equations may admit differ-

! To make the article self-contained, we provide some generalities on
the Lagrange anchor in “Appendix A”.
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ent inequivalent Lagrange anchors. Inequivalent Lagrange
anchors result in inequivalent quantum theories, and dif-
ferent Lagrange anchors assign different symmetries to the
same conservation law. It turns out that the higher-derivative
Lagrangian dynamics of the considered class always admit
the Lagrange anchor which is inequivalent to the canonical
one. If the energy is connected to the time-translation invari-
ance with this anchor, we arrive at positive energy which
differs from the unbounded expression (1). Furthermore, the
quantization with this anchor will not break the stability as
we explain below.

For the first-order unconstrained mechanical systems
without gauge symmetries, each Lagrange anchor defines and
is defined by a bivector [44,48,49]. This means, in particu-
lar, that when a nonsingular, higher-derivative Lagrangian
of a mechanical system” is reduced to the first order by
introducing auxiliary variables, the first-order system will
be bi-Hamiltonian whenever the two inequivalent Lagrange
anchors are admissible for the higher-derivative equations.
The different Hamiltonians represent in the phase space the
different conserved quantities connected with the time-shift
transformation by different Lagrange anchors in the config-
uration space. The fact that the Pais—Uhlenbeck oscillator
is a bi-Hamiltonian system has been noticed in [16,17]. The
“non-Ostrogradsky Hamiltonian” is positive. As we observe,
it corresponds to the integral of motion connected with the
time-shift symmetry of the Pais—Uhlenbeck oscillator by an
alternative Lagrange anchor. As we will demonstrate, it is not
an isolated observation which is valid for particular higher-
derivative model. It is a part of a broader picture concerning
the issue of stability in the higher-derivative systems. These
systems turn out to be classically stable because of the same
reason as the first-derivative Lagrangian dynamics: they all
have a positive energy that is conserved. The only essential
difference is that the definition of energy may involve a more
general Lagrange anchor than the canonical one.

In this paper, we also address the problem of including
interaction without breaking stability of higher-derivative
dynamics. For the Lagrangian equations without higher
derivatives, and with a positive Noether energy, it would be
sufficient to include the translation-invariant interaction into
the Lagrangian in a way that keeps the energy bounded. For
the general higher-derivative systems, where stability can-
not be controlled by Noether’s energy (1) anymore, the issue
becomes more tricky. As we see, a positive (non-canonical)
energy is connected with the translation invariance by a non-
canonical Lagrange anchor in the higher-derivative theory.

2 For the gauge invariant and/or constrained mechanical systems, the
connection between Lagrange anchor and Poisson structures is more
involved. A Lagrange anchor in this case gives rise to a weak Poisson
structure [50]. In the field theory, the relationship is even more complex
and it is not completely known at the moment.
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With this regard, the sufficient conditions for stability mean
to meet the following requirements, which are automatically
satisfied with the canonical anchor. First, the interaction has
to be included simultaneously into the equations of motion
and in the Lagrange anchor to keep them compatible. When
a relevant Lagrange anchor is canonical, it is automatically
compatible with the Lagrangian vertices in the equations. For
the stability of higher-derivative systems, as we see, typically
a non-canonical Lagrange anchor is relevant because it con-
nects the positive integral of motion with translation invari-
ance. Second, the interaction should keep the positivity of
the energy. If the vertex is Lagrangian and translation invari-
ant, this will mean that the Noether energy still is conserved,
though it does not automatically mean the same for a positive
energy which is a different integral of motion. The require-
ment for the deformed energy to be conserved and keep being
positive is an additional requirement imposed on the inter-
action. The last but not least, the deformed Lagrange anchor
should connect the positive energy of interacting system with
the generator of time translations. This is not automatically
satisfied either. We demonstrate by examples that all these
requirements can be met, though the stability control is not
so simple procedure as it is in the theories without higher
derivatives.

The paper is organized as follows. In the next warming-
up section we consider the model of the Pais—Uhlenbeck
oscillator to illustrate the key general constructs we further
use to control the stability of higher-derivative dynamics.
Section 3 describes the general structure of the factoriz-
able higher-derivative dynamics, both linear and nonlinear,
that allows one to control stability at the classical level and
keep it upon quantization. Section 4 illustrates the proposed
technique by the examples of a higher-derivative scalar field
model and Podolsky’s electrodynamics. We demonstrate sta-
bility of these models. As the paper essentially employs
the Lagrange anchor method developed in [44—48], we out-
line the relevant aspects of this construction in the appen-
dices, to make the paper self-contained. The general idea
of a Lagrange anchor is explained in Appendix A. This
appendix also provides some relations, which are used in this
work. Appendix B demonstrates how the Lagrange anchor
is applied to connect conserved quantities with symmetries.
A particular consideration is given to the possibility to con-
nect different conserved quantities to the translation invari-
ance when the system admits different anchors. Appendix C
provides an elementary technique of finding the Lagrange
anchors for free field equations. It also explains why the
higher-derivative dynamics admit a wider set of Lagrange
anchors than the second-order field equations. Appendix D
explains how the linear techniques for finding the Lagrange
anchors are extended to a certain class of nonlinear higher-
derivative systems considered in this paper. The appendices
provide the background and techniques for those who wish

to apply or further develop the method, while the results of
the present paper can be apprehended by consulting only the
relations which are directly referred to in the main text.

2 Stability of the Pais—Uhlenbeck oscillator

In this section, we consider the Pais—Uhlenbeck (PU) oscil-
lator which has been studied for decades; see [11-17,19,20,
22,23] and references therein. By this simplest model we
exemplify the key structures related to the (in)stability prob-
lem of higher-derivative dynamics. In the next section these
structures are described in the general form.

The action of the PU oscillator involves derivatives of a
single variable ¢ (¢) up to the second order:

Sl¢] =/dtL,
L= 5 (B ote) (b ude): @

here w; # w, are the frequencies of oscillations. The corre-
sponding equation of motion reads

8 1 a2 N\/d
ﬁzm F‘f-a)l @—f-wz ¢ =0. 3)

Asis seen, the fourth-order operator of the equation factorizes
into the product of the second-order commuting operators.
Because of this factorization, the general solution to (3) is
given by the sum

¢=E&+n, “)

where the functions & and 7 satisfy the second-order equa-
tions

d? d?
— +ol)e=0, (5 +w3|n=0 ()
a2 TOr)s T g2 T2

Conversely, if ¢ is a solution to the original fourth-order
equation (3), then the expressions

(}5+a)§¢ (}5+w%¢
§=ﬁy nN=-——"5 (6)
Wy — @ Wy — @

obey the second-order equations (5). The relations (4) and (6)
establish a one-to-one correspondence between the solutions
to the fourth-order equation (3) and the second-order system
(5).

The general solution for ¢ is a linear combination of the
two independent harmonic oscillations,

E=Aisinw|(t —1t)), n=Axsinwy(t —1). (7)

@ Springer
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Taking the linear combination of the energies of the oscilla-
tions, we get a two-parameter family of integrals of motion
for the PU model

o/ .
Fap =5 (8 +078) + 5 (7 +adr?). ®)
with «, B being arbitrary real constants. Using (6), we can
write Ey g as a quadratic form of ¢ and its derivatives up to
the third order:
5\ 2 . 2\ 2

(o4 ¢+ (U2¢ 2 ¢+ a)2¢
Eep=5 |\ 7)) toi|\ 77

wy; — Wy wy; — Wy

o\ 2 . 2
Bl (¢ + ol 5 (¢ +olo
S\ T2\
1 2 1 2

otA%w]2 B A%w%

2 2
If «f # 0, then the only critical point of the function
Eqp(o, ¢5, (}3, ¢) is zero. The quadratic form Ey g is pos-
itive definite whenever « > 0 and 8 > 0. The latter fact
ensures the boundedness of motion for any choice of initial
data.?

In general, we say that the classical dynamics is stable in
a vicinity of a phase-space point ¢y, if ¢o provides a local
minimum for a conserved quantity £ and the Hessian matrix
d?E is positive definite at ¢. In this case the level surfaces
E = Ey, where Ej is close enough to the minimum value,
are compact and the motion is bounded in the phase space. In
the subsequent discussion we will call a conserved quantity
E positive definite (in the vicinity of its extremum point ¢g)
if its Hessian matrix d*E is.

In the case of PU oscillator we have the two-parameter
family (9) of conserved quantities and at least two physically
reasonable candidates for the energy. First of all, as we are
dealing with the pair of oscillations (7), it is quite natural to
define the energy of the PU model as the total energy of two
uncoupled harmonic oscillators, namely,

(€))

2 2
This energy is positive definite and its conservation ensures
the classical stability of the PU oscillator.

Another possibility is suggested by the Noether theo-
rem [51]. In Lagrangian mechanics the canonical energy is
defined as the integral of motion corresponding to the invari-
ance of a conservative system under the time translations.
This correspondence, being applied to the PU oscillator, leads
to an unbounded energy as we explain below.

Ei =

3 In this simple case, the explicit solution (4), (7) makes it obvious that
the motion is bounded. In many cases, the positive definite integral can
be known, while the explicit solutions are unknown.

@ Springer

The time derivative of any integral of motion E is to be
proportional to the Lh.s. of equations of motion, i.e.,

dE 4§ 10
Frie Q%~ (10)
The coefficient Q = Q(¢, ¢, P, ¢>) is called the charac-
teristic of the conserved quantity E. The Noether theorem
connects the integrals of motion to the symmetries of the
action by identifying the characteristic Q with the infinites-
imal symmetry transformation:

8§ dE
8:5=0 —=— 11
e < Q8¢ a (11)

Sep = €0,
for some E = E(¢, ¢, $, qb) In this way, the invariance of
the action (2) with respect to the time translation §,¢p = —458
gives rise to the Noether energy (1). On the other hand, one
can find the following expression for the characteristic of the
conserved quantity (9):

) ~
QOus = (a+p)¢ J;(Oth2 + ﬂw1)¢' (12)

Wy — Wy

Thus, the identification Q = —¢ implies thato = —8 =1
and the corresponding Noether energy reads

26¢ — (@) + (@] + )¢ + wjwig’
2(03 — 0?)
Aot _ Ay

2 2
Unlike Ej i, this energy is not positive definite. The posi-
tive definite integrals of motion (9) correspond to o > O,
B > 0 and their characteristics (12) are bound to involve
the third derivative of ¢. As a result, the usual Noether theo-
rem cannot connect a positive conserved quantity to the time
translation.

A more general correspondence between symmetries and
integrals of motion is established by means of the Lagrange
anchor [47]; see also Appendix B. The Lagrange anchor
is a differential operator that satisfies certain compatibil-
ity conditions with the equations of motion; see the def-
inition (6.10). Given equations of motion, the Lagrange
anchor is not necessarily unique and the different Lagrange
anchors establish different connections between symmetries
and conservation laws. In particular, for the PU oscillator

we have the two-parameter family of the Lagrange anchors
(8.7):

=——|—=+ow ———= t+ o7,
e a)% — a)% dr? 2 w? — a)% dr? !

(14)

E\ =

(13)
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with p and o being arbitrary real constants. The details about
deriving this Lagrange anchor are collected in Appendix C.

Each Lagrange anchor maps characteristics to symmetries
by the rule (7.6). Applying the Lagrange anchor (14) to the
characteristic (12), we get the following symmetry, which
corresponds to the integral of motion (9):

&

¢ = &Vp.o(Qap) = (@} = }?

x[@+B)p = )¢ + (i ap +26p - po)
— w3 (Bo + 200 —ap)¢ + (Bpoi
+(ap — po)wiw? — aaw;‘)qs] . (15)

Let us consider this relationship from the perspective of
having alternative integrals of motion connected with the
time translation. To establish the correspondence, we re-
arrange (15) to absorb the higher-derivative term with ¢©
by the equation of motion*:

(@] —w3)(@0 + Bp)§ + (Bpo] + (@0 — pp)ojws — aowy)d

Sep=¢
(@ — w3)?

[etPlp—o)disS
T i (16)
The anchor connects the general characteristic (12) with the
time translation 8,¢p = —¢e if the coefficient at ¢ vanishes.
This leads to the condition op + Bo = 0. The correct coef-
ficient at the first derivative is provided by ap = 1. Solv-
ing these conditions for p and o, we see that the Lagrange
anchor V] -} connects the general non-degenerate integral

of motlon (9) to the time translation

- . (@+pr e dsS
Sep = sVé’_%(Qa,ﬂ) =—&¢ — B 0 — w} dt 8¢
7)

We have observed above that any integral of motion (9) with
aff # 0 can be connected to the time translation by specifi-
cation of the free parameters in the general Lagrange anchor
(14). The Noether energy (13) is mapped to the symmetry
by the canonical Lagrange anchor. The positive integrals
of motion are mapped to the generator of time translations
by the non-canonical Lagrange anchors (14) with p > 0,
o <0.

Let us stress once and again that different Lagrange
anchors result in different quantizations of one and the same

4 The symmetry transformation is defined modulo on-shell vanishing
terms. Once the equation is of fourth order, the fourth and higher deriva-
tives can always be excluded from the symmetry transformation. In
particular, the fifth derivative in (15) may be included into on-shell
vanishing terms.

classical system (see Appendix A and [44,45]). For the first-
order ODEs, a Lagrange anchor always defines® a Poisson
bracket on the phase space of the system, while the cor-
responding energy becomes a Hamiltonian [44,48]. Once
the equations of motion admit several Lagrange anchors,
they admit several Poisson brackets and Hamiltonians. If the
Hamiltonian is positive, one can expect a bounded spectrum
of the energy and quantum stability, while the unbounded
energy usually results in quantum instability. Therefore, the
choice of the Lagrange anchor and the energy gains impor-
tance when the quantum stability is concerned.

We do not elaborate here on the generalities of the connec-
tion (which is basically one-to-one for ODEs, modulo cer-
tain equivalence relations) between the integrable Lagrange
anchors and the Poisson brackets; see [44,48,49]. We will
just explicitly demonstrate that any non-degenerate integral
of motion (9) leads to the corresponding Hamiltonian form
of dynamics.

Consider the Hamiltonian formulation for the model (2).
Following the Ostrogradsky method, we introduce the canon-
ical variables

a=¢, @=aé,
_g_ig__wﬂw%w%)d&
PU=%0 " atog ~ 2@ —od)
AL 2¢+ (0} + @3)e
= =T T 1
e (18)

which have the canonical Poisson brackets

ij=1,2.
(19)

{4 pito=4ij, {4i.qjto ={pi.pjlo =0,

Then ¢, ¢, P, ¢ canbe expressed in terms of the phase-space
variables:
$=q, ¢=(wf—w))ps—

1
¢ =q1, 5(w%+w%)q1,

1
¢ = (w3 —w)p) — E(w% +03)q> . (20)

The Ostrogradsky Hamiltonian, being the phase-space expres-
sion for Noether’s energy (13), reads

2+a)2 a)%—

1 2 + a’% 2_|_1 2 Q1)
) P291 ) 1% 441~

{q1, g2, p1, p2} satisfy the

(0]
Ho = p1g2—

The phase-space variables z/ =
Hamiltonian equations
"= (!, Holo. (22)

3> Under the additional assumption of integrability; see [47]. The field-
independent Lagrange anchors are automatically integrable.
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Because of the aforementioned correspondence between
the Lagrange anchors in mechanical systems and Poisson
structures, the two-parameter set of Lagrange anchors (14)
and the energy functions (9) imply the existence of two-
parameter sets of Poisson brackets and Hamitonians. These
read

{ } —1+1 { } —(i-1
‘II,‘IZot,ﬂ—a B q1, P1 “B=5\ o g’
{q1, p2}ap =0,

1/1 1
5 = 07 ) =3 - ’
{92, p1le.p {92, p2}e.p ) (a ﬂ>
1 /1 1

{p1, P2lap = 1 (& + E) , (23)

Hup = 5 [(1+@2/27 + 0h(p2 = 01/2)?]

o —an? radmra?]. e

The Hamiltonians Hy, g are derived from E¢, g by substitution
¢, ¢, ¢, ¢ in terms of the phase-space variables (20). The
Ostrogradsky Hamiltonian and bracket correspond to o =
1,p=—-1

{'7'}02{'5 '}1,—19

Notice that the brackets and Hamiltonians with different «, 8
are not obtained from each other by canonical transforma-
tions. This is an obvious fact because the brackets between
the same variables essentially depend on the parameters. For
example, the original coordinate g; = ¢ Poisson commutes
with the velocity g» = ¢ once « = —f, while they are
conjugate when o = f; g1 = ¢ is conjugate to

2¢ + (@] + 0d)d
2(60% — w%)

Ho = Hj 1.

p1=

with respect to the bracket (23) once « = —p, while they
commute when o« = f. However, for any «, 8, the corre-
sponding Hamiltonian equations with the brackets {-, -}4 g
and the Hamiltonians H, g coincide with each other, and in
particular with the Ostrogradsky system, i.e.,

il =1z!, Hyplap = 12", Holo, Ya #0, VB #0.
(25)

Thus, the phase-space equations of the PU oscillator admit a
two-parameter set of brackets and Hamiltonians.

For @ > 0, B > 0 (which corresponds to Hy g > 0) the
special coordinates can be introduced by

e = Ja(pr +q2/2),  xe = JaE = Ja(qi1/2 — p2),
Ty =vB@2/2 = p1),  xn =B =Bp2+aq1/2).
(26)

@ Springer

In these coordinates, the brackets (23) take the canonical
form

Xi»mitap = 8ijs {Xis Xjlap =i, Tjlap =0,
i,j=%&n. (27)

The Hamiltonian (24) reduces to that of a two-dimensional
harmonic oscillator, namely,

Hyp = % (ng + w%xg) + % (713 + wﬁxg) . (28)
If the PU oscillator is quantized with the Hamiltonian (24) by
imposing the commutation relations according to the corre-
sponding bracket (23) with @ > 0, B > 0, this is equivalent
to canonical quantization with the canonical bracket (27) and
Hamiltonian (28). This means that the quantum theory with
the non-canonical Lagrange anchor leads to a positive energy
spectrum, while the canonical choice results in a spectrum
unbounded from below.

Let us summarize the conclusions made in this section
that apply (as we will see in the next sections) to a wide
class of higher-derivative dynamics. Once the free higher-
derivative system admits factorization, it turns out to be clas-
sically stable, because the two-parameter family exists of
the conserved quantities that includes the bounded functions.
The model was shown to admit a two-parameter family of
the Lagrange anchors that connect the conserved quantities
with the symmetry of system under time translation. This
allows one to consider any of the integrals as the energy. As
we have seen, the diversity of the Lagrange anchors admitted
by the higher-derivative dynamics makes possible to choose
between inequivalent quantizations. It turns out that the clas-
sical stability can be retained at the quantum level by an
appropriate choice of the Lagrange anchor.

In the next section, we generalize these observations to
a broad class of interacting higher-derivative systems. The
example of the interaction that does not break the stability of
the PU oscillator will be provided. Then, in Sect. 4, we will
consider examples of the stability in higher-derivative field
theories.

3 Nonlinear factorization

In this section, we formulate the general pattern for factoriz-
ing not necessarily linear higher-derivative systems. This pat-
tern can be seen in its simplest form already from the example
of the PU oscillator. Once the higher-derivative dynamics is
factorized in this sense, the stability turns out to be a com-
mon occurrence as much as it happens in the usual dynamics
without higher derivatives. As we will demonstrate, many of
the higher-derivative systems of this class appear to be stable,
though their canonical energy is unbounded from below.
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Suppose that &, 1, and ¢ are n-component fields on space-
time with local coordinates {x*}. Given the n x n matrix
differential operator P, define Q by the relation®

1=P+Q. (29)

Clearly, [P, Q] = 0. Using these operators and an arbi-
trary vector-valued nonlinear differential operator F, we can
define two systems of field equations. The first one includes
two groups of equations,

PE+FE =0, Qn+F(E.n)=0, (30)

while the second group is given by

PQ¢ + F(Q¢, Pg) = 0. (3D

It is easy to check that the relations

§=0Qp, n=P¢, ¢=E+1 (32)
establish a one-to-one correspondence between solutions of
both systems. So, the systems (30) and (31) are equiva-
lent and may be thought of as two different representations
of one and the same theory. We will refer to them as &£n-
and ¢-representations. The PU oscillator provides the sim-
plest example of factorization with F = 0, cf. (3), (4), and
(5).

The &n-representation (30) may be viewed as a special
way to decrease the order of the system (31). For exam-
ple, if P is of the second order, and F is algebraic, then
the fourth-order equations (31) are equivalent to the second-
order equations (30). The operator F can be considered as
an interaction included’ into the free system PQ¢ = 0.
In this way, the factorization can still be efficient for keep-
ing track of stability in the interacting higher-derivative
dynamics.

Let us assume that P = P and construct F(£, n) in the
following way. Given a function U (¢, 3¢, 3%¢, ..., V),
consider its Euler—Lagrange derivative for brevity denoted
by

ok oU
X YDy Dy D)

N
’r_ 1k
V=Y

6 This relation can be relaxed in various ways. For example for P +
Q it is sufficient to be an invertible matrix differential operator, not
necessarily unit, if 7 and Q commute.

7 The consistency of the interaction is not granted by this construction.
We suppose the interaction is consistent, and study stability. For detailed
discussion of the consistency of the interaction in the non-Lagrangian
context we refer the reader to [52].

The nonlinearity F in (30) can be chosen as

FE ) ==Ulpsat—pn (33)

with @ and B being nonzero constants. Then the system (30)
comes from the least action principle for

S1 [£(x). n(0)] = ledx,

Ly =26Ps — Enon — UGt — ), (34)

while (31) is not necessarily variational. For the special non-
linearity (33), (30) takes the form

5S
8—; = a(PE — U'(a& — Bm) =0,
58S
571 = —B(Qn — U'(at — Pn)) =0, (35)
and (31) reads
PQ¢ — U'(@Q¢ — BPe) = 0. (36)

In some cases, the dynamical equations (35) and (36)
should be multiplied by an overall dimensional constant to
ensure the proper dimension of the action (34). For example,
for the PU oscillator (2), it is convenient to take this factor as
w% — w% Once the dimensional coefficient is introduced, all
the expressions in this section for the actions, the equations
of motion, and the conserved currents are to be multiplied
by this constant, while the characteristics, symmetries, and
Lagrange anchors remain intact. As the dimensional coeffi-
cient adds no essential generality but complicates the explicit
expressions, it is omitted from most of the expressions.

The least action principle for (35) not necessarily makes
(36) Lagrangian. The obvious variational vertex
F(P¢p, Qp) = —U’'(¢) corresponds to the special choice
of constants « = —f = 1. The corresponding action reads

1
Salé ()] = / Ladv, Ly=3¢PQ6-U@).  (7)

If the action (34) is invariant under the space-time trans-
lations x* — x#* — ¢#, then (by the Noether theorem (11))
the system of equations (35) admits the conserved current
J (&, n) such that

M 381
BMJM = —8“3”,5@ — 8“8,m§. (38)

It is expressible through the canonical energy-momentum
tensor as

Jh = Oke, (39)
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where
CLA))
N N
>« [ O, ) Y (=D Py,
¢=&,n k=1 m=k
L
By 1 — 8Ly, (40)
I (@Bpey - - Iy 9 ®)

Here, the sums by k and m run up to the maximal order
of derivatives N entering the Lagrangian (34). The energy-
momentum tensor is given by the sum

O & n = a(Op) () — BOQ)", () + (Bv), (¢, n),

(41)

where (©p)", and (® Q)’fj are the energy-momentum tensors
for the Lagrangian free theories P¢ = 0 and Qn = 0, while
the term (@)™, is the energy-momentum tensor of “interac-
tion”. By construction, the component @OO has the meaning of
the energy density of the theory (35), so that the total energy
of the system is given by the integral E = fspac . @00. The sta-

bility of the theory (35) is provided by the condition @00 > 0.

An alternative analysis of stability can be made by switch-
ing to the Hamiltonian formalism for the theory (34). The
stability of the theory (35) is guaranteed if the Hamiltonian
H = E is positive definite. This approach may be convenient
for the theories whose lower-order Lagrangian formulations
(34) are well studied. As an example we can mention the
conformal higher-spin fields [37].

Let us now prove that in the ¢-representation the energy-
momentum tensor (40) is also associated with the space-time
translations. This tensor can ensure stability of the theory (36)
much like the canonical energy-momentum tensor does in the
usual theory without higher derivatives. Substituting ¢ into
(39) by the rule (32), we find that the tensor ®",(Q¢, P¢)
is conserved,

9.0",(Q¢, Po) = [0y(BP — a Q)]
x [PQ¢ —U'(@Q¢ — BP9)], (42)

and the corresponding characteristic reads

Qv = (BP —aQ)¢. (43)

Obviously, @00(5 n) > 0 implies ©° 0(Qe, Pp) > 0.
Notice that the order of Varlatlonal equations (35) may be
lower than the order of equations (36). For this reason, the
use of variational formulation (34) allows one to surpass the
obstructions to the existence of positive definite energy in
theories with higher derivatives. For example, if the differ-
ential operators P and Q are of the second order, then the
positive definite energy density may exist even if the theory

@ Springer

(36) is nonsingular. On the other hand, the use of the Noether
theorem for the constriction of conservation laws sets the nat-
ural upper bound for the order of action (34). This suggests
to concentrate on the theories (36) for which the operators
P, Q are at most of the second order and U = U (¢, d¢)
depends on at most first derivatives of the field. However, if
the higher-derivative models (34) with the positive definite
Noether energy are found in the future, our construction will
be applicable to them as well.

More information about stability of the theory (36) may
be obtained if the structure of the energy-momentum tensor
(40) is taken into account. For example, if the two factors are
stable (i.e., oz(®7;)00, —ﬂ(@Q)OO > 0 for some values of «
and B) and (©y)% > 0, the theory (30) is stable. This fact can
be used for a systematical constriction of stable interacting
higher-derivative theories. If both factors are stable, but the
interaction term is not positive definite, the energy can still
have a local minimum in a neighborhood of zero solution.
Such theories with “locally stable” behavior are also consid-
ered as physically acceptable models. They can be studied
within the perturbation theory. The examples are known of
the locally stable models with not necessarily positive energy
[11,13,22,23]. In such theories with “benign ghosts” we can
expect the existence of a (yet unknown) Lagrange anchor
and an alternative positive definite conserved energy. In other
cases, the stability of a theory cannot be guaranteed even in a
small neighborhood of the vacuum solution. The theories of
this type are branded as having “malicious ghosts” [11] and
cannot be considered as physical.

Whenever the system of equations (36) is not variational,
the relationship between the conserved tensor (41) and the
space-time translations can be established by the Lagrange
anchor. In Appendix D we find that for factorizable systems
the Lagrange anchor reads

1 2
velo-lp OB ios - pPe). 44
PR B

The action of the matrix differential operator U” on an arbi-
trary characteristic Q(¢(x)) is defined by

U’
U'(¢)Q Z/dx (¢)Q(¢(X))- (45)

8¢ (x)

Verification of the defining property (6.10) for the Lagrange
anchor (44) requires some technical details provided in
Appendix D. Applying (44) to the characteristic (43), we
get the space-time translation symmetry

8ep = €"V(Qy)
(+ﬁﬂ//

( Q_ﬁ af
< (BP — aQ)d,¢

U (2 Q¢ — ﬂP¢)>
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2
_ (19 - lP) (BP — a Q)80 — C TP
«“ B of
X U" (@ Q¢ — BPH)"0,(@Qp — FPY)
2
= —£"9,¢0 + Ms”av (QP¢
op
— U@ Q¢ — BP®) ~ —e"3,9. (46)

This relation allows us to identify the conserved current
(42) with the energy-momentum current of the theory (36).

Let us illustrate the general construction above by the
example of PU oscillator. The operators P and Q now take
the form

1 e, 1 e,
@ -} (mﬁ‘“l)’ = (dtz“’z)'

(47)

P =

Upon substituting (47) into (36) and multiplying by the over-

all factor a)% - w%, we get the following equation of motion:

T ! & + o} & AL
=——|—S+ow — +tw
w? — w3y \dr? V) \dr2 2

v ((a + B)p + (aa)%—f-ﬁa)%)(]ﬁ) _o

48
o (48)
For simplicity’s sake we assume the function U (¢) to depend
on ¢ but not on its derivatives, so that U’ = dU (¢)/d¢. The

two-parameter family of integrals of motion reads

o,
E:Ea,ﬁw((“+ﬂ)¢t(“”g+ﬁ‘”‘)¢>, )
wy; — W

where E, g is defined by (9). One can easily check that

5 ~
?Tf —OT. 0= (a+pB)o 4; (Otw22+ ,360])¢. (50)
wp — Wy

Expression (49) is positive definite whenever «, 8 > 0 and
U > 0.In that case the motion is bounded for any initial data.
To the best of our knowledge this is the first example of the
self-interacting PU oscillator whose classical stability can
be proved analytically for all initial data. In the previously
known examples of interactions [11,22] boundedness of the
motion has been demonstrated by numerical computations.

To conclude the consideration of the fourth-order formu-
lation (48) let us write out the Lagrange anchor

yolo 1 d2+2+11 d2+2
=5 tow - tw
Ola)%—a)% dr? 2 ﬁw%—w% dr? !

L @+p? ((a +B)b + (@ + ﬁw%)qs)

+ 2 2

wy -y op w3 — o]
d’U(¢)
" o__
U=~ (51)

and the corresponding time-translation symmetry

C(@+p)? e dT
off a)%—a)%dt-

S =eV(Q) = —¢¢ (52)

The Hamiltonian formulation for the fourth-order theory
(48) can be derived with the help of the auxiliary action (34).
In our case, it takes the form

o - .
S1 = /let, Li=5@E i)+ g(n2 — w3n’)
—U(aé — Bn). (53)
Introducing the canonical momenta
O =k oL pi (54)
= =as, =T = )
Pg oE Pn o n

and performing the Legendre transformation, we obtain the
Hamiltonian

1 (P} 1 (r;
H=> (f +aw%€2>+§ (# + ﬂw§n2>+U(a$—ﬂn)-

(55)
Obviously, the Hamiltonian (55) is positive definite simulta-

neously with the energy (49). The canonical transformation
(26)

Dy
Mg == My =k, xe=~ab, xy=vBn (56)
§ Jao 1 JB & n
brings the Hamiltonian to the form
H = Hop + U (Vaxe = VBxo) - (57)

As is seen the Hamiltonian (57) is a deformation of the free
Hamiltonian (28). Quantizing this theory in the usual way
by introducing creation—annihilation operators, we arrive at
the quantum theory with a well-defined ground state and a
positive energy spectrum.

4 Examples of stable higher-derivative field theories

In this section, we consider two examples of the higher-
derivative field theories which are stable despite the fact that
their canonical energy is unbounded from below. The consid-
eration follows the general pattern described in the previous
section.
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4.1 Scalar field with higher derivatives

Consider the Lagrangian of a free scalar field ¢:

(D¢ + m%d)) (D¢ + m%gﬁ) ,

- 2(m% — m%)

where [ = 9,,0* is the D’ Alembert operator. The equation
of motion reads

g=ﬁ(m’"?)(mm5)¢=0- (58)
1 2

If my # my, the theory has the factorizable structure (31)
with the following operators P and Q:

p_B¥mi ,_DOtm
_m2_m2’ _m2—m2.
1 2 2

In the second-order formalism the corresponding fields &
and n are the usual scalar fields with masses m| and m3,
respectively.

Interaction can be included in (58) following the pattern
(31), (33) of the previous section:

O +mH(O+m3)g
(m? —m3)

2 2
v ((a+/3)D+ (am3 +/3m1)¢> o

T

- % — m% (59)
The common multiplier m% - m% provides the correct dimen-
sion of energy.

Here we consider a U which does not depend on deriva-
tives of fields. This allows us to simplify explicit formulas in
this section. The general expressions and conclusions, how-
ever, hold true even if the interaction depends on the deriva-
tives of fields.

The corresponding energy-momentum tensor reads

of = a0V} (Qp) + pO21 (Ph)

a + B0 + (am? + Bm?
+55Ux<( Pt omy + P ‘)¢>), (60)
my —my
where
O + m3¢ O + m3¢
@“”j(Qd)) — gH ( - 22 ) 3, ( : 22 _
my — ny my —mj
Lo (B8 +mi¢ . (D¢ +mig
7% 2 — m2 N2 —m2
2 1 2 1
2
+8“m—% D¢+m%¢
V2 m%—m%
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and
2 2
D1 (Pg) = ot <D¢2+ m12¢) . <D¢2+ m12¢)
ms —m ms —m
1 2 1 2
1 O +m} O¢ +m7
— 56,07 ¢2 m12¢ 3o ¢2 m12¢
2 my —m3 my —m;
2
+8Mm_% M
) m%—m%

are the energies of scalar modes with masses m| and m», and
the last term in (60) has the meaning of interaction energy.

The characteristic of the conserved energy-momentum
tensor (60) reads

2 2
my —m;

2 2
0 —. (<a+ﬂ)m+ (ozmz—l-ﬂm])d)) | 5.0k = OuT.

(61)

The Lagrange anchor, being constructed for (59) by the gen-
eral recipe (9.2), has the form

V_lDer% 1 O+m3 I (@+p)?dU
- 2_ 2 2 _ 2 2 _ 2 o2
amy—m5; PBmj—m5; m5;—my o ¢

(62)

2 2
my —mj

5 ((a + B0+ (am? + ﬁm%>¢) .

The Lagrange anchor maps characteristics to infinitesimal
symmetry transformations; see Appendix B. Applying the
anchor (62) to the characteristic (61), we find

(@+B)?

wB i

Sep = eV (Qy) = —etoup — eta, T,
where T is the Lh.s. of the field equation (59). The symmetry
transformation is a translation along the constant vector &/,
as it must be. The stable interaction vertices correspond to
o, B > 0 and depend on the second derivatives of the scalar
field through [ep.

In Ref. [29] the higher-derivative self-interactions of the
scalar field of a similar form are considered in cosmology as
one of the scenarios explaining inflation. With this regard,
the suggested stability control method, being based on the
conservation of the tensor (60), can be relevant to cosmol-
ogy where the classical stability is an important selection
principle for the models.

Let us mention one more evidence of stability of scalar
fields with high derivatives. The instability of the theory is
usually related with the presence of “ghost states”. These
states correspond to the wrong sign of the pole in prop-
agator. They are responsible for the presence of negative
norm states, which represents notorious trouble for high-
derivative theories. Below we demonstrate that the correct
choice of the Lagrange anchor leads to the ghost-free theory.
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The procedure of quantization of theories equipped with the
Lagrange anchor has been developed in the series of works
[44-46]. Here, we use the method based on the generalized
Schwinger—Dyson equation (a brief outline of the method can
be found in Appendix A; for a more systematic exposition
see [45]). We find the generating functional of Green func-
tions for the free higher-derivative scalar field with Lagrange
anchor (62) and derive the propagator as the second varia-
tional derivative of the generating functional of Green’s func-
tions.

For the free equations of motion (58) and the Lagrange
anchor (62), the Schwinger—Dyson equation reads

58S ~ - -
[@(tﬁ) - V(¢)] Z[¢] =0, (63)

where $ = ih8/8¢, ¢ is the source for the scalar field ¢, and
Z|[¢] is the generating functional of Green’s functions. The
solution to the Schwinger—-Dyson equation (63) has the form

Z[$]= —i/d“ 7] (TR S . [
=exp T x¢ Ot[]—i—m% ,BD—i—m% o .
(64)

Taking the second variational derivative of (64) and setting
¢ = 0, we get the propagator

§2Z(¢] ‘
8¢ (x1)8¢(x2) 16=0
1 1 1
=\ 7t 2 2
(Ot O4m35 BO+m]

As one could expect, both terms in (65) have the same sign if
o, B > 0. The canonical Lagrange anchor corresponds to the
choice « = —B = 1, which leads to the theory with ghosts.

Let us note that the presence of derivatives in the Lagrange
anchor makes the ultraviolet behavior of the propagator
worse. Only the canonical Lagrange anchor (0« = —p) pro-
vides the ultraviolet asymptotic form G, ~ p~* in the
momentum representation. In the case of positive definite
energy, the propagator behaves like the usual Feynman prop-
agator for the scalar field, G, ~ p’2. As a result, the use of
a Lagrange anchor with derivatives does not allow one to get
simultaneously the positive definite energy and improve the
renormalization properties of the theory. This can decrease
the potential attractiveness of using higher-derivative the-
ories from the viewpoint of surpassing the divergences in
quantum theory.

As we have seen, at the free level the higher-derivative
scalar field model admits a two-parameter family of con-
served energy-momentum tensors. The interaction, being
included by the recipe (59), explicitly involves these param-
eters. In the interacting model only one conservation law

Ga(x1 —x2) = ih

) 8(x1—x2). (65)

survives by construction. The conserved tensor (40) has pos-
itive density @00 once o, 8 > 0, while the canonical energy
(which is unbounded) corresponds to « = —f = 1. So, the
interaction with o, 8 > 0 does not break stability, because
the positive quantity still is conserved in this case. A sim-
ilar phenomenon is seen when the theory is quantized. If
the Lagrange anchor is chosen with positive parameters «,
the theory is stable, while the canonical choice results in the
ghosts.

4.2 Podolsky’s electrodynamics and its interaction
with massive spin 1/2

The free Podolsky electrodynamics is the theory of vector
field ¢* with action

1 v 2 v
S:—Z/dx |:(F¢)uv(F¢>)# — —5 0" (Fp)up 9 (Fyp) p:|'
my
(66)

Here, (Fy)uv = 0,0y —0,¢,, isthe field strengthandm , > 0
is a parameter of the theory having the dimension of mass.
The equations of motion

1488
_m_%,% =PQ¢=O

have the factorizable structure (31), where the operators P, Q
and F read
1 1
P=-—0-0), Q=—
my, m
F=0. (67)

(O-00-+m2).

holS)

Obviously P is the Maxwell operator, Q is the Proca operator.

Being a factorizable fourth-order theory, Podolsky elec-
trodynamics can be reduced to the second order by introduc-
ing the variables & and 7 that absorb the second derivatives
of ¢ following the general recipe (32): § = Q¢, n = Po.
Then the equivalent second-order theory will be given by the
Maxwell equations for £ and the Proca equations for 1. The
corresponding action has the form

|
S| = —Zfdx [a(Fg)W(Fg)’“’

+ 8 (B )™ = 2m27m) | (68)

with some constants «, § # 0. The Lagrangians (66) and
(68) enjoy the usual gauge symmetry

8x¢/4 = 8[LX7 5)( Nu = 0. (69)

axfu = 8/4)(7

Let us first discuss the inclusion of interaction in the &n-
formalism, and then switch to the ¢-picture, where the equa-
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tions are of fourth order.® Introduce the Dirac field v (17f
stands for the Dirac conjugate spinor) minimally coupled to
the vector field by adding the following term to the action
(68):

5= 51~ [@v. Ut = prvn )

= — Y (iy" (B, — e(ag — Bn)y) — m)y. (70)
The equations read
0" (Fe)ow — ju =0, 9" (Fuu +mynu + ju =0,
Jn = eby"y, (71)
(iy" (3 — e(a& — Bn)y) —m)y =0,
Ty (9 + et — Bn)y) +m) =0, (72)

The consistency of the interaction implies that the gauge
transformations (69) are complemented by the standard
U (1)-transformation for the Dirac field
Sy = —ieayy, 8X17f=iea)($. (73)
As is seen, the full theory of (71) and (72) describes prop-
agation of one vector field 7 of mass m, and one massless
gauge field &, and both vectors are minimally coupled to the
spinor field .

If o, B > 0, the theory (68) is (perturbatively) stable. The
energy-momentum tensor reads

g(ag(Fn)pg(Fn)pa - 4(Fn)W(F77)vp

+4mi77ﬂi7v - Zm?,&’fn”np)

+ %‘(aﬁ(&)p"wg)m — A(Fe)"P (Fe)yp)

OL (&, n, v, Y1) =

I ~ e .
+ 3 [T+ et — B
% .
+y (0" +ie(as — ")
T
—y"(0y —ie(aé& — Bn))
Swo_ n
— (8 et — )| v
Notice that the stable and unstable models describe dif-

ferent physics. To demonstrate this fact, let us make the field
redefinition

(74)

§ n
E>+t—, n—>+t—
Vlal V1Bl
in the action (70). Substituting (75) into (70), we get the
standard action of theory describing the minimal coupling of
massive and massless vector fields with the Dirac field

(75)

8 The second-order system remains equivalent to the fourth-order one
once the interaction is included following the pattern (30). If the inter-
acting second-order system is not factorizable in the sense of (30), it
can be inequivalent to any fourth-order system.
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1 o
r_ 1 v
N 4/dx{|a|(F§);w(FE)

B
T8l
—4y (iy“(au - e(i%'\/m ¥ %Mn),»—m) w} :

(76)

[Fpn(F)™ = 22", |

The parameters «, B define the intensity of this coupling.
Notice that, by construction, any model (76) with nonzero
o, B remains equivalent to the Podolsky theory interacting
with Dirac field. For this reason, any theory of massive
and massless vector fields minimally interacting with spinor
field has an equivalent description in terms of the interacting
Podolsky theory.

It is well known that in the theory of the form (76), two
fermions interact by means of massless “photons” produc-
ing the Coulomb force and massive “photons” producing the
Yukawa force. If the theory is stable, both types of pho-
tons mediate the force of repulsion between two particles
of the same charge and the force of attraction if the parti-
cles have opposite electric charges. In contrast, the unstable
theories (because of the “wrong” sign of the action of one
(or both) photons in (76)) describe the interactions where
one (or both) types of photons mediate the force of attraction
between two particles of the same charge and the force of
repulsion between particle and antiparticle. For example, in
the special case of « = —f = 1, which corresponds to the
inclusion of the minimal interaction ¢* j, into the original
Lagrangian (67), the Coulomb and Yukawa contributions to
the interaction energy are equal by intensity but must be dif-
ferent by sign. This fact was first noticed by Podolsky in [4]
and it turned out that this sign cannot be controlled within
the Lagrangian formalism. It was long believed that the phe-
nomenon of the subtraction of two forces is the strong side
of the theory, because it allows one to improve the short-
distance behavior of Green’s functions. Now we see that
the minimal interaction of Podolsky theory with the Dirac
field is incompatible with the stability condition. The stable
interactions with «, 8 > 0 correspond to non-minimal and
non-Lagrangian interaction vertices in the Podolsky theory.
Below, we explain that the stability of the theory can be con-
trolled immediately in terms of fourth-order equations with
any «, 8 even though they are not necessarily Lagrangian.

In the ¢-representation, which corresponds to the original
fourth-order formalism, the equations of the nonlinear theory
(71) and (72) read

1 .
(Ty)u = (_2D " 1) 3" (Fp)pv — ju =0,
mp
) o+
TJ = {l)fﬂ <3u —eap, — em—ZIBBV(Ffb)VM) —m}
p
x Y =0,

14 (77)
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p

Ty =7 {i)/“ <—<a_u — eagy, — e“n;ﬂa“(@)w) —m}

e

The equations (77) are invariant under the usual gauge trans-
formations (69) and (73).

In the ¢-representation the energy-momentum tensor (74)
takes the form

O (p, ¥, )

4
= a4m4’8 [85(DF¢)pU OF)pe — 4(DF¢)W) (DF¢)Up]
p

o
tos [81(Fp)?° (OFp) po — 2(Fp)"* (O Fp)up
P

—2(Fp)up(@Fp)"*]
B

5 (205 (Fp)™" 7 (Fy)ow —8%,0, (Fp)*" 07 (Fy)or]
p

1
+ Z(Sf)L(F(b)pU(F(b)pa — (Fp)"*(Fp)vp

i~ — —
+Zw [y“( 9y +ieby)+yu(3H +ieb”)

— (5 —ieby) = (87 = ieb)] v, 78)
where
a+p,,
by = agy + ——0"(Fy)uu-
"y

In the limit of free Lagrangian theory (¢ = —f = 1, ¢ =
0) this conserved tensor reduces to the standard energy-
momentum tensor of the Podolsky theory [4], as one could
expect.

The tensor (78) is conserved,

0.0", = (Q¢) (Tp)u + Ty (Qy)v + (@ Ty, (79)

and the corresponding characteristic reads’

Qv = ((Qp), (Qy)v. (Q)y) = (—dyb*, =0, 9, =0, 7).
(80)

The Lagrange anchor (6.10) for factorizable systems is con-
structed by the general recipe (9.2). Following this pattern,
we arrive at the Lagrange anchor V, whose action on the
general characteristic Q reads

V() = (V0. V(0. Vi (Q))

([ G =)o

9 This equality is understood modulo equivalence. The Lagrange
anchor maps equivalent characteristics to equivalent symmetries. See
for details Appendix B and [47,53].

1 (@+p)7
2

msy ofp

X [elﬁy“leJreQwV“l/f], Qy, le)- (81)

Substituting (80) into (81), we find the following symmetry
transformation corresponding to the characteristic:

(e, 8.1, 8:9) = " V(0,) = (- &0,
1 (a+8)?

)
my op

+

"3, (Ty)", —£" ), —a”avl/?). (82)

This means that the Lagrange anchor connects the conser-
vation of the tensor (78) with translation invariance of the
fourth-order equations (77). Once «, B are positive, the tensor
satisfies the condition @00 > 0, and the theory is stable. The
corresponding positive, conserved, non-canonical energy-
momentum tensor is connected to the translation invariance
by the non-canonical Lagrange anchor (81).

If the fourth-order equations (77) were quantized with the
corresponding Lagrange anchor with > 0, 8 > 0 along the
lines of the previous section, we would arrive at the stable
quantum theory precisely corresponding to the quantization
of the second-order Lagrangian (68) and (70). If the fourth-
order theory is considered with unstable vertices correspond-
ing to the opposite signs of « and B in the Lagrange anchor,
the theory will be classically unstable, and its quantization
will correspond to the standard Feynman rules for the Podol-
sky Lagrangian with minimal coupling to the Dirac field. The
quantum instability problem is well known for the couplings
of this type; see e.g. [24-26] and references therein.

In this section, we have studied the stability proceeding
from the fact that the free higher-derivative electrodynamics
by Podolsky has the factorizable structure for the equations.
Therefore, it admits a bounded conserved energy-momentum
tensor, besides the unbounded canonical one. The conserva-
tion of the bounded tensor ensures classical stability irrespec-
tively of the unboundedness of the canonical tensor. Then
we considered a not necessarily minimal inclusion of inter-
actions with the massive spin 1/2 field such that the bounded
tensor, being deformed by the interaction (74), still keeps
conserving. The nonlinear higher-derivative theory is both
classically and quantum mechanically equivalent to the the-
ory of one massless and one massive vector fields both cou-
pled with the Dirac field. Studying these auxiliary second-
order formulations, we showed that the minimal coupling of
Podolsky’s theory breaks stability of the free theory, while
the non-minimal interactions (77) keep the dynamics stable.

5 Conclusion
In this paper we study the higher-derivative dynamics pro-

ceeding from the idea that the stability can be ensured by
the existence of any bounded conserved quantity even if it is
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different from the canonical energy. We have focused at the
special class of factorizable higher-derivative systems whose
equations (31) include the linear term P Q¢ and the nonlin-
earity F(P¢, Q¢). By making use of factorization, we can
construct the conserved quantity that might be positive both
in the linear model and with a variety of interactions F, while
the canonical energy is not positive definite for the system
already in the linear approximation. The conservation of this
positive quantity is by construction connected to the transla-
tion invariance, so it can be viewed as an alternative defini-
tion of energy for the higher-derivative systems. As we have
demonstrated, the classical stability can be promoted to the
quantum level. This class of higher-derivative systems is wide
enough to accommodate the models of interest for physics, as
is seen from the examples of Sect. 4. However, the factoriz-
able structure of the equations seems to us to be rather a tech-
nical tool than a genuine restriction for the dynamics related
to stability. In any case, we see that higher-derivative systems
can have stable classical and quantum dynamics with non-
trivial interactions irrespectively of the fact that the canonical
energy is unbounded.
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Appendix A: The Lagrange anchor

The appendix provides an elementary introduction to the con-
cept of the Lagrange anchor. A more systematic and rigorous
exposition of the subject can be found in [44—47].

In quantum field theory one usually studies path integrals
of the form

(0) = / [d] Olp] e 5191, ©.1)

After normalization, this integral defines the quantum aver-
age of an observable O[g] in the theory with action S[¢].
Here ¢ = {¢'} is a collection of fields on a space-time man-
ifold M. It is believed that evaluating the path integrals for
various observables O, one can extract all physically relevant
information about the quantum dynamics of the model.

The functional W[¢] = e S1el, weighting the contribu-
tion of a particular field configuration ¢ to the quantum aver-
age, is known as the Feynman probability amplitude on the
configuration space of fields. This amplitude can be defined

@ Springer

as the unique (up to a normalization factor) solution to the
Schwinger—Dyson (SD) equation'?

(8—3. + ihi) Wlp] = 0.

R 6.2)

Performing the Fourier transformation from the fields ¢ to
their sources ¢, we can bring (6.2) into a more familiar form,

MY _ B . 9

(F(@—(ﬂi) Zlgl =0, ¢ =ih_—, (6.3)
@ 0Q;

where

23] = f [dg]eh STe1-70) 64)

is the generating functional of the Green functions.

The following observations provide guidelines for the
generalization of the Schwinger—Dyson equation to non-
Lagrangian field theory, and finding alternatives for the
Lagrangian models.

(i) Although the Feynman probability amplitude involves
an action functional, the SD equations (6.2) contain
solely the classical field equations, not the action as
such.

(i1) In the classical limit # — 0, the second term in the
SD equation (6.2) vanishes, and the Feynman probabil-
ity amplitude W turns into the Dirac distribution sup-
ported at the classical solutions to the field equations.
Formally, W[¢]|s—0 ~ 6[9; S] and one can think of the
last expression as a classical probability amplitude.

(iii) Itis quite natural to treat the sources ¢ as the momenta
canonically conjugate to the fields ¢, so that the only
non-vanishing Poisson brackets are {¢’, ¢ i} = 8;. .Then
one can regard the SD operators

S 0
— +ih—, (6.5)
¢! ag!

involved in (6.2), as resulting from the canonical quan-

tization of the first-class constraints
9 Slpl — @i =0 (6.6)
on the phase space of fields and sources. Upon this inter-
pretation, the Feynman probability amplitude describes

a unique physical state of a first-class constrained the-
ory. This state is unique because the “number” of the

10 Here we use the condensed index notation [54], so that the partial
derivatives with respect to fields should be understood as variational
ones and summation over the repeating indices includes integration
over M.
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first-class constraints (6.6) is equal to the “dimension”
of the configuration space of fields. Quantizing the con-
strained system (6.6) in the momentum representation,
one arrives at the SD equation (6.3) for the partition
function Z[¢].

The above interpretation of the SD equations as operator
first-class constraints on a physical wave-function suggests
a direct way to their generalization. Consider a set of field
equations
Ta(p) =0, (6.7)
which do not necessarily follow from the variational princi-
ple. In this case, the (discrete parts of the) superindices a and
i may run over different sets. Proceeding from the heuristic
arguments above, we can take the following ansatz for the
@@-symbols of the Schwinger—Dyson operators:
To = Ta(p) = Vi(@)@i + O(@). (6.8)
The symbols are defined as formal power series in sources ¢
with leading terms being the classical equations of motion.
Requiring the Hamiltonian constraints 7, ~ 0 to be first
class, i.e.,

{7a. T} = Uy Te, Ugyy(9.9) = Cop() + 0(9),  (6.9)
we obtain an infinite set of relations on the expansion coef-
ficients of 7, in the powers of the sources. In particular, ver-
ifying the involution relations (6.9) up to zero order in ¢, we
find

VigiT, — VLo T, = CS,T. (6.10)
for some structure functions C;;, (¢). The value ch (¢) defined
by (6.10) is called the Lagrange anchor.

For variational field equations, 7, = 0;S, one can set
the Lagrange anchor to be the unit matrix V; = 8. This
choice results in the standard Schwinger—Dyson operators
(6.5) obeying the abelian involution relations. For this rea-
son we refer to V! = §! as the canonical Lagrange anchor
of the Lagrangian dynamics. Generally, the Lagrange anchor
may be field dependent and/or noninvertible. If the Lagrange
anchor is invertible (in which case the number of equations
must coincide with the number of fields), then the operator
V=1 plays the role of integrating multiplier in the inverse
problem of calculus of variations. So, the existence of the
invertible Lagrange anchor is equivalent to the existence of
action. The other extreme choice, V = 0, is always possi-
ble and corresponds to the classical probability amplitude
Wlp] ~ §[T,(¢)] supported at the classical solutions. Any
nontrivial Lagrange anchor, be it invertible or not, yields

a fuzzy partition function describing nontrivial quantum
fluctuations in the directions spanned by the vector fields
V, = Vig;.

In the non-Lagrangian case, the constraints (6.8) are not
generally the whole story. The point is that the number of
(independent) field equations may happen to be less than
the number of fields. In this case, the field equations (6.7)
do not specify a unique solution with prescribed boundary
conditions or, stated differently, the system enjoys a gauge
symmetry generated by an on-shell integrable vector distri-
bution, Ry = R’ (¢)d; such that

RLO: T, = UL, Ty, [Ra, Rgl=ULR, + T,UL0; (6.11)

for some structure functions UO’ZQ (p)and U (;’1‘3 (¢). To take the
gauge invariance into account at the quantum level, one has
to impose additional first-class constraints on the fields and
sources. Namely,

Ra = RL(9)@i + 0(¢%) =~ 0. (6.12)
The leading terms of these constraints coincide with the ¢¢-
symbols of the gauge symmetry generators and the higher
orders in ¢ are determined by the requirement of the Hamil-
tonian constraints T; = (7, Re) to be in involution.!! With
all the gauge symmetries included, the constraint surface
T; =~ 0 is proved to be a Lagrangian submanifold in the
phase space of fields and sources and the gauge invariant
probability amplitude is defined as a unique solution to the
generalized SD equation,

T,w =0. (6.13)
The last formula is just the definition of a physical state in the
Dirac quantization method of the constrained dynamics. A
systematic presentation of the generalized SD equation can
be found in Refs. [44-46].

In what follows we will refer to the first-class constraints
T; ~ 0 as the Schwinger—Dyson extension of the original
equations of motion (6.7). Notice that the defining relations
(6.10) for the Lagrange anchor together with the “bound-
ary conditions” (6.8) and (6.12) do not specify a unique SD
extension for a given system of field equations. One part of
the ambiguity is related to the canonical transformations in
the phase space of fields and sources. If the generator G of a
canonical transform is at least quadratic in the sources,

1

G =
2

G (@)gipj + 0(@), (6.14)

1 Fora Lagrangian gauge theory we have 7; = 9;S — ¢; and Ry =
—R,7; = R} ;. In this case, one may omit the “gauge” constraints
R« ~ 0 as they are given by linear combinations of the “dynamical”

constraints 7; ~ 0.
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then the transformed constraints

T/ = el VT, = T, — (Vi + G, TG + 0@,
| (6.15)
Rl = el% IRy = RLG; + 0(F?)

are in involution and start with the same equations of motion
and gauge symmetry generators. Another ambiguity stems
from changing the basis of the constraints:

T,' = Uy + U Re

=T, — (Vi + AT, + B*R)@ + 0@,  (6.16)
Ry, =ULRg + UST, = R, + O(3),
where
Ug=8s = Ad9i + 0@, Ui==Bj +0@).

vl =8 + 0@, Ug = 0@).

Combining (6.15) with (6.16), we see that the Lagrange
anchor is defined modulo the equivalence relation
Vi~ V4 T,AY + BYRL + G 9;T,. (6.18)
The equivalent Lagrange anchors lead to essentially the same

quantum theory. We say that a Lagrange anchor is trivial if
it is equivalent to the zero one.

Appendix B: The generalized Noether theorem
for (non-)Lagrangian theories

The concept of Lagrange anchor allows one not only to quan-
tize a given (non-)Lagrangian theory but also to establish
a correspondence between its symmetries and conservation
laws. Unlike the classical Noether theorem this correspon-
dence is far from being canonical and strongly depend on the
choice of a particular Lagrange anchor. Let us recall some
basic definitions and constructions from [47].

An infinitesimal transformation of fields 8,9’ = £Z'(p)
is called a symmetry of the equations of motion (6.7) if it
preserves the mass shell, that is,
8¢Tulr=0 =0, (7.1)
where ¢ is a constant parameter. Two global symmetries are
considered as equivalent if they differ on-shell by a gauge
symmetry transformation. In particular, adding to the gen-
erator Z' any terms proportional to the equations of motion
and their differential consequences does not change its equiv-
alence class.

A vector field j*(x, ¢', 9,¢',...) on M is called a con-
served current if its divergence vanishes on shell. For the

@ Springer

regular field equations T, (¢, 3¢, 3P ¢, ...9®¢) = 0 this

means the equality

p
Ot = QUM (x, ¢ (x), B9’ (), . )y -

q=0

X Oy, Ta = 0T, (7.2)
The differential operator Q is called the characteristic of the
conserved current j. Two conserved currents j and j' are
said to be equivalent if j* — j'* = 9,i"* (mod T,) for some
bivector i*¥ = —j"*. Clearly, the equivalent conserved cur-
rents lead to the same conserved charge. By definition, two
characteristics Q and Q' are equivalent if they correspond
to equivalent currents. This equivalence allows one to sim-
plify the form of characteristics. One can see that in each
equivalence class of j there is a representative with Q being
a zero-order differential operator Q¢. For such a representa-
tive equation (7.2) can be written as

0T, =/ At
M

Here a is understood as a condensed index, so that the sum on
the leftimplies integration over M. Asis well known there is a
one-to-one correspondence between the equivalence classes
of conserved currents and characteristics [47].

Given a Lagrange anchor, one can assign to any charac-
teristic Q a variational vector field V(Q) = Q¢ ch 9;. The
main observation made in [47] was that V (Q) generates a
symmetry of the field equations (6.7):

(7.3)

Sept = eV'(Q).8: T = Q" V[0 T,

= e(—9; Q" Vi + 0°Cb )T}, (7.4)
with ¢ being an infinitesimal constant parameter. These rela-
tions follow immediately from the definitions (6.10), (7.3),
and the obvious identity 9; (Q*T,) = 0.

Recall that according to Noether’s first theorem [51] any
global symmetry 8¢’ = Q' of the action functional S[¢]
gives rise to the conserved current j with characteristic Q*:
3:5=0 & fajM—Q"ﬁ (1.5)

‘ M s '
Since a symmetry of the action is also a symmetry of the
equations of motion, one can regard the Noether correspon-
dence (7.5) as a particular case of the general relation (7.4),
where V is taken to be the canonical Lagrange anchor V = 1.
From this perspective, the assignment
Q' Z'=Q"V, (7.6)
can be viewed as a natural extension of the first Noether
theorem to the case of non-Lagrangian theories.
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Let us stress that the correspondence (7.6) between the
Lagrange anchors and characteristics on one side and the
symmetries on the other is far from being a bijection: One
and the same symmetry Z can be represented by different
pairs (Q, V). This allows one to assign different conserved
currents to a given symmetry by making use of different
Lagrange anchors. In particular, a Lagrangian system may
have several conserved currents associated with time trans-
lation if one admits non-canonical Lagrange anchors. In this
paper, we use this fact to construct a positive definite energy
for some high-derivative theories.

Appendix C: Lagrange anchors for linear systems

Here we will illustrate the general notion of a Lagrange
anchor by the example of linear systems of partial differ-
ential equations with constant coefficients. These have the
form
T()¢ =0, 8.1
where T = T'(9) is a matrix differential operator and ¢ is the
unknown multi-component function on M. For simplicity we
will assume that the matrix 7 is square, so that the number of
equations coincides with the number of fields ¢. The Klein—
Gordon, Maxwell, and Dirac equations are all of this type. In
this class of equations, 7' (9) is often called the wave operator.
The necessary and sufficient condition for (8.1) to come from
the least action principle is the formal self-adjointness of the
wave operator, i.e.,
T =T, (8.2)
where T*(9) = T'(=0).

Given a system of free field equations (8.1), it is quite natu-
ral to look for the Lagrange anchors being field-independent
differential operators V = V (9) such that they satisfy the
relation (6.10). Then the Schwinger—Dyson extension (6.8)
of the field equations (8.1) is given by
T(d)¢ + V(d)¢ ~ 0. (8.3)
As was explained in Appendix A, the last expression should
be understood as a set of first-class constraints on the phase
space of fields and sources. Linearity in the phase-space vari-
ables implies that these constraints are of the first class iff
they pairwise commute. Then the defining condition for the
Lagrange anchor (6.10) takes the simple form

TV = V*T* . (8.4)

If both the Lagrange anchor and the wave operator are (anti-
)self-adjoint, T* = +£T and V* = £V, then (8.4) reduces
to the commutativity condition
[T,V]=0. (8.5)
We see that the problem of finding the Lagrange anchors for
a system of free field equations (8.1) reduces to the issue of
finding the matrix V (9) that commutes with the given matrix
T (0) of the wave operator. As the entries of both matrices
are polynomials in commuting s, it is essentially a prob-
lem of linear algebra over the ring polynomials. This prob-
lem admits, in principle, a systematic solution by means of
appropriate algebraic techniques [55], most of which exploit
the idea of Grobner’s bases. Particular solutions of physical
interest can also be found from more elementary consider-
ations.'? In relativistic field theory, for example, the gen-
eral structure of the Lagrange anchor is strongly constrained
by symmetry requirements, so that one can try some natural
Lorentz-invariant ansatz for V (). If the matrix operator T is
(anti-)self-adjoint and diagonal, one can then always choose
V to be an arbitrary operator of the same type, because the
diagonal matrix differential operators with constant coeffi-
cients obviously commute.

Another typical situation when one can easily construct a
particular solutions to (8.4) is a factorizable wave operator. In
that case T = PQ, where P and Q are commuting, formally
self-adjoint operators. Then we can choose
V=pQ+0oP. (8.6)
Condition (8.5) is obviously satisfied for any constants p and
o and we get a 2-parameter family of the Lagrange anchors.
A particular example of this construction is given by the Pais—
Uhlenbeck oscillator (3), where the linear combination (8.6)
takes the form

1% p <d2 + 2>+ 7 (d2 + 2)
=—|—=+4ow —— | tow).
a)% — w% dr? 2 a)% — a)% dr? !

8.7)

In this case, not only do the operators P and Q provide a
multiplicative decomposition of the wave operator (3), but
they also define an additive decomposition of the canonical
Lagrange anchor, P + Q = 1.

12 From the viewpoint of algebra, the problem of identifying the local
gauge symmetries for a given system of free field equations is similar to
the problem finding the Lagrange anchor for the system. The difference
is that the gauge generators R(d) span the kernel of the matrix 7'(9),
while the anchor V (9) satisfies (8.5). The general algebraic techniques
for solving the equations 7'(d) R(d) = 0 can be found in Section 4 of
Ref. [56]. Here, we do not develop similar techniques for the anchor,
though it could be done along the same lines.
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In a general way, the higher the order of differential equa-
tions, the greater number of inequivalent Lagrange anchors
they admit. Let us illustrate this thesis by an ordinary differ-
ential equation of the form

d2n d2(n—1)
W+a1—+~-~+an (p:().

dr2(m=1
Once the wave operator is formally self-adjoint, the equa-
tion is Lagrangian. From the above discussion it appears
that any differential operator V = V* with constant coef-
ficients can serve as a Lagrange anchor for (8.8). Most of
the Lagrange anchors are equivalent. Indeed, due to the third
term'? in the equivalence relation (6.18) one can remove from
V all the derivatives of order > 2n. The equivalence classes
of Lagrange anchors (with constant coefficients) are thus
described by the n-parameter family of differential operators
q2(m—0 q2(n-2)

V=u dr2(n—1D) +u dr2(n—2)

(8.8)

++Un

For n = 1 (the case of the second-order Lagrangian equa-
tions) the space of Lagrange anchors is one-dimensional
and is generated by the canonical Lagrange anchor. In case
n = 2, we have a fourth-order differential equation and a
2-parameter set of the Lagrange anchors generated by the
canonical Lagrange anchor V. = 1 and the operator of the
second derivative d?/d¢2. For the Pais—Uhlenbeck oscillator
this family is represented, in a different basis, by equation
(8.7).

Appendix D: Lagrange anchor for nonlinear factorizable
systems

Here we derive the Lagrange anchor for equations (31) using
the formalism of Schwinger—Dyson constraints described in
Appendix A.

The canonical Lagrange anchor for the Lagrangian theory
(34) gives the following SD constraints on the phase space
of the fields and sources:

1-
PS—U/(af—ﬂn)—aé =0,

1
Qn —U'(a& — ) + Eﬁ =0.

In the ¢-representation the corresponding SD constraints
read

POy - (0 47)d
a“ B
2
|:(OlQ BP)¢ + (e +ﬂﬂ) ¢i| 0. ©.1)

13 Since the equation we consider is not gauge invariant and the anchors
are field independent, the first two terms in (6.18) appear to be irrelevant.
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Let us show that these constraints are in abelian involution.
To this end, we make a linear canonical transformation from
(¢, ¢) to the new variables

2
o= @Q— pPyp+ CTPS +/f) é.

ERVAY3
0177

Since P and Q are Hermitian and commute, one can easily
find that

{p(x), p(x"} =0,
{p(x), p(x")} = 0.

In terms of the new variables the SD constraints (9.1) take
the canonical form

¢ =-PQ¢p+ <—
o

{P(0), p(x)} = 8(x — x",

Ulp)+¢=0

and the abelian involution is obvious. The inverse canonical
transformation reads

e 1 (@ +p)?_
¢—(aQ‘E7’)¢‘—aﬁ
¢ =Py + (@Q — BP)§.

The SD constraint (9.1) involves the following Lagrange
anchor:

__Q_ L et py

—U" P
/3 P (Q¢ — fPP),

9.2)

where the action of the matrix differential operator U” is
defined by

/
_ Ulp) _
U"(@)¢ = / dx ¢ (x).
Sp(x)
In the case U = 0, the expression (9.2) reduces to the

Lagrange anchor (8.6) that has been found in Appendix C.
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