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Abstract—Quantum simulations basically rely on two kinetic
theories which account for the coherent transport at different
levels of approximation. These theories have complementary
properties with respect to the ability to account for de-coherence
processes, and become computationally expensive in describing
mixed mode transport, where both, coherent and de-coherent
processes must be taken into account. We consider an ap-
proach, where the coherent information, as provided by the non-
equilibrium Green’s function, is used in a kind of Wigner equa-
tion for the scattering induced correction to the coherent Wigner
function. Here, we address the opportunity to approximate the
equation by taking the classical limit in the Wigner potential
term.

I. INTRODUCTION

The nanometer and femtosecond scales of operation of
modern devices give rise to a number of phenomena which
are beyond purely classical description. These phenomena are
classified in the International Technology Road-map for Semi-
conductors (ITRS, www.itrs.net) according to their importance
to the performance of next generation devices. It is recognized
that ’... computationally efficient quantum based simulators’
are of utmost interest. Quantum models capable of describing
mixed mode transport, where purely coherent phenomena
such as quantization and tunneling are considered along with
phase breaking processes such as interactions with phonons,
are especially relevant. The rising computational requirements
resulting from the increasing complexity due to the mixed
mode phenomena are a major concern for the development and
deployment of these models. The harmony between theoretical
and numerical aspects of the classical Boltzmann model is no
longer among the characteristics of the quantum mechanical
counterpart.

The two kinetic theories which are the foundations of
quantum simulations will be sketched in the following. We
first consider coherent processes. The non-equilibrium Green’s
function (NEGF) approach offers the most comprehensive,
self-consistent way to account for correlations in space and
time. However, because of numerical issues the applicability
is restricted to stationary structures, basically in the ballistic
limit [1]. The computational burden can be reduced by work-
ing in a mode space, obtained by separation of the problem
into longitudinal and transverse directions. Furthermore, if
the transverse potential profile along the transport direction
remains uniform, the modes in these directions can be de-
coupled so that the transport becomes quasi-multidimensional.

However, this is not the case for devices with a squeezed
channel or with abruptly flared out source/drain contacts which
require to consider two- and three-dimensional effects [2].

One level of detail more accurate are the density matrix
and the Wigner function, which are linked by the unitary
Weyl-Wigner transform and which are obtained by averaging
over the variable corresponding to the time correlations. The
Wigner function offers many advantages due to its similarity
with the classical distribution function. It has been succes-
sively applied to quasi-two-dimensional simulations [3]. An
extension to a general two-dimensional transport model has
already been sketched currently underway [4]. Moreover the
case of transient transport is numerically admissible.

De-coherent processes destroy the correlations by breaking
the spatial and temporal (related to the energy) phases [5].
In general it is a matter of particle energy which kind of
correlations are more affected and thus can be neglected.
For slow particles the evolution remains non-Markovian in
time, while fast particles cover larger distances before feeling
the de-coherent processes. If the latter are powerful enough,
they destroy both types of correlations making the transport
classical. As has been demonstrated [6], a gradual increase
of the phonon scattering rates can almost fully destroy the
coherence of the resonant-tunneling state of such a typically
quantum device as a resonant tunneling diode (RTD).

Phonon interaction has been included in the NEGF for-
malism in a quasi-two-dimensional transport description [7].
It considerably increases the complexity of the task. Ap-
proximations are commonly needed, where the phonon self-
energy terms are diagonal in the coordinate representation.
This is well justified for deformation potential interaction, but
must be adopted for interactions with polar phonons, surface
roughness, and ionized impurities.

Phonon interaction can be easily considered by the Wigner
picture due to the phase-space nature of the formalism. The
Boltzmann scattering model utilized in classical simulations
can be entirely applied in the quantum counterpart. Thus the
Wigner equation accompanied by a Boltzmann description
of the scattering processes becomes relevant with respect to
the gap between purely coherent and scattering-dominated
carrier transport. In the next section we consider the scattering
induced Wigner correction equation (SIWCE).
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II. THE SIWCE

In the case of stationary, coherent carrier transport in a one-
dimensional device, the task is approached by a self-consistent
Schrödinger-Poisson loop. A fully ballistic Green’s function
calculation yields the coherent Wigner function fc

w [8].

ρ(x, x′) = −2i

∫
G<(x, x′, E)

dE

2π
; (1)

fc
w(x, kx) =

1
2π

∫
dse−ikxsρ(x +

s

2
, x − s

2
)

The lesser Green’s function G< depends on the coordi-
nates x, x′ and the energy E. The coherent Wigner func-
tion fc

w(x, kx) is obtained from the density matrix ρ(x1, x2)
with the help of the center-of-mass transformation x =
x1+x2

2 , s = x1 − x2. Furthermore, it is assumed that
under the same boundary conditions, namely the Maxwell-
Boltzmann statistics, fc

w is also a solution of the coherent
Wigner equation:

h̄kx

m

∂

∂kx
fc

w(x, kx) =
∫

dkx
′Vw(x, kx

′ − kx)fc
w(x, k′

x) (2)

where Vw in the operator (Vfw)(x, kx) on the right hand side
is the Wigner potential. Scattering is accounted for by the
Wigner-Boltzmann (WB) equation [9], which differs from (2)
by the Boltzmann operator added to the right hand side.

h̄kx

m

∂

∂x
fw(x,k) = (3)∫

dkx
′Vw(x, kx

′ − kx)fw(x, k′
x,kyz)

+
∫

dk′fw(x,k′)S(k′,k) − fw(x,k)λ(k)

Here S(k,k′) is the scattering rate for a transition from k to
k′ and λ(k) =

∫
dk′S(k.k′) is the total out-scattering rate.

The coherent problem is obtained from (4) by setting the
scattering rate S (and thus λ) to zero. In this case the kyz

dependence remains arbitrary and can be specified via the
boundary conditions. Formally the extrapolation must be such
that fc

w(x, k′
x) is recovered by the integral over kyz . More-

over, we want to cancel the Boltzmann scattering operator
at the boundaries, where standard equilibrium conditions are
assumed. Hence, a Maxwell-Boltzmann distribution fMB(k′

yz)
is assumed in the yz directions. This allows to uniquely
augment (2) to four dimensions by introducing

fc
w(x,k′) = fc

w(x, k′
x)

h̄2

2πmkT
e−h̄2(k′2

y+k′2
z)/2mkT

where the factor is the Maxwell-Boltzmann distribution
fMB(k′

yz) in yz directions. Finally, we introduce the correc-
tion to the homogeneous Wigner function

fΔ
w (x, kx,kyz) = fw(x,k) − fc

w(x,k)

The equation for fΔ
w is obtained by multiplying (2) by the

above factor and subtracting from the WB counterpart.

h̄kx

m

∂

∂x
fΔ
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+
∫

dk′fΔ
w (x,k′)S(k′,k) − fΔ

w (x,k)λ(k)
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∫

dk′fc
w(x,k′)S(k′,k) − fc
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The SIWCE (4) resembles the WB equation with an additional
term fΔ0

w = Bfc
w, which is known, as fc

w can be obtained
by Green’s functions calculations. The boundary conditions
cancel so that an initial condition problem is obtained with
an evolution directed from in the device to the boundaries.
Furthermore, by definition fΔ

w is expected to be small, if the
magnitude of the Boltzmann operator is small compared to
the Wigner potential counterpart. Relevant physical conditions,
where fΔ0

w is small and give rise to small scattering-induced
corrections of the carrier density in RTDs, have previously
been explored [8]. Here we approximate SIWCE to obtain a
Boltzmann kind of equation.

III. CLASSICAL APPROXIMATION

The obtained equation is approximated by means of the
classical limit.∫

dkx
′Vw(x, kx

′ − kx)fΔ
w (x, k′

x,kyz) = (5)

− eE(x)
h̄

∂fΔ
w (x, kx,kyz)

∂kx

This approximation is valid for slowly varying potentials, so
that the force F (x) = eE(x) can only be a linear function
within the spatial support of fΔ

w . The force gives rise to
Newton’s trajectories

X(t) = x −
∫ 0

t

h̄Kx(τ)
m

dτ (6)

Kx(t) = kx −
∫ 0

t

F (X(τ))
h̄

dτ (7)

initialized by x, kx, 0. In this definition, if t > 0 the trajectory
is called forward, otherwise it is a backward one. A backward
trajectory crosses the boundary of the device at a certain time
tb, so that fΔ

w (X(tb),k(tb)) = 0. The approximated equation
can be transformed with the help of (7)

fΔ
w (x,k) =∫ 0

tb

dt

∫
dk′fΔ

w (X(t),k′)S(k′,k(t))e−
∫ 0

t
λ(k(τ))dτ (8)

+
∫ 0

tb

dt

{∫
dk′fc

w(X(t),k′)S(k′,k(t)

− fc
w(X(t),k(t))λ(k(t))

}
e−

∫ 0
t

λ(k(τ))dτ

into a Fredholm integral equation of the second kind with a
free term given by the last two rows of (8) determined by
fc

w. The solution can be represented as a Neumann series
with terms obtained by iterative application of the kernel to
the free term. The series corresponds to a Boltzmann kind of
evolution process, where the initial condition is given by the



free term. The genuine mixed mode problem posed by the
boundary conditions is transformed into a classical evolution
of the quantum-coherent solution fc

w. The latter, however,
allows negative values and thus cannot be interpreted as an
initial distribution of classical electrons: rather positive and
negative particles initiate the evolution process. In this way the
quantum information remains in (8) by the sign of the evolving
particles. The boundary is still presented by tb, however, it
has a different physical meaning: it only absorbs particles,
since trajectories with evolution time t < tb < 0 do not
contribute to the solution. Figure 1 shows the effect of the
boundaries for an equilibrium state: the histogram of the free-
flight trajectories which originate at a given point and leave
the simulation region increases at the boundaries indicating
that fewer trajectories from these initial points contribute to
the overall result. It is due to the absorbing nature of the
boundaries which accordingly reduce the mean free path of
the trajectories to below one half of the equilibrium value for
the utilized physical model.

In very small devices the carrier dwelling time can be so
small that the probability for multiple scattering events tends
to zero. In such cases the initial condition f0 itself presents
the correction fΔ

w . In all other cases the evaluation of the
initial condition is a necessary step for finding the solution.
The particle approach derived for this purpose is presented
next.
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Fig. 1. Histogram of the trajectories which leave the device and mean free
path for trajectories which end into the device. Equilibrium state is assumed
for fc

w , from each phase space point initiate 100 free flights.

IV. PARTICLE ALGORITHM

The computational task is specified as the calculation of
the value of the two components f0A and f0B of the initial
conditions at the given points (xi, kj

x): f i,j
0A = f0A(xi, kj

x)
and the same for f0B . Particle approaches are suitable for the
calculation of the inner product of two functions: in our case
it is the averaged value IA,B(Ω) of f0A,B in a given domain
Ω of the phase space.

IA,B =
∫

dx

∫
dkxθΩ(x, kx)f0A,B(x, kx)

=
∫

dx

∫
dkx

∫
dky

∫
dkzθΩ(x, kx)f0A,B(x,k)

The domain indicator θΩ(x, kx) is 1, if its arguments belong
to Ω, and 0 otherwise. Then Ω = Ωi,j can be determined
by the phase space area with a small volume Δ = ΔkxΔx
around (xi, kj

x) so that f i,j
0A,B = IA,B(Ωi,j)/Δ. Another

peculiarity is the point wise evaluation of fc
w giving rise to

the approximation:∫
dxt

∫
dkt

xfc
w(xt, kt

x) �
∑
i,j

fc
w(i, j)Δ (9)

We focus on the contribution from the first component
f0A(x, kx), the second component is approached in the same
fashion.

IA =
∫ 0

−∞
dt

∫
dx

∫
dkx

∫
dky

∫
dkz

∫
dk′ (10)

h̄2

2πmkT
e−h̄2(k′2

y+k′2
z)/2mkT fc

w(X(t), k′
x)S(k′,k(t))

e−
∫ 0

t
λ(Kx(τ),·)dτθΩ(x, kx)θD(X(t))

The lower bound of the time integral has been extended to
−∞, since the introduced device domain indicator θD takes
care for its correct value at tb. The backward parametrization
of the trajectories will be changed to forward ones aiming to
achieve a more heuristic picture of the evolution of the real
carriers. Two important properties of the trajectories will be
utilized:

(I) Any phase space point reached by the trajectory at any
given time can be used for initialization, since it obeys
a system of first order differential equations. A full
notation of a trajectory X(t),Kx(t) contains the initial-
ization point: X(t) = X(t;x, kx, 0) = xt, Kx(t) =
Kx(t;x, kx, 0) = kt

x. Consequently, the initialization
can be changed from x, kx, 0 to xt, kt

x, t so that x =
X(0, xt, kt

x, t), kx = Kx(0, xt, kt
x, t).

(II) For stationary transport the absolute clock is replaceable
by a relative one: trajectories are invariant with respect
to a shift of both, initialization and parametrization time.

Applying this procedure to (10), with the help of (9) results
in:

IA(Ωn,m) =
∑
i,j

∞∫
0

dt

∫
dkt

x

∫
dky

∫
dkz

∫
dk′

yzθD(xt
i)

{
h̄2

2πmkT
e−

h̄2(k′2
y+k′2

z)

2mkT

}
fc

w(i, j)Δ
{

S(k′, kt
x, ky, kz)

λ(k′)

}
{

λ(Kt
x(t), ·)e−

∫ t
0 λ(Kt

x(τ),·)dτ
}

λ(k′)
λ(Kt

x(t), ·)θΩn,m(Xt(t),Kt
x(t))

where now k′ denotes (kxj ,k′
yz). This integral has been

augmented in a way that the terms in the curly brackets
represent probability densities. The first bracket is the nor-
malized Gaussian distribution, the well known probabilities
for scattering and free flight can be recognized in the next
two brackets. The following algorithm is obtained:



1) Associate to each node n,m an estimator ξn,m.
2) Loop over i, j nodes corresponding to xt and k′

x integrals,
and initiate l = 1, 2, . . . N trajectories from each node.

3) select the k′
yl, k

′
zl values according to the term in the first

curly brackets, thus accounting for the ky, kz integrals.
4) Select a wave vector according to the term in the second

curly-brackets. Input parameters are k′
xj , k

′
yl, k

′
zl, the par-

ticular value of the after-scattering wave vector is denoted
by k = kt

xl, kyl, kzl.
5) The point xt

i, k
t
xl is used to initialize the trajectory

Kt
xl(t),X

t
l (t) at time t = 0. Then, generate a free-flight

time value tl according to the term in the last curly
brackets.

6) Add to the estimator ξn,m at the particular mesh node
n,m which is nearest to the point Kt

xl(tl),X
t
l (tl) the

weight
wl = fc

w(i, j)Δλ(k′
xj , k

′
yl, k

′
zl)/λ(Kt

xl(tl), kyl, kzl)

7) At the end of the i, j loop divide ξn,m by N .

V. SIMULATION EXAMPLE

The structure of the used RTD device is shown in Figure 2.
The comparison of initial and corrected densities, as shown in
Figure 3, shows that the scattering mechanisms increase the
densities within the device compared to the purely coherent
case. The present approach also revealed another peculiarity
of the approach: a high sensitivity of the computations to even
minor deviations from equilibrium in the contact regions. In
Figure 4 only the middle part of the device is considered so
that the boundary conditions correspond to the wave vector
distributions at 15nm depth of the contacts of the genuine
device. The corrected density at the left contact does not agree
with the original density, which clearly violates the condition
for a vanishing correction in the contacts. This effect has been
observed in previous work [8], and has been associated with
the lack of an accelerating field due to the applied bias in the
initial condition of equation (4). This field is taken into account
in the classical counterpart (8). It reveals that the effect is due
to the need of a high precision – of order of 10−4 – for the
boundary conditions. The physical effect corresponding to this
effect, is that carriers in the contacts need some distance to be
thermalized by the phonons.
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