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The multiplicity distribution is obtained on the assumption that the final boson state in 
the high-energy multiple production is described by a mixed state corresponding to the 
presence of a certain chaotic field Oike thermal fluctuation) around a coherent state. It is 
shown that the multiplicity distribution derived from the model fairly well reproduces recent 
experimental data and gives the KNO scaling in the high-energy limit. 

§ 1. Introduction 

Many authors have presented rather mathematical models or formulas for 
the multiplicity distribution in multiple production processes on the basis of 
purely phenomenological analyses of recent experiments. At the next stage of 
the research work, it seems that we ought to find physical models favourable 
to the production mechanism. In this paper we propose, as one possible trial, 
a classical boson wave excitation model in which the final boson state in multiple 
production processes is described by a mixed state corresponding to the presence 
of a chaotic field around a coherent state. The model gives us a multiplicity 
distribution consistent with experiments, as will be seen later. 

Here we must briefly mention a preliminary work given by one of the pres
ent authors (M.N.) ten years ago.1l His motivation was first to search for a 
suitable representation to describe the final boson state in a compact form, be
cause the large observed dispersion of the multiplicity distribution suggests us 
that no ordinary representation with a definite particle number is a nice candidate 
to describe the final boson state as mentioned above. He thought that bosons 
would be produced through emission of a sort of classical boson wave in the 
high-energy collision just like emission of classical electromagnetic waves, and 
that dynamics governing the multiple production process would be well described 
in terms of the classical boson wave. There was a naive anticipation that the 
wave or field nature of meson would be able to be first recognized in the mul
tiple production phenomena. From this point of view it was also emphasized 
that we can discuss the characteristic nature of the boson wave through the de
pendence of the ratio Dj(n) on (n). As an extreme case in which there is no 
correlation among. bosons, the boson wave state is described by the so-called 
"coherent state "-the simplest form of the classical boson wave excitation 
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776 M. Namiki, I. Ohba and N. Suzuki 

model.1l' 2l As is well known, the coherent state gives us the multiplicity distri
bution of the Poisson type and vanishing correlation parameters f 2 = O,f3 = 0, · · ·. 
In this sense the coherent state may be used as a reference, but it is, of 
course, not consistent with recent experiments showing the presence of nonzero 
correlation parameters. Therefore, our task in this paper is to modify the co
herent state so as to get nonzero correlation parameters along the basic line of 
the classical boson wave excitation model. 

To do this we must first remark that the coherent state is directly connected 
to a c-number source relevant to the boson field. In fact, the coherent state is 
the eigenstate of the boson annihilation operator belonging to its eigenvalue 
which is proportional to a Fourier component of the c-number source function. 
Since the c-number source function is to be regarded as an approximation of the 
original source operator corresponding to its systematic or c.oarse-grained varia
tion, we can proceed to the next step of approximation by taking acco'unt of 
derivations of the source operator from the c-number source function. As an 
extreme approximation we may replace such deviations with a c-number random 
source function. The c-number random source function ought to describe· thermal 
fluctuations of the hot matter produced by high-energy collision. Thus we are 
led to the classical boson wave excitation model in which the final boson state 
is described by a mixed state corresponding to the presence of a chaotic field 
around a coherent state. A general theory along this line of thought has ali-eady 
been formulated for electromagnetic waves in the LASER problem.3l 

. I In § 2 we give general formulas for the multiplicity distribution function and 
other quantities in the one-mode case on the basis of the present model. In § 3 
we introduce a phenomenological assumption about free parameters on the basis 
of recent experiments and show the KNO scaling in the high energy limit. Sec
tion 4 is devoted to a many-mode case and a comparison with experiment. Con
cluding remarks are given in § 5. 

§ 2. General formulas· in the one-mode case 

For a while we restrict ourselves to a case in which one kind of bosons 
m one mode are produced in multiple production processes. Extension to a many
mode case is straightforward as will be seen later. 

If there is no correlation among produced bosons, the final boson state IS 

described by the coherent state :1l· 2l 

Ia) = exp (aat -a* a) IO) 

_ ( 1 2) oo an -exp --lal I; 1--ln), 
2 n~o v n! 

(1) 

where a and at are, respectively, annihilation and creation operators of the mode 
concerned and a stands for the eigenvalue of a -we have ala)=ala). Here. 

D
ow

nloaded from
 https://academ

ic.oup.com
/ptp/article/53/3/775/1828113 by U

.S. D
epartm

ent of Justice user on 17 August 2022



Classical Boson Wave Excitation Model and Multiplicity Distribution 777 

J n) is the eigenstate of a boson number belonging to n. The probability of 
finding n bosons in J a) is given by the Poisson distribution 

/a/2n Pc(n,a)=/(n/a)/ 2=-exp(-/a/2), (2) n! 

where /a/ 2 =(n) is. the a'verage multiplicity in /a). 
The mixed state proposed at the end of the preceding section is described 

by the density matrix 

p= Jla)w(a)(a/d 2a, (3) 

where d 2a = d (Re a) d (Im a) and f w (a) d 2a = 1. The multiplicity distribution 
function in the mixed state is given by 

P(n)=(n/p/n)= Jw(a) ~/ 2n exp(-/a/ 2)d2a. 
n! 

(4) 

If p describes the presence of a chaotic field (like thermal fluctuation) around 
a coherent state J (), then we can naturally put 

w(a) =__!_ exp (-_!_ /a-(/ 2 ) 
An A 

(5) 

on the basis of the central limit theorem, where A and ( are free parameters 
to be adjusted later. Substituting (5) into ( 4) we get 

(6) 

where F is the confluent hypergeometric function. The usual generating func
tion Q (J.) is defined by 

00 

Q(J.)= :E (1-J.tP(n) (7) 
n=O 

or 

1 [ rr J P(n)=(-1t- -Q(A) . 
n! a).n _l~l 

(8) 

Equation (7) gives 

FCk)·· (n(n-1)···(n-k+1))=(-1f[ 0kJcQ(A)J . 
a). •~o 

(9) 

Putting ( 4) and (5) into (7), we get 

Q(J.) = Jexp (-J./a/~w(a)d2a= 1 exp (- J./(/ 2 
), (10) 

l+J.A 1+J.A 
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which yields 

F<1>=ft=(n)= I(I 2 +A, 

F<2> =<n(n-1) )= 1(1'+ 4AI(I 2 +2A2, 

=k! AkLk ( -~~} 

where Lk denotes the normalized Laguerre polynomial defined by 

L ( ) 1 :c dk ( k -:c) 
k x =-e ~- xe . 

k! dxk 

(11) 

(12) 

(13)*> 

For the sake of later convenience, it is the best to choose a new set of free 
parameters <n) and 1(1 2 instead of 1(1 2 and A. From (11), (12) and (13) we 
easily obtain a dispersion squared D2 and the second and higher correlation 
parameters } 2, } 8 , • • • as follows: 

D2 =< (n-<n)f)=<n)2 -l(l'+ <n), 

f2=F<2> -f/=<n)2-l(l', 

fs=F<B> -3fJ2-!18 = 2<n)8 -6<n)l(l'+ 41(1 6, 

f, = F<'>- 4fJs-6f/f2-6fl-f14 

= 3<n)'- 30<n)21 (I'+ 20<n)l (1 6 -211 (1 8 

(14) 

(15) 

(16) 

(17) 

Equations (11) and (14) tell us that 1(1 2 incre.ases from D to <n) and D 2 

decreases from <n)2+<n) to <n> for the fixed <n). In one limit l(l 2=<n) and 
V=<n), the mixed state is reduced to a pure coherent state 10 in which we 
have the Poisson distribution again. In the other limit 1(1 2=0 or <n)=A and 
D2 = <n)2 + <n), we have a geometric distribution•> 

(18) 

Therefore, the distribution function (6) smoothly varies between the geometric 
and Poisson distributions, according to a continuous change in I (1 2 at the interval 
(0, <n)). 

§ 3. Phenomenological assumption and KNO scaling 

We cannot determine the dependence of 1(1 2 on energy or <n) without re-

*> Note that k22 and F<'>=:l. 
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Classical Boson Wave Excitation Model and Multiplicity Distribution 779 

sort to further theoretical assumptions. However, we can proceed with our ar
guments on the basis of a phenomenological assumption suggested by an exper
imental fact that R=(n)/D becomes nearly constant and (1-R-2)(n)~1 at 
higher energies. Equation (14) gives 

ICI;=(1-R-2Y/.2<n>(1+ 1 )1/2 
· (1-R-2) (n) 

:::::: (1-R-2Yf2(n) + l_ (1-R-2Yf2. 
2 

Thus, we can safely assume that 

and correspondingly, from (11), 

A=p(n)-q, 

where p and q are constants independent of energy or (n). 
Substituting (20) and (21) into (6), we obtain 

P(n) = (P(n)-q)"' ·exp(- (1-p)(n)+qJ 
(1+p(n)-q)"'+1 p(n)-q , 

xf;Cn+k)!.{ (1-p)(n)+q } 
Tc=o n!(k!Y (p(n)-q) (1+p(n)-q) · 

If we take the limit n and (n)-HXJ for fixed z=n/(n), then we have 

(n)P(n) ~¢(z), 
n, (n)-+oo 

where 

(19) 

(20) 

(21) 

(22) 

(23) 

Here ! 0 is the modified Bessel function. It may be useful to write down the 
following approximation formulas: 

1/JCz):::::: ~ {1+ (1~P)(;)+ ~ (1~Pf(;r} ·exp( -(1jp+ ;)) (24) 

for ((1-p)/P) (z/P) ~1 and 

1 { 1 (1-P z ) - 1
/
2 9 (1-P z ) - 1

} , (Jz JI=-) 2) ¢(z) ::::::p 1 + 16 p.p + 512 p.p exp(- p- p p 

(25) 

for ((1-p)/P) (z/P) ~1. From (23) we can easily get the high energy limit 
of the k-th order moment as follows: 

(26) 
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780 M. Namiki, I. Ohba and N. Suzuki 

Equations (22), (23) and (24) show that our distribution function satisfies the 
KNO scaling. It is also to be noted that all quantities in the high-energy limit 
do not depend on q but only on p. 

§ 4. Many-mode case and comparison with experiment 

Extension to the many-mode case is quite straightforward as was shown by 
Lachs in the LASER problem. He proved that a generating function Q (A.) can 
be obtained from (10) by replacement 

J(J2~t'G"tt, 

A~Tr('G"c.Jl). 

(27) 

(28) 

Here t is the row vector with component amplitude (i in the i-th mode. '6"' and 
c.Jl stand for the matrices defined by Lachs :8> The former has a matrix element 
'6£ 1 representing the phase correlation between the i-th and j-th modes and the 
latter characterizes the fluctuation of the amplitude around t. Even in the many
mode case, therefore, we keep just the same generating fu!lction Q (A) as in the 
one-mode case, as far as we are concerned with its dependence on A. and free 
parameters (corresponding to J(J 2 and A). Thus, we can use the very formulas 
for P(n) ,jk, Ck and others obtained in the previous sections. It is, however, 
to be noted that we must introduce a little modification {including additional 
parameters) into the theory given by Lachs, because his theory contains a certain 

DATA 50 GeV/c 
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Fig. 1. Calculated curve of KNO scaling function 
cP(z) with p=O.l38. Experimental data taken 
from Ref. 5). 

condition not directly applicable to 
our problem. A detailed discussion 
will be reported in a forthcoming 
paper, together with the momentum 
distribution and other properties. 

Here let us compare our theoret
ical predictions with experiments, by 
identifying P(n) with the multiplicity 
distribution function of charged par
ticles. The best fit to recent experi
mental data is given by 

p = 0.138 and q = 0.570 , (29) 

which yields 

R= <n) ~ (p(2-p))-112 =1.973 
D (n)-oo 

(30) 

-consistent with experiments. In 
Fig. 1 ¢ (z) given by (23) is plotted 
together with the experimental data.5> 
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Classical Boson Wave Excitation Model and Multiplicity Distribution 781 

0 

'· 

4 

Fig. 2. Correlation parameters f,,f, and f• vs <nch>, together with experimental data.'> 

Table I. The calculated values of c• together with experimental data.•> 

C' c• c• C' c• C' c• I c• I c•• 
' 

50 data 1.236 1.784 2.89 5.16 9.9 20.5 44.6 102 241 
±0.014 ±0.054 ±0.15 ±0.41 ±1.1 ±2.9 ±7.9 ±22 ±61 <n> =5.32±0.11 theory 1.249 1.821 3.007 5.511 11.06 24.02 56.11 139.9 370.7 

69 data 1.2415 1.806 2.959 5.32 10.32 21.3 46.2 105 245 
±0.0084 ±0.030 ±0.084 ±0.22 ±0.57 ±1.5 ±4.0 ±11 ±30 

<n>=5.888±0.066 theory 1.251 1.831 3.044 5.627 11.41 25.11 59.49 150.7 406.2 
--

102 data 1.249 1.828 3.01 5.43 10.6 21.8 47.3 107 252 
±0.014 ±0.052 ±0.15 ±0.42 ±1.1 ±3.1 ±8.4 ±23 ±64 <n! =6.38±0.12 theory 1.252 1.838 3.068 5.704 11.65 25.84 61.79 158.2 431.0 

205 data 1.258 1.856 3.08 5.60 11.0 22.8 50.1 115 271 
±0.019 ±0.065 ±0.18 ±0.46 ±1.2 ±3.1 ±8.3 ±22 ±61 <n> =7.65±0.16 theory 1.254 1.849 3.110 5.840 12.07 27.16 65.98 171.9 477.4 

303 data 1.245 1.816 2.99 5.43 10.7 22.4 49.6 115 278 
±0.015 ±0.051 ±0.14 ±0.39 ±1.0 '±2.8 ±7.9 ±22 ±63 <n> =8.86±0.15 theory 1.259 1.856 3.134 5.920 12.32 27.96 68.55 180.4 506.5 

high energy limit theory 1.257 1.875 3.211 16.186 113.19 30.80 178.00 212.7 620.6 

Figure 2 shows the correlation parameters j 2,j8 and f 4 together with the experi
mental values.6> The calculated values of Ck are given in Table I together with 
the experimental data.5> In these figures and the table we can see that the 
theoretical predictions given by our model are in agreement with experiments. 

Finally we must pay attention to the fact · 11::'1 2 ~A which is a direct result 
of the choice (29). The fact means that bosons are produced through emission 
of the classical boson wave having a definite amplitude very near to (. Hence, 
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782 M. Namiki, I. Ohba and N. Suzuki 

our anticipation settled at the beginning of this paper has been shown to be 
consistent with experiments. 

§ 5. Concluding remarks 

In this paper we have obtained the multiplicity distribution, the correlation 
parameters and other quantities within the framework of the classical boson wave 
excitation model. The theoretical predictions are shown to be consistent with 
recent experiments. It is repeatedly remarked that there is no essential difference 
between the one-mode formulas and the many-mode ones as. far as we are con
cerned with the dependence of the above quantities on free parameters which 
are to be adjusted to the best fit. The difference should appear in the momentum · 
distribution and the related quantities as the two- or many-particle correlation 
functions, if we introduce a little modification into the one-mode formulas. Fur
ther investigations of the momentum distribution by our model will be required. 

,It is also to be noted that we have discarded the conservation laws of energy, 
momentum and charge in the present calculation. We will discuss them in a 
forthcoming paper. 
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