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Classical conditioning as a nonstationary,
multivariate time series analysis:

A spreadsheet model

e. R. GALLISTEL
University of California, Los Angeles, California

The implementation of the Gallistel (1990) model of classical conditioning on a spreadsheet with
matrix operations is described. The model estimates the Poisson rate of unconditioned stimulus
(US)occurrence in the presence of each conditioned stimulus (eS). The computations embody three
implicit principles: additivity (of the rates predicted by each eS), provisional stationarity (the rate
predicted by a given es has been constant over all the intervals when that es was present), and
predictor minimization (when more than one solution is possible, the model minimizes the number
of ess with a nonzero effect on US rate). The Kolmogorov-Smirnov statistic is used to test for non­
stationarity. There are no free parameters in the learning model itself and only two parameters
in the formally specified decision process, which translates what has been learned into conditioned
responding. The model predicts a wide range of conditioning phenomena, notably: blocking, over­
shadowing, overprediction, predictive sufficiency, inhibitory conditioning, latent inhibition, the in­
variance in the rate of conditioning under scalar transformation of es-us and US-US intervals,
and the effects of partial reinforcement on acquisition and extinction.

Gallistel (1990, in press) describes a model of the clas­

sical conditioning process in which it is assumed that what
the animal learns is the rate of unconditioned stimulus
(US) occurrence to be expected in the presence of a con­
ditioned stimulus (CS). The model predicts many ex­
perimental results that have posed problems for past or
present associative models of conditioning, including:
(1) the effect of partial reinforcement on the rate of ac­
quisition and the rate of extinction (Gibbon, Farrell,
Locurto, Duncan, & Terrace, 1980); (2) the effect of the
duty cycle (or ITIIISI ratio) on the rate of acquisition and
its lack of effect on the rate of extinction (Gibbon, Bal­
dock, Locurto, Gold, & Terrace, 1977); (3) blocking and
overshadowing (Kamin, 1969); (4) the blocking effect of
background conditioning (Rescorla, 1968); (5) the effects
of having the "background" USs signaled by another CS
(Robbins & Rescorla, 1989); (6) inhibitory conditioning
when the CS and US are explicitly unpaired; (7) the
predictive sufficiency results of Wagner, Logan, Haber­
landt, and Price (1968), in which the CS that accounts
for more of the variance in US occurrence is the CS that
gets conditioned; (8) inhibitory conditioning in over­
predictionexperiments (Kremer, 1978); and (9) the nonin­
hibitory retarding effect of a "latent inhibition" training
phase on the rate of subsequent conditioning (Reiss &

Wagner, 1972).
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The model assumes that USs (brief shocks or small food
pellets) are point events. It treats these point events as
if they were generated by processes obeying Poisson sta­
tistics. The following are fundamental assumptions of the

model: (1) It is the rate of US occurrence in the presence
of a CS that is relevant to conditioning, not the probabil­
ity of US occurrence. (2) The effects of different CSs on
the rate of US occurrence are assumed to be additive un­

til the data show that the rate predicted by two CSs act­
ing concurrently is not the sum of the rates predicted when
each CS acts in isolation. (3) The influence of a CS on
the rate of US occurrence is assumed to be stationary un­
til the data show statistically significant deviations from
stationarity. (Experimental extinction is an example of
nonstationarity, because the rate of US occurrence pre­
dicted by the CS prior to extinction training is not the same
as the rate predicted during the extinction phase of train­
ing. The latent inhibition paradigm, in which there is a
"preconditioning" training phase during which CS oc­
currence does not predict US occurrence followed by a
conditioning phase in which it does, is another instance
of nonstationarity.) (4) When the data are ambiguous
about which CS predicts what fraction of the observed

rate of US occurrence, the model gives the solution that
minimizes the number of predictors, the number of CSs
that have a nonzero effect on the rate of US occurrence.
(5) The strength of the conditioned response is a sigmoi­
dal function of the likelihood that the rate of US occur­
rence so far observed in the presence of a given CS is
greater than would have been predicted in its absence.

This paper describes a spreadsheet implementation of
the model. The implementation permits those without
training in algebra to derive from the model the results
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that it predicts for novel training protocols-the predicted

results of experiments not yet performed. The implemen­

tation also permits detailed scrutiny of the intermediate

stages of computation, facilitating an understanding of
why the model predicts what it predicts. The implemen­

tation described here is done in Excel, but it should be

possible to implement it in any spreadsheet program that

supports matrix operations (the calculation of deter­

minants, matrix inversion, and matrix multiplication).

STRUCTURE OF THE SPREADSHEET

The layout of the spreadsheet is shown in schematic

form in Figure 1. It has five sections. Section I contains

the columns into which the training protocol for an ex­

periment is entered. Section 2 contains the accumulation

columns. Here, the model computes the running totals for

the amount of time that each CS and each pairwise com­

bination of CSs has been present and the total number of

US occurrences in the presence of each CS. The compu­

tation of the rates of US occurrence predicted by each CS

depends solely on these temporal and numerical totals.

Section 3 contains the matrix operations and the condition­

checking operations for computing these rates. Section 4
computes the likelihood that a given CS has had a non­

zero effect on the rate of US occurrence, and finally, the

subjective confidence that the animal accords to the hy­

pothesis that a given CS affects the rate of US occurrence.
This confidence determines the strength of the conditioned

response. Section 5 computes the expected and observed

number of USs to be imputed to the influence of each CS

at the time of each event, as well as the Kolmogorov­

Smirnov statistic, which is the difference between the ex­

pected and observed numbers of occurrence normalized

by (divided by) n, the total number of observations. It
also computes a crude approximation to the likelihood that

this normalized deviation is greater than is to be expected

by chance-a crude index of the likelihood that the series
has not been stationary.

Section 1: Training Protocols

The model takes as input the experimental protocols,

which specify the times at which the conditioning events
occur (Figure 2, left three columns). The time at which

In- Accumulation of Observed versus
Expected &

put temporal &
Likelihood of the

numerical totals
Discrepancy

1 2 5

Matrices & condition flags

I3

I4 Probabllilies & Confidence I
Figure 1. Schematic showing the layout of the subsections of the

spreadsheet and their functions.
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Figure 2. A sample of the input columns and the accumulation
columns. The first five trials of a simple conditioning protocol with
a 2-min tone (C2) and a lo-min intertrial interval (CS offset to next
onset). Only the columns for the two CSS (the tone and the
background = CI) are shown. Note that the total time that the two
CSs have heen on together (T1.2) is the same as the total time that
C2 has heen on, because the background (CI) is present when the

tone is on as well as when it is not.

an event occurs is entered in the first column (headed

Event Times). An event is the onset of one or more CSs,

the offset of one or more CSs, or the occurrence of a US.

If events coincide in time-for example, if two CSs come

on at the same time, or if a US occurs at CS offset-only

one time is entered. The four protocol columns to the right

of the event time columns are for up to four CSs (only

two are shown in Figure 2). A I is entered in the column

for a given CS if that CS was present at the time of the

event. If the event was the onset of that CS, a I is en­

tered. If the event was the offset of the CS, a 0 is en­

tered, or, better, the cell is left blank. Excel treats blank

cells as containing Os, so it is not necessary to actually

enter a 0. 1 The protocol is easier to read if one uses blanks

in place of Os. Because of these conventions regarding

the recording of CS presence at the onset and offset tran­

sitions, the occurrence of a CS is often indicated by a sin­

gle I, marking the onset of the CS. This happens when­

ever the next event after the onset of the CS is its
offset-that is, whenever no other events intervene be­

tween the onset and offset of the CS. In entering and read­

ing the protocols, it is important to remember that in such

cases, the CS was present from its onset time (given in

the row marked by the I) up until its offset time (given

in the next row down).

The sixth protocol column is for the US (fourth column

in Figure 2). A I in this column indicates the occurrence

of the US at the indicated event time. Unlike CSs, USs

do not last from the onset time to the offset time indi­

cated in the next row down. USs are point events; their

onsets and offsets coincide.
In the absence of an event time, cells in the Event Time

column should contain the =N/AO formula.i When no

number is entered in a cell containing this formula, the

cell displays UN/A, which indicates to computational cells

elsewhere on the sheet that the sequence of events does

not extend down far enough to fill that cell. This prevents

cells with computational formulas that read event time
cells from reading a blank cell as an event time of O.



342 GALLISTEL

Beforeentering a new protocol, the CS and US columns should be made blank, and the Event Time
column should be filled with the =N(A) formula. This is done with an initialization macro, which
is run before one enters a new experimental protocol.

Section 2: Accumulation Columns
. These columns accumulate durations and numbers of occurrences retroactively from the most

recent event; hence, the higher in the column one looks, the greater the accumulated total (Fig­
ure 2, five columns on the right). The entry at the top of the TCI column gives the accumulated
interval over which CSt has been present since the start of training (or, more precisely, since the
time indicated in the first entry under Event Times); the entry at the top of the T1.2 gives the
accumulated interval over which CSt and CS2 have been simultaneously present; the entry at the
top of the NCI column gives the number of USs that have occurred in the presence of CSt; and
so on. As the protocol lengthens, the totals at the tops of these columns-and all the intervening
subtotals from the lowest (most recent) entry in a column up to the top-increase. The formula
entered in each cell of a single TC column is

=IF(AND(NOT(lSNA($A8)),B7=1),$A8-$A7+H8,H8).

(The $ is the column- or row-freezing symbol in Excel. It forestalls a relational change in the column
or row referred to, when the formula is copied into another column or row.)

The fotmula for the pairwise CS columns (e.g., the column that records the time that CSt and
CS2 have been on together) is

=IF(AND(NOT(ISNA($A8»,AND($B7=I,C7=1»,$A8-$A7+L8,L8).

The formula for the retroactive accumulation of the number of USs that have occurred in the pres­
ence of CSt is

=IF(AND(B6=1,$F7=1),I+R8,R8).

For these formulas to work, the bottommost cell in each accumulation column must contain a 0
rather than the accumulation formula contained in all the cells above it.

The formulas in row 5, the next row but one above the uppermost row of accumulation for­
mulas, contains the current total time for each CS, each pairwise combination of CSs, and each
N. This total is equal to the topmost accumulation in that column (the accumulation in row 7) plus
whatever initial totals have been entered in row 4 of the column. The ability to insert initial totals
for the accumulations enables one to bypass protocol composition altogether. One can often com­
pute from the design of the experiment what these accumulations must be after a given number
of trials. These accumulations determine the state of conditioning of the animal (its conditional
rate estimates and the p values attached to them). If one can easily compute these accumulations
from the design of the experiment and one does not want to follow the course of conditioning,
there is no need to compose the protocol. One simply enters the accumulations in the shaded cells
in row 4.

The ability to enter initial values for the accumulations also enables one to pick up, so to speak,
in the middle of training. One can follow the course of conditioning after previous training (e.g.,
after a phase of latent inhibition training, during which a CS is presented repeatedly without any
US). The learning-relevant results of the previous training are given by the initial values of the
accumulations. The training regime during the period for which initial accumulations are entered
must be stationary; that is, the pattern of cooccurrence ofCSs and the US must be constant throughout
the phase of the experiment from which these initial totals come. Otherwise, the ensuing calcula­
tions are not valid.

Subsequent formulas are rendered more comprehensible by naming the totals-TC 1, TC2, etc.,
for the accumulated duration of CSt, CS2 , etc., and T1.2, T1.3, etc., for the accumulated duration
of the pairwise combinations (the intervals where CSt and CS2 , CSt and CS3 , etc., have been on
simultaneously), and NC1, NC2, etc., for the accumulated numbers of USs that have occurred
in the presence of CSt, CS2 , etc.

Section 3: Matrices, Rate Vectors, and Condition Flags
Figure 3 shows Section 3 of the spreadsheet. The coefficients of the unknowns in the system

of four simultaneous equations that must be solved to obtain the corrected rate estimates are ar­
rayed in the form of a 4x4 square array (matrix) of cells at the upper left. Since the temporal
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Corrected Uncorrected

Rete Rete

Metrlx Vector Vector

1 0.167 0 0 RC1.0 URCI 0.0833

1 1 0 0 RC2.0.5 URC20.5

'NUM' 'NUM' 1 'NUM' DET12083 UAC3 WNW'

'NUM' 'NUM' 'NW' 1 URC4 'NW'

Figure 3. Componenb or Section 3. The 4x4 matrix at the up­
per left has 0 or #NUM! coemclenb In rows 3 and 4 and columns
3 and 4, because in the simple conditioning protocol used in this ex­
ample, there is 110 CS. or CS.; hence, the values or the correspond­
ing coemcienb are either 0 or undefined (#NUM!). The 2 x 2 sub­
matrix is the one whose Inverse Is multiplied times the uncorrected
rate vector < .08,0.5> to yield the corrected rate vector <0, 0.5 > .
DETl2 is the determinant or the 2x2 matrix.

accumulations from which the coefficients are computed have been named-TCI, TC2, TI.2, and

so on-the formulas for the coefficients in this 4 X4 array are as follows (on the spreadsheet, each
temporal ratio in the matrix below is preceded by the obligatory "=", which indicates a computa­
tional formula in Excel)

TI.2 TI.3 TI.4

TI TI TI

TI.2 T2.3 T2.4

T2 T2 T2

TI.3 T2.3 T3.4

T3 T3 T3

TI.4 T2.4 T3.4

T4 T4 T4

The uncorrected rates, which are the inhomogeneous terms in the system of simultaneous equa­
tions, are computed in a column of four cells at the upper right (URCI, URC2, etc., in Figure 3).
Again, since the numerical and temporal accumulations required to compute these uncorrected rate

estimates have been named, the formulas in these cells directly reflect the algebra. The formula
in the first cell is =NCIITCI, in the second, =NC2/TC2, and so on. This column of four cells
is the uncorrected rate vector.

The system of simultaneous equations is solved by inverting the temporal coefficient matrix and

multiplying the uncorrected rate vector by the inverted matrix to obtain the corrected rate vector.
This is accomplished by the array formula

{=IF(DET4x4 <0.001, "indeter" ,MMULT(MINVERSE(H95:K98),S95:S98»}

-which is entered into a column of four cells to the right of the 4 x4 array of cells containing

the coefficients. The first part of this formula checks that the determinant of the matrix (named
DET4x4) is substantially greater than O. Because of rounding errors, the determinant of a matrix
that has no inverse is not necessarily computed as exactly 0, which is why this condition checks
for> .001 rather than >0. If the determinant is essentially 0, the values of the corrected rates
in these four cells are entered as "indeter." Otherwise, the formula enters the results of multiply­
ing (MMULT) the inverse of the coefficient matrix [MINVERSE(H95:K98), where H95:K98 desig­
nates the 4 x4 array of cells containing the coefficients] times the uncorrected rate vector (in cells
S95:S98). The formula is enclosed in braces, as is required for array formulas in Excel.

This is the basic computation underlying the estimation of the rates, but there are many condi­
tions under which the full 4 x 4 matrix will not yield an answer. For example, whenever there are
less than four CSs, one or more of the simple temporal totals (for example, TC3 and TC4) will
be 0, and the coefficients with these totals in their denominators will be undefined (their cells will
display #DIV/O!). Alternatively, the coefficients may all be defined, but the determinant of the
4x4 matrix may be 0, in which case the computation yields no answer. These conditions are de­
tected by statements that raise condition flags and by IF statements embedded in the computational
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formulas, Thus, there is a cell that contains the formula for the determinant of the 4 x4 matrix:
{=MDETER(H95:K98)}. This value is named DET4x4 for transparency of reference in other

formulas that use it.
When the full 4x4 matrix is not the correct matrix to use, the system uses a reduced version

of the matrix, one of the 3 x 3 or 2 x 2 matrices that may be formed from the 4 x 4 matrix by omit­
ting one column and one row or two columns and two rows. For example, if there are only three
CSs, the correct matrix to use may be the 3 x 3 matrix formed by omitting the fourth row and
fourth column of the original 4x4 matrix. It is not necessary to create a new array of cells for
this particular reduced matrix, because the requisite array constitutes a contiguous subsection of
the 4 x 4 array. Thus, the corrected rate vector calculated from this particular reduced matrix is

computed by the following formula entered into a column of three cells farther to the right:

{=IF(DET123 <0.001, "indeter" ,MMULT(MINVERSE(H95:J97),S95:S97»}.

This formula multiplies the uncorrected rate vector for the first three CSs (in cells S95:S97) by
the inverse of the matrix formed by first three rows and first three columns of the original 4 x 4
matrix. Note that this formula first checks that the determinant of the reduced matrix is effectively
greater than O. This requires that there be a cell with the formula for the determinant of the reduced

matrix. The formula in this cell is

{=MDETER(H95:K98)},

and the cell is named DET123 for transparency of reference.
Similar formulas compute the corrected rate vector for the 2 x 2 matrix formed by omitting the

last two rows and last two columns of the 4 x4 matrix, and, of course, its determinant (DET12).

These formulas are in the third of the three pairs of columns that appear to the right of the 4 x 4
matrix under the heading Corrected Rate Vectors.

Down six rows and back to the left edge of Section 3, there is a 3 x 3 matrix, whose columns
are directly headed by TC1, TC3, and TC4. This is the reduced matrix obtained by omitting from
the 4x4 matrix the second row and second column on the implicit assumption that CS2 does not
have predictive power. The rate predictions based on this assumption (the corrected rate vector)
are given to the right of this matrix in rows labeled RC1=, RC3=, and RC4=. The formula for
computing these predicted rates is mutatis mutandis the same as the formulas in the cases already

discussed:

{=IF(DET134 <0.001, "indeter" ,MMULT(MINVERSE(HI01 :1103),SI01 :SI03»}.

In a complete model, there should be a third 3x3 matrix, the 1,2,4 matrix formed by dropping
the third column and row on the assumption that CS3 was irrelevant; but in practice no experiment
has required this matrix, so it has not been put on the sheet. To the right of the 1,3,4 corrected
rate vector is the computation when only CSt and CS2 are presumed relevant. Finally, at the bot­
tom of Section 3 is the matrix when only CSt and CS4 are presumed to have predictive power,
and to its right, the computation of the rates predicted under this assumption.

Flags. The flags are tests for various conditions, the outcome of which determines which matrix
computation is used to predict the rates. FLAG4x4 is computed by

=IF(AND(NOT(lSERR(DET4x4»,DET4x4 > 0.(01), 1,0).

This flag "goes up" (has value = 1) whenever the value of DET4x4 is not an error value and
the value of DET4x4 is greater than .001 (that is, not effectively 0). When FLAG4x4 is up, it

indicates that the full 4 x4 matrix is the correct matrix to use in computing the corrected rates
of US occurrence. FLAG3x3 goes up whenever one of the two 3 x 3 matrices has a nonzero deter­
minant. Its formula is

=IF(OR(DET123 > 0.001 ,DET134 >0.(01), I ,0).

FLAG123 goes up if the solution yielded by the 1,2,3 matrix (the 3 x 3 matrix that drops the

fourth CS) is as good as or better than (has as few nonzero predictors as or fewer nonzero predic­
tors than) the solution yielded by the 1,3,4 matrix (the 3x3 matrix that drops the second CS).
To decide whether one set of solutions is as good as or better than the other, it compares the sums
of the absolute values of the estimated rates. In solutions that use more predictors (more CSs) than
are necessary, the sum of the absolute values of the predicted rates is greater than it is in the solu-
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tions that use the minimum number of predictors required to account for the data. The formula

for FLAG 123 is

=IF(AND(Flag4x4< 1,Flag3X3 >0,ABS123 <=ABS134), 1,0).

The formulas for ABS123 and ABS134 are as follows:

{=IF(ISERR(SUM(ABS(095:097))), 1OOO,SUM(ABS(095:097)))}

-and similarly for all the other absolute value variables. Note that the sum of the absolute values
is set to a very high value (l,ooo, which is much higher than the rates will ever sum to) if the
corrected rate vector whose values are being summed displays error values for its dimension values
(which happens when the corresponding matrix has undefined coefficients or a zero determinant).

FLAGI34 goes up if the 1,3,4 solution is as good as or better than the 1,2,3 solution. FLAGI2

goes up if the 4 X4 and both 3 x 3 matrices have °determinants and the 1,2 solution is as good
as or better than the 1,3 and 1,4 solutions. Its formula is

=IF(AND(Flag4x4< I,Flag3x3< I,ABSI2 <=ABS13,ABSI2

< =ABS14,ISNUMBER(Q95)), 1,0).

Cell Q95 has the value on dimension I of the 1,2 corrected rate vector. Under some now-forgotten
condition, the check to verify that this value is a number proved necessary. FLAG 13 behaves just
as does FLAGI2 (and has a similar formula), except that it is for the 1,3 solution, and similarly

for FLAGl4.

The final set of formulas in Section 3 uses the flags to pick out the best solution. The array formula

{=IF(FLAG4X4 > 0,M95 :M98, " ")},

entered in a four-cell subco1urnn (section of a column), puts the rates calculated by the 4 x4 matrix
in that subcolurnn if FLAG4x4 is up. The formula

{=IF(F1ag123 >0,095:097,"")},

entered in the uppermost three cells in the adjacent subcolumn, fills in the rates calculated from
the 1,2,3 matrix in those cells when those results are as good as or better than the 1,3,4 results,
whereas in the lowermost cell of the subcolumn, the formula

=IF(Flag123 >0,0,"")

fills in a °for the effect of CS4 (the missing CS in the 1,2,3 matrix). The formula

=IF(Flag134 >0,0101," "),

in the uppermost cell, and the array formula

{=IF(Flag134>0,0102:0103,"")},

in the lowermost two cells of the next subco1umn, fill in the rates from the 1,3,4 matrix when
they are as good as or better than the 1,2,3 results, whereas the formula

=IF(Flag134 >0,0,"")

fills in a °for the effect of CS2 • Similar formulas fill in the next subcolumn when the 1,2 solution
is as good as or better than the other two-CS solutions, the next subcolumn when the 1,3 solution
is ... , and the rightmost subcolumn when the 1,4 solution is .. ,

These conditionals establish the rates ascribed to each CS-except for the rate ascribed to the
background (CS.), which is adjusted by the following formula:

=IF(TC1=O,0,IF(AND(TC2=0,TC3=O,TC4=O),NClITC1,IF(MAX(Gl12:Ll12)

<0.000001, 1/TC1 ,MAX(G 112:Ll12)))).

The first conditional, IF (TCI=O), sets the background rate to °when the experiment has not yet
begun-that is, when the animal has not yet been placed in the experimental environment for the
first time. (This avoids unwanted error messages elsewhere.) The second conditional, IF (TC2=O
AND TC3=O AND TC4=O), sets the background rate to the number of USs that have occurred,
divided by the time during which the animal has been in the apparatus in cases in which there
has been no CS other than the apparatus itself (pure background conditioning), because this condi-



346 GALLISTEL

tion yields no matrix with a nonzero determinant. The third conditional, IF MAX(rate for CSt

computed by any matrix) IS EFFECTIVELY 0, assigns one occurrence of the US to the back­

ground in those cases in which the matrix computations impute no USs to the background. This

is done to create an upper limit on the background rate, given the training so far. It is equivalent

to assuming that a US imputable to the background will occur in the next instant. It is necessary

to have an upper limit on the estimated background rate in order to test whether the rates observed

in the presence of the other CSs are higher than would be expected, given the (unknown) back­

ground rate.
Finally, if all the preceding conditionals have failed, the rate assigned to the background is the

rate computed by the matrix computations. This rate will always be the only nonzero entry in the

designated subrow G112:LlI2, which is where the rate-selecting formulas specify the values of

the rate imputed to the background. The same principle-that the rate estimate is the only nonzero

estimate that the selection formulas will have placed in the subrow for a given CS-underlies the

formulas that place whatever answer has emerged from the selection process in the "final answer"

subcolurnn. These formulas all have the following form:

=IF(MIN(Gl13:Ll13) <0,MIN(Gl13:LlI3),MAX(GlI3:Ll13))

-which examines the subrow (G113:Ll13) for both values less than 0 and values greater than O.
It is possible for a rate estimate with a negative sign to emerge from these calculations, and in

fact, rate estimates with negative signs do emerge in the conditions that produce inhibitory condi­

tioning. What a negative rate estimate means is that the CS in question is imputed with the power

to reduce the rate of US occurrence. Obviously, when that rate would otherwise be zero, the effect

of such a CS cannot be observed. It is perfectly possible to observe a negative (reducing) effect

on a positive rate, but it is not possible to observe a negative rate.

Section 4: Probabilities and Confidence

The model assumes that in processing the training experience, the nervous system computes a

value that plays the same role in the decision process leading to a conditioned response that the

computed p value plays in the process of statistical hypothesis testing. From a statistical decision

point of view, the problem confronting the animal is to decide whether the rate of US occurrence

imputed to the joint effects of the background (CSt) and another CS (CSn) is improbably greater

than or less than the rate imputed to the background alone. The probability, p, that the difference

between two independent estimates of rate, Aa and Ab' based on observations of n« and nb occur­
rences during nonoverlapping intervals Ta and Ti; indicates a difference in the values of the under­
lying rate parameters is

!
naTb1p F(2na,2nb) < nbT

a
.

When applied to the present situation, this general formula becomes

p!F(2nCS,2nB ) < AC~:AB I,
where ncs is the number of USs that occurred while the CSn and the background were both present,

nB is the number of USs that occurred when the background alone was present, Xes is the esti­

mated rate of US occurrence due to the influence of CSn , and AB is the estimated rate of US occur­
rence due to the background.

In implementing this calculation in the present context, one has to take into account that AcS

may be negative and that it may be much greater than the effect of the background; hence, the

formula above may yield an F that is negative or that is positive but significantly less than 1. Such

eventualities cannot arise under more conventional circumstances where negative rates cannot ex­

ist. Thus, in applying this procedure one must use the absolute value of Acs. The test is whether

the estimated rate ascribed to the background (which is always positive) plus the absolute value
of the rate ascribed to the CS is greater than the background rate alone-given the number of in­

dependent observations on which the two rate estimates are assumed to be based. The computation
of the F value in this test is implemented by

=IF(ABS(Rate2) < 0.001 ,0.1 ,(ABS(Rate2)+Ratel)/Ratel) ,

and similarly for Rate3 and Rate4. Note that when the rate estimate is effectively 0 (absolute
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value < .(01), the F is arbitrarily given the value 0.1. This, together with the assignment of degrees

of freedom, fixes the p values for the effects of CSs to which no effect on the rate of US occurrence

is imputed.
The degrees of freedom for the denominator are calculated by

=IF(Ratel *(TCI-TC2) <2,2,2*Ratel *(TCI-TC2»,

and for the numerator by

=IF(ABS(Rate2) <0.001 ,2,2*(ABS(Rate2)+Rate1)*TC2).

The formula above is for CS z; the rate and time variables change appropriately in the CSJ and

CS4 formulas. Notice that the degrees of freedom associated with each estimate are computed by

multiplying the rate estimate times the interval over which that estimate is assumed to have been

made. The actual number of USs observed in the assumed interval will often be different, because

other CSs will also have been present. The system must estimate how many of the USs that oc­
curred were due to the (CSn+CSB) combination over the interval when it was present (TCn)­

during some of which other CSs may also have acted-and it must estimate how many were due

to the background alone over the interval when CS n was not present (TC 1-TCn)-during some

of which, again, other CSs may have acted.

To fix a p value for the effects of CSs to which no effects have been imputed, the degrees of

freedom for these CSs are set to 2 by the conditionals in the formulas above. This reflects the

implicit assumption that although no US has so far been observed that could be imputed to that

CS, one such will be observed in the next instant. Without such an assumption, the rate estimate

for such a CS is undefined; hence, one cannot give a likelihood for the hypothesis that the CS

affects the rate of US occurrence. It is essential to assign some likelihood, because the model as­

sumes that the animal's response or lack of response to the CS is based on this likelihood. As al­

ready noted, this assumption is also essential in the computation of a likelihood for any CS when

no effect can be imputed to the background. In such cases, the background rate, which establishes

what is to be expected on the basis of the null hypothesis, is undefined. The assignment of one

occurrence to the background fixes the rate for the background at the highest value consistent with
the observations made thus far (namely, that an interval of length TCI has elapsed without the

occurrence of a US imputable to CSt).

The p values are computed through reference to an external, commercially available (Heizer

Software) worksheet called Statfuns, containing a function called Fapprox, which returns the area

under the F distribution for a given F value and degrees of freedom. The formula for the p value

for the effect of CS z (pval2) is

=Statfuns! Fapprox(Fval2,DeFr2,DeFr1).

The Fval and the DeFr variables change in the formulas for the CSJ and CS4 • The complement

of a p value (pcompl) is I-p. The likelihood ratio for the hypothesis that a CS n has an effect is

p/(l-p) or pval/pcompl.

Confidence. The decision process that translates the likelihood ratio into a conditioned response

to the CS (the confidence function) is assumed to have the characteristics of the conventional deci­

sion process in hypothesis testing statistics. It is assumed to be a sigmoidal function of the likeli­

hood ratio, whose value usually does not rise appreciably above zero until this ratio is fairly high

(e.g., 10:1 to 100:1). Just how high depends on the perceived payoff matrix-that is, on the per­

ceived costs and benefits of true positives (responding when the CS really does have an effect)

versus false positives (responding when it really does not), true negatives (not responding when

it really does not), and false negatives (not responding when it really does). The confidence func­

tion used in the model is a two-parameter Weibull function, implemented by

= 1-2/\ -«alpha*pval2/pcompI2)/\ s).

The alpha parameter plays the role of the critical value in a statistical hypothesis testing procedure.

The smaller the value of alpha, the more conservative the animal is-that is, the higher the likeli­

hood ratio must be before the animal will show any appreciable tendency to respond to the CS.

The s parameter determines what might be called the decisiveness parameter. The higher the value

of s, the steeper the transition from no responding to responding as the p value approaches the
value of alpha.
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CS2 cont.
Event Totals: 3.84 4 A

~~ ~ ~ Din changed

1 3.84 4 0.04 0.00

10 1 3.84 4 0.04 0.00

12 1 2.88 4 0.16 0.00
22 1 2.88 4 0.16 0.00
24 1 1 1.92 3 0.27 0.00
34 1 1.92 3 0.27 0.00

36 1 1 0.96 3 0.39 0.01

46 1 0.96 3 0.39 0.01

48 1 0.00 2 0.50 0.13

8 1 1 0.00 2 0.50 0.13
a 1 0.00 2 0.38 0.01

a 1 0.00 2 0.38 0.01
2 1 0.00 1 0.25 0.00

82 1 0.00 1 0.25 0.00

4 1 0.00 1 0.13 0.00

4 1 1 0.00 1 0.13 0.00

1

Figure 4. Section 5 of the spreadsheet: the expected and observed
cumulative occurrences ascribed to each CS, the nonnalized dis­
crepancy, and the confidence that the nonnalized discrepancy in­
dicates nomtationarity. In this example, four conditioning trial'l have
heen foUowed by four extinction trials.

Section 5: The Test for Stationarity
Figure 4 shows the fifth section, which tests whether the effects of the ess on the rate of US

occurrence have been stationary-that is, whether they have been constant throughout the training.

To test for stationarity, the model computes the retrospectively accumulated expected number of
US occurrences ascribable to a given es and compares this to the retrospectively accumulated num­

bers ofUSs whose occurrence has in fact been ascribed to the es. By retrospectively accumulated
number or intervals, I mean the number or temporal interval accumulated starting from the latest
event and looking backward in time over each earlier event, so that the accumulation grows as

one looks farther back in time.
The retrospectively accumulated number of expected US occurrences for a given es is the

retrospectively accumulated time during which the es has been present, multiplied by the rate
ascribed to the es. The retrospectively accumulated time that eS l has been present is in column G.
Therefore, in the top row (row 7), where the greatest accumulations are, the retrospectively ac­

cumulated number of USs expected from the influence of eS l is given by

=Ratel*G7.

The formula in each row below this has the row number incremented by 1. The formula for the
other ess is the same, except for the appropriate change in the rate variable (Rate2, etc.).

The computation of the retrospectively accumulated total for the number of USs whose occur­
rence was ascribable to a given es (the "observed" number of USs for that eS) is more complex.
The principle is that when a US occurs, credit for its occurrence must be prorated among the ac­

tive, positive ess in proportion to the rate estimates associated with them. An active es is a es
that is present when the US occurs. A positive es is one that has a positive effect on the rate of
US occurrence. Similarly, when a US fails to occur because of the influence of one or more active,
negative ess, the failures to occur (the negative occurrences) must be prorated among the active,
negative ess. A negative es is one that has a negative effect on the rate of US occurrence (reduces
the rate).

Three intermediate quantities are used in this bookkeeping exercise. The first consists of the
accountably missing USs for a given interevent interval. The accountably missing USs are those
whose absence can be explained by the presence of one or more ess to which a negative effect
on rate has been imputed. The top-row (row 7) formula for computing the missing USs is

=(Q8-Q9-V7+V8-(X7- X8 > 0)*(X7- X8)-(Z7- Z8 > 0)

*(Z7-Z8)-(AB7-AB8>0)*(AB7-AB8».
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The quantity Q8 - Q9 - V7 + V8 is the increment in the number of USs (Q8 - Q9) minus the incre­
ment in the number expected because of CSt (V7 - V8). From this, one must further subtract the
increment in the number expected because of CS2 , if CS2 was present over the interevent interval­
that is, if (X7- X8 > 0). (When a conditional is true in Excel, it has numerical value I; when false,
it has numerical value 0.) Similarly, one must subtract the increments expected from CSJ and CS4

if they were present. The negative (or zero) quantity thus arrived at represents the number of ex­
pected USs that are missing from the interevent interval. This quantity (In Cell AL7) then figures

in the conditional formula

=IF(AND(AL7 <-o.I,AN7 < -0.1),AL7,0),

which determines whether the missing USs are accountably missing-that is, missing because of
the influence of a negative CS. If there really is no missing US (in which case, AL7> -0.1), or
if there were no negative CSs present in that interval (in which case AN7> -0.1), then this for­
mula has the value O.

The other two intermediate quantities are the denominators for prorating the positive and nega­
tive US occurrences among the active positive and active negative CSs, respectively. For the posi­
tive CSs, the denominator formula is

=Rate I*$B7+(Rate2 > 0)*Rate2 *$C7+(Rate3 > 0)*Rate3*$D7+(Rate4 > 0)*Rate4*$E7.

Rate I is always positive (because the model assumes one US occurrence ascribable to it, when
none have in fact been observed); hence, it requires no test for positivity. Each of the other rates
must be tested for positivity (by the expressions in parentheses). A rate contributes to the denomi­
nator only if the corresponding CS is present, because $B7, $C7, $D7, and $E7 are positive only
if CSt, CS2 , CSJ , and CS4 are present, respectively. Since Rate I is always at least slightly positive,
and since CSt is always present, this denominator is never O. The formula for this denominator
is in the AM column.

The denominator for prorating among the negative CSs is computed by

=(Rate2 < 0)*Rate2 *$C7+(Rate3 < 0)*Rate3 *$D7+(Rate4 < 0)*Rate4*$E7.

This will be zero when no negative CSs are present, which causes the values of prorating formulas
to be undefined, so this denominator, which is in the AO column, is examined by the following
conditional

=IF(A07 <0,A07,0.01).

This IF statement leaves the denominator as is when it is less than 0, but sets its value to 0.01
when it is 0, to avoid division by 0 in the prorating formulas. This conditional is in the adjacent
AI column, and the value in this column is actually used in the prorating formulas.

The prorating formula for the USs to be credited to CSt is

=IF($B7=0,0,Ratel *($F8-AK7)/AM7+U8).

The cell $F8 contains the increment in the number of USs over the interevent interval. The column
AK7 contains the (negatively signed) number of accountably missing USs; hence ($F8-AK7) is
the number of US occurrences to be prorated. The proportion of this number that is credited to
CSt is determined by the ratio of Rate1 to the denominator (in column AM7), which is the sum
of the rates of the active, positive CSs. The prorating formula for CSt is the simplest because CSt
always has a positive effect on rate. The prorating formula for CS2 , which like all the higher CSs
may have either a positive or a negative effect, must provide for both possibilities. It is

=IF($B7=0,0,(Rate2 > 0)*Rate2*$C7*($F8-AK7)/AM7

+(Rate2<0)*Rate2*$C7*AK7/AN7+W8).

The first half is just as for CSt, except for *$C7, which has the value I if CS2 was present during
the interevent interval and 0 otherwise. (Thus, CS2 gets a share only if it has been present.) The
second half of the formula, beginning with the test (Rate2 <0), prorates the accountably missing
USs among the active negative CSs.

The statistic that tests for stationarity is the Kolmogorov-Smimov statistic, which is the differ­
ence between the cumulative observed and cumulative expected number of occurrences, divided
by the total number of expected occurrences. The statistic is computed by
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=IF(ABS(V$5) >0.01,ABS(U7-V7)/ABS(V$5),0).

The quantity in V$5 is the number of USs expected from the influence of that CS over the entire
training period (including the initial or unprotocoled phase). The quantity (U7 - V7) is the differ­

ence between the cumulative observed and cumulative expected USs. The IF conditional ensures
that the Kolmogorov-Smirnov statistic is 0 when there is less than 1 US expected (from that CS)
over the entire training period. The critical value of the Kolmogorov-Smirnov statistic for the

p < .02 level is given by the formula

=IF(V5 < 2,0.99,IF(V5 < 3,0.9,IF(V5 <4,0.78, 1.35*V5t\-o.474398»).

This is a purely empirical formula that yields critical values approximating those given in the stan­
dard tables of critical values for the Kolmogorov-Smirnov statistic. By comparing the normalized
discrepancy (Din) with this value, one can judge whether the discrepancy approaches statistical

significance. This comparison is done crudely by the formula in the adjacent column headed conf
lambda changed:

=1-50t\-«AC7/$AD$3)t\ 10).

When the value of this expression is very close to or greater than 1, it indicates that the observed
discrepancy is highly unlikely; that is, one can conclude for nonstationarity with some confidence.
The event time at which this value peaks indicates the time at which the rate of US occurrence
for that CS changed. A formula giving the p value as a function of the normalized discrepancy
and the n would be highly desirable in place of this formula, I would appreciate hearing from any­
one who knows a nonrecursive formula for calculating these p values.

DISCUSSION

A striking feature of this model is the absence of parameters, free or otherwise, in the portions
of the model that compute what the animal learns. There are no parameters, because the model
assumes that the animal learns the objective statistical facts of the training situations to which it
is exposed. The only parameters in the model occur in the confidence function, which translates
what has been learned (the rate of US occurrence predicted by a CS and the likelihood that the
CS really has an effect on US rate) into an observable conditioned response. The explicit specifica­

tion of the performance function, which translates what has been learned into a conditioned re­
sponse, is another noteworthy feature of the model.

Among the noteworthy predictions of the model is that, like the model of Gibbon and Balsam
(1981), it predicts the profound effect of the duty cycle on the rate of conditioning. More particu­

larly, it predicts that the rate of conditioning-that is, the number of reinforced trials to reach a
conditioning criterion-will be inversely proportionate to the duty cycle, which it is (Gallistel, in
press; Gibbon et al., 1977). It also predicts that the rate of acquisition under partial reinforcement
will be constant if the normalized strength of responding is plotted as a function of the number
of rewards received (rather than as a function of the number of trials) and that the rate of extinction
will be constant when the normalized strength of responding is plotted as a function of the number
of expected rewards that have been omitted rather than as a function of the number of extinction

trials (Gibbon et al., 1980). The model predicts quantitatively the number of trials to extinction
after both continuous and partial reinforcement (Gallistel, in press).

The model predicts "latent inhibition"; that is, it predicts that repeated occurrences of the CS
alone prior to the conditioning phase in which the US is introduced will retard conditioning. In
the model, this retarding effect is not "inhibitory" in nature; it does not involve the animal's learning

that the CS predicts a reduction in the rate of US occurrence. Thus, the model predicts that the
retardation of conditioning by prior CS exposure will be observed whether the subsequent condi­
tioning phase involves excitatory or inhibitory conditioning, which is what has been found (Reiss
& Wagner, 1972).

The model also predicts blocking and overshadowing (Kamin, 1967, 1969). It predicts that rais­
ing the rate at which USs occur when only the background is present to match the rate of occur­
rence when an intermittent CS (e.g., a tone = CS1 ) is present will block conditioning to the inter­
mittent CS (Rescorla, 1968). It also predicts that signaling the "background" USs with another
CS will eliminate the blocking effect of the "background" USs (Goddard & Jenkins, 1987; Res­
coda, 1984).
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None of the predictions above depends on parametric assumptions. Thus, the model accounts
for more experimental results than do other formalized models of the classical conditioning pro­
cess, while making many fewer ad hoc parametric assumptions.
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NOTES

I. Caution is urged with respect to implementing the model in other

spreadsheets. Some distinguish between empty cells and cells contain­

ing Os.-Editor

2. Some spreadsheets will interpret expressions such as = N/ A() and

=AI +A2 as text rather than formulas. Usually this problem may be

overcome with expressions of the form + N/AO and + A I + A2 (which

will work also in Excel).-Editor


