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The spontaneous breaking of time-translation symmetry in periodically driven quantum systems leads to a

new phase of matter: discrete time crystals (DTC). This phase exhibits collective subharmonic oscillations that

depend upon an interplay of non-equilibrium driving, many-body interactions, and the breakdown of ergodicity.

However, subharmonic responses [1] are also a well-known feature of classical dynamical systems ranging

from predator-prey models [2] to Faraday waves [3] and AC-driven charge density waves [4]. This raises the

question of whether these classical phenomena display the same rigidity characteristic of a quantum DTC. In this

work, we explore this question in the context of periodically driven Hamiltonian dynamics coupled to a finite-

temperature bath, which provides both friction and, crucially, noise. Focusing on one-dimensional chains, where

in equilibrium any transition would be forbidden at finite temperature, we provide evidence that the combination

of noise and interactions drives a sharp, first-order dynamical phase transition between a discrete time-translation

invariant phase and an activated classical discrete time crystal (CDTC) in which time-translation symmetry is

broken out to exponentially-long time scales. Power-law correlations are present along a first-order line which

terminates at a critical point. We analyze the transition by mapping it to the locked-to-sliding transition of a DC-

driven charge density wave. Our work points to a classical limit for quantum time crystals, and raises several

intriguing questions concerning the non-equilibrium universality class of the CDTC critical point.

Subharmonic entrainment occurs when the long time dy-

namics of a system manifest a period that is a fixed multiple

of the period of the underlying equations of motion [1, 5–7].

Such subharmonic behavior is ubiquitous in deterministic dy-

namical systems; most notably for example, discrete maps,

e.g. x → f(x), can exhibit stable period-doubled orbits [2, 8–

10]. From the point of view of many-body physics, however,

in order to consider this subharmonic response characteristic

of a phase of matter, the system should satisfy certain prop-

erties which embody the notion of rigidity. First, the system

should have many locally coupled degrees of freedom so that

a notion of spatial dimension and thermodynamic limit can be

defined. Second, the system’s subharmonic response should

be stable to arbitrary perturbations of both the initial state and

the equations of motion, so long as the latter preserve the pe-

riodicity. Models with continuous time-translation invariance

[11], such as the Van der Pol oscillator [12] and the Kuramoto

model [13] are not rigid in this sense, since their frequency re-

sponse deforms continuously with the model parameters, al-

though adding a small periodic drive can easily lock the re-

sponse [1]. Finally, the subharmonic response should have an

infinite autocorrelation time, by analogy to “long-range” order

[14].

Even within the constraints of these criteria, it turns out that

general dynamical systems can still exhibit rigid subharmonic

entrainment. The reason for this is that the dynamics about

fixed points can be strongly damped so that perturbations to

either the state or the dynamics decay rapidly; owing to the

presence of such contractive dynamics, many-body subhar-

monic entrainment has been observed in a multitude of sys-

tems including: Faraday wave instabilities [3], driven charge

density wave materials [4, 15–21] and Josephson junction ar-

rays [22, 23].

The possibility of rigid subharmonic entrainment in the ab-

sence of contractive dynamics is significantly more subtle, but

also particularly relevant [24–30]. Indeed, two broad classes

of systems that fall into this category are time-periodic Hamil-

tonian dynamics in classical systems and unitary dynamics in

quantum systems. Such systems are far more restrictive than

general dynamical maps; Hamiltonian dynamics, for example,

are volume preserving in phase space, thereby explicitly for-

bidding contractive dynamics. In the presence of an external

drive (e.g. which sets the periodicity of the dynamics), energy

conservation is broken and one generically expects the long-

time dynamics of the many-body system to be completely er-

godic [31]. An ergodic system can never exhibit true subhar-

monic rigidity since it is impossible for the system to remem-

ber which of the distinct subharmonic orbits (i.e. related by

time translation symmetry) it began in.

To this end, a tremendous amount of recent excitement has

focused on the discovery that rigid subharmonic entrainment

can occur in a periodically driven (Floquet), unitary, many-

body quantum system. Dubbed Floquet/discrete time crystals

[32–37], this new phase of quantum matter relies crucially on

many-body localization to prevent the drive-induced heating

of the system to infinite temperature. While it is difficult to

experimentally verify the long-time rigidity associated with a

discrete time crystal, promising signatures of such behavior

have been observed in spin systems for time-scales up to hun-

dreds of Floquet cycles [38, 39].

A natural question thus arises: How quantum must a time

crystal truly be? Is quantum mechanics important only inso-

far as it allows for many-body localization to prevent heat-

ing of the system? Or does it play a more fundamental role?
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FIG. 1. Period-doubled dynamics “boil” out of a qj(0) = 0 initial

state. In the main figure we present a stroboscopic view qj(2ntD),
with time n running down vertically (0 < n < 1200) and space

j running horizontally over the nosc = 100 oscillators. The color

scale is qj < 0 red, qj > 0 blue, and qj ∼ 0 white. Note that

we strobe every two driving periods, which is the frequency of the

subharmonic response; hence the displayed phase of the oscillators

varies slowly. In the inset, we show a detail of a smaller region

strobed at the driving frequency, qj(ntD). The period-doubled oscil-

lations qj(ntD) ∝ (−1)n are now manifest. Strikingly, the correla-

tions are anti-ferromagnetic both in time and space, even though the

oscillators are coupled together ferromagnetically (ωD = 1.958, g =
0.065, δ = 0.067, η = 0.003, T = 0.004). In the final state, there is

a finite density of π-domain walls between the two different period-

doubled solutions.

If closed Hamiltonian dynamics cannot generically stabilize

a time crystal due to heating, a natural generalization is to

consider preventing such heating by coupling the system to

a bath, most simply by adding friction. However, by adding

only friction, one essentially reverts back to the damped case

where the existence of rigid subharmonic entrainment is well

known. On the other hand, if the bath is in equilibrium

at finite temperature T , the fluctuation-dissipation theorem

implies that friction must come with noise [40]. In classi-

cal systems, this noise can be captured as a Langevin force,

FB(t) = −ηq̇ + ξ(t), on each coordinate q, where η is the

strength of the friction and ξ(t) is a stochastic force with vari-

ance, 〈ξ(t)ξ(t′)〉 = 2ηTδ(t − t′). Taking η > 0, T = 0
reduces to the damped case where period-doubling is easily

stabilized, while a combination of finite T and driving results

in a truly non-equilibrium situation. The question concern-

ing the existence of “classical discrete time crystals” (CDTC)

can then be posed as follows: In what dimensions can a clas-

sical many-body system, coupled to an equilibrium bath, ex-

hibit rigid subharmonic entrainment for either the closed case

(η = 0), the zero-temperature case (η > 0, T = 0), or the
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FIG. 2. a) Schematic of a one dimensional array of coupled non-

linear pendula. The pendula are coupled via ferromagnetic interac-

tions of strength g, and the system is parametrically driven at fre-

quency ωD. b) Phase diagram of the classical discrete time crystal

as a function of F = 2η
δ

(where δ is the driving amplitude and

η the damping) and the temperature T . At low-T there is a first

order phase transition between the CDTC phase and the non-time-

crystalline phase, while at high-T there is only a crossover. c) In

the 1D CDTC, there is a finite rate of phase slips v between the two

symmetry-breaking solutions. v fits very well to the Arhennius form

v ∼ e−∆/T , indicating the phase slips are activated. d) The phase

transition is diagnosed by measuring the rate of phase slips v be-

tween the two time-translation related period doubled solutions. As

we cross the first order line out of the CDTC, v jumps discontinu-

ously.

finite temperature case (η, T > 0)?

One important remark. More generally, one can also con-

sider coupling to a non-equilibrium bath, which presumably

leads to a larger space of stochastic systems including prob-

abilistic cellular automata [41]. In this more general context,

remarkable results from Gács [42–44] and Toom [45–47] sug-

gest that rigid subharmonic entrainment can arise in all dimen-

sions d > 0 [48].

In this work, we focus on the finite temperature case in one

dimension (1D), which is marginal in a particularly interest-

ing sense: while an equilibrium phase transition is impossible

in 1D, might there nevertheless be a non-equilibrium dynam-

ical phase transition out of a period-doubled CDTC? We find

an affirmative answer, with our main results summarized as

follows: first, we observe a line of first order dynamical phase

transitions between an “activated” period-doubled CDTC and

a symmetry unbroken phase that terminates at a critical point

(Fig. 2). Second, we show that the phase slips associated with

the transition are characterized by a Z index rather than aZ2

index. This implies that the dynamical phase transition we ob-

serve here is unrelated to the putative Ising transition argued

to exist for isolated quantum time crystals [35]. Before diving

into the details, let us emphasize the subtleties which underly

our results.

To begin, let us define the key characteristic of a true

long-range-ordered CDTC; namely, the existence of period-

doubling with an infinitely long auto-correlation time, τ ,
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which is stable to small perturbations of the dynamics.

More precisely, if one considers a model of periodically

driven oscillators with position coordinates qi, the auto-

correlation time, τ , of period doubling can be quantified

as 〈qi(ntD)qi(0)〉 ∝ (−1)ne−ntD/τ , where tD is the pe-

riod of the drive. For low but finite temperatures, we ob-

serve a CDTC that exhibits an activated auto-correlation time,

τ(T ) ∼ e∆eff/T , where ∆eff is an effective activation barrier.

Thus, in 1D the CDTC’s time-crystalline order survives to ex-

ponentially long, but not infinite times (as we will later dis-

cuss, this caveat may be modified in higher dimensions). In

the context of experiments, it would be challenging to distin-

guish this scenario from the existence of a long-range-ordered

CDTC. Despite the activated behavior of the auto-correlation

time in our observed CDTC, we nevertheless find a first order

dynamical phase transition where τ(T ) drops discontinuously

and period doubling is completely destroyed (Fig. 2). We has-

ten to emphasize that such a first order phase transition be-

tween an (activated) 1D period-doubled CDTC and a symme-

try unbroken phase would be impossible in equilibrium [49].

Period doubling in the Frenkel-Kontorova model—For con-

creteness, let us consider a parametrically driven Frenkel-

Kontorova model, which describes an array of coupled, non-

linear pendula (Fig. 2a) [50, 51]:

H =
∑

i

1

2
p2i+[1 + δ cos(ωDt)] (1−cos(qi))+g

∑

〈i,j〉

(qi − qj)
2

2
,

(1)

where qi is the pendulum’s deflection from vertical and pi its

momentum, while δ and ωD are the amplitude and frequency

of the parametric driving (Fig. 2a) [52]. Note that we have

normalized each pendulum’s natural frequency to one. When

ωD ∼ 2 and g = 0 (decoupled), each pendulum is suscep-

tible to a 2:1 parametric resonance, where the dynamics are

period doubled and the pendulum’s position returns only once

every two driving cycles. While this sub-harmonic response

(at ωD/2) is reminiscent of the behavior expected for a CDTC,

the parametric resonance of a single oscillator does not exhibit

the rigidity of a true time crystal; rather, as we shall see, this

sub-harmonic response is destroyed as a smooth crossover for

any amount of noise. Crucially, in the presence of interactions

(|g| > 0), the sub-harmonic response of the collective system

can undergo a sharp transition characteristic of a many-body

phase.

We introduce friction η and finite temperature T through

a Langevin force FB(t) which acts independently on each qi.
The pendula then evolve under a combination of this stochas-

tic Langevin force and the ferromagnetic (g > 0) Frenkel-

Kontorova Hamiltonian:

dqi
dt

= pi (2)

dpi
dt

= −(1 + δ cos(ωDt)) sin(qi)

+ g(qi+1 + qi−1 − 2qi)− ηpi + ξi(t). (3)

θ̃

V
e
ff
(θ̃
)

Region I:  
Period Doubled 

Region II:  
Bistable 

Region III:  
Undoubled 

F = 2η/δ

(a) 

(b) 

(c) 

∼ J0η

u

FIG. 3. a) Equal pseudoenergy contours of the averaged Hamil-

tonian H̄ in the θ̃, J plane. The dashed line indicates the contour

∂θ̃H̄ = 0. b) Effective washboard potential of Eqn. (10). The slope

of the potential arises from the Langevin damping η. c) In region I

(F > 1 or u <
√
1− F 2), the particle slides and there is no period

doubling. In Region III, F < 1, u > 1−F 2, only the locked (period

doubled) phase is stable. In region II, F < 1, u2 < 1−F 2, both the

locked and sliding states are stable, implying bistability.

To probe the resulting dynamics, at time t = 0 we ini-

tialize the oscillators in pi(0) = qi(0) = 0, and integrate

the equations of motion using a second-order Langevin time-

stepper [53]. The stroboscopic dynamics, qi(mtD) (where

tD = 2π/ωD), are depicted in Fig. 1. Strikingly, the uni-

form initial condition gives way to a growing bubble of spatio-

temporal “antiferromagnet” in which qi(mtD) ∝ (−1)i+m;

these spatial anti-ferromagnetic correlations are particularly

surprising, since the oscillators are ferromagnetically coupled.

The existence of a growing bubble would seem to suggest the

presence of two distinct dynamical regimes — time crystalline

and not — despite the finite temperature fluctuations.

Analysis of a single non-linear pendulum—To begin, let us

recall the parametric resonance of a single non-linear pendu-

lum [54]. In the action-angle coordinates of the pendulum,

q ∼
√
2J cos(θ), p ∼

√
2J sin(θ), the Hamiltonian [Eqn. (1)]

reduces to:

H(t) =J − ǫ

2
J2 + δJ cos(ωDt) cos

2(θ) + · · · (4)

where ǫ = 1
8 and higher-order terms in J, δ are neglected [55].

In the un-driven case, ω(J) = ∂JH sets the frequency of os-

cillations, so that the non-linearity is encoded in the J2 term.

Because ǫ > 0, larger amplitude oscillations have lower fre-

quency; however, we can be more general by keeping ǫ as a

parameter and indeed will later explore the ǫ < 0 regime.

Near a period-doubled solution, qi ∝ cos(ωDt/2 + θ̃),
where θ̃ varies slowly. To this end, we transform to the ro-
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tating frame, θ̃ = θ − ωDt/2, wherein Eqn. (4) becomes

H(t) = (1− ωD/2)J − ǫ

2
J2 +

δ

4
J cos(2θ̃)

+
δ

4
J
[

cos(2ωDt+ 2θ̃) + 2 cos(ωDt)
]

. (5)

At leading order in a Floquet-Magnus expansion, the average

Hamiltonian over a driving period is given by:

H̄ =
1

tD

∫ tD

0

H(t)dt (6)

= δ(1 + u)J/4− ǫ

2
J2 +

δ

4
J
(

cos(2θ̃)− 1
)

, (7)

where u = 4(1−ωD/2)/δ is an effective detuning. The static

H̄ will govern the slow dynamics θ̃. While this treatment is

approximate (we neglect the off-resonant oscillatory terms),

for a single pendulum one can in principle apply a convergent

sequence of canonical transformations to bring the Hamilto-

nian to such a static form, a consequence of the KAM-theorem

for small δ [54].

The equal-energy contours of H̄ are illustrated in Fig. 3a.

For ǫ > 0, the landscape is that of an inverted double well

potential with maxima at J̄ = ǫ−1(1 + u) δ4 and θ̃ = 0, π,

which are the two possible phase shifts of the period-doubled

solutions: q(mtD) = ±
√
2J̄(−1)m. Since these solutions oc-

curs at maxima, perturbations about the orbit remain bounded,

oscillating at an effective frequency, ω2
eff = δ2(1 + u)/4.

For weak driving δ, ωeff/ωD is parametrically small, imply-

ing that higher order terms in our Floquet-Magnus expansion

are strongly off resonant, justifying our approach. We note

that period-doubled solutions exist only when J̄ > 0, yield-

ing the period-doubling criteria u > −1. Finally, for ǫ < 0,

the above analysis remains essentially identical except that the

period-doubled solutions occur at the minima of H̄ .

The double-well potential has a phase-shift symmetry, θ̃ →
θ̃+π, which is unrelated to the q → −q symmetry of the orig-

inal Hamiltonian, and is actually a more general consequence

of period doubling: in the rotating frame, θ̃ → θ̃ + π must

remain a symmetry because it corresponds to time translation

symmetry, t → t+ tD [56].

We now come to a crucial point in the analysis. Naively, it

might seem that period doubling is analogous to the breaking

of the internal Ising symmetry generated by θ̃ → θ̃ + π. In

this case, the π-phase slips (in both time and space) between

the two period-doubled solutions would have a Z2 charac-

ter. However, we now show that in the presence of the bath

the π-phase slips in fact have a Z character, implying a natu-

ral “handedness” to the domain walls between the two period

doubled solutions. For this reason the dynamical CDTC phase

transition we observe here is not related to an Ising transition,

and hence is distinct from the transition discussed in the con-

text of the quantum MBL / prethermal time crystal [35, 57].

To demonstrate the Z character of the CDTC’s π-domain

walls in the presence of damping, let us consider the equations

of motion when averaging the Langevin force over one period

[53]:

˙̃
θ = ∂JH̄ (8)

J̇ = −∂θ̃H̄ − ηJ +
√

J̄ξ(t). (9)

In the limit of large detuning relative to the driving (u ≫ 1),

these equation take a particularly simple form (see supple-

mentary information [53] for the general case):

H̄ = −ǫJ̃2

2
+ J̄

[

δ

4
cos(2θ̃) + ηθ̃

]

+ · · · (10)

˙̃
θ = ∂J̃H̄ (11)

˙̃J = −∂θ̃H̄ − ηJ̃ +
√

J̄ξ(t), (12)

where J̃ = J − J̄ and J̄ = ǫ−1u δ
4 (1 + O(u−1)). These

equations describe a negative mass particle with “position” θ̃
and “momentum” J̃ subject to Langevin damping and a wash-

board potential with finite slope J̄η, as shown in Fig. 3(b). We

note that such equations of motion are extremely well stud-

ied in the context of RC-shunted driven Josephson-junctions

[58, 59]. Crucially, because of the bias J̄ηθ̃, a phase slip of

+π is inequivalent to a phase slip of −π (i.e. one rolls down

hill, while the other rolls up hill), thereby leading to “handed”

phase slips that exhibit a Z character. In the supplementary

information [53], we demonstrate that this effect is “real” for

the original driven pendulum.

At zero damping, the barrier height of the washboard po-

tential is J̄δ/2, but as the damping J̄η increases the barrier

height decreases. Thus, to parameterize the damping we con-

sider a dimensionless “force”, F = 2η
δ , defined so that when

F ≥ 1 the stable extrema vanish and the particle slides along

the washboard. In the fully sliding state,
˙̃
θ = δ

4u, which in

the original variables gives θ̇ = 1, e.g. the natural frequency

of the un-driven oscillator [53]. Thus, the “sliding regime” in-

dicates the destruction of period doubling, while the “locked”

regime (
˙̃
θ = 0) is period doubled.

In the absence of noise (T = 0), a standard stability anal-

ysis [7] reveals three distinct dynamical regimes [Fig. 3(c)]:

In Region I only the sliding regime is stable, indicating there

is no period doubling. In Region III only the locked regime

is stable, indicating period-doubling. Finally, Region II is a

bistable regime in which both the locked and sliding states are

stable, and the long time behavior depends on the initial state.

This region will show hysteresis as F is varied.

At any finite temperature T > 0, activated processes cause

a single pendulum to transition between the locked and slid-

ing states. This destroys the bistable Region II, leading to

a smooth (though highly non-linear) crossover between the

locked and sliding regimes as either the force (F ) or temper-

ature (T ) is increased [60]. This crossover in the effective

static model is consistent with our numerical experiments on

the original parametrically driven pendulum [Eqn. 3]. Thus,

for g = 0 (i.e. in 0D) and at finite-T there is no sharp transi-

tion between period-doubled and undoubled dynamics.
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Collective behavior of coupled non-linear pendula—With

the single pendulum analysis behind us, let us now turn

to the collective behavior of the system at finite coupling

strength. We begin by noting that at finite damping and zero-

temperature (η > 0, T = 0), the 1D chain will exhibit sta-

ble many-body period doubling which descends from the sin-

gle oscillator case [61]. For finite temperatures (T > 0),

one might expect the coupled chain to exhibit only a smooth

crossover as F and T are varied, analogous to the 0D case,

since one is tempted to think of a potential transition as a

finite-T equilibrium Ising transition, which cannot exist in

1D. However, the appearance of the effective bias J̄η high-

lights that the system is intrinsically non-equilibrium, so such

constraints need not apply. Indeed, there is evidence that the

1D DC-driven Frenkel-Kontorova model shows a first-order

locked to sliding transition at finite temperature [51, 62, 63].

As before, to analyze the interactions within an effective

static model we average the couplings over one Floquet pe-

riod, H̄g = −g
∑

i

√

JiJi+1 cos(θ̃i − θ̃i+1) [53], leading to

the effective equations of motion:

H̄ =
∑

i

(

−ǫJ̃2
i

2
+ J̄

[

δ

4
cos(2θ̃i) + ηθ̃i

]

(13)

− gJ̄ cos(θ̃i − θ̃i+1)

)

(14)

˙̃
θi = ∂J̃i

H̄ (15)

˙̃Ji = −∂θ̃iH̄ − ηJ̃i +
√

J̄ξi(t), (16)

where we have taken Ji ≈ J̄ + O(1/u). Except for the neg-

ative mass and the finite slope ηθ̃, these equations correspond

to the sine-Gordon representation of the Ising model.

Before exploring the CDTC phase transition in this model,

a few remarks are in order. First, the negative mass explains

why the ferromagnetically coupled pendula displayed anti-

ferromagnetic spatial synchronization in Fig. 1. Because the

period doubled orbit of a single pendulum occurs at a max-

imum of H̄ , the volume of available phase space increases

as the quasi-energy decreases. Interpreting this as a relation

between entropy and energy, the period-doubled solution is

at negative temperature, even though the Langevin bath is at

positive temperature. Thus, the array is entropically driven to-

ward a high quasi-energy state, reversing the expected effect

of the coupling g [64]. Second, while negative temperatures

are familiar in models with finite phase space, the parametric

resonance of a non-linear pendulum provides a novel way to

dynamically generate negative temperatures in a system with

an unbounded phase space. We note that this phenomena is

quite distinct from the dynamically stabilized inverted posi-

tion of a Kapitza pendulum, which remains at a minimum of

the quasi-energy; indeed, ferromagnetically coupled Kapitza

pendula will synchronize ferromagnetically [65] .

CDTC phase transition—While ǫ > 0 provides access to

an intriguing negative temperature regime, from the perspec-

tive of time translation symmetry breaking, the sign of ǫ does

v

High T 

crossover  

period doubled 

no period  
doubling 

Low T 

period doubled 

no period  
doubling 

hysteresis v

T

v

(c) 

v

(d) 

(a) (b) 

crossover  transition 

F

T

F

F = 0.1 F = 0.2

FIG. 4. Rate of phase slips v = 〈 ˙̃θ〉 as a function of the damping F
and temperature T . a) High temperature (T = 7). For low damping

F , v ∼ 0 indicating period doubling, while at large F , v > 0 indi-

cates that a finite rate of π-phase slips destroys true long-range order

in time. There is a smooth crossover between these two regimes, with

no evidence of hysteresis. b) At lower temperatures, (T = 3.7), we

observe a hysteresis loop that closes into a jump discontinuity as we

increase the simulation time. Curves of different color correspond

to simulations of length nstep ∈ (5k, 30k, 300k, 3m) for each value

of F as we sweep up and down. This suggests a first-order non-

equilibrium phase transition. c) Analogously, we can hold F fixed

and vary T . At F = 0.1, v displays a crossover, while at F = 0.2,

d), there is a sharp transition. Repeating this analysis throughout the

F, T plane allows us to trace out a first-order line which terminates,

yielding the phase diagram in Fig. 2(b).

not appear to impact the CDTC. Thus, for the sake of sim-

plicity and to simplify the visual presentation, we will utilize

the following potential: 1
2q

2 + 1
24q

4 (leading to ǫ = − 1
8 and

hence, ferromagnetic spatial synchronization) for the remain-

der of the text.

In the absence of a slope in the washboard potential, the

system is equivalent to an equilibrium 1D Ising model, im-

plying that at finite temperature, there will always be a finite

density ∼ e−geff/T of π-domain walls in space, as well as a

finite rate of π-phase slips ∼ e−∆eff/T in time, where geff,∆eff

are effective quasi-energy barriers. This is the reason why in

one dimension, one expects that the CDTC phase will exhibit

an “activated” autocorrelation time: τ ∼ e∆eff/T . However,

because of the finite slope ηθ̃ in the washboard potential, a

more basic question is whether the period doubling is com-

pletely destroyed by a collective sliding state. Unlike in 0D,

the coupled chain may exhibit a sharp transition between the

locked and sliding states even at finite temperature [62, 63],

implying a non-equilibrium phase transition between an acti-

vated CDTC and a symmetry unbroken state.

To investigate this possibility numerically, we explore the

system’s behavior as a function of both temperature, T , and

the dimensionless “force”, F , associated with the washboard

slope. We fix η = 0.005 so that δ = 2η/F , and for each F
we adjust ωD, g to keep fixed ωeff = 0.1 and g = 1.25δ. This



6

choice ensures that throughout the phase diagram we explore

u ≫ 1, F < 1, so that the oscillators are individually in the

bistable regime (Region II).

A quantitative diagnostic of period doubling is given by the

“velocity” parameter, v = 〈 ˙̃θ〉, where the average is taken over

time, space, and different realizations of the stochastic force.

Period doubling corresponds to the locked state where v = 0,

while v 6= 0 (sliding state) implies a finite rate of phase slips.

Several representative cuts of v(F, T ) in the (F, T )-plane

are depicted in Figure 4, which exhibit two regimes. At high

temperatures (Fig. 4a), v(F, T ) varies smoothly with F and

no transition is observed, similar to the zero dimensional case

of a single pendulum. However, at low temperatures (Fig. 4b),

v(F, T ) displays hysteretic behavior as one sweeps the force.

By increasing the time scale of each sweep (e.g. increasing

the number of driving periods at each F from nsteps = 5×103

to 3 × 106), the hysteresis loop closes into a single-valued

curve that exhibits an apparent jump discontinuity. This sug-

gests that the interactions have transformed the bistable Re-

gion II of the individual pendula into a finite-temperature first

order dynamical phase transition of the coupled chain. As an

additional test, one can fix F to its value near the transition

and slowly vary T , reproducing the same discontinuous jump

(Fig. 4d).

While the jump looks sharp to the eye, it is difficult to nu-

merically locate the transition in this manner, because the time

required to close the hysteresis loop diverges at low temper-

ature. To ameliorate this issue, we study the behavior of a

“dynamical” domain wall (DDW) between the period-doubled

and un-doubled states, since presumably it is the nucleation of

the first such DDW that requires the largest time [66]. Specif-

ically, we initialize the left half of the system to be in the sym-

metry unbroken state with q, p ∼ 0 and the right half of the

system to be in the period doubled CDTC with q, p ∼
√
2J̄

(Fig. 5a). We then time evolve for nsteps = 106 to determine

which state “wins.” In Figure 5(b,c), we fix T = 3.7 and re-

peat this experiment for a very narrow window of F around

the putative transition at Fc. For F < Fc, we observe the

CDTC region expand and “eat” the non-time-crystalline re-

gion, while for F > Fc, we see the opposite behavior. Mean-

while, close to the critical point, Fc, the competition between

the two phases extends for many steps as the location of the

DDW fluctuates, indicating coexistence [67].

To quantify this competition between the two domains, we

measure the average oscillator amplitude, 〈J(t)〉, as the sys-

tem evolves after the quench [Fig. 5(c)]. Since J differs be-

tween the CDTC and symmetry unbroken states, its spatial av-

erage indicates which domain is winning (although other local

observables would serve just as well). Far from Fc, J con-

verges rapidly in time to the value it takes in either the CDTC

(F < Fc) or symmetry unbroken (F > Fc) state, indicating

that one or the other domain has taken over. As F → Fc, the

time required for convergence increases, and we utilize the

long time behavior to accurately determine Fc ≈ 0.201. One

expects that for larger systems, this convergence time scale

t
im

e

(b) 

0.200.19 0.220.21

t
im

e

Classical DTC Symmetry Unbroken 

domain wall 

(a) 

(c) 

T = 3.7 

CDTC Symmetry unbroken 
 

F F > FcF & Fc

F ≈ FcF < Fc
F = 0.19 55 F = 0.2015

F = 0.204 F = 0.2155

FIG. 5. Competition between period doubled and undoubled dynam-

ics near the putative first order transition. By introducing a dynamical

domain wall between the two regimes by hand, a) we circumvent the

exponentially large time scale which leads to hysteresis. Similar to

Fig. 1, in b) we present qj(2ntD) for nosc = 103 oscillators. We

strobe every two driving periods to avoid plotting the period-doubled

oscillations. Thus the red and blue regions indicate one or the other

period doubled orbits, while in white regions there is no period dou-

bling. At t = 0, we initialize a DDW using an initial state in which

either qj(0) = 0 (left half) or qj(0) ∼
√
2J̄ (right half), and then

evolve for nsteps = 106 periods. If a first order transition exists at

critical force Fc, we expect a sensitive dependence of the DDW dy-

namics on F near the transition. Indeed, for F < Fc, the period

doubled region expands and “eats” the non-time-crystalline region,

while for F > Fc, we see the opposite. Meanwhile, close to the tran-

sition point, Fc ∼ 0.2015, the competition between the two phases

extends for many steps. To locate the transition precisely, in c) we

use a color plot to display the time evolution of the average oscilla-

tion amplitude 〈J(t)〉F during the DDW quench. Since 〈J〉 differs

in the two regimes, the long time behavior converges to one of two

possible values as one or the other domain “wins”.

will diverge, owing to the diffusive dynamics of the DDW,

although we have not investigated this quantitatively [67].

By repeating this analysis as a function of F and T , we

obtain the CDTC phase diagram depicted in Fig. 2(b). We

observe a line of first-order dynamical phase transitions ter-

minating at a point in the (F, T ) plane. As expected, in the

CDTC region of the phase diagram, the rate of phase slips ex-

hibits activated behavior: v ∼ e−∆eff(F )/T [Fig. 2(c)], while

at the first order transition, v jumps discontinuously into a

regime with complete destruction of period doubling.

The nature of the end-point of the first order line is an in-

triguing question for future study. In Fig. 2(d), we show the

magnitude of the jump discontinuity, ∆v, across the first or-

der line for a range of temperatures. The magnitude of the

jump decreases as we approach the end-point of the first order

line, consistent with a scenario in which the phase transition

becomes continuous at the critical end-point. Understanding

this critical point would be a fruitful starting point for a field-

theoretic understanding of the CDTC transition.

If the coarse-grained behavior of the DDWs were governed

by an effective free-energy functional with short-range inter-

actions, then entropic arguments would imply that the putative
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α = −1.13

(a) 

θ̄

(b) 

T = 0.5

T = 1.0

r

DDW 

FIG. 6. One of the most striking features of the first order transi-

tion is the presence of power law correlations. a) To probe these

correlations, we pin a pair of dynamical domain walls by spatially

modulating F above and below Fc (note the small white strip on

the right, which is the high-F region), and observe the resulting dy-

namics qj(2ntD). The DDW emits a constant stream of π-domain

walls into the CDTC region, visible as boundaries between red and

blue domains. Their density is quantified by the average veloc-

ity v(r) = 〈 ˙̃θ(r)〉. b) The density of π-domain walls follows a

power law v(r) ∼ r−α away from the DDW, where α ≈ 1.13.

The exponent appears to be constant over several temperatures (here

T = 0.5, 1).

transition is in fact rounded-out to a crossover [49]. However,

far from equilibrium, it is unclear that a free energy based

argument has any relevance. Moreover, a non-equilibrium

system can generically develop power-law correlations which

may mediate power-law interactions between the DDWs. To

explore this, we pin a pair of DDWs by spatially modulating

the force slightly above and below its critical value. As de-

picted in Fig. 6(a), we find that the DDW boundary between

the CDTC and symmetry-unbroken regions emits a finite den-

sity of π-phase slips. These π-phase slips contribute to a finite

velocity, v(r), that depends on the distance r from the DDW.

We observe v(r) ∼ r−α over almost two decades, where

α ∼ 1.13 [Fig. 6(b)]; within the accuracy of our numerics,

we obtain the same exponent α for cuts across the transition

at two different temperatures T = 0.5, 1. This power law be-

havior is certainly distinct from the expectations for an equi-

librium first order transition.

Finally, we will now consider a diagnostic of the CDTC

phase which is amenable to experiments, namely, the

power spectrum of qj . In particular, let us begin by

defining the “stroboscopic” Fourier transform: q(ω, k) ≡
∑

n,j(−1)nei(ωn−kj)qj(ntD) [68]. In order to estimate the

power spectrum, S(ω, k) = 〈q(−ω,−k)q(ω, k)〉/noscnsteps,

we utilize Welch’s method and average over the stochastic

noise [69]. A typical spectral function is illustrated in Fig-

ure 7(a) and reveals the dispersion relation of the effective

Hamiltonian in Eqn. (13).

For k = 0, perfect period-doubling would manifest as a

δ-function peak at ω = 0. A shift in the peak (away from

ω = 0) indicates unlocking from the subharmonic response

ωD/2. Since (−1)nq(ntD) ∼
√
2J̄ cos(θ̃(t)), this shift is

precisely the velocity, while the broadening is analogous to

a Debye-Waller factor. In Figure 7(b), we depict S(ω, 0) for a

F =0 .035

ηeff =0 .05
(a) (b) 

FIG. 7. a) The stroboscopic spectral function S(ω, k) ∝
〈|DFT [(−1)nqj(ntD)] |2〉. In this convention, the period doubled

component is mapped to ω = k = 0. Since the autocorrelation

time is unmeasurable over the nsteps = 15000 used to take the data,

there is a δ-function peak at the origin we have removed by hand

to preserve the scale. The residual noise spectrum reveals the mode

ωeff(k) of the effective Floquet-Magnus Hamiltonian Eqn. (13). b)

S(ω, 0) as a function of frequency at several temperatures, holding

the other parameters (e.g., F, η, g) fixed. The lowest temperatures

(purple, black) lie below the first-order transition, T < Tc and the

peaks (if resolved) would exhibit a very small shift away from ω = 0
due to the exponentially-rare activated phase slips. For the remaining

curves T > Tc, and the peaks are strongly shifted away from ω = 0
indicating unlocking of the subharmonic response.

range of temperatures across the phase transition and observe

a qualitative transformation below Tc. As the temperature de-

creases even further, the spectral function has to be averaged

over extremely long times in order to detect the exponentially

small shift and broadening of the peak away from ω = 0; nev-

ertheless, it can be used to experimentally detect the first-order

jump in v shown in Fig. 4(d).

Discussion—We have demonstrated that a periodically

driven, one-dimensional system at finite temperature can ex-

hibit a first-order dynamical phase transition between an acti-

vated classical discrete time crystal and a symmetry-unbroken

phase. This behavior depends crucially on the interplay of in-

teractions and non-equilibrium driving, without which a tran-

sition would be forbidden.

Our work opens the door to a number of intriguing future

directions. First, while the 1D CDTC model studied here is

thermally activated, it would be useful to rigorously establish

whether a true CDTC is generically impossible in 1D. An in-

finite auto-correlation time requires ergodicity breaking, usu-

ally thought to be impossible in 1D due to the “positive rates

conjecture”. The positive rates conjecture roughly states that

a local stochastic process in 1D is generically ergodic, gener-

alizing the folklore regarding the impossibility of ferromag-

netism is 1D [70]. However, a remarkable counter-example to

this conjecture was provided by Gács in the form of a stochas-

tic 1D cellular-automaton [42–44]. This counter-example may

allow one to construct a true 1D CDTC in such models despite

the noise. However, it is unclear if our restriction to contin-

uous time-periodic Hamiltonian Langevin dynamics admits a

similar construction.
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In d > 1, where ergodicity can certainly be broken, the

possibility of a true CDTC is even more complex. This issue

was considered in the context of stochastic cellular-automata,

where it has been argued that a higher-order subharmonic re-

sponse (e.g. periodic-tripling, k = 3) cannot have an infinite

auto-correlation time, while a period-doubled response could

[48]. The basic argument is that if a fluctuation nucleates a

bubble of the neighboring subharmonic orbit (the generaliza-

tion of our π-phase slips), the domain wall will generically

experience a force which causes the bubble to expand. They

argue that this force is absent for k = 2 because an Ising-

like domain wall does not have an orientation, leading to the

distinction between k = 2 and k > 2.

Our mapping to a tilted sine-Gordon model provides a new

perspective on their analysis. For a k-th order subharmonic

response, one can generalize our effective Hamiltonian by

simply replacing the period of the washboard potential with

cos(kθj). As we have emphasized, when the domain wall is

smooth it still has a definite handedness even when k = 2, so

the distinction between k = 2, k > 2 may not seem so impor-

tant. Indeed, in the continuum limit, k drops out of the result-

ing sine-Gordon model. For a tilted sine-Gordon model sat-

isfying detailed balance, the “locked” phase, with true long-

range order at the subharmonic period, is unstable in any di-

mension: for any non-zero tilt there is only a finite energy

barrier to create a phase slip domain, which, once nucleated,

grows rapidly to infinite size due to the tilt. However, nucle-

ation could in principle be prevented by non-equilibrium ef-

fects. Furthermore, the locking to a commensurate frequency

and the existence of spontaneous oscillations are potentially

distinct: Even the “sliding” phase may exhibit long-range or

quasi-long-range [71] order at a frequency shifted from ωD/2.

Such “incommensurate” temporal order was discussed in the

context of driven periodic media [21].

Furthermore, while the handedness (and hence force) on

domain walls is well defined in the sine-Gordon continuum

limit, the lattice allows for 2π-vortices at which the orientation

of the domain wall reverses. These vortices cost finite energy

when localized to the domain wall, where they may proliferate

due to fluctuations. This may provide a mechanism which

renormalizes the force on the domain walls to zero, stabilizing

a true CDTC for k = 2 and d > 1.

Second, another interesting scenario is to consider the

η, T → 0 limit of our model, which reduces to closed Hamil-

tonian dynamics. Here, we observe that the dynamics remain

period-doubled out to extremely long time scales (e.g. many

millions of driving cycles). This behavior appears to be the

classical analog of a “prethermal” time crystal and arises from

a mismatch between the driving frequency ωD and the effec-

tive resonance frequency ωeff [57, 72]. In the quantum case,

prethermalization has a rigorous mathematical underpinning

[57, 73] and it would be insightful to develop its classical ana-

log.

Finally, the existence of a first-order line terminating at

a critical point is reminiscent of the equilibrium liquid-gas

transition. At the critical point, one could develop a non-

equilibrium field theory for the transition within the Martin-

Siggia-Rose path integral formalism [74]. Such a field theory

might also be used to determine the precise relation between

classical and quantum time-crystals by analyzing the semi-

classical limit of its Keldysh path integral.
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[60] M. Büttiker, E. P. Harris, and R. Landauer, Phys. Rev. B 28,

1268 (1983).

[61] Roughly speaking, if we perturb about the period-doubled so-

lution of a single oscillator q(t), qj(t) = q(t) + ∆qj(t), in

the limit δ → 0 the dispersion relation of the perturbation is

strongly off-resonant with the drive, ωeff(k)/ωD ∼ δ, so the fi-

nite damping η prevents heating and the system settles into a

period-doubled steady state.

[62] O. M. Braun, T. Dauxois, M. V. Paliy, and M. Peyrard, Physical

Review E 55, 3598 (1997).

[63] O. Braun, A. Bishop, and J. Röder, Physical review letters 79,
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Supplemental Material for Classical Discrete Time Crystals

N. Y. Yao, C. Nayak, L. Balents, M. P. Zaletel

I. LANGEVIN INTEGRATOR

Numerical simulations were performed using a symplectic Langevin integrator. The equations of motion (m = 1) read

q̇ =
∂H

∂p
(S1)

ṗ = −∂H

∂q
− ηp+ ξ(t) (S2)

We consider the case H = p2

2
+ V (q, t), where we can Trotterize the evolution by interleaving the updates

q(t+∆t/2) = q(t) + p(t)∆t/2 (S3)

p(t+∆t) = F/η + e−η∆t(p(t)− F (t)/η) (S4)

q(t+∆t/2) = q(t) + p(t)∆t/2 (S5)

where F (t) = −∂V
∂p

(q(t), t) + ξ. At each step, ξ is a random variable evenly distributed in [−√
6Tη,

√
6Tη], which reproduces

the variance 〈ξ(t)ξ(t′)〉 = 2ηTδ(t− t′). Throughout, the calculations were performed using ∆t = 1

80

2π
ωD

.

II. EFFECTIVE DC-HAMILTONIAN FOR FINITE u.

In the rotating frame, the time-averaged single oscillator Hamiltonian is

H̄ = δ(1 + u)J/4− 1

2
ǫJ2 +

δ

4
J
(

cos(2θ̃)− 1
)

(S6)

where u = 4(1− ωD/2)/δ.

Dissipation and finite temperature enter through the Langevin dynamics Fb(t) = −ηq̇ + ξ(t), where ξ(t) is a stochastic force

〈ξ(t)ξ(t′)〉 = 2ηTδ(t− t′). In the rotating frame, the contribution to the equations of motion are

˙̃
θ ∋ q(−ηp+ ξ) = −ηJ sin(2θ̃ + ωDt) + ξ

√
2J cos(θ̃ + ωDt/2) (S7)

J̇ ∋ p(−ηp+ ξ) = −2Jη sin2(θ̃ + ωDt/2) + ξ
√
2J sin(θ̃ + ωDt/2) (S8)

If we average the dissipative force −ηq̇ over one period, we see it only effects the equations of motion for J . Thus, we

approximate the effective of the Langevin force as

˙̃
θ ∋ q(−ηp+ ξ) ∼ 0 (S9)

J̇ ∋ p(−ηp+ ξ) ∼ −Jη +
√
Jξ (S10)

Presumably it shouldn’t matter that we’ve approximated the Langevin dynamics in this fashion, since we could have chosen to

use a Langevin force for J at the outset.

The equations of motion in the rotating frame are then:

˙̃
θ = δ(1 + u)/4− ǫJ +

δ

4
(cos(2θ̃)− 1) (S11)

J̇ =
δ

2
sin(2θ̃)J − ηJ +

√
Jξ(t). (S12)
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At T = 0, the fixed point condition J̇ =
˙̃
θ = 0 is

sin(2θ̃) = F, F =
2η

δ
(S13)

J̄ =
δ

4ǫ
(u±

√

1− (
2η

δ
)2). (S14)

Implicitly this assumes J̄ > 0 (otherwise the solution is unphysical), so the condition for a period doubled resonance is

|F | < 1 (S15)

u > −
√

1− F 2. (S16)

These conditions define the phase boundaries of the main text. To arrive at a more familiar effective Hamiltonian in which no

cross-terms between θ̃ and J appear, first define J̄(θ̃) by the condition
˙̃
θ = 0,

J̄(θ̃) =
δ

4ǫ
(u+ cos(2θ̃)) (S17)

We then define J̃ = J − J̄(θ̃), which is a canonical transformation. In these variables,

H̄[θ̃, J̃ ] = − ǫ

2
J̃2 +

δ2

16ǫ
(u cos(2θ̃) + cos2(2θ̃)) (S18)

The effect of the Langevin bath is to add
˙̃J ∋ −η(J̃ + J̄(θ̃)) + ξ(t) to the equations of motion. This can be expressed as

Heff = H̄ + η

∫

J̄(θ̃)dθ̃ (S19)

˙̃
θ = ∂J̃Heff (S20)

˙̃J = −∂θ̃Heff − ηJ̃ + ξ(t) (S21)

Apparently the effective Hamiltonian acquires a term

η

∫

J̄(θ̃)dθ̃ =
δ

4ǫ
η

[

θ̃u+
1

2
sin(2θ̃)

]

(S22)

= η

[

θ̃
1− ωD/2

ǫ
+

δ

8ǫ
sin(2θ̃)

]

(S23)

Due to the slope δ
4ǫ
ηuθ̃, it is now a DC-driven model, and the problem is intrinsically non-equilibrium. In the fully sliding

regime, the force δ
4ǫ
ηu is balanced by the friction η/ǫ. In this limit we can equate the two, ∂tθ̃ = δ

4
u = 1−ωD/2, or ∂tθ = 1 in

the original frame.

We now consider the coupling Hg = −g
∑

i(qi − qi+1)
2. Time-averaging the coupling in the rotating frame,

H̄g =
1

tD

g

2

∑

i

∫ tD

0

dt
(

√

2Ji cos(θ̃i + ωDt/2)−
√

2Ji+1 cos(θ̃i+1 + ωDt/2)
)2

(S24)

=
g

2

∑

i

[

Ji + Ji+1 − 2
√

JiJi+1 cos(θ̃i − θ̃i+1)
]

(S25)

Letting Ji = J̄ + J̃i, and keeping terms to second order in J̃i, θ̃i − θ̃i+1:

H̄g ≈ g

2

∑

i

1

4J̄
(J̃i − J̃i+1)

2 − 2J̄ cos(θ̃i − θ̃i+1) (S26)

While there is no difficulty in keeping both terms, in the large-u limit the second term is larger by a factor of u, which is why we

neglect the first in the main text.

In conclusion, we have mapped the parametrically AC-driven FK model to a DC-driven FK model.
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FIG. S1: Finite temperature drift in θ̃ depending on the sign of the mass ǫ (which can be adjusted by using a different an anharmonicity,

F (q) = q ± q3/6 + · · · . Note that when looking at q(2tDn), it is impossible to distinguish the two cases - they just look like π-phase slips.

But θ̃ reveals the clear difference in the handedness.

III. VALIDATING THE HANDEDNESS OF PHASE SLIPS IN THE DRIVEN PENDULUM PROBLEM

When the damping is J̄η is comparable to the washboard height 2J̄δ, the effective model predicts the phase θ̃ will begin rolling

along the ramp - though because the mass is negative for ǫ > 0, it will actually go up the ramp. To show this is not an artifact of

the approximations used to derive the effective Hamiltonian (such as the Magnus expansion an averaging of the Langevin force),

we numerically demonstrate this effect for the original parametrically driven oscillator coupled to a Langevin bath.

In Fig.S1, we show finite-T dynamics of a single oscillator for a single noise realization, both for ǫ = 1

8
(a cos(q) pendula) or

ǫ = − 1

8
(a 1

2
q2 + 1

4
q4 oscillator). The dynamics indeed show a biased random walk of opposite average velocity. In fact, for

large J̄η this is not surprising. Assuming the linear ramp dominates over the washboard oscillations, the equations of motion for

any ǫ read
˙̃
θ = −ǫJ̃ , ˙̃J = −ηJ̃ − (1− ωD/2)/ǫ. At steady state,

˙̃
θ = 1− ωD/2, which by definition corresponds to the natural

frequency θ̇ = 1.


