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1 
INTRODUCTION· ' 

The first part of this course deals with the derivation of Maxu·~ellis equa= 

tions from the fundamental experimental laws of Coulomb, Ampere and Faraday o H:istor-

ically the derivation of the equations from these experiments was not possible without 

logical difficulties and for this reason some authors* prefer to postulate Maxwell's 

,. equations i~itially and then treat the subject as a set of examples in the solution 

of Maxwell's equationso Although this approach offers greater freedom from logical 

difficulties~ it is not the one followed in this course, since it does not represent 

the manner in which physical theory evolves in practiceo .We shall therefore proceed 

from the experimental facts, and as a consequence will have to draw somewhat doubtful 

inferences~ at various times, which will need further experimental verificationo This 

approach is~ however~ the approach which is the most common one used in the develop= 

ment of any physical theoryo 

The second part of this course deals with problems associated with the 

theory of the electrono The problems are treated entirely classically with special 

emphasis however as to the features and particularly the difficulties which have a 

more general significanceo The special theory of relativity is treated more thor-

oughly than is customary in a course in electricity and in particular its experimental 

basis is discussedo 

The rationalized MKS system of units will be used in this courseo This. is 

a system which combines practical electromagnetic units With the meter kilogram me= 

chanical unitso In this system of units Maxwell's electromagnetic field equations 

will appear in a form which does not explicitly involve the velocity of light as a. 

factor. The MKS units are rationalized in the sense that all equations describing 

phenomena having spherical symmetry will contain a factor of 4n, while all equa+.ions 

* eog. Strattons Electromagnetic Theory, McGraw Hill, 1941 
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describing phenomena having cylindrical synunetry will contain a factor of 2n, and 

all equations that are expressed in general vector language will not contain any 

multiple of n. The reason for adopting this system of units, in this course, is 

not that its superiority or inferiority over the other systems is a matter of great 

significance, but simply that the majority of modern reference books on the subject 

are now written in this system of units. · 

' These notes are the results of lectures given 1947/48 arid 1948/49. The 

first edition was prepared With the aid of Roger Wallace and Howard Chang. The 

. . . 

second edition incorporates valuable corrections contributed by various authors, 

particularly Richard Madey and Lee Aamodt. 

. .. 



.-.., 

CHAPI'ER 1 THE ELECTROSTATIC FIELD 

The static interaction.between material bodies can be des.cribedby two 
,., ,, 
\, 

alternative methodsg Either by formulating the action at a distance between the 

interacting bodies or by separating the interaction process into the production of 

3 

a field by one system and the action of the field on another.system. These approaches 
- -- -- ~ 

are physically indistinguishable in the static case· if correctly formulated~ but in 

the non-static case~ i.e.~in the case of time varyirig sources one is forced to ascribe 

physical reality to the field owing to the finite velocity of propagation of the inter

action~ We shall therefo~e even f~rmulate the elec~ro~tatic interactions as a field 

theory and then study the extension of the theory to non-static cases. A field theory 

must satisfy the requirement that the action on a given volume V surrounded by a sur-

face S can be fully described as a function of the field on S and thus be describable 

without reference to the sourcee 

Field theories applicable to various types of interaction differ by the 

number of parameters necessary to define the field and the symmetry character of 

the field. The electric field is a three=dimensional vector field~ i.e. a field 

definable by the specification of 3 componentso 

All vector fields are uniquely defined if their circulation density and 

sour-ce density are gi-ven funct~ons of th~ coordinates of ail points in ~pace o Also~ 

all electric fields are linear fields which obey the principle of superposition • . 
The program for deriving Maxwell's equations consists of attempting to obtain a set 

of equations which will independently derive.the source and circulation densities, 

that is the divergence and curl of the field vectors describing the electromagnetic 

fields. 

·-
We shall first consider the electrostatic field only in a vacuum. The 

electric field is defined by the force which is produced on a test charge q by 

/*Even here it is possible'9 in fact ·sometimes advantagE;~ous, to replace the field 
concept by the concept of 11 deiayed direct•interation"e 



the equation: 

(lol) lim 
q__, 0 

~ 

' F 
q 

_. 
= E 

, q :: test· charge (Coulombs) 

4 
F "" force on test charge q (Newtons) 

-+ 
E ~ electric field defined by this 

equation (Volts per meter) 

The definition expressed by equation (lol) is a suitable one only if macroscopic 

phenomena are involvedo The fundamental difficulty in equation (1.1) lies in the 

finite magnitude of the charge of an electron which does not ~ermit the limit indi-

cated as q~O to be experimentally carried to an indefinitely small value of the 

chargeo On the other hand, the necessity for introducing the limit is that it is 

assumed in the definition of an electric field that. the test charge will not influ-

ence the behavior of the sources of the field and that for that reason the test 

charge must be vanishingly small compared to all the sources of the fieldo This re-

4 

striction therefore limits the validity of this definition to cases where the sources 

producing the field are equivalent to a large number of unit electronic chargeso 

Coulomb's experimentally established law for the force between two point 

charges (formulated as an action at a distance law)~ 

(1 .. 2) the force on charge ~ 
due to the presence 
of charge q

1
o 

= the gradient operator aq,ting 
on the coordinates of the 

charge ~· 

• the radius vector position of 
charge q

2 
measured from an origin 

located .at charge q
1 

o (Meters) 

~: (lo-7 /4nc2 Farads/Meter) 

permits immediately by comparison with equation (iol) the statement~ 

(lo3) 

/ 



.,., 

... 
' ' 

• 

~ ···'. -!1> 

giving the electric field E of a point charge q at a position given by r whose 

origin is at q. {q corresponds to q1 en equation 1.2..) We might note that by the 

.... 
vector r we mean the vector extending from a source point to a field point; unless· 

.... 
differently specified the vector operator \7 operates on the coordinates of the 

fi~1d point. In accordance with this conventio~ 

~ 
r ._. 

=+r;v·r= 3 

-+ .... ..... .... 
r = i(x · -x ) 

Field Source 
+ J"(y y ) + k(z -z · ) 

Field- Source Field Source 

Accord~ng to Gauss' flux theorem:* 

* G~uss' electric flux theorem is. a direct consequence of Coulomb'·s law, since if 

... 
we consider an e.lement of surface dS, as shown in ,Figure (1.1 }, 

~ 

s 

Figure (lol) 

. -~ ' 

~ 

dS = 

d!L = 

element of surface expressed as 
·a vector directed along the 

outward normal to the element~ 
the solid angle subtended by dS 
at the point p. 

at a distance r from a charge q. at a point p, we can, by taking the dot product ... 
of both sides of equation (1.3) with dS, secure: 

~ ....... 1 .s....~-'> 'q 
E•dS = -4 k 3. r•dS = -4.k · d.D.. 

. n o r n o 

The last equality comes from the expression (1.5) for the solid angle: 

(1.,5) dfl = (!:.,r-+•dS) 1 = t•dS 
-~ r3 

Now integrating equation {1.~) over a closed surface which includes the point 

p, Gaus's' theorem-'results, since; 

)f df'l = 4n 

s 



G · 1 d. th · ~* and using auss ~vergence eoremt 

together with the fact that: 

~ f dv = q 

v 

6 

f = the charge density per unit volume at 
~he point where the electric field is 
E .. 

equation (lo3) can be put into the form: 

~ --'!1 p 
( l. 9 ) \1 o g _= ko 

It further follows from equation (1~3) and the fact that the curl of the gradient 

of a scalar vanishes and from the principle of superposition 1 that: 

~ -+ 
( 1 o 10) \j x E = 0 

The electrostatic field is thus seen to be solely derived from sources and is 

therefore irrotational. It then follows from the theorem, that the curl and the 

divergence of a vector field completely defihe the vector field 1 that the 

electrostatic field is completely defined by a charge distribution. 

Since the electric field fs irrotational, we may define an electrostatic· 

potential ~given by: 

..... -+ 
(loll) E = -v ~ ~ = the potential at tJJ..e point where the 

electric field is E. (Volts) 

In Cartesian coordinates we see from equation (loll) that: 

(1012) Ex =-~ E --~ E- -d0 ax • y- ~y , z- d"Z (Ex,Ey;,Ez) = 

and from the condition of equation (1 .. 10) we have: 

(1.13) ~ = dEz 
o z ay ' 

aEz. aEx 
~= oz, 

the components of the . ..., 
vector f~eld E parallel to 
the Xj'¥1 z, axes respectively. 

~*"Gauss' divergence theorem is a general vector analytic expression holding for 

for any vector field. 

,\ 
_. ... , 
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which assures ihat the def:tnit:i.on of ¢:in equation (loll} implies a unique potential 

within an additive constant. 

(1.14) Stokes1 Theoremg ' 
~ K<V · x1) • <Ji ~f;·d'R 

s .. ' .. ' 

d_.e ~ the vector -tangent to a closed 
path of integrationo 

when combined with equation (1.10) yieldsg 

(1.15) 

which shows that the electrostatic field is a conservative field; that is no work 

is done on a test charge if it is moved around a closed path in the field.. There-

fore no continuous external sources of power are needed to maintain an electro-static 

field. Since the work done in moving a test charge from one point to another is in-

dependeBt of the path~ we can therefore uniquely define the work necessary to carry 

·a unit charge from an infinite distance up to a given point as the potent~al of that 

point. This definition will not lead to any difficulties if finite sources are con-

sidered. If one considers sources of less than three dimensions, that is sources 

infinite in one or more directions, then this definition will lead to difficulties 

; ' . 
and a point-other than infinity has to be taken for a reference position. From 

equations (1.9) and (loll) we can easily obtain Poisson 1 s equation: 

(1.16) 

and in a region of zero charge density» Laplace 1 s equatiom 

(1.17) 
~::~;. 

\12¢ ... 0 

The electrostatic potential at a given point was defined in equation (1.11) 

in terms of the electric field at that point. In o'rder to obtain an explicit ex

pression for the potential due ·to a known distribution· of charge within a finite 

region of space, as well as in terms of the boundary values of the potential and 
· ..... 

its derivatives, we make use of Gr;een 1 s theoremg 

(1.18) fJ[ <9! V 2 ~ -~ 'i1 i i'J)dv • { (i'J vljJ -'ji v 9!) 

f ·: 

...ll). 

.dS 
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where ¢ and 't' are ·scalar functions of position and are analytic with analytic 

derivatives in the region of integration and are also analytic on its boundaryo Let 

us make ¢ the electrostatic potential defined in (1.11) and let ~ "'.! .the unit r . -

point source solution of Laplace's equationo Since this point solution has a singu-

larity at p (see Figure lo2) we will integrate only over the region contained between 

the surfaceS and the smaller sphere S 1 , which 

p = p(x,y,z) 

-+ = -+(.. • t ' t) r r x,y,z,x ,y ,z 

Figure (L2) 

encloses the poirit Po Noting that: 

(1 .. 19) v 2 (~) = 0 and v (~)= ~ 

Thus: 

\72~ = 0 
~ ~ 

(1 .. 20) and Vf r 
"'- ;j . r 

We now have on substitut-ing from (lol9) and (1.,20) into (lol8) :. ·• 

(lo21) -JJ~ 1/ ¢ dv ·J(#- ~¢) ... 
odS-

v-v' .s 



/ 
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The minus sign before the second term on the right side arises from the inward 

direction of the normal on the sphereS'. If we now shrink sl until it is Sm.all 
--1> 

enough so that ¢and \7¢ become essentially constant over sv the second term on 

the right 

If we now pass to the limit as r 1-----7> 0, we have: 

( 1. 23) lim 
r 1 ~0 

f(4 + 

S' 

:r' ds • · 
r13 

Note that the term in V¢ vanishes since it is of order r 8 .; We thus obtain on 

substitution of (1~23) into (lo21) and solving for ¢p the potential at the point 

p: (The integration is over the primed coordinateso) 

. . : . 

The first term of (le2A) is simply the contribution to·the potential by the voiume 

charge distribution within v, since by Poissonis equationi the integrand is tlie 

charge density, evaluated at the point of integration; divided by the distance between 

the point of integration and the point of observation. Note that the distance r is a 

* ' ' . 
We can formally obviate the necessity of introducing the sub'-voit.inie V1 by 

writing Poisson's equation for a point charge usihg the Dirac d ... function! 

where: 
~ (r) ~ O, r I 0 

{J[ E (r)dv.,; 1 
v:. 

Eq;, (lo24) then follows directly by substitution of (lc.25) into Gree:rlts thebrem 

(1ol8 )e We shall have occasion to use this simplified procedure although its 

justification rests in the above formal proof. 
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function of the coordinates bothof the point of observation, p, and of the point of 

integration (x•~·yt:; 'z 1 )e 

The second and third ter!'n~ of equation·(l.,24) are surface terms; that is· 

they summarize,the effect of the charge distribution outside the region v which is 
. ,.., . - ' ' 

not contained eXplicitly in the int"egral over the.charge density of the first term. 

We therefore conclude that the potential at any point within S is uniquely determined 

by the charge distribution within S and by the values which ¢ and ~¢ have at all 

points on the surface S. In particular the potential within a charge-free volume is 

liniquely determined by the potential and its normal derivative over the surface en-

closing the voll.lmeo We have only sho-wn that knowledge of the potential and its . 

normal derivative. over the surface is sufficient to determine the potential uniquely 

. inside, but we have not shown that these two pieces of information are necessary. 

As ~e shall see later, it is in fact sufficient-in a charge~free region to have 

either the potential or its normal derivative given over a surface in order to de-

termine·the potential at every point within the surface to within an arbitrary ad-
_. 

ditive constanto The reason for this sufficiency is the fact that¢ and\7 ¢may not 

be independently:specified over the surface, since¢ must be a solution of Laplace's 

equation •. The second and third terms of equation (L24) which define the potential in 

terms of the boundary values will be interpreted later by stating that the effect of 

any charge distribution outside of S is equivalent to a charge distribution on S and 

a dipole layer distribution on So 

If we extend the surface S to include all charges in space, and arbitrarily 

expand S away from such charges, then the second and third terms of equation (lo24) 
. . ..... 

vanish. This follows since the integrands in ¢ and '\] ¢ vary at large distances at 

least to the inverse third powero Since the surface of integration increases as r2 

both terms vanish to at least t~ order lo We conclude therefore that the potential 
r 

can be calculated by the direct superposition of the individual potentials of all 



the·volume charge distribution, but that we c~.i:f wewish,replace any part of the. 

distribution by an equivalent surface charge layer and dipole layer distribution. 
: . - ' ' 

The volume.term of eqti;ation (1.24) can b~ looked on as being a particular 

integral of Poisson 1 s equation, while the surface terms are complementary integrals 

of the differential equation in the sense that they are general solutions of the 

homogeneous equation; that is, Laplace's equation. 

11 
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CHAPTER 2 FIELD SINGULARITIES 

Iri the last chapter the solution of the potential problem was divided into 

boundary contributions and into a volume integral extending over the source-charges. 

These charge integrals will riot lead to singular values of the potentials if the 

charge distributions are volume distributions~ If the charges are considered to be 

surface, line, or point charges~ then singularities will result as shown in Table 2 .1. 

Type of Charge Behavior of Behavior-of field 
Distribution Potential near dis.tribution Near distribution 

Surface r Constant 

Line log r r 
~l 

Point r-1 r -2 

Point 2n pole r 
=n;;;l 

r =n-g 

TABLE (2ol) 

Note that if either surface or line charges are infinite (ioeo the fields are con

sidered 1 or 2 dimensional) the potential cannot be referred to infinityo .Let us 

now discuss in more detail the nature of the potentials corresponding to such singular 

sourceso 

(2ol) 

The potential ¢p ; at the point p~ 

(1) 
¢ p ""_J._ ~I 

4nk r(p,p 1 ) 
0 

q 

' 

due to the charge q located at the point p 1 , as in Figure (2.1) has a first order 
pt 

singularity at the point p' corresponding to r "" 0. Singularities of higher order 

can be generated by superimposing onto this potential a potential corresponding.to 

a similar charge but of opposite sign, displaced a distance /1 x' from ite This 

process is equivalent to differentiating eqo (2ol) with respect to xto If we denote 
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d ~. 

differentiation with respect to x' by ox' and call \j the operator corresponding 

-. . ' 

to \j but referred to the source co-or,dinates we 'see that in general for any function 

of the relative co-ordinates only 

~:, { f [ (x-x'), (y-y'), (z-z' i)} • -:x( f [ (x-x'), (y-y'), (z-zllJ} 

and in general 

(2o2) 

Since the derivative of a solution of Laplace 1s equation is also a solution, the pro-

cess of differentiation with respect to the source point as physically described above 

will generate new solutions with successive higher order singularities ·near r "' o. 

Such potentials are called.multipole potentials. 

For a single differentiation we· obtain for instance: 

(2.3) 
,((2) = dll) . 
P -,--6,x• "" 

ax' 
(See Figure 2 .1) 

and if we let: 

(2.4) q6;, "';<2) 

be the dipole moment of the distribution (positive from - to + charge) we cari write 

this as: 

~ ~ 

~(2) ~ 
P • r 

r3 

Note the sign conventions regarding r and \1 discussed in Chapter 1. · This solution · 

is ·the dipole potential. · 
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' ,. 

(x,y,z) 

pi (x' ~y' ,z ') 

x•~ e 

-q +q 

Figure (2.1) 
<: 

The potential distribution and consequently the fields of higher multiples 

of the charge, or multipoles, can be generated by the same method of geometrical con

struction. For example the potential field of 2n+l pole is generated by taking the 

potential field of a 2n pole and subtracting from it the potential field of another 

2n pole that is displaced infinitesimally in ·an arbitrary direction (or superposing 

the potential of the displaced 2n pole with opposite sign). 

The potential of a 2n pole will therefore have the genera·l form: 

(2.6) 
c-tp(n) 
4nk0 n1 QX dy =-- (;) 

where p(n) is the multipole moment, defined by the recurrence relation 

p (n) = npCn=l) /1 x' n where ~x' n is the displac~ment leading to the 2n - pole. 

In the special case in which all the displacements are in one direction, we have a 

linear 2n pole: 

(2 .. 7) (;). 

where P (cos 9) are the Legendre polynomials .. 
n 
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A few examples of such mult'ipoles -are shown in Figure (2 .2). An arbi_trary 

linear combin:ation of higher mul tipoles con;3ti tu.te~-~· a, general Taylor..:.Laurent expansion 

of the potential. For that reason one can state the theorem that at a large distance 

from a charge distribution the potential-of this charge distribution can be expressed 

as an infinite series of multipole potentials. By a large distance we mean a distance 

that is large compared to any dimension of the charge distribution. We shall see 

later that the multipole expansion is actually equivalent ·to an expansion in Legendre 

~ polynomials, and that the various orders of the Legendre polynomials actually corres-

pond to mul tipoles of various orders. 

-r 
p . 

n 
LINEAR 2 POLES 

(observation point) 

[__ 

-q 

·. (22) 
. j6 ·.· . 

0 

~----~')X o ---.,..---'- o -----o X 
-q +q +q -q +q 

¢(2) q_6.x cos Q = p(l) P1 (cos 9) 

= 4nk
0 

r 2 4nk
0 

r2 

¢(2
2

) .: q(6 x)
2 

(3 cos 
2 

9-1) =~ P2(<XB9-) 

4nk0 r3 4nk0 r3 

p(l) .. q~ X 

+q. -q. 
r---------+q. -q.~-------

6x +q. 6x -q. 

~ (3) 3 
P = 31q (.6. x) 

= p(3)p.,(cos9) 

4nk
0
r4. 

FIGURE (2.2) 

+q 

•--~------------- X 
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FIGURE (2o2) (CONTJ;NUED) 

PLANE 2n POLE 

-q Q-------:0 

-q 

SPATIAL 2n POLE 
z 

¢(2x2y2z) J~q(6 x~ YX/j. z) cos a cos ~ coso 

4nk0 r4 

16 

p ¢(2x2y) 
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The energy of a dipole. in an electrostatic field is given byg 

(2o8) 
~ ~ 

U "" -p • E U eo the energy of position of an already 
created dipole.in an electrostatic 
fielde (Joules) 

which follows directly from the torque relation: 

(2.9) .. -. -
L = p X E 

..:.· 
i. ~· the torque exerted in such a direction 

as to rotate the positive end of the 
dipole toward the field direction. 
(Newton Meters) 

of a dipole. The force acting on ·a dipole, when the relative orientation of the dipole 

and the field is not free to change, in an inhomogenous electric field is given by: 
. . : . . ·. : •' .. * ... ·.~.· .· .... ~~ ... ~ ..... · 

(2.10) F ""-VU .. - \1 (=p ·E) =(p •'\/ )E 

Note that this force vanishes for constant fields, as would be expected from symmetry 
' 

arguments. 

Let us now consider the interaction force .and energy ,between two dipoles, 

such as those shown in Figure (2.3), wpose ~oment vectors are oriented at an arbitrary 

apgle in space to each other. 
~ 

P, 

(due 

Combining the force equation (2.10), 

~ 
r 

12 

FIGURE (2.3) 

/Po 
' 2 

~ 

the potential· equation (2c..5) and the field equation (1.11), we have for the force F
1 

4,.. ..... _ .... --- ...lo~- ~.-.~ ~ ... ~ ~ 
--;:,ince: \l(p • E) .. px(\7 x E) + (p "\1) E ""(p • \1) E if V xE i= 0 lf'\7 x E ~ 0 

an additional t erm is obtained. 



-+ 
on d~pole 1 in the field of: dipole 2, or conversely the force F

2
: 

(2.11) 

~ 4 _, .... 
_L cP • 9 ) [ ~ r . ~ N} l F = (p o \7 )E = 

1 1 . 1 1 4nk 1 1 I 2 1 r 
0 

~ 
..,__!_ 

~·· 
~ 

[ ~2 Ul· Vi~)}] F2 4TTk (p2 
0 \7 2) 

0 

We can get the interaction energy between the two ·dipoles of Figure 
--- -· 

(2.3) 

by combining Equations (2 o5), (2 oll) and (2 .8)., We have for the energy u
12 

of the 

dipole 1 in the field of dipole 2, and conversely for u
21

: 

; ~ _. 
~ ...,. (pl • \l 1) [ ~ _... 

U = -p • E = - p • \} 
12 1 1 '4nk

0
· ... 2 1 

(2.12) 

.-- ~ . 

= + _1_ [· pl ; P2 3,_ ~ -+ _. 
ul2 4TTk . r3 - r5 (pl. r-)(p2 

0 ; 

ul2 "'u21 

These are general expression~ for the interaction energy of two dipoles. 

Surface Singularities 

We have considered point singularities and will now discuss surface singu-

18 

larities. A surface singularity is another type of field singularity that is often of 

interest in electrostatics. Usually surface singularities up to the second order 

or dipole form are the only ones of interest. Surface charges or monopole distribu--tions will be discussed later. Let '\ be the dipole moment per unit area of a double 

layer surface charge arrangement •. The potential arising from such a distribution is, 

given by: 

(2.13) 
~ ~ 

1"' • r 
3 dS 

r 

;;-
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-+ 
This expression reduces., in the case wh.en. 'I' is uniform and normal to the surface 

over the dipole sheet~ .when simplified by (1.5 ), to the relations 

([
~--+ 

(2.14) 111.f= 1'~'1 .. ~ = ITJ ..n 
p 4nk0 . r3 4nk

0 

Here~ is the solid angle subtended by the boundaries of the dipole sheet at the 

point of observation as in Figure (2.4). The solid angle subtended by a non-closed 

surface jumps discontinuously by 4n as the point of observation crosses the dipole 

sheet.. This means that in the ideal case of an infinitely thin dipole charge layer, 

the potential function will have a discontinuity of magnitude l~l/k 0 , but will 

have a continuous derivative at the dipole sheet. 

s 

dipole sheet 

Figure (2 .. 4) 

On the other hand, a simple surface charge layer will not result in a 

discontinuity in potential, but will produce a discontinuity only in the normal 

derivative or the potential, the magnitude or discontinuity being o-/k
0 

where c:r 

is the surface charge density of the charge layer o A comparison between the tvm 

cases is sh01m in Figure (2.51\ and B).. Since surface charge layers and dipole 

charge layers enable us to introduce arbitrary discontinuities in the potential 

and its 'derivati'ves at "a 'partic\ilat surface, we 'can make 

~No generality is lost since a dipole layer with 1 not parallel to dSSis 
equivalent to a dipole layer with'/ parallel to d~ plus a charge layer. 
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the potential vanish outside a given volume by surrounding the volume with a suitably 

chosen charge layer and dipole layero This is a further explanation-of the signifi~ 

cance of the surface terms in Equation (lo24) which was derived from Green's theorem • 
....., - . 

We see that the surface terms in that expression~ when¢ and \7¢ are properly evalu
~ 

a ted on the surface in terms of a I and a .. a- ~ are precisely those terms that are 

necessary to cancel the field of the charges inside the surface S in the region out- . 

side of S~ provided that there are no other sources outside of S9 

I 

~ · ~~ imits of 
dipole layer· 

+ 
)=t 
~~ 

' ,__,. 

I 

I:: I 
= lfl + 

Distance ~ 
FIGURE (2o5A) 

as can be seen by writing eqo (lo24)asg 

(2ol5) 

where I= k ¢ 
0 

(),., k 
0 

rr 
charge layer 

Distance 
FTGURE (2o5B) 

As an example of a·combined surface charge and dipole layer distribution that will 

just cancel the field outside a given surface~ yetleave the field inside the sur= 

face unchanged~ consider a point charge q located at the point R "" 0~ and the surface 

R g a surrounding this chargee If we place a surface· charge density or=-q/4na
2 

per 

,AI· 
j'i 

Iii..: 



unit area on the sphere R 8 a, it will give a potential~ 

¢ ct' "" ~ q R< a 
4nk a 

0 

¢tr = - q R> a 
4nk R · 

0 

~; If in addition we place a surface dipole layer of moment ::t = q,i-/4naR per unit ~area 

on the sphere R = a, it will give a potentialg 

¢.,....,. -tq 

4nk a 
0 

¢'1 "' 0 

The potential 

"' 
4nk R 

0 

IR~ a 

I R> a 

of the original charge q 

Adding those potentials we obtaim 

is: 

(2.;16) ¢ "" ¢ · + ¢ + ¢1"' = -+q R< ·a 11 0 
0"" · 4nk

0
R 

¢ ""0 R.> a 

The potential due to a dipole layer is therefore double valued at the surface al-

though this is, of course, only strictly true in the limiting case in which the 

·dipole layer has an infinitesimal thickness; see Figure (2o5A)o For this reason 

the case of a double valued potential at a ~urface does not have a physical reality. 

This method of generating a non~conservative potential is a useful one in the theory 

1,. of magnetic fields to be considered latero The electric field produced by a dipole 

layer can be derived as follows: 

t The potential change corresponding to a displacement of the point of observation p 

. by a distance d?as in Figure (2o6) 1 is: 

-'"> ~ 

(2ol7) d¢ "" -E 0 dx 
p 

21 



The qhange in solid angle~ dll~ subtended by ~he dipole layer at the field point is 

~ . .... 
the same whether the field point moves dx or the layer moves = dxe The latter case 

is shown:: 

added are 

FIGURE (2o6) 

The change in solid angle is seen to beg 

(2,.18) 
~ 

odx 

The change in potential: corresponding to this solid angle change from (2Gl4) is& 

d¢p ~ = ~ d11. ·. 
. . 4nko . 

(2.19) 

Substituting (2ol9) and(2 ... 18) into (2ol-7) we haveg 

(2o20) 

~ 

We may remove the dot product since dx is an arbitrary vector and (2e20) holds for 

~ 

all values of dx. It would not be permissible to un=dot if this were not true., 

... 
E "' 

22 
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These 'expressions will again be useful in· the derivation .of the magnetic fields due 

to currents where the corresponding potential does have a multivalued behavior com-

pletely analogous to the properties of the surface dipole moment. 

Volume Singularities 

We shall now consider volume distributions of dipqle moment. The potential 

' ·' 
due to the volume distribution is given by consiaering the point dipole moment of 

Equation (2o5) as a volume density and integrating over the volume: 

¢ = _L jjrr;· -; . ~ o (!) dv 
P 4nk

0 
)) . r . 

- . 

"""' P s the dipole moment per unit 
volume, 

This can be transformed to a form which is physicallymore interesting by the relation: 

(2.23) ~··m . ~ ~·· p • 1 . v '(~) 
Substituting the last term of (2.23) into (2o22) and using Gauss' divergence theorem 

(lo 7) we have:: 

(2o24) I ~~ J ... ~;p d~ 

This expression can be interpreted as follows~ The first·term, which is a surfac~ in-

tegral~ is a potential equivalent to that of a surface charge density, while the sec-

ond term is a potential equivalent to that of a volume charge densityo The charge 

densities which have potentials equivalent to those caused by the volume polarization 

of a region of space are given by the expressions~ 

~ = the polarization surface charge 

Pp = the polarization volume charge 

These relations can be derived from purely geometrical considerations• For 

example in case we have an inhomogeneous dipole moment per unit volume, p will 
• p 

represent the charge density which accumulates from incomplete cancellation of the 

ends of the individual dipoles distributed in the volume. · ~p' on the other hand, 

represents the polarization charge density ori the surface ·produced by . .:the iLack' ·;>;

*Since P p = -'V oP _ls a field equation the prime on 'V can be dropped without ambiguity. 
The prime on theV is only necessary in integral expressions, which relate a field 
quantity to an integral over a source quantity •. 



of neighbors for the dipoles which lie .with their ends on .the surface. It is evident 

that f'p will vanish in a homogeneous polarized medium •. In fact, it will vanish 

provided only that the dipole moment per unit voltime has a zero divergenceo We wil~ 

thus have for the potential due to the two forms of polarization charges, when we 

substitute (2.25) into (2.24): 

24 
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CHAPTER 3. BOlijiDAB.:(. CONDITIONS AND. RELATION. 
OF MICROSCOPIC TO MACROSCOPIC 

FIELDS 

25 

The dipole moments per unit volume considered ir,t Chapte'r 2 are special 

examplf?s of ~ources wttich giv~ rise .to electrostatic fields. and can therefore be 

treated as special types of charge densities in .Poiss9nvs Equation (1.16). Since 

material media in an electric field give rise t.o such volume dipole distributions, 

the behavior of such media in an electric field can be described in terms of its 

polarization, that is its dipole moment per unit volume •.. It is customarya in 

order to clarify the understanding of polarization» to separate the total charge 

that produces an electrostatic field into two parts~ namely a true~ free, moveable, 
. . 

net charge F J and. a bound., zero-net$ polarization charge fp 0 This division is to 

a certain extend arbitrary, in the sense that the po~arization charge p simply 
p 

represents separated charges which on the scale of observation being considered in 

a particular experiment are essentially inaccessible» but if a smaller scale were 

considered would be considered separately. as free charges. If~ .for example, we 

place a piece of metal between the plates of a condenser, we can describe the 

resultant field between the plates either in terms of the true charges produced on 

the metal 9 or in terms of an equivalent polarization of the piece of metal .. dep~nding. 

on whether we consider the charges individually measurable or not., respectively. 

If, instead of the metal we introduce a piece of dielectric between the condenser 

plates, we are forced to describe the phenomena by a polarization charge~ rather 

than by a true.charge, since it is assumed in the theory that observation shall not 

be made on an atomic· scale. An atomic scale observation would be necessary in order 

to 11 resolve 11 the velum~ polarization into indi. vidual charges o .. 

It is .thus seen that ~h13 distinction between f and p p is an ;arbitrary one. 

This arbitrariness will in no way distrub the. formalism used to des.cribe the fi'elds 

produced by such pola~zation charges. Since we have divided the sources of electric 



fields into sources of the two types mentioned, the Poisson source Equation (lol6) 

.becomes~ 

Note that the symbol ro denotes only the true free charge, at the point where the 

divergence is being taken. ~f we express fJp in terms of the divergence of the 
-. 

polarization P, as given by Equation (2.25) we obtain from Equation (J.l): 

... 
If we define the displacement .vector D by: 

the source equation becomes simply: ... ...,. 
(3 .4) \1 • D = ~ 

and also: 
..... 4 
\}'• .E = pt 

k 
0 

.... 
D = the electric displacement 

(Coulomb•Meter-2) 

with the corresponding integral relations secured from Gauss' divergence theorem 

(lo 7) by integrating over the. volume containing all the charges: 

-~ 

ff 

! 

..... 
D•dS = q 

..... ~ 
E·dS "' qt 

ko 

. ' 

qt = q + qp = the total charge r 

~ = f1J -tv' • 1}dv 

JP thus represents a partial elec'tric field, namely that electric field whose sources 

26 

... ,.,. 

::..re only the true charges. Note that the relation (3 .3) between D and E is basically 

~ ~ .4 
an additive one, the difference between D and k

0
E being the polarization P •. Note 

also that the polarization, although defined in a purely geometrical fashion as the 

.T 
dipole moment per unit volume, ms the properties of an electric field. he, polari-

~ 

zation field p is that field whose flux arises only from the polarization charges Pp. 

.;;· 
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The solution of an actual· field.~ problem involving ·polarized bodies will depend on 
, 

the manner in which the polarization-depends on.the external fieldo In most cases, 

the polarization will be proportional to the electric field., This can be expressed 

by an equation of the type: 

(3.,8) X = the electric susceptibility 
f • .,, \ .,_,, 

SUch a description excludes the consideration of electretso* But electrets do not 

. iJ.. 

* Electrets are materials possessing a permanent electric dipole memento 

have great practical importance., In case we do have a simple medium whose polari~ 
,. : 

zation depends linearly on the imposed electric field, as expressed by Equation (3.,8), 

.... """'- ..... 
then all three vectors~ D, E and P, will be related by constants of proportionality 

as given by: 

( 3o 9) 

If we let: 

{3.10) k."" 1 +X k ... the specific inductive capacity 

then: 

and: 

" 

Equation (3.8) pre~supposes that the medium polarizes isotropically, or that the 

polarization properties of the medium do not depend on the direction of the polari~ 

zation. In general this is not true, and in fact it holds only in liquids, gases, 

amorphous solids and cubic crystals. In crystals of lower symmetry than cubic the 

relation between each of the components of the polarization vector and of the elec~ 

tric field vector is still linear but the constants of proportionality in the various 
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directions .may be different., This means that th~, relation between the components 

' of the polarization vector and- the components of the electric field vector are given 

by a terisor·relation of the type: 

( 3.,13) p =k LX E 
1 0 j" ij j 

The tensor Xij can be shown by energy considerations to be a symmetrical tensor, 

and therefore it can'be expressed in terms of principal coordinates by a set of 

only three constants., 

4 ~ 
The case of non-lin~ar media, that is media where,E and Pare not propor-

tiona! and Equation (3.,8) does not hold, will not be treated here, but the parallel 

case will be treated in the discussion of magnetic media where non-linearity is of 

more practical importance., It should be pointed out, however, that the relation 

~ ~ 
that has been givenbetween P and E is not a fundamental one, but is only a special 

simplifying assumption.,( 

Maxwell 9 s field equations 9 to be discussed later, are a set of equations 

whose sources are divided into accessible and inaccessibl~ charges., In order to 

obtain a solution of Maxwell 9 s equations the inaccessible charges must be related 

to the accessible charge·s or the fields produced by the acce~ssible ~harges by addi= 

~ional relationships., The relations which evaluate the inaccessible charge sources 

in terms of the.external fields which produce them are called the constitutive equa

tions., Equation ( 3 .. 8) is an example of such an equation.. The constitutive equations 

are, of course, not basic 9 and depend on the properties of the materi.al in which the 

inaccessible cha.rges arise., None of the .equations (3 .. 8) to (3.,13) are dependent 

upon the homogeneity of the medium~ only upon its linear:ity.,:L':.That is the suscepti= 

bility and specific inductive capacity may be arbitrary functions of the coordinates. 

A case of much interest is the one where the specific inductive capacity varies dis-

continuously, as at the boundary between two dielectrics. In this case, illustrated 

in figures (3.,1 and 3o2) 9 we imagine a small volume, whose dimension normal to the 
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interface i~ small,er • th~n,, its dimensions parallel to the .interface by an order of 

. '- ' 

magnitude» .t.o 'be S() placei;l that one Of :i,ts large sur·faces lies. 'in medium 1 and the 

otl;ler in medium 2.· and both are paralle 1 to the interface· o Jn addition we imagine a 

small loop er~cted as ill; Figure (3.2) with its major .extent lying parallel -to the 

· surfacep one .side .in medium 1 and the other in medium 2o The little volume in Figure 

(3.1) will be used to derive the behavior.ofthe.normal components of the fields 

and the loop in Figure {3 o.2). will be u::;ed to derive the behavior of the tangential 

components of the fields as they cross the interfaceo 

n 

Figure (3ol) 

d~ ·rr = d'S= the unit vector normal 
to tb:. A, the top of 
surface s .. 

o-= surface charge on the 

surface 'E. 

]'Je have from (3o6) for the surface integral of Dover the little volume in 

Figure (3ol): 

(3 .. 14} fJ 1 .. 
~ 

dS: = q 

As we shrink the dimension h to zero, q~o-:6. A, and the contribution of the ·sides 

of the volume to the surface integral vanishes, so (3ol4) becom:es: 

~ '""+ ~ 

(3:o15} · .n!' (D:;a -.·Dl) =a-·· 

And .if we -may make the assumption of (3.11) we have a 

(3 .16) 
....., ... 

n o 
&

-iC 
. 0 

We have made the assumption that LA is small enough so that the fields are 

essentially constant over it;.· 
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-+ . . . . 
n ~ unit normal to the 

. + ·surface 2::, o 

n
0 

= unit normal to the 
loop of' integration, 
lying in the surface 

~ ~-
dS = differential of sur-

face area of the· 
.integration loop. 

From (1.15) we· have f'or the line integral of the electric field: 

(1.15) f-; 0 dt = 0 

If we apply this to the path shown in Figure (3. 2) and le.t the ends of' the path 

shrink to zero , we have: 

.......... ~ ~ 

( 3.17) E
2 

o d..Q.. - E
1 

• dR. = 0 .. 
Noting that dR. = ~ 0 :x~ we haif:e:: 

d.R. . .... ·~ ~ ~ 

(3.18) n0 ·n x (E2=E1) "" 0 

~ . ~ 
And since n

0 
can be oriented in any direction relative to E 9 and (3.18) holds for 

all of them 9 we may remove the dot product~ 

(3.20) 

We have assumed that: r dt is short enough so that the .fields are essentially 

constant over its length • 

. The relation (3.20) could have been secured.from (1.10) and an application 

of StokeS' theor~m 9 but (1.10) is actually not necessary- in this proof. The rela

~ -+ 
tionship (3.20} will hold true even in the non-static case where \7 x E is not zero 

but is given by the Faraday law of induction: 

( 3. 21} . 7 X -; = = '() t 
at 

~ 

B = the magnetic induction (Weber • 
Meter-2) 

Applying.Stokesl, theorem (1.14) to (3.21) and carrying the integration over the 
' . 

path shoWJ?. in Figure (3.2} and neglecting the contributions of the ends of the path 

r.l! 
I 
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we have: 

c)i ~ 
0 

t •. dS 

-+-
As we shrink the integration path to zero the differential of surface area dS vanishes 

-9 
to a higher order than the differentials of path length d.Q. and thus the term contain-. 

ing 1 drops out and we have (3.19} or (3.20) againo Thus these equations are correct 

expressions of the"boundary conditions, even in the general non=static caseo 

If, as we saw in Chapter 2 9 there is no surface dipole layer, the potential 

li.! is continuous across the boundary and we have: 

(3o23) 

We have therefore boundary conditions on the potentials and the fields on the two 

sides of an interface as given by Equations (3.15) 9 (3ol6) 9 (3.19) and (3.20). 

These boundary conditions provide for the continuity of' the field across an , · --

We first defined the electrostatic field in a vacuum, caused by free charges 

and then we introduced material media containing charges that are inaccessible to 

measurement. The behavior of these media has been described in terms of their dipole 

moment per unit volume. Certain difficulties arise in the definition of the electric 

... 
field E in material media if one attempts to use a strictly phenomenological point of 

view. A definition of the field might be made by one of the following three methods 9 

which will not necessarily be in agreement. 

·. . . ~ 

(A) We may define the field E on an atomic electron scale where the 

question of the polarizability of material media would presumably not 

arise. Then for our macroscopic definition of the field we would take 

the space time average of these atomic fields. 

(B) We might consider that a hole be cut into the dielectric· material 

in the field and define the field as that measured in this hole in terms 

of the force on a unit charge as was used in the vacuum definition. 
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This cavity definition of the field will make the field strength depend 

on the geometry of the cavity and on its orientation relative to the 

direction of the field in the medium. This will lead to a unique definition 

only if the shape and orientation of the cavity are standardized in an 

arbitrary manner. 

(C) We may define the field as that acting on an individual molecule of 

the dielectric. 

(A) Space Time krerage De fini ti on. 

Consider a function f(x,y 1 ZJt) defined in a certain region of space during a 

certain time interval as in Figure (3.3). The space-time average of f(x,y,z;t) 

when the function is averaged over a time interval 2T and a region of space of 

radius a is then given byt 

(3.24) f(x,y,z;t) = 1 
2Tx4na3 

3 

origin 

Figure (3.3) 

This integral is a linear operation and may therefore be commuted with linear 

differential operators, as for examplet 

On an atomic scale an equation corresponding to (1.9) holds: 

~ 

E, = the atomic electric field. 

ft = the total charge density in the 
atomic distribution. 

). 

.,~ 

'·· 
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' 

Taking the space_time average of Pt 
4 7 Pt 

in (3.26)vve obtaJ.n8 

"(3.,27)9 ° ~ = i7" . 
0 

And from (3.25) and (3o5) we have: 
--~- ~ ........ ?· ~ ~ 

'(3.2S)\7 o't,;= \] o ;E, ; 

. ! .; • 

~ 
Hence the macroscopic field E is actually the space-time average of the atomic 

~ 

field £ 9 even in the presence of dielectrics. 

(B) Empirical Measurement of the Field in a Hole in the Medium Definition. 

Consider the three shapes of. cavities shown in Figure (3.4). From the 

boundary conditions of Equations (3.16) and (3.19), the field measured in 

the slot 9 who!;!e boundaries are uncharged, in Figure (3.4A) 9 whose major 

extent is oriented normal to the field is ~ 9 where ~m is the field in 

the medium. The field in the slot in Figure (3.48) whose major extent is 

oriented paraliel to the field. is bx~m = 1m• The field measured in the 

spherical cavity in Figure ( 3. 4C) , can be shown to be.: 

Figure (3.4A)r F'igure (3.4B) Figure (3 .4C) _ 

(3.29) 
..... -+ 
E = 3kEm 

2k+l 

1 
( 2k+l) 

by methods to be discussed in Chapter 6 for the solution of boundary value 

problems. For large value's of k 9 ( 3. 29) becomes: 

-+ 3 ~ 
(3.30)· E == E 

2 m 

The three types of fields existing in the cavities are shown.gr-aphically 

in Figure {3.5). The cavity definitions will therefore each give a definite 
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value of the field provided that the geometry is standardizedo 

I I 1 S~ot ~ 
y 

Slot A 
I 

r-
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kErn~ 

p ~ 
k0 (2k+l) 

_ _j ___ l 
-·- ·- --

I 
-~~ 

E i X 

Field profile measured by the cavity technique on a horizontal line passing 
through the centers of Figures (3o4A; Band C)o 

Figure ( 3" 5B) Figure (3 0 5C) 

(C) Molecular Fields 

Consider a dielectric placed between the plates of a parallel plate condenser, 

as shown in ¥igure (3o6) 9 the dielectric and condenser being sufficiently large 

in the directions parallel to the plates so that end effects may be neglected. 

Consider a molecule within this dielec-tric" Let us draw a sphere of radius a 

about this particular molecule, where this radius is intended to represent 

schematically the boundary between the microscopic and macroscopic range of 

phenomena concerning this molecule" The molecule is thus influenced by the 

fields arising from the following charges~ 

(1) The charge on the surfaces of the condenser plateso 

(2) The surface charge on the dielectric facing the condenser plates., 

(3) The surface charge on the interior of the spherical boundary of 
radius ao 

(4) The charges of the individual molecules, other than the molecule 
under consideration, contained within the sphere of radius a., 

Considering these cases~ 

(1) The charge on the condenser plates produces a field at the molecule in 

question equal to~ 

,._j. 
I 



·.j,>. 

( 2) The polarization charge on the. ?Urface of th~ diele~tric facing the 

~ ~ . 
condenser plates, CIP =Po n19produces a field at the molecule: 

{3o32) .,.1' · 
ko 

(3) The polarization charge present on the inside of the sphere produces a 

field that may be calculated as follows: The electric field at the 

. ~ 
center of the cavity 9 E , due to the polarization on the s~rface of the . p . . 

cavity, is given by: 

E = 1 
p '4!iTk 

0 

The differential element of surface charge is: 

{3.34) O'pdS = 2'1m2 sine cos·e d8 fPJ · 

SUbstituting {3.34) into (3.33) we have: 

and integrating we get: 

-l> 
Note that Ep is not the solution of the boundary value problem of a spherical 

cavity within a dielectric~ as (3 0 29) was; but is the solution of the problem 

of a spherical cavity within a dielectric if the polarization is considered to 

be unaffected by the presence of the spherical cavity. 
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( 4) The field due to the individual molecules within the sphere must be obtained 

by summing over the fields due to the dipoles within the sphere. We can 

,secure the ,potential of an individual dipole from {2.5): 

{3 0 37) ~ = 1 1o'7 
. 4'TT'k:o . r3 

The field at a distance r from this dipole is: 



... 
(3.38) E = -\1---1 -? (?•t)' 

4nk0 . r3 -

-1 

4nk
0 

Summing over all the dipoles within the sphere we obtain the spatial average 

of the x component of the field: 

36 

Since we have assumed that the dielectric is isotropic, the x, y and z directions 

are equivalent and we have: 

-~ 
( 3.40) ;_2 = T = z 

2 = ~ , xy = yz = zx = 0 

Hence the field due to the dipoles within the sphere vanishes. · 

Thus adding the partial fields of (3.31), (3.32), (3.36) and the zero field 

of part (4) we have for the field acting on one molecule: 

(l) (2) (3) 

4 ~ - ·~ -'> -? 

(3.41) Eeff = E + p p + p = E + p 

~ ~ 3k
0 

3k
0 

The magnitude of the field of (3.41), derived for isotropic substances is 

also valid for cubic lattice crystals, but is not valid for crystals of lower 

·It 
symmetry. 

In order to describe the large scale behavior of a dielectric iri terms of 

the constants of the molecules constituting the dielectric, the specific inductive 

capacity k must be associated with the polarizability of a single molecule Cl• 

This connection may be made by the use of Eqn. (3.41) which gives .the field and 

thus the force acting on a single molecule within the body of a dielectric in 

terms of the external field. Therefore, if Cl is defined by the equation: 

Cl = the dipole moment induced in a 
molecule by a field of unit . 
strength. 

~Note that these expressions consider only dipole-dipole interactions between 
neighbors. This will clearly be inaccurate for substances·having large 
oriented molecular groups. 

n.J; 
' 
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Therefore if a is given for a particular material we may get P • 
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+ 

. ...). .... ~ 

(3.43) P"' np = na.Eeff n "" the numoer of molecules per unit 
volume ... 

N "" Avagadro 1 s Number. 

g a the density of th~ material. 

M "' the molecular weight of thE;l 
material. ; · :/ • · 

Combining':'"this with (3.,12) ·and (3.41) we have, after the fields are eUminated: 

This formula, known as the Clausius-Mosotti formula, gives the correct dependence of' 

the specific inductive capacity oil. density for a wide class of' solids' and liquids. 

For dilute gases, where k ":' 1, Equation (3.44) becomes e 

which is, of' course, to be expected since this relation corresponds to n~glecting 

the interaction between each molecule and its neighbors. The molecular polarizability 

Will in general arise from two basic physical causes: (1) The lengthening of' the 

bonds between atoms, and (2) the preferred orientation of molecules within a fluid 
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along the direction of the field as opposed to the random orientations brought about 

by thennal motions. These two effects are responsible for the temperature dependence 

of the specific inductive capacity and therefore the polarizibility. 

jr,; 
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CHAPTER 4 

We shall now consider the solution of sevei-a:.l: types of potential problems~ 

Unfortunately, no general methods of solution are available which will apply to all 

cases and therefore each individual case 'demands, to some extents methods of its 

•~ own.. However, we shall discuss certain methods which apply to general classes of 

problems and can be discussed as individually charact~ri stic of these classes. 

il' 
A theorem of great importance for the treatment of potential problems is the 

uniqueness theorem •. This theorem states that if a solution of a potential problem 

is found within ·a given physical boundary which g'ives either~> a given ·potential-

distribution on· that boundary, or which corresponds to a given charge distribution 

I . 

on that boundary, then this solution within this boundary is the only correct solution 

of the potential equations. This theorem is the justification for attempting. ·any· 

method of solution ifthe reaulting solution can be shown to r'ulfill Laplace's equation 

in a charge-free region·.. Thus no matter how the ~olution is obtained, :i..f it satisfies 

these conditions, the problem i~ considered solved. 
. . . 

The proof of this theorem can: easily be given by means of Green's theorem.; Tf 

,.~-.. 

we put p '\!~into Gauss 9 divergence theorem (1.7) as the vector field, we obtain: 

(4 .. l)f~v ~ • d"l =I· v ·<f(v ~)dv = jj{. [<vlf)2 
+ .0v 2 ~ J dv 

s vv v 
The last term vanishes, from Laplace's equationJ) if we choose our surface of integration 

in such a way as to exclude all charged regions from the regio~ of integration. It 

may be necessary to employ surfaces internal to S in order to entirely exclude the 

charges from S and from 'v, as was done in Figure (1.2). 
. . 

Let us suppose that two different potentials, ~1. and {62 are each a solution of 

a given potential problem. Both ¢i and Jlf2 are to satisfy the boundary conditions: 

hence on the boundary pf1 = .02 or c) !r :•. "" .ff~. If we substitute· the difference 

I 
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5t1 ·= ~ 2 for ¢ in equation (4 .• 1) we have: 

f ~ ~ {r~ · J 2 (4.2) (¢1 .. ¢2 ) \) (¢1 - ¢2 )•dS = L'V(9J'1 - ¢2 ). dv 

Either the boundary condition ¢~ =~ ¢2 or ~~;, ~~ 'df~ assures the vanishing of the 

. . ,~.-~7;1 :~ .:t;l. 

left side of Equation (4.2), and hence the vanishing of the right side. Since the 

integrand of the right side o~ (4.2) is positive definite, it must vanish in order 

for this integral to vanish; hence throughout v, we have: 

C = a constant 

Hence the two potentials that were assumed to be different yet solutions of the same 

boundary conditions can differ at most by an additive constant, which vanishes when 

the gradient ~s taken~ therefore these potentials will give the same electric field 

di stri but ions. 

solution by Green • s ·Rec:fpr.ociation ''theorem . 

A. large. number of theorems that are useful for the solution of electrostatic 

problems serve to transform the solution of a known~ presumably simpler problem, to . 

the solution of another problem whose solution is desired. Of such theorems, one of 

the most useful is Green's reciprocity theorem. Let us consider a set of point 

charges where the. P?tentials due to the other charges are given by a set of numbers 

,1j and let the charges on such regions be qj. The potential at the point j is related 

to the charge at the point j or on the region j by the expression: 

(4.4) 

The prime on the summation sign means that the term where i "" j is to be omitted 

from the summation. If, on the other hand, a set of charges q.' are placed on the same 
J 

regions, giving rise to the corresponding potentials ¢j' 11 these are related by the 

expressiong 

(4.5) 

\ 
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If we multiply Equation (4.4) by qj' and Equation· (4.,5) by qj-9 and then sum each ' 

equation over the 'index j 8 and note that rij i's a symme·tric function of the coordinates, 

we obtain: 

' 
n n 1 · . 1. nv qiqf n - - t 1. 

{4.6) Ji .q. a .. 4nk
0 

L L 9fjq: =[ L qiqj 

J J rij· r .. 4nk
0 i=1 j=1 J j=l i"'l ~J 

.1' n' q. ~q ~ n .. t_ t 
q• Bq • 1 p!o 

""4nk
0 L 

~ J L. ¢j'9qj 
~ ·J 

4nk
0 

j qj 
i=1 

rij 
j=l j""l i""l 

rij 

Since the indices i and j in the expressions on the right are Su.mmation dmnmies we 

can trade them in one expression and getg 

We can now gener.alize this theorem from a set of. point charges .to a set of n. conductors 

of potentials ¢J· carrying charges q.; this generalization follows by combining the 
J . 

points of equal pfj in Equation (4.7) into a single term. Equation {4.7) thus applies 

directly to such a system of conductors o An application of Equation (4. 7) to the soiutio~ 

of a potential problem is given on p'age 44. 

Solution by Green's Function 

A great variety of solutions of potential problems can be generated from the 

knowledge of what is known as a Green°s function. The Green's function for a 

particular geometrical arrangement is the solution o-f the potential problem for 

this given geometrical arrangement of grounded conducting boundaries, where the only 

charge present is a unit .point charge located at a point Pe rt should be noted that 

the grounded conducting boundaries may be at infinity and the point charge need not 

be surrounded by a zero potential surface at a finite distance. It may be shown with 
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the aid of Green's Reciprocation Theorem that the Gr€)en 9s function for a particular 

geometry is a symmetrical function of the coordinates of the unit charge located at 

p' and the coordinates of the point of observation p. 

Two general types of- problems can be solved -by. the use of Green 1 s function. One 

type of problem is one in which th~ potential distribution over a certain conducting

boundary is given, and the other type of problem is one in which the charge distribution 

in a region within a conducting boundary is giveno The derivation of the solution 

of both of these problems can be given together ''by me-ans of' Green • s 'Theorem: 

Let us apply this theorem to thee geometry of Figure (4~if 

Figure (4ol) 

. ·~·) 
field / p 
point 1)/. 

0 p . G = ) 
'X+ _1:._ =o 

4nk
0 

on S 

't' and''¢ in -(lol8) are arbitrary .functions of- position which are required to be 

non singular thro~ghout vo ~t ~;be the desired solution of a particular potential 

problem and iet \,JJ = G be the Greerin s function for the geometry of this problem 11 

that is the solution of .the p.roblem of a unit 'point charge located at r ,;. -0 with s

groundedo G will be of the form: 

(4 .. 8) 

;~:: 

.... 
I 
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where X. represents the potentia~ due to .. the induced charges on . s. X is harmonic )f. 

in v. G therefore has a singularity only at r ~ 0 and hence, as in Chapter 1, 

we must surround p 9 with a Sm.all sphere S1 in order to satisfy the requirements 

associated with Green 9 s theorem for the non singularity of¢ and~. Hence 

substituting (4.8) into (1.18) we haves 

2 
Since ~does not include r = 0,\7 G = 0 throughout_~. Also by definition G = 0 

on s. The integral over S9 becomes» in the limit of very small radius: 

Hence~ collecting the non vanishing terms; we haves 

(4.,13) 

Let us now consider two cases: 

(1) The surface surrounding the point p 1 is grounded;)makirig Jt. = o. and 
. s 

v 2 ~ = = f/k
0

, due to the presence of the charge distribution (? throughout v. 

Equation (4.13) then reduces to: 

This expression is. of courseD fairly obvious, since it merely represents the 

. principle of superposition applied to the density of point sources within the 

volume ;r', with each ·unit sources. of which the density f consists, contributing 

share to the potential fd. 9 by the superposition indicated by the integral • 
. p . 

its 

(2) Let there be no sources of [lf throughout the volume V:,\12~ = o, but let us 

* A harmonic function is a function that is a solution of Laplace's equation (1.17 ). 
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assume that pf is a given function pfs on the surfaceS. In this case Equation (4 .. 13) 

reduces tog 

(4.15) 

This gives the expression for the potential wjthin a given region enclosed by a 

conducting boundary where differ~nt parts of the boundary are raised to a given 

set o-f potentials. This solution gives the potential within this boundary in 

termS Of the SUrface integral Of the ·potential On the boundary 11 multiplied by 

the· norina:l derivative of the Green 8 s functi_on .. Physically the normal derivative 

of the Greenvs function represents the surface charge density that is induced on 

the gro·unded conductip.g boundary by a unit charge at the point. p'. The so 1 uti on 

(4.15) then gives the solution of the potential problem corresponding to a given 

potential on the boundary in terms of the integral of this potential, multiplied 

by the induced charge produced on the grounded boundary by a unit charge placed 

at the field point. If we wish to express (4.15) directly in terms of the charge 

0"-'ls induced on the grounded boundary we note from Equation (3.,16) thata 

and thus (4 .. 15) becomes& 

( 4 .,1 7) ~ a = - J¢ (T.l dS 
p s s 

Theorem { 4.17) ·may 8.1 so be derived directly by the use of Green's Reciprocation 

Theorem, (4.,7).. Let us consider for the two cases to be used in the reciprocation 

theorem& 

(1) Let the surface S .be grounded and let a single charge ~~ be located at 

the point p' 11 and let this charge induce charges qlj on the j~ region of the 

boundary So 

(2) Let the charge at p 1 be removed, but let the surface S be divided into 

~\ 
/ 
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sections, each at a constant potential, the potential of the j!!!. sectio~ of S 

being Jt. '· L~t Jt.p, = potential at p' in case (2)e 
JS 

Relating these two cases by means of (4.7) we obtain: 

(4.18) n ,, 

qp, It, 8 + 2:- ql"" ¢. = ,o + 0 
p j=l , .J JS 

Note that the two zeros on the right side of (4ol8) arise from the fact that on 

the one hand the potential is zero over the entire boundary in case (1 ), anq that 

the charge at p 1 is zero in case (2). If we let qp 1 be unity in the first cases 

we obtain: 
n 

(4.19) Ji. = ""22 11 q 
p

1 
j=l: js lj 

This expression is identical with (4.17) but has been obtained, directly in terms 

of the induced charges, in a way that is more obvious physically. 'Several examples 

will be given later of the derivation of Green's function for various conducting 

boundaries. The solutions to potential problems~ of the two types mentioned 

on page 443, can then be written down immediately. 

Solution by Inversion 

The process of inversion is a special case, that is, valid in two dimensions 

as well as in three dimensions, in which a set o'f solutions of one potential 

.problem can be transformed into the solutions of another potential problem. The 

inversion transformation is a restricted type of transformation. In two dimensions 

more general classes of such transfr:rmations can be found, than the inversion, 

but in three dimensions more general classes cannot be obtained. 

One of the methods by which the solution of a problem can often by trans-

formed into the solution of a simpler problem, is the inversion transformation 

on a sphere, as shown in Figure (4.2). It can be shown by direct differentiation 

that, if ¢p = fD(r,e»¢) is a solution of Laplace's equation thenlt'p• ""\fJ(r',e,¢) = 



46 

a. d a.2 
d r' p (i=T 9 e9 p) is also a. solution of Lapla.ce 9 s equa.tiono This tr~sforma.tion 

of the point r into the point r 9 
9 by the relation rrn = a.2~ maps the point 

p(r 9 G 9 ~) into its inversion point pR(a.2/r 9 G 9 ~) 9 moving the point along the 

radius vector from a. position inside the sphere of radius a to a point outside 

this sphere, or vice versao Let a. charge q and a charge q 9 be placed a.s shown in 

Figure (4o2). The rela.tiams.rrn = a.2 and ~..e_n ""a2 cause the ra.i;;io, r/J.. 1 = J../r' 

Figure (4o2) 

to holde and thus the triangles~ r~d and r•J.. udv are simila.re Thus we have: 

( )
r Jl. d 

'4.20- rr ... rr = err 

The potential a.t p before inversion is pfp .. q/4nk
0

d and the-potential a.t p 1 after 

inversi.on is Jipv ... q'/4nk0d 9 ; so we ha.veg 

.. ~ q1id ~.[ ~L. 
(4o21.) PJ... D (iT q 103 q rr 0 q .QV 

p ·. ' 

A suitable law for the inversion of charges must now be formulated. We can 

verify that the sphere of radius. a. will be a.t zero potential if a. charge q 

is placed a.t a. distance ~ from the center and simultaneously a. charge q 1 = -qa~ 

is placed at a. point. on the same .radius ve.ctor and a.t a dista:p.ce ~~- from the center 

., W~ ')pl.ow,frO!zi above that zero potential surfaces transform 
:· ~ •• • < • • " -. 

into zero potential surfaces o,. Th~us the inversion sphere a.t zero potential under 
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the influence of the. t.wo charges is to remain so after inversiono This is assured 
. . . - ' .. - .. I ' .' ~·:--.; .. 

if the two charges change places thus: 

.; 

; 

·So if a sphere. wh~ch is originally. at zero poten;tial is to remain at z~.fo potential 

after invers.ion ·about its own radius then we must use the relation: 

.. / a 

~ ~1 a: j_• ·f¥ ( 4. 23) = .. -=- = T q q .Q_ a. 
,. 

;. ,, 

for the inversion of 'charges a It is felt that it is more convenient ·f9r a charge 

; 

to retain.its original sign and only change :its magnitude.when' it is inverted, 

although this is not necessary if all charges undergoing an inversion are treated 

in the same wayo We now secure, by substituting (4.23) into (4.o21) the rule 

for .the inversi.on of potentials. 

(4.24) 
a r -=-r 1 a 

The transformation equat:i,.ons for su.ch quantities as volume or surface charge 

densities can be obtained by multiplying the charge transformation (4~23) by· 

the transformation of the appropriate geometrical quantitieso 

In an inversion transformation a point charge 'Wi]..l, 'b'ften. a:ppeair·" a't.•ithe' c~nter of 
~~ . . 

inversion in the transformed geometryo This point charge arises from the fact 

that the net charge in the original geometry had electric field lines that terminated 

On equal and OppOSite ChargeS located at infinityD and in the inverSiOns infinity 

is brought iri to the origi~ 

The main utility of the in~er'sion transformation is that it rectifies 

spherical boundaries'o Two freely charged intersection spheres may be inverted 

into two inter.secting planess and th~ plane bo~ndary problem is usually soluble 
. :-' 

by the method of imageso 

• 
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Solution by Electrical Images .. 

The method.· of' inv~n~~ion discussed above justifies the solution of the problem 

of a point charge opposite a gro·unded conducting sphere, as ·shOi.rm in Figure (4.3A), 

by means of the method of electrical images•. The sum of the potential from ·a point 

2a 

-11 
b 2a 4ab 

a+b r 

~2 4a2 
~ 

b a+b 2a(b-a) 
-~' .. b+a 

a+b ... 

/ 
./-

............. ¥· 

I \ 
I 

( ·---··- ··--···- ~- ~ --·-······ 

\ 
--0-·-------··--·:·.·· 

l. q'l t 
2 

.. \ 

\ .· . ~ = 0 

'· ./ ~Circle "--- __...,. of Inv~r si on,..... __.., 
¢ = 0 

'-------{Center of Inversion)-,------_... a , _ 
1 

_ 2a 
q2=-qlb q· 1--q 2-qla+b 

charge q located in free space near a conducting sphere of radius a, and from 

the charge that is induced on this sphere by q, will be a potential distribution 

in vvhich this sphere is an equal potential surface. The uniqueness theorem requires 

that the potential outside a grounded conducting sphere, under the influence of a 

point charge q, which is geometrically coincident with a sphere formed from the 

inversion of a grounded conducting plane under the influence of a charge and its 

electrical image in the plane, will be identical, if the distances of the charges from 4;· 

the spl1:re and plane obey the rule for inversion derived above. The potential corres= 

pending to. the point ~harge and the image which it makes in the grounded sphere is 

therefore the correct Green's function in the region bounded by the conducting 

sphere and by infinity. By means of the method of electrical images and the method 
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CHAPTER -5· TWO Dil\1ENSIOllfAL POTENTIAL PROBLEMS 

Potential problems involving·geometrical arrangements that may be approximated 

by a two'di.mensi?nal geometry with.~ infinite uniform. extent in the third direction 
'' -i I 

are frequently easier to solve· than three dimensional problems o Certain mathemati-

cal techniques m.ay be applied to them which do not exist in the case of three 
:.· -" 

:_-, • ., <· .• ,.··-' ·-· ·--~ " .. --" ;•.. - .; .. :.:-- ... .-·· ., ,_,, .. · 

dimensional problems o The method of complex vari~ble potential description combined 

with conformal transformation is an especie.lly powe~ful method of solution. 

We shall show that in two dimensions any function W; of a complex variable 

zv ~hieh is analytic will have real and inlaginary parts each of which individually 

sati!!~t'ies Laplace's eqttation in two dimensions,. Thus a sui table function VI = W(z 1 ) 

can completely describe the potential surfaces and the field lines caused by the 

geometry of a particular problemo If, ¢ + i ~ = W = W(z 1 ) = W(x1 + iy1 ), we may 

.separate real and imaginary parts and obtain ¢ = }6 (x1 ,y1 ) and y.' =if (x1 ,y1 ). 

The functions ¢ and 4J will be the equi-potential and field line surfaces or vice 

versao Therefore any transformation from .one complex· variable z1 to another z2 

will tr.ansform the solution of one. potential problem described by the first variable 

to the solution of another potential problem described by the second variable. In 

general a Whole class of two dlmensional potential distribution problems can be 

solved by the following_ process s 

(1) Obtain a transfonnation z2 = f(z 1 ) which will transform the geometric 

arrangement of the z1 coordi.ltate system into an .arrangement of the z2 coordinate 

system which will bring about a simp~if'i.cation in the problem. This coorcUnate 

transfonnatiori, z2 "" f(z 1 ) or z1 = g(z2 )~ must be so suited that it will carry 

the complex potential geometry 'i{ = W1 (z 1 ) of the original problem into a sircpler 

,, '.;' ,-_;. 

:,1) ;_; :_t ... 
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' .. ~:· 

I·• ............. :.~.cr. :11 

.. The new .complex 

· potential W2 must be that of a more easily soluble potential pr-oblem. 
• : ; • / ! .. ' • ~ ' ; . • .• 

(2) Express the potential solution Jtin the tr-ansformed z2 plane in such a 

way that ¢ + i yJ is an analytic function of a complex varfable. 

(3) Transfonn this solution back to 'the original z1 plane. 

We shall' now discuss the justification for this process •. Consider a £?unction 

W, = .{6 + i 'P = f(z ) where z = x + iyo In order for this functional relationship 

tC; be analytic, }6 and If must fulfill the Cauchy-Riemann differential. equationsa 

o'f ·· dt 
(51)-=.,.-

0 ox ay 

(52)~~ 2.L 
o dY . (3x 

By partial differentiation of Eq. (5.1) with respect to x and partial differentiation 

of Eq. (5.2) with respect to 'y and then adding the two resulting equations, and 

then repetition of the process with x andy interchanged, foilowedby subtraction 

we havea 

(5.3) 'V2'f = \12¢ "" 0 

Thus both¢ and ~ are hannonic function~. ··The functional r~lationship W = W(z) 

»Harmonic functions are functions which are solutions of Laplace's · equati~n. 

y 

as in F~gurju[5.1) by plotting the lines¢= constant, 

(\7 ¢= b~ ~l.) 
-+ 

can be demonstrated 

~=unit vector normal 
.to $3 curves. · .. · .. ' ' 

t 1 =unit vector tangent 
· to 1if curves. 

Figure (5.1) ·x 
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and the lineS~ a COnstant in the Z =X+ iy plane, after the function W has been 

separated in.to its real and ·imaginary parts .. · 

The ~ curves secur~d·-;by giving _a, succession of value~ to W may for example 

represent the. potenti!11- field of a problem, and the corresponding 'fJ. curves -
I ~ ' • ' ·, • • ' ' ' ·,' ' • • ' ' •' .~ * J '• ' ' ~ l ! ~ : •' ' ' ' • ' : • ' ' ' ;_: ·•·,' • •, •, • • i ,L :'>·) .. ~ .:;.. t~' ' '~· 

represent the electric f-ield , but these ~atter are usually referred to" as tha 
·., ... ' 

stream curveso 

*Note that since the 'functions pf and ~ satisfy' the Cauchy-Riemann relations 

( 5ol) and (5.2) that the c~rves ¢ "" constant and o/ = constant are normal to each 

other-~ · This may be easily seen, since if we solve· for the slopes or ¢ =.'~(x~~y) . 

and 4' = 'f (x,y) we have: 

( ~) = -
dx ~ = consto 

and(~ i.J'f ~ const. 
= -

Substituting the relations (5ol) and (5.2) we see thats 

.u 
'0 X 

~ 
ay 

\ . ·' .i. 

'j' . 

.... . , ' 

and thus at any common point· the curves will be normal to each· other. 

The fllix' of the< el~ctr.ic field which crosses a surface S, as in' FigUr~- (~f~:J:'),· 

·. -
lying along one. of the equi':"po:tential c~rves·, J6 = constant, 'between two stream.-~' 

... . : · · : . -- ' ' ::·. ~ .:'C"'<~:··:;·;;( ;:·. · 

curves o/l, and -~2i _and of unit height normal to the z plane is then gi·ven by· 

._._ ·-rr~ ... 
. ,~ ~' =' JJ~· E•dS 

s . i. 

·~he deriyation. of this equation is as followss 

the electric field flux 
crossing S 

p = rrE·ds = __ -· f!"v~·d-; = - rrr_~x- i + -11 j\ ~dt-= -J· 21 dn )}s . , )j s .JJsl.Q ilY :J s an 
By substitution from (5._1) and (5.2) we have:. 

~ ~ - ~ J ··.· -~dS·--· · :· . · ("V'f x dS)on = JI ( ~~ d4'~)· ... __ . --f[ ... . ..... ....... -
'QY Qx . . .. _ ..... , 1 

s . . . s 

"§ ~ 4' . .. . . 
at dt =\~2 -'V:~,. 

s 

... 
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· ... 

Thus the difference between two stream' functions \.fi: -a.n'd o/2 - r~pr'e'sents the 

electric flux passing between the unit height right cylinders generated by two _ 

neighboring lines lf1 and 'f 2 ., Thi~ means that no lines of forc'e cross the constant 

f line so This .is :the justification for calling lp _the stream f'unctio:ti, since' in, 

hydrodynamic problems in two dimensions 9 the LY lines actually _do tr:ace the stream_ 

~- lines of the fluidc Since electric flux lines do not cross the stream lines~ then 

the stream lines traced by giving t{" different constant values will trace the 

::.; electric field 0 when ¢' lines are the equipotentials of the fi~-ldo If" on the other 

-hand£! ltJ had been assumed to be the potential, then ¢ would have been the stream 

functiono In fact 3 this trading of the meaning of ¢ and lf.J is frequently useful 

in the solution of two dimensional problemso 

The above considerations __ penni t us to obtain immediately the capacity between 

any two conductors whose boUndaries coincide with two equipotential lines 161 and ~ 2 i 

and extend between two stream lines 'f 1 and Y' 2 • The capacity is given by: 

c = 
q 

~ = ff. l•dS = ~ from Equation 

(lo6) and the definit'ion of~o; 

C = electrical capacity 

and since the flux ~ is the change in the stream function 4J between the edges_ 

of the conductor surfaces being considered 9 this becomes: 

c = k 
0 

Note that in general the stream function is multiple valued if charges are present 

in the fieldo The net flux from a charged body is the multivaluedness of-the 

stream function in one circuit around_the bodyo 

Another quantity which can be calculated from a known function of the form 

W = W(z ), representing a particular geometry as_ in Figure (5ol)J) is the absolute 

magnitude of the field strengtllo Consider the modulus ,of the derivative of Wa 
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(507) , ~1= d (yf+ i '¥ )~ + d t¢+ i \fl) ~ 
dz . 0 x · · · dz -_ .. 0 y · · , dz 

·I~ f¥x dx + i ~l~':i ~{ dx +·~~ dy 

1
2!1 = U: ~ .21.- = 
dz ox J.ay 

The real and imaginary parts of dW/dz are thus respectively the x andy components 

of the gradient of the potential and therefore the modulus of dW/dz is equal to ~he 

' . 

magnitude of the electric field str~ngth~ 

We shall now consider the solution of several simple potential problems 

. ' 

expressed as functions of a complex variableo A much wider group of sol~tions 

can then '-~be obtained from these simple cases by any complex variable transformation. 

The Potehti~l of a Line-Charge. 

· The Coulomb field around a line charge with a linear charge density q is found 

by the use of Gauss' electric flux theorem)) Eq. (1.6), carrying out the integration 

over a circular cylinder ·or radius r, and of unit length, arranged coaxial with 

the line charge. This yields the field: 

.... 
...... qr 
E=---

2nk0r2 

The potential produced by the line charge may be secured by substitution of (5.9) 

into Eqo (1.11) and then carrying out a direct integration of the two dimensional 

Coulomb .. field, we have.a 

(5 .;10) p5 = - q ' ( ln r - ln ro) 2nk; 

Note that in two dimensional potential expressions it is not possible to arbitrarily 

set the potential at infinity equal to zero since ·the tw~ dimensional expression 

really represents the potentials-due ·to charge distributions which are of infinite 

extent along 'the z axis* and therefor~ the influence of the. distribution does not 

lf-The z axis is normal to the (x,y) or ~ _plane and sould not be confused with the 
z complex variabie z = x + iy. -

\ ,; 
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decrease • toward •infinity., ·. Consequ,ently. another zero _.point than infin,i ty ID.Ust. be 

chosen for the potential base. It must be remar~ed tl:).at a two dimensioi;tal problem 

can,, at mostg only be an approxim!ition to physical reality. since. it re.ally ~mplies . 

an infinit'e ch~rge along any che.,rged object., since t}1i.s o'Qject ,extends to infinity., 

and thus infinite energieso A physical problem can only be treated by two dimension-

al methods when it is possible to negl,eqt. end effects arising .from the .finite 

linear extent of the physical arrangem~:r:J.t,. In equation (5.10) the cylinder s~~round

ing the line charge at a distance. r 0 has been arbitrarily set at zero potentialo _ 

The complex potential function W corresponding to the line charge potential 

(5.10) is therefore seen by inspection, or a more complicated use of the Cauchy-

Riemann equations to be 3 

W = - __s_ (ln z-ln z0 ) = - ....9.....2 k · (ln r + i6 -lnr0 ) = 11 ~ 
2nk0 n 0 . ~ 

·e 
• z = re~ . 

~'f z = r 
0 0 

where ¢ represents the potential and If) , the stream function. Note. that the stream 

function, as might be expec,ted from the axial symmetry of the arrangement, is 

proportional to the polar angle e., where z 0 has been arbitrarily taken as real~ 
' ' ' I 

The comp.lex potential _function for any system of line charges can be obtained by 

the superposition of appropriate expression:;; like (5.11)., one for each line charge_. 

The Potential of a Unifonn ·Field~ 

~ 

The complex potential corresponding to a uniform field E., directed in the +x 

direction can be seen by inspection to be: 

where the potential function is ¢ = -. rEI X~ .and the stre~ functi.on is \f' = - I E I y. 

The above two cases are the basic potentials from which many more general cases 
.:'·1 

may be generated by transforma~ions and· s~perpositions. 

11\- The potential j6 has. been arbitr~rily sei? equal to ~.ero along the y axis. 
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'•. . ' : 

·.We. ·p.ow turn' to the analysis of the behavi·or of curves in a :small piece of a 
.. , ... !.:. 

complex: potential plan'e when a transformation ·or the plane is made. d6~~'i·der. a:.,. 
. . ~· 

transfort!l~Sttion from the· z
1 

plane to the .z2 plane 'given by the equatiorl: ;z'2 :,;; f(·z 1 ):: 

and let· the trahsforniati.on function f be. analytic,: except ·at a rii~ite ntikber· of.:-~. 
\ . ~ .. .• 1i r , • . , ' : _ • ~· \ ~-.; .• I - • 

• . • ·': <' --.... .',:\'' .. : •.•.• 

singularitie·s. At all non.,.singular points such a trans_fo.rmation is conformal .• · .. 
''.;. 

This means that the angle betweentwo intersecting lines ill the z1 pia.liEr, ·as 6]. -Jn 

Figur.e (5.21\.), transforms into an equal angle' between the transformatio'ns of the, ... 
two lines in the z2 plane, as 82 in Figure (5.2B)o This can be demons'ttated .as 

••• ~ ,-< 

follows: 

.j~··,·~) 
Figure (5~2A) · Figure J 5., 2B) 

- .··:·· -~-. 

Since'._all derivatives of an· analytic functio~ of a complex variable exis.£''ka are 

continuous, th~ d~rivative of the transfoniiatio:ri, dz2/dzl. wig be finit~ at ali 

·. ' 

point-s_, .excepting the singularities. Taking the de:rivative, .. dz2/dz 1 = f 1 (~ 1 ) and 
• f • ~-

remembering th~t the,argurilent of a product'is.equal.t~ the·s.:-nn .. 5:of the arguments·· 
. ""' -,~ 

. . 

of the factors, we have for the arg1,1Illent of the 'differenti_al line e·lertie:rit P2 Q.2 : 

- ;- ;-

.(5.:J.4) arg (dz 1
2 ) = [arg f 1 (z 1 ))p + arg (dz 1

1 ) 
. .· l 

:Subtracting (5.l4) froni' (5.13 ), and noting that the angle;s_;el.. and 9~ are the 
,,. ' 

' 
differences in the arguments of the respective dz 1 srwe hav~a 

L 

·· (5.,1.~). e1 · = 92 

In addition the m'odulus of '!;he der:lvative dz 2 /dz·1 .. = r'·{z 1 ) represents the 
,·!., 

scale factor by ·VIthich all spatial intervals, i~ 'the ne:ighbor.hood of a point, 
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are mu-ltiplied. This. may be seen by n9ting that the modulus of a product is equal 
• . ' "" • . ,.' :>, ' ' • •. ' . ·, ~ 

. . 

· _··to the ,product of the moduli of ·t}le. ft:l.ci:;ors. So· an infirti tes:imal~ triangle will 
;'·. 

I 

transform into a similar infinitesimal triangle in the new ·system. Thus: 

( 5. <6) ldz2 1·1 r • ( z )p I· dz 1 I 
.. 

·The similarity of this. transformed infinitesimal trangle is an alternate way of 

· seeing that. angles are pre·fie'rved. in complex transformations., Th:i,s· means that. the 
< :. 

othogonality between stream' functions and equi-potentials is invariant under a 

complex variable transformationo. 

Schwarz Transformationo 

The transformation required.to reduce a complicated set .of boundaries in the 

z1 plane to a single straight line boundary in the z2 plane c~ be derived in the·. 

case of rectlinear boundaries by the use of the Schwarz transformation. ·The 

Schwarz transformation will map the inside of a polygon in the z1 plane. ini:;o the 

' ... 
upper half of the ~z 2 plane. This transformation will be introduyed by illustrating 

the bending of one angle whose vertex is at the origin, as seen ,in Figures (5.31\) 

and ( 5.3B). Consider the simple t'ransformation: 

where -~ is not necessarily an integral or a rational number. By this transformation, 

Figure ( 5.3A) Figure (5.3B) 

points lying on the positive real axis in the z2 plane are mappings of. the points 

on the positive real ~is in· the }l plane with the scale along the axis changed 

by raisiz;g the x 1 coordinate to .~he 1/~ power, or at least. a branch of the 

transformation can ber chosen where this is so.· 

*A complementary trimsfqrmation can be derived which will map the outside of a · 
polygon into the· upper' half· plane~ .. 
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On the :'other ;hand,· fo'r points lying on the negative real axis in the z2 plane, 

Hence.the negative·real a.Jds''of the' z2 plane will be the mapping of a- st.raight line 

in the z1 plane, as is required by the conformal propertiesio:f." th~ t~ans~Orm.ation~ 
I (:· '• ;•' t. ~ ·' '~- P• !: '·:··· ~f: t-<4· : 'H ~ 1.· .. 

but this lin~ wiii make 'an angle rt~ With the p~sitive real z1 axis. The trailsfornia~ 

tion (5.17} i~ therefore the tralfsformation which maps the 'a.~ea of the up'per half 
.A· 

. ' . . . 

of the zl plane lying 'between el· :;··, 0. arid el. : .... n~ into the entire upper half 

of the z2 plane •. The transformation (5.17) has a branch point at z2 = 0, but 

is analytic everywhere else. 
. . . . 

Now. let' us co~'si'der the more general case shown iri. Figure (5.4) in which.' we 
) ... ;h 

have a number of points bi in the z~ plane which are the corners of a polygon . 

whose interior angles are ai. ·We wish to'map the interiO~ ~f the polygon into 
.. : ; . 

; '. . !. ·'" 

y z 1 plane z2 plane / ·-: .:.• 

,• '\. 

, .• '!'2 
: .• 'i -.~ 

,·,, 
,.;,-

Figure (5.4B)
1 

(5.41\) 

the upper half of the z2 plane •. Consider a transformation defined by the different:taf 
'.' .' 

equation: ,• 

C1 = a constant, possibly complex. 

This transformation ·will by analytic' everywhere except at the points z1 = ai• Hence 
.·: 40 

by the conformal- properties of' such a transformation the real z2 axis, z2 = ~· 

will be the mappirig'ofistraiglit'lirie segments in the z1 planeo The angles which 
',1: 

each of these strai~h~ l~:z.:t.e segme11"'!-~ make. with the. real axis· will· be· given··· · :":· .. ·· 

by the argument of dz1 /dz2 evaluat~d in the segment in question. 
. . 

If we take the 



~. .. 

argument of. Eq •. _-\p.l8) we. get~ 

(5.1S) arg (:!) 
We may also expresst 

( 5.20) arg.(ddzz2::~.) =· (dx;+idy1\ arg dx
2

+idy
2

) 
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When dz 2 lies along the real axis in the z2 plane. dy2 =o. S~ Eq. '(5.20) become·s, · 

when evaluated in the ith interval: 

Now when z2 lies on the real axis between ai and ai+l' the arg(z2-ar< i.') = 0 and 
. . -

the arg(z2=ar>i)"'1t• ·So substituting these values and (5.Fl) into (5.19}we· get: 

(5 •. 22) ei ... arg c1 + (~i+l + ~i+2 +--+~n)n 

Thus all points of the real axis segm:ent ai+l-ai are mappings of a line segment 

with slope ~i in the z1 plane. Now subtracting (5.22) from a shmQar expression 

to (5.22) for ei+l we obtain8 

From the geometry of l''igure ( 5e4A) we see that this angle difference of .;.fi~i+l 

at the point bi+l is related to the interior angle ai+l at each point by the 

relations 

Or transposing and changing the subscript by -1 we geta 

a:· 
~. = ...;! - 1 
t'J. . n 

Hence equation (5.18) becomest 

n a· 

( 5 26) d
dz, ... cl.1T.· (z2-a· ) ::<+ ~ 1 ) 

• · · Z2 1"'1 1 ~ . 

where the scale factor C1 gives both the 'relative scale and the relative angular 

orientation of the two geometries.· 
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In general 6 the :Schwarz transfonnation is a usefu;l ·one .proJtided that Equation 

(5.26) i_s integrable in terms of elementary functions. This is true 6, whth the 

exception· o; ~2~e;~~~·{;.·;,~~ses·~·-·~nly when the ~~gies are .multiples of 90° and not 

more than two corners are involved. In case the angles are not ~ultiples of 90° 

and more than one ~o~ner is irivol ved then ( 5~26) i.s u~u~Iiy not int-eg-~able in. 

terms of ,elemen~ary fun.ctions. One _further difficulty in the ·)ractical application 
' ' ; '' . , ; · .' , : ' ( I ~ · · . _. , · - r ' :· ;,~ 

of the Schwarz transformation is the fact that the resultant transformation is 

given in termf; of z 1 . = f(z 2 ) with the coordinates along the real axis in the z 2 

plane as the independent ·variab'ie:. ~~ther.tha~·:i.n terms of the coordinates of 

the z1 P..+StJ.~'' or the ._desired polygon as independent variable. · Therefore6 with . 
; ' . , ~ • ~ ;._ 'i ~ .: r . 1 . . • · • • . . . : ":' ·: • · · · , · · t ; : ; ' •. 

thE? e;x:ception qf the most simple cases 6 cQnsiderable computational labor:. is pften_ 
. ~ '. ' I •. ,i • , . ' . ' ' ' 

necessary to find out what the coordinates, ai of the mappings in the z 2 plane o~ · 
. . 

the corners. qf' the polygon in the zl. p_lane actually are in tenns of the ge01113 try 

of the;pi:ven_.Pr:o?.l~f!l· · Once .the ai are d?termined, the remainder of the solution 

of the potential problem is usually simple. Let us now consider some special 

simple cases of the Schwarz transformation. 

(l) Single Angle Transformations)ai.= 0 in each case. 
~ -: i .' ,.. . • ' . . .. •. . 

(a) a= n. ·The integration of Equation (5.26) gives: 

(5.27) z1 = C1 z2 + C2 

This is simply a uniform translation and rotation ~d is of no physical interest. 

(b) a = n/2 •. The integration of Equation (5.26) gives: 

(5.28) z1 = C3 z2
1/ 2 + C2 

We will omit the constant of translation C2 • This will map the first quadrant 

of the z1 plane into the upper half of the z2 plane. If~ 'for exa;11ple we assume 

that the complex potential in the z2 plane is gfven by ethe.un:!.fonn field complex 

potential solution: 

j.E!J;:2 

lEI Y2 

.... 
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. 
The VV function (5.12) Will transfo:r:m with the·· relation (5.28) to: . 

. ,'' . . . ' 

.. {~: ::: ::: ::::y:(; 2) 

(5.29) W= ~c4 lEI ·? 
vr = ¢ +'i \}) .. Zi~l 

jEI 
. 2 2 . 

Y{ = ... c4 (xl ~·y'l +2'l.xly'l) 
. '' ~·· 

and will solve the probiem of .a charged ;rectangula'r boundary, see Figure (5.5), 
; f . . 

or also problems. involving charged hyperboli~· c;ylinders. 

l. 

Figure ( 5. 5.A) Figure (5.5B) 

If the complex pote~tial in the z2 plane is taken to be the logarithmic . 

potential corresponding to a line charge~ Equation (5.11 ), and if the transformation 

(5.28) is then applied, we obtain the two dimensional Green 9 s function for an 

inside rectangular corner, if we have translated the line charge into the upper 

half of the z2 plane. This same transformation will give the Green's function 

for a problem having hyperbolic cylindrical boundaries, and thus problems involving 

such geometries are amenable to solution. 

(c). a = 0., Equation (5.26) integrates into: 

(5.30) ~ 1 = C3 lnz 2 + C2 

Omitting c2 we haves 

( 5.31) z 1 = C3 lnz 2 = C3 lnr2 + C3 ie2 

If C
3 

is real, the real part of,z 1 is then C3 lnr2 , and the positive real z 2 axis 

is the mapping of the whole real z1 axis, and the upper half z2 plane maps into a; 
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strip of width C
3
n,· as iri Figure (5.6). The transformation. can be visualized by 

YJ. z1 plans .. _· .:_; --~.;.._.-~---·-

, 
1 

·. •,. 

\ 
. \ 

Figure ( 5 _.sB) 

considering the origin in the z2 plane to be pushed to m,inus infinity' e.nd the 

negative real axis of the z2 plane to be revel ved clock\v.ise to a position para1l,eJ 
.; 

to the positive real axis but located above it a distance'C 3n, as seen in Figure 
' '• . . . '•' 

(5.6A). · .. This transfonna~ion t:hu~ res~lts in a periodic configuation in the z 1 

I ' 

plane, of which the strip C3n ·wide is the first repeat. 'rhe upper half .of the z2 

plane is the mapping of the first strip of this configuration in the z1 plane. 

The lower half of the z2 plane is the mapping of the strip lying between Yl = C3n 

and y 1 = 2C 3n in the z1 plane, and so on.' This transformation is a very useful 

one in the solution of potential problerris 'involving •grids, repeating condenser. 

plates, and other geometries that repeat in one direction. 

(2) Multiple Angle· Transfonnation·s~ 

lf two upward 90° bends are made in the real axis of the·. z2 plane at ! a, 

then the z2 plane will be the mapping of the vertically oriented, semi-infiAite 

strip seen in Figure (5.7A). The differential equation (5.26) becomes: 

(5.32) 

J z~-a 2 

The relation C1 = iC2 was introduced to rotate the fligure 90° to place it in the 

orientation shown.· Equation (5.32) integrates into: 

(5.33) . z 1 = C2 sin-l (~, z2 = a sin{~) 
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In practi(le 1 this transformation is mainlJr used as a transformation of the z1 plane 
!·.,. ... ,. 

into the z2 pl.,ane. If we consider a uniform complex potential field Win the zl. 

plane: 

- .. , 

and if we map this fiel4 into the z2 plane by the. relation (5.33) then the cross 

section is pro<;l.'llced of a field distribution corresponding to the potential around 

a.charged.condu,~ting strip of width 2a, or trading potential and stream functions, 
. ' ( ,• . . . 

the potential due to a slotD in a conducting sheet, of ~~dth 2a along the real z2 

axis. The major axis of the slqt or strip will lie normal to the plane of Figure 

. (5.7B). Equation (5.12) into which (5.33) has been substituted can be resolved 

.I y 

I 

Figure (5.7A) 

\. 
\ 

y 

·Figure 

I 
j / 

' 

/ 

into its real and imaginary parts, and if the ·real part ¢ and the imaginary part· 

lt.J are given a set of constant values, they will characterize the equations· of 

the arrangement. These equations tur:h. outto be the equations of confocal elliptic 

and hyperbolic cylinders., as in Figure (5.7B) .. 

If for instance the fields at each of a series of condeil.ser plates of 

alternati~g potentials are givenp by an additional zero angle transformation the 

above solution for a slot can be used for the calculation of multiple condenser 

plate end effects. There are a great many ex~mples of cases where the Schwarz 

transformation results in integrable different_ial equations. Frequentl;y ~he 

solution appears in a form which is deceptively simple since it is usually 
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stated in the tc;rms of the coordinates of the complex geometry·, z1 , as a function 

of the:··co6rdinates of the si~ple 'geometry, z2 , 'as independent variable, rather 

than the .other way around. It is sometimes very difficult to solve for the z2 

coordinates as a function of the z1 coordinates • 

• • ,, : •, "; , > c . 
1 

. • •• ' , oi ~. t · t•·./ •I ':;it·~~ <~~t.;-"·•,~ ~~· ·i 1 -.: fil.::~; ·1:,'··'~ 
Direct So 1 uti on' of Lap lace's Equation in Two Dimensions by the' Method 'of Haniloni'c s. 

Laplace's equation possesses a set of separabie solutions in certain coordinate 

systems. By separable we mean that the potential can be expressed in terms of 
.. ~ . 

the product of functions of each of the coordinates s'eparately• Potential splutions 

expressed in such separable coordinate systems are of course particularly useful 

in case the geometrical boundaries of the problem being considered coincide vnth 

one of the coordinate surfaces in that' coordinate system. Let us consider this 

method in two dimensions. Laplace's Equation (1.17) expr'esse·d in pla.ri.e polar 

coordinates is! 

(5.34) = 0 

To achieve separation, we leta 

(5.35) ¢ = R(r). @{e) .;i 

Upon substitution of (5.35) into (5.34) and division b~ ~-~~'~g~t: 

r ~ (oR) 1 a2 @ 
(5~36) R a r \ r ~ r +@ . d e2 = o 

Since Equation ( 5.36) is separated into two terms which are_ respecti:ve;~y functions: 

of r and. e only and there_fore must be individually constant,.· .we may arbitrarily 

2 
set the first t~rm of (5.36) equal to krf\• This gives: 

Note that separation of the differential equation in general results in a set of 

solutions that are characterized by a parameter k~· These solutions are obtained 
.. ' . . ·. -~ t 

by integrating Equations (5.37}, giving, 

(5.38) k,.,l o, Rm = · c-~k~~"' -:· nr .. k, ®..., hi. .HI ' 
= AM cos k,., e + Bh'l sin k~e 

Iv.-i= 0, Ro = G + H ln r, ~d = E + F e 

and hence a general solution. 

.~\ 

.. ' 



,. 

..... 

65 

e>O ~ 

(5.39) ~ = LR~®,., 
N'\ =o 

=. L (.t\.M cos ~e+Biflsin k~ e)(~rk"" + ~r-km) + 
M=l 

.is obtained from a linear superposition· of the individual .solutions of Equations 

(5.38) ... 

· That Equation ( q.39) is. actually a general solution and that. we have 

generated a complete.orthogonal set of·solutions, subject to certain conditions., 

,,can '1:)~ sh'ovm byHim~re general analysts of the series given in E.quation (5o39)o 
0, j I ' 

In order to apply 1:!.' solution of the type ·of Eq~ntion ( 5.39) to the splution of a 
~ ' . ' . 

practical problem we must first expr~ss certain already known potential problem 
. ' .,. . 

: s'Ql:t~-tions,in i;J:J.e '?am~ form a~ (5~39 ). and theri attempt to superimp~~e on such 
> I • ' ' 

solutions additional potentials, with undetermined coeffici.ents,. of the general 

form of (5.39). Then th~. coefficient.s are to be determined by the use of the 

boundary conditions of the given problem. 

Let us illustrate this general method by considering the problem of a line 

charge located at a distance r
0 

from the axis of a dielectric cylinder of radius 

a and specifi~ inductive capacity k, as seen in Figure (5.8B). Let us first 

express the logarithmic potential of the line charge alone, as seen in Figure 

(5.8A), ·in the same form as Equation (5.39). This amounts to shifting the origin 

of the logarithmic potential. Since (5.39) represents the general solution of 

Laplace·' s :equation in plane polar coordinates and is in general non-singular~ 

except at r = 0, the ·potential of a line charge from ( 5.·10 ), with the arbitrary 

new ··origin 

---field point 

r 
0 

. Figure (5.8A) 

riginal origin 

q 
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Fi gur~ .. _(5. 8B) 

potential base, 2n~o lnr0 , omitted: 

-~- r . : 

* (5.40) . ¢ = - q·· lnR 
·2nk

0 
,· , . 

cannot in general. be exp:ressed.l;>y lit sin,gl~ exp~sion .of the. type in:(5.,39), 1-but, · . .. : 

must be expressed in terms of two different ,solu"jJio:r;s i one valid in,,the region: wh~re 

r < r 
0 

and one valid in the region where r> r 
0

• 

f • . ; 

;!! ·:·. 

,.Note that the r
0 

in the omitted arbitrary potentie.l b~se of (5.10) is not 
necessarily the same r 

0 
as that in Figure.s (5.8.A. and B).· 

These two different expansions of.¢ for the line charge must fit. together .at 
' . .., ' .·, .. ·· 

r = r 
0 

in such a way that,·: th~ der.i:vative-·sha11 ·be discdritin~ous only at the point 

where the line charge is located, but contin~ous at all other points. The dis-

continuity is such that the total flux emerging from that point corresponds to 

••••. -. 'J ••. ·-.• ~ ~ ;. ' ': .•. ;, 



67 

the value of the line charge per uni~ length.· 

The logarithmic potential '(5.40) of a line'charge at the origin can b~? put 

into th.e fonn of ( 5.39) of an isolated line charge located at e = 0 and r = r 0 ~ 

as in Fi·gure (~~8A) 1 - by expressing the radial distance R by the· law of 

cosines~ R = (r2 + r~..: 2rr
0

cos e)
1
/

2
,-and then ~xpanding ina power serie~ in 

r/r
0

, for use when r< r
0

, and in rofr, for use when r >r
0

• This process Yrill 

~enerate a Fourier-Laurent expansion of' the logarithmic potential for a line charge 

not i~cated- at the origin. The series will 'be convergent within th~ir respective 

.- rang~s of validity. Thus for the , potential due to a line charge only we have from 

thee expansion of' ( 5.40): 

f= ~(¥-\' 
M=l t;;} 

' ~ !. ('!A "-1)1-\l'()r) 
~-· ·, 

COSMS -lnr. J 
cos ,e. -lnr J 

We will choose the origin of' our polar coordinate system, for the potential 

of the l~ne charge and dielectric cylinder·combined, at the center of the dielectric 

cylinder· with the radius vector corresponding to. ·a = 0 passing through the charge. 

·-Thus the·· coordinate- system will agree with that of Equations (5~41) and will be 

ai{'shown in. Figu:-re ( 5e8B ). To s~tis·fy the. boundary condition at the surface of 

the cylinder r = a, we shall consider the line charge solution ( 5.41) valid for 

0<. r ( q,, ·and superimpose on it a general solution of the type of ( 5~39 )I with 

km ·= n :~d, with undetennined coefficients An• Bn' E. and F, to 'accotuit for the 

- effect of the polarization of the dielectric _cylinder, and mEike a' separation. of .. . ' . . 

the potential into two parts ~ 1 and ¢2 to be valid outside and inside the cylinder 

· respecti~e1y~- Thi.!'l separation is made in order to assure a finite vaiue for the 

· pote_ntial at the ori{g~ anddc?jn;;ergence of thJe 

'· , (5.42): ~J. -= 2 n~ L 1 ~ cosne -lnr
0 

a<r<r o m=l 0 

',,' 0 . 

second series in each expressiont 
OoO ' -

+ [ B'~'~r-1'1'1 cosm e + F 
-m=l 

- ~ '' 

~ L Attfl'l'l cos me + -E 
MDl 
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Since the effect of the induced polari~,a_ti9~ charg~s tn ;the cyl,inder will b.e· · . · : 
i .J _\' · .. ·' '•. . ·. 

non•Ji~gular, both at :the origin and at }n;fin~ty,.·~the lo.g_a:r,it~ic .tenns of, {.5.39) 
. . ' :: ' -. - : .. '. . . ' ~ ~ . . .. 

. . 

)11 ~ali~ ·out.side thi:l cylinder~ )mct.o;nJy::. 1 ;th~.' .. po,sit:i,-y~ .ppwer~ o£: .t.:r 1'\ave. Ji~_~p.· }ls_e:d '.: · 
. ' • ' ·, • • . ' ~ ,, • -~ , .. ; : ' . ~ ','J . ; - --- • . . . ·. ~' -' . • • . • 

(3ol6) and (3o23) at .r = ae .. 
) . ·: 

,'•'w•,' • 
.-, 

'· .. •·,··. 

- .,.- ··:'';'1 

We can evaluate the. coefficients An_, Bn, E and F, by substitutin~ (5.42) int~ . 

(5~43) and 'th~ri 'equating the coe~~i~i~n~:s···~/~~ual order in, 9
1 
~enn ~y te~• • .. 

. '.-

to zeroo This procedure is ;'justified since';'·th,ese Fourier .series form a cet,!lp~ete 
. '"''. ·, 

orthogonal set. The resultant solution is: 

{5o44) 

. : .:. - -~ . 

2~fo. 1nro 

J ·:·: 

1'h~ potential ~ 1 - outside the cylinder is seen to correspond to an effective .line 
·.·.··. 

' I 

charge arrangement, with the role of the dielec~ric cylinder tru<en by :two,effe~~iy~ 

line'. ~a~gei,.:and t~e ~y~in~e~ a~se~t';-~he~e-:c;n:s~st of an e~fecti v~ -~arg~· -~({:~).· ;. 

located ~t ·:he ~-rigin, and an effe,c~i~~, ~h~~~~ q(i:~) lo~a~ed at the inversiqn .. · 
. .., .. 

point of 'th.e actual external line charge, ~~d t~~-.actual .charge. 

point lies on th~ 'vector ~ 0 _at a di'stance. a 2/r
0 

_from t}le origin • 
• !; -. }' ,1, -·,:._ .- '· •.: •• ) .' '· • " '·' ; 

hand the potential ~ 2 inside the cylinder is seen to correspond to an effective 
.... ; -<. r : "r r : -...:' . .. . ~ ! . 

The inversion . 
. ·:'· 

li'ne <;:ha.rge arrangement, with the dielectric cylinder S:bs,ent, of one effecti~e . , . 
' " • ' '" ·•I ;,i{' ;;: 

charge placed. at th~ position. of the actual charge but of s~ren_gth, i;~.. Therefor£3. 
. '. . . . i . '· .. (: i ·,,:,:- .:. :. {',;· ,·' ' •:_ 'i:' •.. .' ·: .. ·: ... ' .. ' '. . . 

this problem could have been solv~d byjthe method of _images m.enti.C?ll:eci .in pha.pter, 4 •. 

This fact .c.~n be .ve~i-fied di;e<ct£0'.-.b~ ~~e ~:e·· ~-~' ~~e \:~:g~ri t~ic. pot~nti~~s·~· N~te 

that the corresponding three-dime;b.~sionifl problem of ,~·J??~n~ chli:tg\3. a:r;td a <3,ielectric 
(' "'{' '; ••·• · • r • ·.:.+ ·-~. '.ff : ..... :: : .-. . . ' 

.r·:;. 
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.,. 
sphere does not have a solution :by the method of images,. 

Let us''tjak~ ru10ther example of the _solution of a problem in terms of cylindrical 

harmonicso-"~CB~sider awedge-shaped region bouded by grounded conducting ·surfaces 

. ' 

intersecting- at the origin With an· interior· ~gle a, a13 in Fig,;ure ( 5.~9 ). And 

consider a line charge of strength q per unit length located at the point (r 0 ,~) 

wi-t;hin the wedge o The solution of this P.roblem will give the Green 1 s function 

I 
J - '!> .. ¢e 
-~ e --(source point) 

II; 

Figure ( 5.9) 

for the region bounded by the intersecting conducting planes. "It is again clear 

that we cannot hope to express a solution by means of _a single equation valid 

throughout the region from r = 0 to r =p<> sinc.e the derivative of, the potential 

will be discontinuous at the point occupied by the line charge. Thus we must 

again construct the solution out of two solutions, one valid in the region r< r 0 

and the other valid in the region r > r o• We shall join these potential expressions . 

to each other on the cylindrical surface r = r
0 

by the flux condition corresponding 

to the charge qo 

Since the potential must vanish on the boundary where e = 0 and w,:here e = a 

the angular part of the solution must be of 'the form s~nt~e).' Thus in ( 5.39) 

kM = nn/ao In order to fulfill Laplace's Equation we set A =.E = F = G = H = 0 

in Equation (5o39) and have for the potentials every:Where ·inside the wedge:· 
00 

(5.45) ¢1 = L CM(!.....)ft\~ sin~ e 
.. 1" \ro . . a r< r

0 
... =-

·f- -(r ). mn . 
9fe s: ~ DM\r a 

r>r 
0 

· rn o : ·. : -

. mn e 
S1TI7·-. 
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The coefficients Cn and Dn must be equal in order to assure continuity of the .. 
potentials across the cfiindiical surface·r = r 0 • Let us evaluate Cn by inte

gratirg the''tot:al fl'ux from q over a small surface composed of two cylinders. 

one. :0-f r:-adius slightly l~rg~r and the .. other of radius slighi;ly smaller than r o• 
. ( : '- ·,; . ; ' ~t·~ .. : ' ·- . 

: . .1 .. 

e.nd two·. radiitl· planes closing the ends of the cylindrical arcs to make the 

infinitesimal surface completely surround the line charge, as seen in Figure 

(5 .. 10). ; The cylindrical surfaces are to be 'larger than the plane surfaces by 

an order of magnitude so that t}fe fluX: across the plane surfaces may be neglected 
. . 

relative to that. across the _cylir1drical· surfaces. We can represent thC: line 

.. 
charge q by an equivalent charge densit:r ~-. within ,:;:·. 

~r/~~~)~ 
s 

charge 

---------------------· ro 

,. :. : -~· ·-' yfl. 

--(ro. + /iro)-~--~...J 

Figure (5.10) 

From·Equa:ti'on (3.16) we have: 

Differentiating (5.45) we obtain: 

The total surface charge within the surfaces '{8' ~qual to the line charge q. 

The surface charge density distribution can be expressed by q ~(e - ~)where 

~ (G - ~) is a Dirac 6 function defined to be equal to zero at points where 

.t·. 



e r ~ and t.o be infinite at points where e ·= 'IS• -1-rt..:·such a ·w,ay .·thats . 

-(5.48) 

. ··' 
.! ••• 

.. } 

-:•·:··· 

., 
•.. ' 
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• .C:• 

If we ·substitute o-= q'·(e- ~)into (5.46) and also substitute thedi~ference 
. . 

between the potential deri:vatives fr~m (5.47) into (5.46) we can determine-the 

coefficient·s Pn by multiplying both sides of the resulting equation by 

and integrating from 0 to a.. The orthogonality of the sine functions in the 

region ln question will cause all terms except the term where n = m to vanish. 

The integral over the J .function can be evaluated immediately, since tlie sine 

function varies slowly relative to the variation of the f function and the .sine 

factor can be taken out of the integral when it is evaluated at' e = ~· The 

equation-. characteristic of the ~ function, expressing this mathematically, is: 

rb . 
(5.49) ')a ~(x- q)f(x)dx = f(c)/r 0 

a<.c<.b 

We thus obtain, not5.ng that r • r 0': 

(5,50) ~aS (9 - ~)sin~ 9 
de • 1 ia. ~mne) 2k c ~ --: · sin 2 - de o m a. r

0 
a. _ 

0 -

Integrating and replacing m by ne 

(5.51) 
.. -L ·. (~) 

. Cn -nnko s:t.n\: a. l 

and hence the complete solution isa 

(5.52) 

()C) { .) nn 
a . - !. ::... a . nnp . ~ k l: n\ r s:t.n a. s:t.n a. 

o nc:l o 

010 nn 

• n~ ·[- l.(E-)a sin nn 13 sin n_ne 
n r a. a. 

o nc:l ._ 0 . 
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This is the desired 
1' .. : ,! I I ·~~ ~ 

is a general one which is useful for deriving _;.~e ~r~~~-;.s·j{Uf.~~io~ Wi ~~~".':W,_ 
~ ~;- ~ • ": .. ·1:1 ·~-:....~ J-.~ ~·~· ~i. 0 J, \ • 

set of boundar'i~s·; eorresponding to equi-coordinate planes in a ~particular coordinate 
.:,: .. ,, :~-....... . 

system•· \ . " .. :_. .. ~ ., . ~ " ' . ~ .... , 

.t'' 

''. 
~- ;· .· -~~-: 

., .,. .. 
••..-..;' .. 

.. ~. 

;'·.::J· .. · :J:~· ····-··· ;;.. 
. ~.· d.r .. · ~- :. 

-~ 

• 'o ... ~ ·····""!-........ ~ lW'>' .... !''·~-'~-~~_ .... -t:t:;.~·\.it3:") -~11~;~:;~---~-t.. :.:ti\~'-J···!'·! .. 

.. :. 

.-( f ··: 

:-.r 
0 

:-- .... 

-;.. 

,: 

· .. -:. r . 

i .. 

.\ 

1',,· 

.... 
_,._ 

; ~ .. 

~ .: "' . 
.• r ••. .- ... ·:·. 

' .· 

t •. ~ 

! ::. 

·}, ... 

•" / O '1'::>• ~.:~ 1 

1.·-........... , . ;::~-

''-.. 

'I .•'· -~· ;:;o 
.: 

{' _ ... :. ·t •..... · 
.\ . t• 

\ 

-... ·,. ·-~ ;~ 

. : :· :.' 

!~, .. 

,_.·~ '-:"~: .. ·.n::~ .. 
. , , .. :..~·!. i; 

#- • .f"· ;· 
-~. ,. 

t.;J:t:,~ 

··~""f' ... •( 

... 
·.· -:·:.·1.f•.:_····'·. 

~-~~: ; .. J) . .. 

't!•. '> ,. •. 

It 
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CHAPTER 6 Tiffi.EE DIMENSio"NAL POTENTIAL PROBLEMS 

t . \ 

Let us now consider the solution of some examples of three d.imensional 

potential problems where Laplace's equation is,separable. Laplace's equation, 

expressed in sphe~ical polar coordfnates (r, e, ¢), is given byt 

(6.1) 
"' . 1 () ( zil.)' . 1 . d ( . ; .M)· . 1 £:f. .. 
\1

21= ·;2"'Tr" I' a r + r2sine de \.s:mQ()e + r2sin2e ;)¢2· = 0 

In order t?. achie;ve the separation of (6.1) let us puta 

where Y(e,¢) is known as a spherical hannonic. Substituting (6.2) into equation 
$ •. : • -

(6.1) and lettingt 

) ) 1 d ( 2 ~R) 
(6.3 ' ~(;n+l a R Tr ~ aT 

we obtain the separated equations: 

(6.4) -~~r (r2;~)-n(n+l)R=~ 

. (s.p).le ~i»,B:~·+ .,;; 9 :~ + n(n+l) sin 6't • o 

Again as -in Chapter 5 we have introduced a separation constant n. This has been 

possible since the differential operation of V 2 . on£ results in two tenils which 

are respectively either a function only of r or a function of Q and¢, and 

therefore must be indiVidually constant. The differential equation for the 

radial part of j;' (6 .4 ), has the solution: 

The set of 'functions Yn:(e,¢) which" are the solutions ·c,r (6-.,5) have orthogonality 

properties that ·are similar. t9 the :orth~gonality properties o·f the Fourier series, 

which we discussed in the chapter on two dimensional solutions. This may be 

·In Chapt~r 6. there are three similar ~ymbols: J is thepotentialJ ~·is the function 
used to separate variables inrR(r) ®(e):~ (~)J and¢ is the angular coordinate. 
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demonstrated directly by the use of Green 1 s· thecit~mJ·.::.:~. ·: ::: ... :. 
: . '-,, ' .. -·~·"···----.~~·· .. ···· : ..... ~~~·~ .......... ~ .. ~ ................. -.,.;.,_ ........ ,._ ... ,,.,. ~-..- ._,, ,.... ... 

Let S be the ·surface of a sphere. 

(1.18) we. obtain.: 

(So 7) ff"((R,·:rY~'\7 2 R2~2~R 2 Y:a'V~ 1 Y 1 )dv =<f. ;·(R~Ii~ ;~r2•~.Y2. ~ ·~iyl. ):•d.t 
)} J.lT ' s . ' . ' . 

The left side vanishes since ¢1 ru;_d ~/'are solutions of 'tapfac~'s e'quation. 

Carrying out the. in:di~ated differentiation and noting that the· ~:fofup~rient 'of:,the 

, ........ , ,·· .. , ___ /. . . ... ..... 

\1 operator~h:at is parallel to S does not operate': on the functio'i{Y,· we have: 

(6,8) e~-RtfY,Y2d&'O 
If the two radial functions correspond to different vai~es of the s~pa'rati'on 

constant n, they will have a different dependence on' r and thus th'eir logo.ri thmic 

derivatives will be unequal and therefore the left tenn will vanish only if the 
' ' ! •• • ' ·-"· • 

integral vanishes. 

'' ... -~· 
~. . l 

If this is so,p then the two spherical surfac~ ''harfuoni~s Y1 

surface, or an element of solid angle. 
.,_. . . -

This proof is independent of the particular 
~- .. ~· . 

nature of the coordinate system used, as long as Laplace 1 s equation is separable 
-. . i• ., ' '. ·' 

in this coordinate system~. We can therefore conclude .. that in general, .. ,o,r~h~~onal 
.. ·- r.· -·-·::· ... ·. 

functions S;re generated in the solution of Laplace's equation. 
,-,. . ... 

-~ ' . ·- : -. 

The spherical surface harmonics can be further separated by lettinga 
·:·-- .,. 
~ ; : ' 

This results in the following two equations, when m is· introduced: .as ·a:, separatiol'). 

·7·: .. :-,_ ... 

·• 11, = . cos· e 
': I 

. ..... . ~ . :. : . 

, •• 4'1 .. .- ,, ., '"' .... •.-~· ,,·, •·'"''> ,. - "''·'"'•• '•c 

'liThe proof is general if =tis taken as one of the coordinate planes. 
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These equations are solved byt.: ·.: 

l = E cos m ¢ + Ftn_sih.m '¢ 
. . m. . . 

when m f 0 

'·.·.· 

(6.13) i = G¢ + if 'When m = 0. 

The functions pnm(cos 9) and ~m(cos 9) are the associate Legendre· functions of 

the first and second kind respectively. Their mathematical properties can be found 

in, nUn1erous referen.ces. 

The Potential of a Point Charge •. · 

Let us now consider the application of these solutions of. Lapl(lqe 1.s equati_on 

.. tp problems whose~ geometry has azimuthal symmetry, that is problems for which 

m = o. The surface harmonic Y(e,¢) then has the forma 

We may .·obtain the potential of a point charge, expressed in terms of a series 

expansion in the rad,ial and angular functions obtained in the above separation of 

the coordinates, from the Coulomb potential (1.24), by expanding the cosine law 

expressionfor 1/Ra 
' 

(6.15) t. k'[&~Y +1- 2~ cosr12 
• ~(~}. l-

in powers o'f''r/r
0

·and rofr. 

ro ~-- 1/2 2- cos 9. 
r 

- ()01) 

1 1 ~ (r'V1 
. · 1 

(6.16) R' = r- L.;:.
0 

r} ·Pn(p)= r 
. o n o . 

L(~\n 
n=O r J 

For the same reasons as were used in the ·solution of the wedge problem in Chapter 

5, we must use two potentials, one valid in the region were r<. r
0 

and one valid 

in the region where r~r 0 , respectively. The physical arrangement is shmm in 

Figure (6.1). The two potentials aret 

(6.1Ei) ll . = -~ ~(~) Pn (p) 4nk
0

r 0 r( r
0 

A = ~ z.~r Pn (F) 
r> r~ 

:1:nk0r n=O ·. _, .. · ···'"··· 
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---·source point 

J._. 

'··,·· 

origin~ c~~~.}~ :~pil1~f 
~------~~~~~~~--~-~--------~~~ p . . . 

q 
/p = 4nk R 

. 0 

r /. 

'/:· 

Figure (6 .1) 

._.,'· 

. '···· 

The resulting potential of the point charge is therefore a Taylor-Laurent_ series: 

in r and a series of Legendre polynomials in cos e •. --

The Potential -of a Dielectric ·Sphere ar..:d a Point ·Charge• 

The ··set of point sblutions derived above can be used to gen<?r~te the .solutions 

of problems involving a number of peiint ·charges ·,and: havi~g ,boundaries _which 

possess . ":?herical symmetry. If we cons.ider for €l;icample th~. ~imp1e. prol;>~em of a 

. point charge and a' dielectric 'sphere· of radius a,. as sh01~ in)figure (6.,2), with 
·; .· .. 

r
0 

beihg the di.stanc~ from the ·center of: the sphere to the. point 
\ " 

charge. We will 

dielectric 
sphere 

~ .. 

\'· 

\ 

·P 

'\ . 

. field J?O:i,n-1? . · \3 
:~r·- __ 

1\F--------r--'-·_--_-_-,
9

_-_-.• ··~: _· -_·_-_· __ -:_·~ 1--J-.s-~u~~~ · 

' i1r 'l .. ·.. •• .• . • 

.. -~ .. ..,.· h.·--
. ----,.- - , .....•. ''" ._:. _.,,' 

.. ,·, 

Figure ( 6_. 2) 
., .. _/. 

need three expressions f~ §which are .vali;i in the following ranges of rt 

(6 .17) o~rc:a / 1 = L Anr!lpn(p) 
n=O 

a<r<ro f. = 4nforo t.o (~} Pn{)l} •ibBin"lPn{fl 
. . · .. '···-. . . 

00 ( n 
L-~} 
n=O 

. . . .. .. 

Pn {)>) +r ),;r-~'"? ri(p) •.. ·· .. · 
n=o' · ···- · · 
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The fit of /J. to j;. at r = a can be car~ied out in .the · sa.me- 'way in lNhich it was 
. ·: f ~ • \. ., • .• 

in the two dimensional caseo The fit of /.z to j 3 at r
0 

= r is inherent from the 

nat·ure of' the solutions in Equ&..tion,(6.,16)e The fact that the bounde.ry conditions 

(3ol6) and (3.20)must be fulfilled forall values of the angle ·e and the fact 
. . . . . . . 

that the angula-r 'functi~ns are orthogonal» mak:es it possible to equate the terms 

· ·· of the series separately and this equating of / 1 to j.z will cletermilJ.e the 

' ... 

coefficients ~ and Bn" The resulting solution is identical to the solution 

obtained by the imrers.:ion process outlined in Chapter 4, for k = oo • 

The Potentia1 of a Dielectric Snhere in- a Uniform Fiei<'i • 

.A,s a second e;:a.mple of a problem vrith spherical symmetry, consider a 

dielectric sphere.11 of specific inductive capacity· k, in a uniform field ·whose 

force lines are parallel to the x axis as shovrtl ·in Figure (6.3)o The lines of 
_, 

electric displacement D shown a 

Figure (6o3) 

The potential at infinity being uniform is given by: 

{6. 18) £
00 

= ~E 0 x = -E
0

r cos 0 = -E
0

r p = -E
0

rPJ. ()1) 

----Jtoo 

..;. 

From. (6 .6) ~d ·{6ol2) we have.» f~r- tl{~- po-tentials inside and outside the sphere, 



'.:. 

by inspectton9 the following expressions: 
~. 

(6·" 19 ) 'ji · = L P"rirnPn Cp) .: · · 
n=O . 

·QQ 

. .lz = [ ~nr-n-lPn(y.) -Eor 
: · ,n~O, , 

cos .e 
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n = w = F -. = ·_.0_. 
. ' "1;1 _ -""ln · ' m = H = 0 

I ... '.r '•; ' •,,''' I" 

The boundary conditions, jf,_ = £o and 1{~~) ={:.4) atr = a,must hold for 

all values of the angle e., Vie therefo:r;-e evaluate the constants An_ e.nd ~n by .-11,. 

equating the ccefficiGnts of equal povrers of cos 9 in the expansions and find. that: 

r~ : :: ~ : for n > 1 

This gives for the potentials: 

(6 .,21) cos e 

. ~ 

-3E0 

k+2 

(k-1 )E0 a3 

Ic+2 -

Note ·that the field E inside- the sphere is uilifon11, but is snaJ.J.er tha.'l the f'i(:,-"'-

outside the sphere 2-.t infini~y by the ratio 3/(k + 2)o Also the induced field of 

the sphere in U'e resion outsi.de the sphere is tl1at. of a dipole vohose moment is: 

(6 .. 22) 

Let a quantity L be kno;~n as the_ depo-larization f.act.or for a clielectric l)ody, 

defined asg 
-+ ..... 

IE/ -/E inside! .- __.. _.. 
(6 ?3' I ·---·~---·-----·-- (3ol2) J5·=-1{

0
(k-l)E 

.. ··· 
1 

-' - \:ko !F inside 

F'.or ·a sphere L ::. 1/3 ~ for a thin rod orieri.ted pe.ralle 1 to the fie 10._, L ::::' 0 --f.· 

and for a thin disk oriented normally to the field$ L = 1 o L'hus the electric 

field vJithin a dielectric body in a uniform fieid j_s always smaller tha.."1 the 

field at a large distance:> vJhile the c1ielectric displacement is always larger. 

The Potential of a Spherical Arbitrary Poten~al ~~ribu~ 

.. 
As a third example, let us consider a spherical surface, of 

, . 
rD..CtJ.US n, OVf' 

which the potential distribution is a given ftmctionj /(a, e), of the :;:u:!.i[,le e .. 
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We will have two potentials from Equations {6 .• 6) and (6.12),; one valid inside 

' .- .·: 

and'6ne valid outside the surfacet 

. 0() 

f = £ :AnrliPn(Jl)~ 
. r< a · n=O . 

(6.24) 

A "" 0 n 

. The constants 4n and Bn may be determined by equating the expressions in (6.24) 6 

with r =a~ to ¢(~ 1 e), and then multiplying the resulting equality by Pm(,U) and 

t~~ing advanta~e of the orthogonality condition: 

we have: 

Bn = a2n+l~ 

So the pote~ntials become& 

(6.27) 

j . = t 2~+1 an+lr-n-lpn(Jl)J. +lj(a,e')Pn'f')dfl 
r)a n=O . ·. -1 . 

The Potential of a Charged Ring. 

As a fifth example, let us consider the potential of a charged ring, of 

total charge q, possessing a half.angle 90 at the origin, and located at a 

_distance r
0 

from the origin_, as seen in Figure {6.4). The potential along the 

origin 
Figure (6.4) 

field point · 
{t(r,e) 
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z axis, the axis: of symmett;y::>( .±~.found by expanding 1/R ln.the. Coulomb potential, 

f"' g/4nk
0
Rn by Equation (6el6): 

/(zDo) ~. 
r<. r

0 
·( 

. : .. ~ . ; 

';,'·. 

; ~I . ~-~- i 

The]X)ten~ial at a. general_point 0 not lying on the. z axis, may be found by multiplying 

th .. 
the n- 'term in the. series by Pn{f) and Vt.rr~ting; r for z: 

oO 

. (6.,32) .. 4nk~ro L {~ 'f Pn(cos eo)Pn(cos e) 
n~o~o) . . 

The uniqueness theorem is essential to justify the argum~;nt that led to the above 

resulto 

We shall not discuss problems that involve .the associated Legendre functions 
. , 

Pnm(p) which appear in the pote~tial expression-s. in d.ses of aiimuthal ,asynunetry, 

and we shall also not discuss problems that involve the Legendre f~nctions of the 

second kind Q.nm(p.) which are sir1gular ·at p o::= • .! ill that is.~along th~:p6lai:": axis. 

involving conical· boundaries 9 where the z axis is. excluded from the r~~e of 

validity of the potentials •. 

The Solution of Laplace v s Equation in Cylindrical C.oordinates. 

Let us now consider the separation of IJaplace~:s equation in cylindrical 
. I . • 

. ! 

coordinates.,. Laplacefl's ·equation in Cr~¢Jiz) iss . 

(6 o33) 
l 

= 0 r 



81 

·~· 

we obtains 

(6o3~) ,; ~~ -(~'~) +''(k 2 ~ 2 ..;n2)1t:,; 0 , 

where k and n are the separati9n parameters. The character of the solution will 

differ markedly whether n or k are real or imaginary.·· If solut:i,ons are desired 
I 

- 1 
, . • . I 

which are single 'valued in the azimuth angl~: ¢, >'1:;hen' 'thE) solution' mu.:st be periodic 

in¢ and hence n_must be. rea:l •. If k is-real, 'the 'Solution -along the z axis will 

be exponential and the radial solutions will be in terms of the Bessel's fUnc~ions 

Jn andY~.: The integrals are therefore of the form: 

,; ... 

R(r) =·A:rn + Br-n k=O 

nfo 

n=O 

k=O 

If k arid n are both zero: 

j• (A lnr + B)(c¢ + D)(Ez + F) 

If the _cylindrical solution is required to be periodic in the z direction; 

then k must be imaginary, and the solutions of the radial equation will be Bessel 

functions of an imaginary variable which ·are usually designated by In and Kn• 
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Let us il,lustrate the use of thes~ functions :0~_·. o~e example. · Let us 

' 

.consider a problem possessing cylindrical symmetry ,"Vvhi,ch ·:1.13 ·UI:lifonn-. ra:dialiy 

and which has azimuthal symmetry. Thus m = o. 
;· .>) 

In general such a problem can .. 

be solved by the use of integrals in place ~·f~·ia·'~~~1i~~· ~ _ ~!~e iritfgral wpl 

have .the forma 

(6.37)r.zkzf(k)J (kr)dk 
0 0 

Instead of determining the set of coefficients in the sum, we must determine'' the 

value of the function f(k ). The potential of a point charge may be expressed 

by this integral and is 

'(6.38) 
1 1 

Ir = './ 2_'.' '2··· · · r +z 

given with the ~~d 

= .r.-J;kz J (1{r')dk, 
0 0 ·: 

of -the identitya 

~I . , 

(l~bere the + sign- is used for z-<:·o. and the - sign for z >O.) The Coulomb potentb.l , 
·-.... 

{.tkz J o (kr )dk 
0 

' \ 

. ··!' \ . ,· ''. ·t 

The potential of (6 .39) can then be used in combination with the. ;ip.duced•;potential 

of the form of (6 .38) to form the solution of a problem corresponding to plane , 
\ ;,,: +: 

boundaries normal to the z axis and under the influence of'~·ti point charge located 

at the origin. This layer structure, shovm in Figure (6.5), composed of severtil': 

layers of varying specific inductive caphcities, k 1 , k 2 , etc., has the potentials 

shown in the figure. If we apply the boundary condition~ at all of the- interfaces 
•.'' 

·..: 

and equate the functions under the integral sign, there will be a sufficient rl\.unber 

of equations to determine the functions, and therefore the solution • 

. ~ • .M. • . : l ' ~. ; . ;. 

. : ~ -~ ~ :: ~ .. : .. 

. : 
~ ·•. ... ': . 

> ·' 

; .. 
··. ·"' 

J, 



. ·, 

k 4 

' ..... , .. k~ "· -. 

¢i.'···· 
.. , 

q 

Figure ( 6 • 5 ) 
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X 

The disctission.'of b'oundary value problems given in the last three chapters 

is in no way a general one and. an attempt has been made to give only a few 

examples of the methods used in their solution. 

'' 

l ···: 

'·'· 

...... ,; 

.'! 

.. : ... 

. ·.1. 

. '.r ;· . 
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CHAPTER 7 ENERGY RELATIONS IN :rHE ELFXiTROSTATIC FIELD. 

Our discussion.of the .. electros.tat,iJ~ d~ielod.JJ.aS·-.tlini-s-- . .i~;·~~~n ·b~sed--·entirely 

on a sfng.le ··.~x~~-;~~~tal law~ name~;:.:d¢2ii[).' ;· i~w (1. 2) for the action at a 
t • : •. ; ,: ·_: .·; :·:_."' • .• • •• .,J . \\1, 

distance force betwe~~ two point charge·s,~ ; . The.~ lectr.ic. .. -f:Le'fd .. has been introduced 
. . . . ', • • . . ·. ~; : ... ~:-.' : '... ~-. ,, . .' ·._ .. _. : .• :. .. -!! ~.> ·_ .. :-., . L:':·~t<~·-.:;:,.:L~:~!:.'~\~- ·_-·:.. .f •. !··;-.'::'\,:. __ . f ' ' .-.. ~- .· 

as an inte·rfi~diate agent whos~ purpos~ ·is to simplify the description of the 
·- . :'. 

inte'raction between charges. The q~esti..on•of the .r.ealitf or:-the ~l~ctr.tG field 

as an :independent physical entitY .. therero·~e do'es ,not arise in these considerations. 

~:1axvie11 attempted to ascribe a _lar$er., degr.ee of physrcal .r.~afity t_o the electric 

field than will be necessary for our purpo9es. The fundamental reason for 

attributing a physical reality to the electric field will actually not b.ecome 
" l'' 

f.·· •. ;. 

apparent until non-static effects are discussed. However 1 :i.r we·'·assuin:e' the 

reality of Maxwell's electric fieid, it is neces~ary that all 'or the mechanical 
-~- -- . 

) l' 

properties~ of a system which is interacting electrically~ can be cescribed either.·. 

in terms of the s~urces which partake of the interaction or in terms of the fields 

thems·elves which are produced by the sources. 

This means that the detailed nature of the sources should not influence the 

action of a field on a given system of charges. The description of the electric 

field alone must be a sufficient description to determine what interaction occurs 

if a number of charges are introduced at given points in the field. This inter-

action must be independent of the configuration of the charges which are causing 

the field 0 

Therefore it should be possible to develop a field theory in v.mich we can 

describe the overall mechanical properties such as energy, equivalently in terms 

of the charges whicn are the sources of the field, or in terms of integrals over 

the field produced by the chargeso The only criterion for the correctness of such 

overall relations when expressed in terms of the field theory shall be that the 

results are equivalent to those which are obtained from a direct consideration 

of the action at a distance interaction of the charges responsible· ·rar· the field. 
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Let us consider a set of charges qi located in free space_ in regions where 
' . . . - : ' .. 

~ . '' ,r,· • 

the :potentials are i 1, ·'The ~or~, done in the course of the physical assembly 

of these already created charges, whibh. are initially located an infinite distance 

apart is given byt 

By assembling these charges we have changed the energy of the system~ and since 

all of the .forces are conservative, we can identify this expression f.or the work 

of as~embly with the energy of the system. This energy must be stored somevmere. 

However, the locati,on that one selects as the place of energy storage is .a function· 

of one 1 ~ point of.view. 
' ' ' ,. -. 

For example, if we· consider two masses on the end of a compressed spring, 

we have a system which possesses potential energy which will be relea~ed if the 

spring is allowed to expand.· In the expansion the masses will acquire kinetic 

energy. The physical location of the energy in this mechanical systemwhen it is 

in its initial condition is not necessarily in the spring. Phenomenol'ogicaily 

the masses may be considered to be initially in regions of higher potential ertergy 

than they are in ·after the expansion of the 'spring. Equation ( 7.1) corre spends 

' 
to the latter !>oint of view. We shall now try to transfonn (7.1) to an expr.ession 

1"1hich would make it appear as if the electrical energy resides in the so to speak 

11elastic 11 quality of the electric field, as would be required in ·order to' correspond 

to the point of view that the energy of the mass-spring system resides in the spring. 

The expression obtained by Maxwell for the energy in an electric field, 

expressed as a yo_lume integral· over the field isa 

{7.2) U=~fff E2 dv 

The integral is carried over all space. We shall now show ·'11hat the field energy 
'' 

U is in fact the same as the <a·ssembly work W~ · In order to show this let us 
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.... ~ 

-+ ·. 
introduce the partial fields Ei, each being the Cou·lomb field of only one; ~f the 

point charges that are responsible for the field.· ·1 and E2 are· then given bya 

:. ' 
·'·!.· 

where the prime on the swmmation indicates that the term for which i ·a j has been 

omitted from the sunUn.ation, since such tenns.are grouped separately in the,f'irst 

summation. If point charges are considered, the first term in the summation makes 

an infinite contribution to the integral- over ,E
2 

in (7 .2). Ho~ever, ti:ti:s ~inf'iriite 

term is independent of the relative position of the charges and therefore it must 

represent the work necessary to create the charges from an arbitrary zero point 

of energy. Although there is no obvious·reason why thi~. ~nerg;y of'.creation. tenn 

should be infinite, the reason for its infiniteness is irrelev~t since this 

energy· does not enter into problems of electrostatic .;interaction. Yfe .will 

therefore designate: 
/ 

(7 .4) 

as the self energy of the Sy-stem, and assume that this, term, for, reasons n.ot 

contained in electrostatic theory, will ultimately be found to be f'inite. , The 

Maxwell field energy expression (7.2) then becomes: 

( 7. 5) u = us + ~ t r%. (-9 t' ¢j )dv 
~=1 j=l 

where~ 
8 

¢. denotes the potential at the position of the i~ charge due to all 
. J 

·. J . .. 
of the charges except the i~ charge itself. Using the vector expressiont 

~· ..... . -+ 4 -+ ... 

(7.6) "J•(A¢)=¢\7 •A+A•\j ~ 

to perform an integration by parts, we obtain: · 

dv 
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and by 1,l.Sing-Gauss 1 theorems. (l.s ... and 1.7.), ~nd_ ~o:!;.tng .. :t.}lat '\! •Ei.is zero except 
•,; 

at the position of the i~ charge so thatL.¢' .. m.~Y be .. -,removed.from the integral 
' ' ': J.· J• ' ' . 

and the divergence evaluated in terms of' the source, we obtain: 
. ' ' ' ' • _., ~.' ' ~. ' II •' • ' 'i :. ·;· •: • ' 

. ··• . 
1 •· .. '· . 

q. ·' ;·,, 
~ 

i{ .-.-

0 

t :. ' ' ' ' ,, ' th'' . _:' . ' ' 
where pJi 0 = [. :¢ j ·is the-~ poteh tia,l at the i -:-' charge due· to .the other· charges. 

The surface ·term can be made arbitrarily small by ·letting the -boundary surface go 

to infinity. This is true since the fields decrease at least as the inver:se , 

second power, and the potential at least as the inverse first power of the distance_, 

while the differential area of integration increa_ses only as the square of the 

distance •. If' we consider that the integpal in ( 7.2) covers all of' space where 

there is a field, then. this integral, as a result of ( 7.8 ), reduces to,: 

u = u + 1/2 t ¢'.· 
0 
q. 

's ' ~ ~ . ·. i=:=l· 

The second term of this equation is identical to the expression for the 

1l'fork of' assembly of the charges from infinity ( 7.1), while the fitst term U
8 

is the self' energy corresponding to the energy used in the creation of the charges 

themselves. This analysis shows that (7.2) and (7.9) correspond to the same 

energy; however, (7 .2) expresses the energy as a volume. integral over an energy . 

density k
0
E2/2.extending over ail of space. No experiment can directly ascertain 

whether the energy resides in the field or is associated with the charge which 

produces the field •. 

In case dielectric bodies are present in the field, we shall show that 

Equation (7.2).becomes: 

(7 .10) • U ~ 1/:fff 1:D dv 

In the case of continuous charges, the self energy problem disappears. 
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Let; U:s'''c'ons'id~;F the chaiJ.gei' of 'energy when a· ·smal'l' increment of true 'charge 

~ f is' added· to· the fiela.·, The work done is gi veri byl·; . ~ 

( 7.11) 8 W = ~ ¢ ~ f dv • ~ ¢ J ( ~ :;)dv • t ¢( V • J ~)dv 
Using the vector relation (7 ~6·} and>Ga~§s·• :the'oremY·w~·\hEi:ve!i:' ·. .··;·'.' 

(7.12) &~w =,fv 0 ({~~)~v- Iff d"t.~~dv·=! orr)d·d1 ... ff &;. ~.i~~;; 
Dropping. the surface tenn 11 as. we did in the derivation of. ( 7.9 ),_ we :obtail'l;J,' 

~· 
This increment of work usually cannot be integrated unless B is a given function 

-+ ~ ·...,;.) . ' . " ,' ' ' ' '· ' ' ' ' .. ' 
of Do If 11 for example, E and D are related by a dielectric constant, as in (3.11 ), 

which is a fun~tion of position but not of 1, then the energy r~sulting from the 

•::,, -+ c ' ~ _, 

integration of the work increment from D = 0 to D = D gives: 

(7.,14) u =1 dW = rDmE·~; dv = f JD kko; (E
2

) dv = 1/2 J[ kk
0

E2dv 
0 0 0 

. = 1/2 f{"E'·"ri dv 

which is th~ same as we obtained before. 
1' 

The assumption of a dielectric constant k that does not change with time 

and is orily a· function of po.sition implies that the process of change of field 

is an isothermal process, since the dielectric constant is usually a. fun?~ion of 
- . . .· ~~ 

the temperature. If energy enters the dielectric it may heat the dielectr'ic and 

cause a variation of k with time. In order to assure isothermal behavior, the 

dielectric material in question must be in contact with a. heat bath which can 

abstract heat from it to maintain a. constant temperature. Thus we cannot equate 

the increment 'or work donet 

·.:-' 
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to the increase in total energy, since heat changes are also involved. The work 

increment done, as given by (7 .• 12), does however rep;esen~ the I)laximum work which 

can be extracted at a later time from the total electric field ~nergy • 

. Thermodynamically the maximum work which can be obtained fro~ a system under 

isothennal conditions is not the total energy but is the free energy F of the system. 

This .means that in the presence of dielectrics~ the eXpression U=l/2ff{l·f1 dv cannot 

be:identified wii?h the total energy of the system, but can only be identified with 

the thermodynamic free energy. This distinction, of course, vanishes when no 

materials. with temperature dependent d.ielectric properties are present in the field • 

...... 
In the thennodyna,mic sense the electric field E is a.nalogous to gas pressure· and 

-.> 

the displacement D is analogous to volume. 

·;The other thermodynamic functions can easily be. derived •. Since, if the total 

energy. is l(and the e.ntr-opy .,s: 

·(7.16) F = U- T S J dF = dU- TdS- SdT T =temperature 
. ~ 

we obtain, since dU - Tq.s ~~dDdv=increment· of work at c,onstant temperature 

dF = J[1.dJ?. dv - SdT and dF 1· . = HJ'Et·dri' dy as before •. 

. Tconstant 
. ' .· 

ST = .:.T ~F. = 
Hence: ·.. I 

.... ··Tin 
(((~ TE2 ~ dv = (((R~t :£. ~ dv 
JJJ 2 dt JJJ 2 k dt 

(?.l
7'u: ~ ~E 2 ·~ (Tk) dv =li;it ~ ~ (Tk) dv 

The heat absorbed during application of the field is thus1 

"(7 .1s) ~ Q = Tds = ffJi·r~ ~ (~dv 
If for example, the specific inductive capacity has the form: 

· · t7 ~ 19) k = 1 + X = 1 + A/T.. A = constant 

which applies to gases composed of molecules with a permanent dipole moment, then · · 
·- .dk r c 

dT .~ o,· a.I_ld hence· · o ·Q < 0 ~f o .D > .0. Hen.ce. heat will be given off when the field 

is' applied, and conversely. 

Fro~ now bn we will use only the free energy density in·our considerations. 

This will enable us to equate cp.anges. in the free energy directly to the mechanical 

work quantities responsible for them without making it necessary to include thermal 

quantities in the energy balance. The free energy expression, applicable even 
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in the presence of dielectrics: 

···('7'.10) U ··~· 1/2 N ~-~ dv .. 
i. (' 

behaves in electrical problems in the same manner as the chemical free energy,does 

in chemiqal ki.ne.tics, in the ,sen-se that a reaction wi.)l proceed until tl:le fre.e 
: ::·~, . ~_;'."·'i·:·:.:~r:~.:·~·-:_;· .. ·.•,·. ,··,t··_;:·'·,,;·i.~:;~; /:. ·:··.:··.: ,•:, J{i···~.:.:.,:~~·} ;t ·(.'.)::,::~· •. )_1-:i·.;. '\: ::r -~;· .G_~.::.?: ,.·~!··~;-:. ~~-

. . 

energy i;ak~es. on a minimum value. In the electric case, charr' 3S on a conductor 

will redistribute themselves in such a way that the over all free field energy 

vall be minimized •. We can show this directly. Let us consider a virtual process 

in which charges in equilibrium on a conductor are displaced by an infinitesimal 

amount along the constant potential .conductor surfaces in such a way that the 

total charge remains unchanged. The variation of free energy is given byt 

(7~20) ~u = 1j2N kk0d (E2
)dv ~~~-6'6 dv_ 

using Gauss' theorem and (3.6) and letting the su,rface tenn vanish, we have: 

(7.21) · ou"' ~ i.£b dv =ff[ -~.0·6:dv = ~[iv ~&D" ~ ~·<o't¢)] dv 

Su =2:_¢i fJ{$pidv -§ 8-;~·d? = L¢i[{f Cfidv = o 

The summation extends over each individual conductor which, s1nce it is 'at 

equilibrium, is at constant potential ¢i •. The last tenn vanishes since the total. 

charge on each conductor is unchap.ged and thus t.he variation· of the. fr~e energy 

·when a system is in equilibrium is zero. This theorem, usually kn.~wn ;as Thomson's 

theorem, shows that the free energy is actually an extremum at equilibrium. 

The term: 

(7 .22) 

is known 

~~ 

E•D 
Uv=T 

as the energy dertsi ty,... of the electrostatic field. 

•• More accuratelyt free energy density. 

It is a density in 
1 

~. 

the sense that its volume integral gives the overall energy' of the field.' · On 

the other hand,. in the same sense as it was impossible to localize the energy either 

in the field, or in the source charges, it is alSo impossible to asso.ciate energy 
: · .. : .. · .. ' .. '· 
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, .. --~·.:,.,~·.:,<:.-. .. ~: ' .. •' 1, 

in a definite way with e,ae;:P: ,~peeific· iroltune b'f"'field.>:'in a 'manner which can be 
.... -.. ! ... •, ,. . 

' ~ .. 

...,-erified by experiment •. -._._- _ 
.. , , .. 

In deriving tlt~; energy expression,- it is. assumed ~that the medium is held at 

r~st 'a.n~ h~nb~---no ~otk is d_on~ in m~t:i.on against f'brc~·s. · This implies that the 

virtual process of assembling the charges in the dielectrics is a process with 

particular constraints. The resultant energy expression is nevertheless general, 

'since no non.,.cons19rvative forces are involved. Jn Chapter 8, we shall consider 

:'the ~ore' general virtu~l proc~ss permitting inass mot~·onJ (7.14) will however 
.,. ', . . ~ .. 

·cdntiD.ua -to apply since the fin~l field energy is independent of history. 

;;; ··..f 
,;. ~ 

.·\; 



CHAPTER 8 
~: ~] 

FORCES ~·N THE ELECTROSTA'riC FIELD 
·• ; ' .: . 

~: ~:·.::;} ,;'"!;R;~·rp; ... ~ .. 

We shall now derl.lve the force per unit volume that acts on a dielectric body . 
... ·' 

when it is under the influence of an external electrostatic field. . ... ... '•. . ' .:- ~ . :· ..... 

',: 

If we are able to consider virtual displacements within the dielectric, then in 

view of the fact that the magnitude Of th; virt~al displacement $X is an .arbitrary, 
. . ' ~ ' ' . . 

.. _.,. ~- 't : • 

function of space, we can identi f'y the quantity F in Equation ( 8.1) With the true 
. v 

volume force. To say this in a different way, if it is an arbitrary velocity' field~ 

within a dielectric, then the rate at which energy is lost by the field is given b,Y: 

(8.,2) 

where~ represents the volume force as given above. The total free energy of the 

dielectric, and the field outside the dielectric, is given by: 

(7 .10) U = } JJ!1 .. Tt dv = ~ fjf ~: dv 

If a virtualdisplacement of the dielectric is carried out, there are two factors 

which can bring about an energy change. One factor is a change in the true .charge 

densities and the other factor is a change in the specific inductive capacity. 

We can put~, 

(8.3) bu= (:;)/t·(~~~~k 
The charge dependent term is given by: 

(8.4.) (}F) sf .. ssr ¢ s ('dv 

as was shown in the proof of Thomson's theorem (7.21). In computing the term 

that depends on the change in .the dielectric constant v1e must keep the total true 

It is assumed here that the virtual velocities u corresponding to the virtual 
displacements F;'Jt are sufficiently slow that the process ist a) reversible and 
b) isothennal. Under these conditions the change in free energy can be equated 
to the mechanical work done. 

'( 
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charge constarrt. 

we have: 

<a.s) (~~f ~ 2 ~J' f dv = - ~ffy~ i~d~';fff~: s_t dv 

'The last term ve.nishes since the ·volume: .:irl.:t}egra]< bf .the ·product·: of an irrotational ... '. ···~ . ' 

vector E and a solenoidal vector [i D .is zero. This fac~ may ~e ciemonstrated from 

the fact that an irrotational vector field may be represented by a scalar potential, 

4 

¥:-:i.th the aid of Equation (7.6). The field E is irrotational from (1.10) and the 
' . . 

variation of the displacement :i,s .solenoidal from th~ fact that t:l1e charge ts constant-~ 

a..'Yld the relation. (3.4). Hence substituting (8.4) and (8.5) into (8.3) and 

equating to (8.1) we have& 

(8.6) ~u ~fJJ (¢bf- ~ E
28 k) dv =- Jff -;:·.Gi dy 

and dividing (8.6) by d t we have a 

~=mr ~ ·1co 2 
( 6 • 7) d·t JJJ (¢ ~ t ~ -r E ~)dv =- f]J 

_.., ...... 
F •u dv 

v 

We must now express the time dependent derivatives ~f~~ t and dk/d t in 

. . ~ 

terms of the arbitrary velocity field u., This can be done in te,rms of the hydro-

· dynamic eque.tions of continui tys 

. 4 ~ .ge_ 
(8.8) 'V •<fu) +at . = o f =:= t:he ch~rge· density 

(8.9) v·cg-:) + '* = o g = the mass density 

which represent respectively the conservation of charge and mass. In order to 

calculate 0 k/ at we must associate the change in dielectric constant ·with the 

velocity flow. Since there is a net transpprt of ~material in a velocity· field 

the change in dielectric constant can only be_ as.sociated w'ith changes in geometry 

if we consider the time history of a volume element that is moving with the 

~· 
velocity u. The total derivative of a particular quantity, such as k or g,. when 

evaluated so that the observation point for this derivative moyes with a:chosen 
<,/ 

volume element in a v~locity field, _is known as the substantial derivative and 

is related' to.,the 'partia; d$it;{+ati Y:~~.:~d_:·to
1

·'~h~ ,~~i6~~~~: ~ ~Y: th~' rel~tion: 
\' \ . 



Hence the desired pa.r:~_=i:a.L,,de,rivatives are:·,,· 

1 • ' '/. 
•,i"> 

~k ~ -" Dk a _ -4 _.., . D 
( 8 11) -t.=- \1 k•u +-or .·~-.-.n,g•.u+~· · · ~ . · · a · . · v : nt at . , .~.. . ·. nt .... · 
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•'·. 
'· '.,. 

If vie 'have- a. dielectric· equation' of state, that is a. relation vihich gives the 

depe~d..ence of the dielectric constant on the density$ such a~ the Clausius~ 

Masotti. equati~n (3.44), then· the substantial derivative of the dielectric 

constant can be ·expressed in terms of the substantial d~rivative of the density 

byg 

(8.12) ~ ... ~~ 

The assumption that the dielectric' c'onstant depends on the mass cle~si ty alone . 

includes of course the assumption that the virtual processes are isotherlll.a·l. ~~ 
I . 

was discussed in Chapter 7. The substantial darivativ~ ··~f the. dehsi ty ,v:Lth 

respect to time in Equ~t:t"on (8.12) can be evaluated with the aid. of (8~11) and 

the equ~tion of continuity (8.9) givinga 

Dk dk c~ ...., . ~ dk ~.... ...IOJ .... ~ ;-, 
(8.13) Dt = dg qt + \J g•u; = dg l\}g. • u - \J o (gu)J 

Substituting this into (8.11) we geta 

ak dk ~ ...,. ~ -i' 

(8~14) at= "" erg. g.\J•u -\I k•u 

And then substituting (8.8) and (8.14) into (8;7) we have1. 
. . . ! •. ~: .. ' 

. dU JJf· [ ....... : ~ ko. · dk ...,. _., ko . _,.. 4] . 
. (8c.l5) dt = -¢\1 •<(>u) + 2 E

2 dg g\J "U + 2 E2 \) k•u dv 

Thi·~ expression mlist be brought into the form 6f · (8.2); the dot product of a.n 

.. ' .. . . . . . ,. .. ... 
expression'and the velocity u, in order to evaluate the volume force Fv• The 

first terin can be put in th'is form by using (7 .6) to integrate it by p~rts, artd ' . 

. . . 

assun1ing; that the integrals are extended over all spaces· · 
: '. ·. 
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The surface .. term vanishes since the boundary surface may be assumed to be outside 

of th~ ,:dielec"dri.c~· and :therefore· cnitside .:df' -~. r'egion of cliaFga · density• Similarly, 

the second te~ in <a·.l5) c.ili. be put -in ~t·h~ desired fonn by integrating by 

parts and droppi,pg~ .the. surface term: 

(8.17) 
~ ({( E2g·~ ~ ~ d~ 

-· ))) . . dg fJf 
~ 

.. .. 
k(, 

\/•(E2 
dk ~ 

= 2 dg gu) dv-
; 

Collecting terms· (8.i5') becpmes 

(8.18) ~-N [•f-; + ~E 2 V k- ~ v (E
2 :g) 1 

and by -comparing (8.18Land (8.2) we conclude thata 

. . 

· -~. ~ ko . ~ · · ko -+ 2 dk 
(8.19) Fv = fE - 2' ,E y k + 2" \7(E · d' g ) 

. ' ·.··.. . g 

is the volume force. The first tenn. in (8.19) gives the ordinary electrostatic 

ivoh.une forpe in agreement mih (i.l ). The second term gi vas a fo'rce ·which v.rill 

appear whenever 9_-fl inh.oni.ogenous 'dielectric is in an electric field.·· 1'he last 

. . 

term, knovm as the· electrostriction term, gi vas a voltime force on a d~electric 
. . 

in an inhomogenous electric field •. Note that the magnitude. of the electrostriction 

.· .. · . . . dk (ak~ 
term depe~ds explidi tly thr.ough dg =\~ }r ori the electrical equation of state 

of the material. It is interesting to· note that the last term will never give a 

net force on a finite region of dielectric if we integrate it over a large 

enough protion of dielectric so that .its extremities ·are in a field-free region. 

Under this condition~ the. electr.ostriction term, being a· pure gradient te:hn,vd.ll 

integrate out. I.t is for. this reason that this· term is . frequEmtly omitted, since 

in the caiculation of over all' total forces on diele'ctric bodies, it usually does 

not contribute• In cases whei~e it can be .omitted, ho'wevEir, an incorrect pressure 

variation within the dielectric is· obtained, even though the total force_ is·· 

given correctly. 

Mru.rwell Str6SS Tensor 

Be0'ore w~ c'6nsid.er any: s'peC:l.fj,c 'e~ampie's of' the' application of the expression 

... ,,, ' 
:\., 
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for the general volume forc.e given. in Equatiop. (_8 .. ~9) we w1)1 reformulate this 

volume force in ~erms of ~.ts tlspa,ce stressn .. .In acc.ordance vd .. th a pure field . . .... .. . ~ ' . . . 

theory it should be possible to 

within a dielectric in terms.of 
· .. 

elemento This implies that the field is the' stress .transmitti.~g medium .in the 

same sense' that a string tying two we~ghts together is the medium .that. 'transniits 

a force from one weight to·; the other. This ·was a point. that 'Yfas emph~s:ized -by 

Maxvmll in order to bring out the importance and the physical reality of field 

quantities" Againj! in a similar.manner to the analogous energycase that we dis

cu.ssed in Chapter 7 11 we can only give ari alt~z:n~te descri~tion: of the way in. 

which. the forces actl) and cannot give 'a 9-efin,ite phys~cal proof of the v~liditY:. 

of 'the field concept11 as exemplified by :Squ~tiqn. (8 .. 19 ); .compared to the action at a 

distance concept 0 :. Since the only physical· fact that under~ie~ this entire 

discussion is CQulombvslaw, the remainder of the discussion beingmathematica~, 

one cannot expect to '()btainany physical concept regarding the mechanical inter-

action of charges which v.rill add .any ;ph~si.ca1·~ facts beyond Coulomb's law. , New 

physical.fac.ts based on the'field concept Will ari.se only when time dependent 

. effects in.the present. theory. are further irivesttgated i;:t later chapters. 

If we .c.onsider that, ~he force acti~g on a given volume is transmitted across 

the·el~U1ents_qf surface boundiri_g,that··volume 11 then this :transmitting force can 

be .formulated in -~?erms. of a· quantity kno'Wil as the· stress tensor T. 
.. :th 

The.·~J--. 

component Tij oftfl,e stress· tensor T is so constituted that .the i~ component 
~- ~ 

d.Fi of the force·dF transmitted across a surface element dS whose component in 

th · th d · t · . · dS . . b e J- ~rec ~on ~s jl! .~s g~ven y: 

3 

(8.,20) dFi =L. TiJ. dSJ~ 
j=l 

•' L o • • 0' oO' ~ • ~~. • ' 

It can be shown by the consideration 'of the equilibrium of a r~cj~angular: solid 

under surface stresses that the stress tensor T must be symmetric. We shall 

'f-. 
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adopt. the so-called Eins~ein summation convention which ordinarily states that 

a sununation is to be carried out over indicies that are repeated in any single 

term. So Equation (8.20) can be written as: 

(8. 2l) dFi = T .. dS. 
~J J 

If we integrate ( 8 o 21) to give the i:!:!:. component of the total force acting on a 

given volume, then this force is given by: 

( 8., 22 ) F · = rr T. .dS • 
~ ~J- J 

If this force is to be expresable. in terms of a volume force, whose j~ component. 

is Fvi then: 

(8 .. 23) Fi = f! TijdSj = f!J Fvidv 

.and hence, by Gauss' theorem (i.7) expressed in tensor .notation: 

the relation between the stress tensor and the volume force is:. 

{8e25) F .= n 

Thus if we express the volume force (8.19) as the tensor divergence of a 

certain quantity T then the quantity T can be identified with the surface st~ess 

tensor T that gave the stress transmitted by the field across the surface of the 

volume in Equation (8.,20). Let us write down Equation (8.19) in tensor notation.: 

(8.26) 

If we leta 

{8.,27) ~ = ~ ·* 
and consider the tensor relatio~: 



c ,:1 

c3D· ~Ei k ::. d'· 
c~j~jk<l-~)J (8.30) ..:...:::2. 0 

F . ::: E· ;}- D·-- 2 -v~ J. qXj J ox.: ()Xi 
J 

which. can be wri "!:;ten as: 

(8.31) Fvi = d~· (EiDj) 
c5ij a [(l-~)' EIA:]' ~ 2 ax:· 

J J 
By comparing (8~31) with (8.,25) we see that: 

.·,, 

is the complete expression for the MaX11\Jell stress .ten:sor •. vVriting out explicitly 

the matrix corresponding to this tensor.t W€J obtain: 

l 2 2 2 
(8.33) 2 (Ex - Ey - Ez ) ExEy ExEz 

T = k.ko ExEy ~ (Ey 
2 

Ez 
2 4''2) EyEz -"'X 

:E!xEz EyEz 1 2 
2-(Ez - Ex2 - Ey2) 

where -~_has been set equal to zerq, for simplicity~. Note that additional terms 

w~,ll appear i.n the stress tensor if the field is not irrotatiohal as was asstuned 

?,bove. The M~,xv.rell tensor is a sy:nmetric tensor of the second rank and can 

,therefore, be reduced to three components by transf'onnatiQn to principal axes 1 .. . . ' . 

by the standard method. The pr~ncipal va1ues of the matrix can be obtained by 

solving the secule.-r de_terrriinan~a 

(8.,34) 

---../ 

""'vmich gives two equal and one unequal value for A.. The principal values of the 

tensor, when p = 0 ares 

' ... 
kko··. 2. 
----. 'E 

2 

Therefore the Max<Nell stress tensor T' virhei.t ex:r?"ressed ·in ·terms of principal: 

coordinates takes the simple form: 
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( 8. 36) +2 
l;J 0 0 

rrt = 
kko 

0 E2 0 ... 2 -
·.· .... 

i;2 0 0 -. 
The principal axes are so oriented that the coordinate axis corresponding to the 

~ 

single root of the secular determinant ;\.1 is parallel to E, v,rhile the two axes · 

' -". 

corresponding to the double roots A:z and :;>.,.3 are perpendicular to E. 'Ibis fact 

. . . 
is often eA.'"Pressed qualitatively by stating that the electric f:\.eld transmits a 

tension kk
0

E2/2 parallel ·t;o the direction of the field and a contraction of 

magnitude kk
0

E2/2 transverse to the direction of the field. 

Let us choose a .coordinate system in which the :x: axis is parallel to the 

direction of the field so that Ey "' Ez '"' 0. In this coordinate system consider 

the stress across a surface element as shown in Figure (8.1) whose normal makes 

an angle e "1r.ri th the x axis. The stress ·wi 11 then have t-wo comp oneni:; s, one 

.... ' ~ ' ~ ~ 

parallel t9· ~,- e.nd one perpendicular to E, lying :ln the plane of E and _n the 

,, .·· .l 

normaJ. to'the surfac6., The magnitudes of:these stresses are then the stress 

compone.'nts given by the matrix in Equation ( 8.36 ): multiplied by the surface 
i:' _,.. 

element components as indicated in the figure: The resultant stress on dS can 

then be obtained by taking the vector sum of the two stress components as shovm. 

in F'igu~e (8.2). It i-s seen that the electric field bisects the angle between 
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the normal to the surface and the direction of the resultant stress acting on 

the surface .. This'construction is frequently a useful one in the graphical 

evaluation of the forces on a charged region if an experimental field plot is 

availableD or in the analogous magnetic case to be discussed later~ this 

construction is useful for the computation of forces on magnetized materials~ 

or on current-carrying cond~ctors. 

In the special case of stress transmitted a:cro.ss surfac_es either parallel 

or normal to the electric field, we have the simple situation indicated in 
,,~,·:;· 

Figure (8 .. 3) ·where the field transmits a pull .df magnitude ED/2 across a surface 

that is normal to the· f'ield and a push of magnitude ED/2 across a surface that is 
,' ~·-

Figure (8.,3) 

tangential to the field.. A surface that is oriented at 45° to the direction of 
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the field as seen in Figure (8.3) will receive a force that acts parallel to the 

surface, also of magnitude ED/2 per unit area, of the surface. These relations 

can be demonstrated -for simple cases such as the attraction and repulsion bet"~Neen 

two. charges of opposite or equal sign. If we consider, for example, two charges 

of equal magnitude, but. opposite sign, then the lines of force are distributed 

as in Figure (8.4). 

Box 

~----------~------------~~ 
Figure (8.4) 

If we integrate the stress tensor over the surfaces of a box one of whose faces 

is the plane of symmetry betvreen the two charges, considering the other faces 

of the' box. to be' at infinity, we will get an e:x:pression that is in agreement with 

the Coulomb attraction (1.2). If we consider the two equal charges as in 

Figure (8.5) and the same box as in Figure (8.4) then the lines of force are 

Figure. (8 .5) 

Box 
+----

parallel at the plane of' synunetry ,between the charges resulting in a repulsion 

: -~ ' . 
whose magnitude can, by integration across the plane of synLrnetry, be shovm to 

also be in accordance with the Coulomb repulsion. 
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The Behavior of Dielectric Liquids in an Electrostatic Field~ ·' 

We shall now turn to some applications of these expression's'. for the forces 

in an electrostatic field. We will first treat the behavior of a dielectric liquid 

in an electric field. If we consider an uncharged dielectric liquid acted on by 

the voliune. force given by Equation (8.19), then the pressure gradient at any 

point ~~thin the liquid is given by: 

(8 '<'7)* 
0 ~ ..... ' 

4 
::; F - = 

v 

2 
koE ri 
-vk + 2 . 

This can be written ass 

( 8,.38) 
kog ·~ · · ' dk . = -n (E2. _ .. ) 

2 v ' ·., dg . 

and integrating this, assuming a defini.te equation of state ·of the liquid, we 

obtain: 

( 8.3 9) 

This equation denotes the important fact that the· pressure within the dielectric 

liquid is a unique function of the electric field at a given point, the ~~notion 

depending on the electrical and the mechanical equation of state of the liquid.. 

Equs.tion (8e39) also indicates that the net pressure difference between two points 

outside the region of the electric field,; resulting from electrical forces, in 

a dielectric liquid will vanish. A 'situati'on ·that involves boundaries will be 

analyzed :later .. 

Tf we consider the liquid to be incompressible, Equation (8.39) reduces to: 

· from which the magnitude of the pressure difference can be estimated numerically 

in terms of,.yhe Clausius--M.osotti ·relation or a similar equation of state. If 

the Clausius-Mosotti relation is valid, Equation (8.40) for an incompressible 

--------------------~r---~~·~·---------------------------------------------------
We are putting here Fv = + \1 p where p is the mechanicM pressure in the liquid 
when in equilibrium with the electrical volume force F • As a result of the 
. ,. d" t h . 1 f v ~ v. .,..... ~ 
~-Oesswhur~ ghr~ lethn a m~lc.ban7ca ord?et· .v(mech)=-vp is set upj thus Fv + r'v(mech) 
- , lC ls e equl l rlurn con l lon. 
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fluid becomes: 

(a;4l) P~ - Pi = ~~~ . ~2 (k+2)2 J 
. 1 

[
ko E2 (k-1) (k+2) ]· 

2 

.= 2 . 3 
. 1 

Let us now consider the stresses that act across the bounda~ between two 

dielectrics or simply the case of a bounda~ between a dielectric of specific 

inductive capacity k and a vacuum. We assume that the tran_sition from dielectric 

to vacuum takes place in a continuous manner~ as indicated by Figure (8.6). 

Consider as an example a two dimensional problem involving a pair of condenser 

plates as sho~m ~n Figure (8.7) that dip into a dielectric liquid. If only the 

-
net pressure difference from A, to D is desired, then this can be computed by 

dielectric 

-.-
1 

Figure (8.6) 

Finite extent 
of boundary 

vacuum 

X 

A 

Figure (8.7) 

integrating only the second term, the term that is proportional to the gradient 

of the dielectric constant, of the force equation (8.19). The resultant electrical 

pressure difference, which has to be balanced by hydrostatic effects is therefore: 

(8.42) 

or: 

( 8.43) 

ko 
P.A. - PD = 2 

~.. ~. ' 

D 

[ E2~k 
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Treating the tangentiai and the normal components of the electric field 

in accordance vli th the _b_crundafy conditions expressed by Eqs •. (Z .15) and (3.19), 

we' oo·b.in: 

PA- Pn = kr[EtB2 (li-1) + k2EmJ2 fD 

A 

. PA..; Pn = 
ko(k-1) 

2 

dk] 
k2 

Note that the field quantities in equation (8.44) refer to the field inside the. 

liquid. This formula >rill give directly the rise of the liquid in the condenser 

plateso However, this formula is insufficient to describe the.detailed pressure 

behavior of the liqui,d from A to D, since the detailed pre.ssure behavior also 

depends on the electrostriction term. rn fact, the pressur~ change as shown in 

Figure (8e8) from A to B is. actually of opposite sign from the pressure change 

·fi_'om A 't'9_ D,o ··As' the _field de~reases from P_.to I:J:, the pressure decreases below the 

outside ·value at·· A by an amount >vhich is larger than- the pressure rise at the 

surface A-B~. The net difference computed in Equation (8.44) gives only the 

difference in pressure between A and D. The pressure which forces the liquid up 

is actually exerted at the region C where the field is inhomogeneous and not at 

the surface of the liquid, as is seen in Figure (8.8). The physical reason for 

B 

A 

D 

t figure (8.8) X 

~-
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this i's that the energy of dipoles in an electric field is loirver than their 

energy. in·.field-free space and therefore the dipoles in the liquid are drawn 

into the regions of higher field in order to satisfy the criterion for mechanical 

equilibrium Which requires a minimum potential energy. This action on the dipoles 

takes place in the region C wher·e the field commences to build up. This minimum 

energ,y effect is partially counterbalanced by the electrostriction drop at ,AB 

resulting in a net pressure drop as given by J?quation (8.44). This example shows 

that considerable care is necessary in applying the force equations in dielectrics. 

Let us consider another example which appears to be extremely simple, but 

which actually leads to an apparent paradox. If we consider a set of charged 

conductors so arranged that they may be immersed in a dielectric liquid, then if 

the true charges on these conductors are kept constant as a liquid is introduced 

between them, the free energy of the ~ystem.as gi-yen by Equation (7.19) will 

drop in the ratio 1/k, since D remains constant but E is reduced, in this ratio. 

If on the other hand the voltages had been maintained at their initial values as 

the liquid was introduced, then the free energy would be increased by a factor k, 

since in this case E remains constant, while D increases by a factor k. Of 

course 9 these arguments only pertain if all of the space 

* and outside of them is filled with a dielectric liquid • 

between the conductors 

Otherwise we cannot 

*At le·ast a11· space where there are electric fields must be so filled. 

assume, as is implied in the above statements, that the distribution of E and D 

remains constant as the dielectric material is introduced between the plates. 

This means that if a system maintained at ·constant charge is totally surrounded 

by a dielectric liquid all mechanical forces will drop in the ratio 1/k. 

This is the reason why a factor 1/k: is frequently included in the expression 
• 

for Coulomb's law {1.2) to indicate this decrease in force. The physical 

significance of this decrease in force, which is required by energetic considera-

tions, is often somewhat mysterious since it is hard to see on the basis of a 
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field theory why the interaction between two charges.· should be dependent upon 

the nature or condition of the intervening material. and therefore th~ inclusion 

of. an .extra factor l/k in Coulomb 1 s law lacks a physical explanation. 

Let us consider this problem in the simple two dimensional geometry of a 

parallel plate conden$er as in Figure (8.9). Let :!;q
8 

be the surface charge per 

unit area on each condenser plate and ±qp be the polarization charge on the 

Figure (8.9) 

outer surface of the intervening dielectric slab. Let the true surface charge 

qs be assumed to be constant during the introduction of the dielectric slab. The 

purely electrical force actj,ng on each condenser plate ·will be the sum of the 

force due to the fields produced by the charges qs on the opposite plates and the 

charges q on the two surfaces of the dielectric. The two layers of polarization 
p . - .• . . 

charge vdll produce equal and opposite fields on each plate and their effects 

will therefore cancel each other. From the point of view of electrical inter,;. 

action alone, it is not obvious why any change in force at all is obtained when 

the dielectric layer is introduced, since the only direct interaction between 

the charges q on the plates, which are assumed to remain constant, seems to be 
s 

unaffected by the introduction of the dielectric slab. That is the force per 

unit area remains: 

.'-· 



:"' 

as long as the dielectric does not touch the plates of the condenser. 

the decrease in force toJ 

qs2 
(8.46) Fs = ----2 _.kk

0 
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Therefore 

which is e':icperienced whe:h the experiment is performed with a liquid, that wets 

the plates and also completely surrounds them, can not be explained by electrical 

fqrces alone. This apparent paradox can be explained by taking into account the 

difference in pressure in' the liquid in the field-filled space between the condenser 

plates and in the field-free space outside the condenser plates. By equai:;.ion 

(8o44), this difference in pressure is given by: 

l 
-k) 2 qs . 

The sum of the force resulting from this pressure and the pure electrical force 

given in (8.45) gives the total force given in (8.46) which was derived from 

energy considerations. Thus the decrease in force that is experienced between 

two charges when they are immersed in a dielectric liquid can be unders.tood only. 

by considering the effect of.the pressure of the liquid on the cha!'ges themselves. 

In accordance with the philosophy of the action at a distance theory no change in 

the purely electrical interaction between the charges takes place., 

f 
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CHAPTER 9 STATIONARY CURRENTS 

In the discussion of electrostatics in preceding chapters all currents were 

assumed to be zero. We shall now take the flow of charge, or current into account, 

but shall assume that the cl,lrrents are varying slowly in time. This means that 

the current flow will depend entirely on the electric field.s that are present 

and will not depend on magnetic interactions. In the absence of numerical estimates 

of the relative magnitude of magnetic interactions and of the interaction of 
. ' . 

currents'with the lattice structure of the res~stive medi.um which gives rise to 

electrical resistance~ it is not obvious that a situation ever exists in which 

currents depend only on the electric fiel~s. But it turns out that the magnetic 

effects can be neglected when the fields vary at low frequencies, provided that the 

dimensions of· the conductors involved are smail compared to the so-called 11 skin 

depth" of.the currents in the particular.conductor. 
' 

We will also neglect an 

s.dditional effect:; kiwvm as the Hall effect, which is present even at zero 

frequencysand gives rise to redistribution of the equai potential surfaces in 

a curr'ent-carrying cond.uctoro However., in all but very special substa:nces, this 

effect i's extremely smallo 

The conservation of charge in the flow of current in amedium is, expressed 

by the equation of continuity: 

~ ~ 

j = fv = the current density within 
the medium (P~peres~~eter2) 

The current flow is called stationary if there is no accumulation of the charge 

at any point., This criterion is expressed by: - ~ 
(9o2) \J 0 J = 0 

In order to relate the theory of current flow to the theory of the electric field, 

another equation is necessary vihich will give the connection between the current 

and the field that exist at a particular point in the conducting material. 
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This equation·is: 

....., -'> 

(9.,3) j = O"'E cr = the electrical conductivity (Mho/Meter) 

Equation (9.,3) is equivalent to Ohm's.law., This relation is an over all 

phenomenological characteristic, and it may not be valid in many cases. The 

range of current densities over which Equation (9.3) is valid is called the 

linear range of the particular material, and can be very large, as in metals, 

or very small, as in a semi-conductor. Equation (9.3) implies that the conduction 

is isotropic., In crystals raving a low symmetry (9.3) must be replaced by a tensor 

equation. 

Stationary current flow is impossible in a purely irrotational electric 

~ ~ 

field, since in stationary current flow energy is expended at a rate j • E per 

unit volume and this .energy cannot be provided by an irrotational field. 

Hence stationary currents are possible only. in c~se there are present 

additional sources of the electric fiel9. known as electromotive forces, which 

are not irrotational. Denoting such non-irrotational electromotive fields by 

~ 

E1
, the conduction equation (9.3) will therefore become: 

~ ~ ~ 

(9.4) j "'O'"(E + E 1
) 

Defining the electromotive force as: 

t:... ~ '.~ f... ......:;> fl·dt. 
( 9. 5) E. = J (E + E') •dQ.. = E1 •d.Q. = o- , £ = electromotive force (Volts) 

__. 
Note that the conservative part of the fi eld)E, drops out of the closed line 

integration. This means that the current flow is due entirely to the non-

conservative forces, and is. only influenced by the conductivity and the· geometry. 

In case the current density is nearly constant over major portions of the 

path of integration, as frequently happens, Equation (9.,5) can be written asa · 

,{ .Q 
(9.6) £ = JJ ~s = JR 

R = the resistance of the 
conductor (Ohms) 

J = I j IS = the total current, a constant 
for the circuit (Amperes) 

S = the cross sectional area of the •conductor 
where the current density is I jl. 
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This is the form in which Ohm's law is usually stated. Note that in a case 

where there is no current flow, we obtain, by integrating Equation (9.4) along 

a line between tw:o.points 1 and 2 which traverses all of the region in which 

there is a n.on-.conservati ve force or field: 

(9 .. 7) 
2~ ~ 2...- ~ f-.-:. ~ " f E•d~ '[1 E' ~d.R_ • E' •d..Q. =E. 

This indicates that the open circuit electrostatic voltage between two points 

is equal .. to the total electromotive force in the circuit. It follows, in the 

absence of a current flow, that within a particular region there are non-conservative 

...... ~ 

fields Et = -EQ Thus, for example, within a given boudary, the non-conservative 

fields (eogo .the chemical potentials) are exactly equal to the electrostatic field 

which is set up by the charges on the boundaries, in the absence of a curren~. 

Formally speaking the current distribution and the fielddistribution are 

entirely defined by the non-conservative field and by the conductivity of·the medium. 

~ 

Using Equations (1.10), (9.2) and (9.4) we have the following expressions forE 
~ .._.... 

and j in terms of E': 
->-'> 

(9.8)\J·j = 0 

Vx{1)= ~ x 

--:\) 

(E') 

-+ -+ 

\J. (<JE) = 

4 ~ 

\lxE=O 

....... 
In the region where there.are ·no non-conservative fields, E is derivable from a 

potential and hence in the case of stationary ·flow, the potential still obeys 

Laplacets equationg 

~ -'> 

0.11) E = -v~ 
~ ~ 2 
\j"((J\j ~) = 0 or '\l ¢ = 0 if cr- is constant. 

The boundary conditions are·changed, however, since now tlie conductivities, 

rather .than the dielectric constants define the flux relation across a boundary. 

From Equations (9.2) and (9.3) we have the relation, in the absence of 

non-conservative fields~. 

~ ~ 

(9.9) \Je •(O":"E) "" 0 
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From this, we have for the boundary condition between bvo mediums designated by 

the subscripts 1 and 2 respectively: 

~ -:) -')> 

(9.10) n • (~ 2 E 2 -() 1 E 3 _) = 0 

~ ~ 4,-/ 
n • (o2 \} ¢2- (Jl \] !"1) = 0 

And as before in Equation (3.19): 

(9.11) 
..... 
n ~ (E2 - E1 ) = 0 

ri. x (v¢2 -v¢~) = o 

It follows from (1.17)~ (9ol0) and (9.11) that the solution of stationary 

current distribution problems is mathematically identical to the solution of 

electrostatic potential distribution problems that have the same geometry, and thus 

all of the methods that were developed in Chapters 4, 5 and 6 are applicable to 

these problems. The only difference between the static current probtems and the 

electrostatic probl.ems is that .the conductivity in a given region may be zero, 

while the specific inductive capacity cannot become less than unity!. This means 

that the type of boundary value problems which arise in stationary current flow 

.may, under certain conditions, be quite different from any that can exist in 

electrostatic cases. As an example, if we c.onsider that the region between a 

set of parallel condenser. plates is filled with a medium of conductivity o-, 

then the current in the stationary current range 1J1Iill be exactly uniform over 

the entire area of the plates, within the conducting medium, while in the 

analogous electrostatic case~ the field distribution will be only approximately 

uniform and will be disturbed by the frJnging field at the edges of the plates. 

In general, if electrostatic methods permit the calculation of the capacity 

between two electrodes, then one can conclude immediately what the r~sistance 

would be.between these electrodes.if all of the space in which they are located 

is filled with a homogeneous resistive mediu.rn. The capacity between two electrodes 

1 and 2 is given by: 

kko rr-;. d-; 

(C = capacity in farads) 
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The numer~tor is the eharge on each electrode by Gauss' flux theorem (1.6) 

and the denominator is the potential difference between the electrodes. The 

resistance between the t-ti'TO electrodes is gi van by: 

[
2~ ~ 

E•d .Q_ 
(9 .13) 

R = (J Jf Eo~:-
where the denominator gi-v-es the net flux of current between the two electrodes and 

the numerator gives the potential difference between them. Comparing "Equations 

(9.12) and (9.13·) voe have: 

or: 

(9.15) 

c 
~k .... 0 

note that'the product of the resistance and the capacity is a constant that 

depends· only on the conductivity of the conductor and on the spe~ific inducti-v-e 

capacity of the ·material betvveen the condenser plates, and not on the geometry. 

However,. it.is not always possible to find an electrostatic problem which will be 

I 

fully analogous to the· corresp'onding stationary current· problemJ since the difference 

in the range of dielectric cor1stants arid resistances mentioned above causes 

different field patterns in the two cases• The formula for the capacity of a 

parallel plate condenser, when edge effects are neglected is: 

( 9 o16) 
lckoS 

c = y- ,/_ = the distance between the plates. 

S = the area of the plates 

which 1vherl. substituted into (9;,15) givesa 

(9.'17) 
J.. 

R=-
(JS 

.l = the distance between the ends of the wire. 

S. = the cross sectional area of the 1vire. 

for the resistance of a wire of lmovm length and cross sectional area. The 

formula for the resistance of a wire is of course applicable for large values 

of Xsince the zero conductivity of the surrounding medium prevents fringing of 

the current flow lines, which is in strong contrast to the shape of the field 

lines that would arise from condenser plates that co-incided with the ends of a 

"" ~ 
,....;;;.,
~ 

.,:,.._ 



wire of ordinary length. 

The equation of continuity: 

(9.1) 

in combination with the conducti>:ity equation: 

and the source equation derived from (3.4) and (3.11): 
---?> -7 p 

(9.18). "\/•E == kko 

113 

can be i~tegrated with respect to the time in case we are dealing vnth a homogeneous 

dielectric or: a.homogeneous conductor. The integration gives: 

t -'J; 

where the che.racteristic time T is given by: 

(9.20) l= kk
0
/() 

\ is usually knovm as the relaxation time of the dielectric. Note that it 

applies only in the case of a homogeneous medium, for if it were not homogeneous, 

then the spatial dependence of the conductivity and the dielectric constant vvould 

have to be taken into account in the integration of Equation (9.1). The relaxation 
. . 

time is a characteristic time for a medium in that it gives an indication of the 

time in which essentially stationary conditions will be reached after the initiation 

of a particular current flow. The criterion which must be used to detenn.ine 

~s-
~. wheth~_.Q.r not the stationary current equations will be t'lpplicable in a p_articular 
.t,:_ ~--~ 

case is whether'the time of observation following the inception of such currents 

exceeds the relaxation time ~ by a sufficiently large amount. 
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CHAPTER 10 TYPES OF CURRENTS 

We began the discussion of Electrodynamics ·with the treatment of steady 

currents since the original direct experimental observations of the magnetic 

'interaction of currents were made with currents of this type. We must now 

consider the additional modifications that must be introduced into the theory 

if non~stationary currents are to be treated. 

We shall discuss currents in a vacuum in a manner that is similar to the one 

·~fuich we -&sed to treat charges in a vacuum and will then d~rive the magnetic 

ef~ects that occur within'an arbitrary medium. We shall classify currents in 

two categories, those that are true currents, that is may be identified with 

the motion of true charges, and other currents which are associated with the 

medium itself e This separation which is analogous· to the separation that vras 

made in the electrostatic theory between the ·potenti~ls of true charges and the 
.- . . . . . .' .. ' ' . . . 

potentials of polarization c~arges, will lead us to consider two types of magnetic 
t ~ . ·:: ::. . . . . . . . 

fie~ds, on€l derived ~rom true currents, and one derived from the combined effects 

of all the currents whatever may be their origin. Tt is this latter field, 

-+ 
namely the magnetic field of induction B, which can be considered to be the .space-

.· . ., 

. time .a~erage of the interatomic fieldso Before proceeding to discuss magnetic· 

interaction: let us classify the type of currents which we will consider in 
I, 

a mediumo 

. ~ 

lo True Currents.- j ~ These curre~ts are identical to the physical 

transportation of true charges. 
~ 

P 1 · t· C t ~ p T' t ar;se f th h of o arlza lon urren s -
0 

t - nese curren s • rom e c ange 

the polarization vnth timeo 

~ 

3o Magnetization Currents - j - These currents are stationary currents 
m 

that flow within regions that are inaccessible to observation but which might 

give rise to net currents on boundaries, · due to i3perfect orbit cancellation 

on an atomic scalee We shall describe these magnetization currents in terms of 
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the magnetic moment per unit volume: 

~ 1 -?-?' 

(10.1) M = 2 {r x jm) 

_., 
M = magnetization (Weber /Meter2) 

corresponding to these currents. The magnetic moment of a particular volume 

is then: 

(10.2) ~-
(r x jm) dv 

Note that this is analogou_s to the expression for the mechanical angular momentum 

in terms of the velocity of a volume when the charge density is associated with 

the masso In the special case of a single "stationary currentn·loop that encloses 

~ 

a given area, m becomes simply the product ?f __ the current in, the loop multiplied 

by the area of the loop and directed normal ·t;o the loop in a direction that agrees 

with the righthand rule for the current circulation. This is in agreement with 

the elementary definition of the magnetic moment of a current loop. We shall 

show later that: 

(10.3) 
~ ~ _., 
jm = \J x ,M is the inYerse of Equation (10.1) 

4. Convective Curr~nt s: If a material mediUJ."ll in motion contains charges of 

various types, additional currents ·will be obtained which arise. from convective 

effects. 'l'hese convecti Ye currents wi 11 be derived both from the motion of the 

true and the _polarization charges contained in the medium. There vvill also be 

changes in the riet polarization current due to the motion of the medi1.:4"ll. The 

convective cu:crents will be discussed in a later chapt_er; 

Let us consider the second and third sources of current in more detailo 

When expressed. in terms o.f molecular coordinates, ~ , the electrical moment, 

~ .p 
p, o ... a polarized molecule is defined by: 

"* If the charge density p ·wi. thin the molecule is changing in time, the polarization 

will change in time by an am~Un.t: 

A The time variation of electrical quantities due to charge motions can be 
described either by considering changes in charge density as a function of time, 

or changes in coordinates of fixed charges; this discussion shows the equivalence 
of the two descriptions~ · . · · 



(10.5) -dP ((( af' l. 
() t = JJJ d t ( dV 

Substituting from the equation of continuity (9.1) this reduces to: 

·~ 

~f= 1 ~· (f'i!) ~ dv (10.6) 
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Integrating by parts and dropping a surface term, which is justified by choosing 

the surface of integration so that it lies .outside the region where there are 

molecular charges,we obtain: 

(10.7) 0 ~ _,.fff 
a~ = f udv 

or or a large scale: 

(10.8) 

Jff dv 
~ . 

quantity· 2; P/a t does· represent the space-time average value of the Hence the 

molecular currents caused by a varying polarization. 

Let us now consider the magnetization current. 'V'l'e defined the magnetic 

-+ 
moment m of a region by Equation (10.2). Note that this is pure-ly a kinematic 

definition in. the sense that it does not involve any mention of an actual inter-

a~tion, magnetic or other111rise. This corresponds to the definition of the electric 

mom.Bnt of a region given in Equation (10.4) which is also only a kinematic 

description of a specific aligP-ment of charges, although the net charge of the. 

volume is zero. The magnetic moment definition is a description of a system of 

currents which do not produce any net flow across a surface which is large enough 

to be accessible to macroscopic observation. For a given distribution of magnetic 

moment, Equation (10.2) can be solved for the magnetization current (10.3) which 

can then be used to compute magnetic interactions • 

.l'-As an example 1 consider the neighboring current loops in a rectangular 

network in the x,y · pls.ne and let us consider the z component of the ms.gnetic 

moment of these current loops as seen in Figure (10.1). If the magnetization 

-. -

is inhomogeneous then there vnll not be complete cancellation between the boundaries 

. ..-

-
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M (x) 
z 

Figure (10.1) 

f tl 1 d t t ·11 fl Thl. s ne+ cur~rent ,.;11 brl·ng abo"t o · 1.e o~ps anr. a ne curren Wl · ,ow. v .,.._ " 

whatever net effects are ascribable to the currents. From the expression for 

the magnetic moment of a current loop: 

(10.9) 
~ ~ 

m = J s. 
j~= the current in the loop. 
S = the area of the loop. 

and the expression for the moment of one· of the loops in Figure (10.1 ): 

4 -i> 

(lOolO) m = M dx: dy dz 

v.re have for the current in rectangle 1_: 

(10.11) 

J~ = 
Mz cbc dy dz 

dx dy 

and using Taylor's expansion theorem, the current in the neighboring rectangle 

2 is: 
· (Mz 

dx dy 

'l'he difference between Jl and J2 results in a net curre:q.t in the y direction 

along the mutual boundary of :rectan·gle 1 and rectangle 2, ·that is: 

oMz 
( 10.10) J,.r ::: ~ - dx dz .; . . 2:1 X . 

This ·will be recognized as one of the six components of the curl and one sees 

that in general: 

-? .... ~ 

(10.14) .jm = \J x M 

Expre~sion (10.14) is. the solution of Equation (10.2) in that it reduces it 'to an 

identity. Equation (10.14) gives the net current produced in a region of inhomo-
. . . 

geneous magnetization. in a region of discontinuous magnetization, it is easily 

seen that a surface current equal t~ the change in the tangetial component of the 

magnetizatioJ:J, wi11result at such a discontinuity. Thts follows when Equation 

(10ol4) is applied to a limiting transverse surface bounding such a discontinuity. 
, 
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Thus in a stationary mediu..rn~ the total current is given by the sum of the 

(10.20) 

of current enumerated on pages 114 a_nd 115. 
~ .· 

~ ~ Jp ~ ~ 

jtotal == jtrue ,;- 0 t + . \! x M 

three types 

In order to conserve charge it is necessary that this total current obey the 

equation of continuity (9.1). ·If we take the divergence of the total current, 
' •. 

we obtain: _.,. 
~ ~ .. . ~ -i> . -> (d p) "'""'3> --?> ~ 

(l0.2l) V·. -jtotal = v 0 jtrue ,;- \} " ot + \}. (\)X M) 

Taking the partial derivative of Equation· (1.9) with respect to time, we have: 

(10.22) ( ~~) = k 0 V • ( ~1)·. 
total 

Substituting (10.21) into (9~1) we have: 

(10., 23) V' 8 
-; + V 0 (d 1) + (d f) + V 0 

( V X-;) :: 0 
true (1-t '0 t total 

Substituting (10.22) into this and using the relation (3.3) ·we have: 

-"> ~ ·~ 

V • -;:rue + V ·{~~) + k
0 

-lJ;tE + V " CVx-;) == 0 (10.24) 

-> _.., a-" , D ~__, 

\7 • (jtrue + o t + \J X M) = 0 

The divergence of the total current (10.21) is not zero. This means that the 

total current is not solenoidaL HovmverJ the quantity: 

(10 25) 1=7 + 
" Jtrue 

-"> 
generated by adding the term k (} E/(7 t to the total current is a solenoidal 

0 

current. The extra tenn which has been added to the total eurrent to fonn the 

-'!:> 
solenoidal current c is known as the vacuum displacement current. T'ne need for 

the addition ofthis termto produce a solenoidal net current vector was 

recognized by Maxwell. 
~ 

k 27 Ejd t does not have the significance of a current 
0 

in the sense of being the motion of charges. We shall see later that the 

magnetic effects of currents can only be formulated in terms of solenoidal 

currents~ and therefore that the vacuum displacement current terffi must be 

...... 
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introduced in order to be able. to apply _the .formulas wll:ich 1till be developed 

for the magnetic interaction of solenoidal currents to cases involving the magnetic 

interaction of non-stationary currents. 

--" 

The geometrical significance of the so:\.enoidal current--;,> is that at points 
- - 1 

where there is an accuuulation of charge, the. current is assu.med to be continuous 

across the discontinuity in the form of the rate of change of the field resulting 

from the accumulation of the charges on the boundaries of the discontinuity. As 

an example,. a battery charging a .condenser produces a closed current loop in 

~ 

terms of c. 



120 

CH..IU'TEI-t ll THE MAGNETIC INTERACTI Ol'J OF CURRENTS 

The magnetic interaction of currents is best described in terms of an 

experimentally established interaction in vacuum that is analogous to the 

electrostatic Coulomb law. The mathematical generalization of the experiment 

of Amp~r~ which gave th~ force b~tween two current-carrying elements as seen in 

Figure (llol) is given by the expression: 

(11 ol) 

I 

Figure (llel) 

~ 

F2 is the force on the circuit that carries the current J 2 and that has the 

~ 
line element d.Q2 • Due to the geometr-y that is involved in expressing the 

. ~ ~ 1 ~ . . 
relative directions of F 2 , d.!( :I.' d~ and r, this force equation appears to be 

more complicated than the Coulomb force equation (1.2) • .Also it appears~ 

superficially, to violate l'Je1r11ton 1 s third law of the equality of action and 

reaction. The integrand of Equation (11.1) is in fact as~~metrical as it 

stands,. However, when the integral is carried out over two closed circuits 

the resulting force is symmetrical in terms of the geometry of the two inter-

actin,g current loopso This can be shown as followsa If we expand the integrand 

.~. 



121 

by the double vector product rule: 

-"' --:+ 4 . --+ 4 '-i> -7 -4 ~ 

(11~2) A x (B x C) ~ (A • C) B - (A • B) C 

.we obtains 

(ll.3) 

Since the dk: integrand in the first term is an exact differential 1 ~this expression 

vanishes as the integration is carried out over closed loops.' Th~ other integral! 

~ ·~--) 

(ll.4 ) .;: = -~~ f f (dt1 ·d:g )rl2 J J~ Jg 

L. 1 2 r 

is symmetric in terms. of loops l and 2. 

The reason that we ·are taking Equation (ll .• l) rather than Equation (lle4) 

as the starting point for the discussion of the magnetic interactions is that 

Equation (ll.l) is in such a fonli. that the interaction expression can be separated 

into a field produced by loop l and a force exerted by this field on loop 2. 

Expression (11.4), on the other hand, which implicitly contains the cosine of the 

angle between t4e elementary current elem,ents does not permit such a separation 

and therefore 'Cioes not lead directly to a vector f-ield formulation of magnetic 

interactions. The separation of Equation (11.1) into a ·field and a field force 

can be carried out'' by pu~ting: 

-- -'> _..:;· 

(11.5) F2 = J 2 f d.e2 x B2 

where: 

(il.S) -;2 = - ~ Jl r~ X ~2 (j,~ 2 ) 
. ·~ 

i. <~ Jl fah f~ .• 
~ 

-4> ---7 

~ 

, B2 = the magnetic field of induction 
caused by circuit 1 at the 
position of circuit 2 • 
(Weber/Meter2) 

B is analogous to E in the el,ectrostatic theory in that it determin~s the force 

~eing the line integral of a gradient:~~(;) • ~ 
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that acts on a circuit' elemento Equation (11.6) is a generalization of the 

Biot and Savart law. It should be noted that thus far we have no differential . 

form of this lawo The Biot and Savart law when expressed in terms of volume 

currents becomes: 

(1L7) 

.· ( 11 :a) 
' ' ' 

-') 

Note that r in (llo8) is directed from the point of integration or source point 

~ ' ~ 
(V!.'here j is located) toward the' field point where B i.s being determined • 

. ~ 
Let us inquire under what conditions the magnetic induction fiela B can 

be derived from a scalar potential l)y the relation: 

. ~ ~ 

(n.9r ;B = -'V-~m.fo 
.: ' 

Let u·s consider a closed loop carrying .a current J as in Figure ( 11.2) 

Figure (llo2) 

-+ 
.Let th.e field of the current loop_ be measured at a point p. If the field B ~ere 

deri vab'le f~om ·a ~calar magnetic potentia1 ~m and if the point of ·observation 

were moved through a distance dx from1 p to p 1 , then .the increment in the 

scalar magnetic p'otential ,0'm would be given b;y: 

~ ~ 

' r/.. dJcoB 
(lLlO) . dp, c -

m ..... Yo. 

,k. 
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which, using the Biot and Savart expression (ll.6},becomes: 

(11.11) f
.-+ ... _. 

d¢, = .. 2.. J dx • ( d.t x r ) 
m 4n 3 

r 

~ -7 --?> 
= _ _l Jf r o ( dx x d1. ). 

4r. r3 

The mixed vector~scalar product permits cyclic permutation, since it is the volurne 

of the parallelepiped whose edges are the three vectors in the product. Equation 

(11.11) is of course equal to the change in the scalar magnetic potential vrhich 

is obtained if the point of observation were held stationary and the loop were 

-~ 
moved by an amount ~dx, as was discussed in the ded.vation of gquc<tion (2.19) 

for the potential of a dipole sheet. Using the relation given in Equation 

(2.19 ), the change in t'he scalar· magnetic potential can be written as: 

J 
dnl' = -

>"m 4n 

d.O... 

where d.fl. is the change in the solid angle subtended by the loop at the point 

--'>. 
of observation brought about 9y an infinitesimal displacement -d.x of all of 

the points of the loop. 

This scalar.potential has the .same mathematical properties as the solution 

of the electrostatic potentia~ of the surface dipole layer discussed earlier 1 

as seen from tho similarity o.f Equation ( 2.19) for the static potential of a 

dipole and Equation (11.12) for .the magnetic induction of a current loop. In 

addition this means that the scalar potential of a current loop is mu1.tiple-

valued in the sense that it appears to undergo a discontinuity of magnitude J when 

a surface bounded by the loop is crossed. In the case of the electric dipole 

sheet this surfo.ce has a physical significance, hpwever. in the magnetic case, 

this surface can be chosen in any arbitrary position. - Since the choice of the 

surfacecis arbitrary the magnetic field derived from such a potential outside 

the current-carrying region is non-ambiguous. However, line integrals of the 

magnetic field of a current loop w:Lll be correct only if the path of integration 

does not pass through the_ arbitrary surface. The line integral of the magnetic 

-'> 
field of induction B around a closed path threading the current J ,is,exactly 
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equal to the mag;nitude o.f the discontinuity in the magnetic scalar potential 

~ across the arbitrary reference surface, and hence we have: 

( llol3) Bod.t = U ·J._ · · f
~ -> --

1 o ~.otal 

For a graphical representation of the magnetic .scalar potential of f:t current 

loop, see Figure (2.5A). The dipole layer of Figure (2.5A) eorresponds to the 

arbitrarily located surface of discontinuity of the cl~_rrent loop. 

Equation (llel3) is the integral representation of the differential relation 

that gives ;the total circulation of the magnetic fie lei vector in terms of the 

current that causes the magnetic field. Sin<?e (11.13) is valid for any arbitrary 

closed path o_f integration, we can convert--it· into a differential expression by 

substituting (llol3) into Stokes' theorem (1.14) and reducing the size of the 

surface of integration to a differential, thus securing: 

~ ~ __,. 
(ll.l4) \] x B = p

0
j 

4 
We conclude that B camwt in general be derived from a single-valued magnetic 

scalar potential. The concept of the magnetic scalar potential is of practical 

utility provided it is only used to derive magnetic fields in the absence of 

continuous current di stri but ions. Bmvever, the magnetic scalar potential ,elm 

cannot be used if' line integrals are considered, which loop current-carrying 

regions, or if the field within current-carrying media are beihg considered. 

Equation (ll.l4) defines the circulation density of the magnetic field 

of induction at a particular point in terms of the current density at that 

point •. ··In order to completely define a vector field it is necessary to specify 

not only the circulation density but also the source density of the field. This 
~ ~ 

means that the. value of the \} •B must be ascertained• To obtain its value we 

must make assumptions as to the nature of the sources of the magnetic field. 

If we a'ssume that currents are fundamentally the only sources of the magnetic 

field~ and that the m8_gne·tic field of such currents is 01ily given by the law 

of Biot~Savart (llo6) and (llo8 ), then we shall show that: 

~ ~ 

(lle15) \] •B = 0 
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This will follow immediately from vector considerations if we can show that 

the specific form of the magnetic field given by the Biot-Savart law permits B 

~ 

to be .derived from a vector potential A by taking the curl: 

~ ~ ~ 

(ll.l6) . B = \] x A 

If lHe re-express the law of Biot-Savart (11.8) as: 

(ll.l7) 
~. Po I} x-7 Po ·fO~ -?· . ri(l) 
B = 4fi 3 dv' =- 4fl J' xv r 

r 

~ 

The operator \1 in (11.17) does not operate on the variable of integration but 

~ 

on the variable of field pbsi tion so we can take the \1 operator ·outside of the 

' ~ 

integration si_gn. The current vector j 1 is a function only of the variables of 

~ _,.~ ~ 

integration so \J (l/r)xj1 = \JX UYr). This operation thus gives: 

(11.18) 
-;=Po ~ {(tfj'dv' 
B 4n \1 x JJJ · r ( 

~ 

Hence B is actually in the form of Equati.on ( 11.16) if we let: 

(11.19) 

. ...... . 
~_Po ({1r j 'ctv' 
A - 4n JJ_~ r 

and hence (11.15) holds for all current-.produced fields as a 'Ve.ctor consequence 

~ 

of (11.16). The explicit expression for the vector potential A in terms of the 

current is therefore· correctly given by (llol9). The expression for the vector 

potential of a linear current distribution corresponding to the expression for 

the vector potential of a continuous current distribution given in (11.19) is: 

.· ~ Po ( d? 
(11.20) _· A= ·411' .J 7· · 

, I 

The fields- produced by currents can therefore be computed by first computing 

~ 

the vector r,otential A, using (11.19) or (ll.,20) and then obtaining the magnetic 

~ 

·field by the rela~ion (llol6)o The vanishing of the divergence of B follows 

* from. (11.16) •. 
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CHAPI'ER 12 !v!AG NETIC MAT ERIJI.LS 

Thus far onlymagnetic fields in a vacuum have been treated. If material 

~ 

media are introduced into the magnetic fields, then the current j in Equation 

(lL 14) must be replaced by the total current including the magnetization and 

the polarization currents, as given in Equation (10.20). Since we have shovm 
4 --:;, 

that in vacuo that \J x B is proportional to the total stationary current density, 

~ ---?> --> 
the relation \} x B = p

0
j can only be generalized to non- stationary cases if either 

the current remains solenoidal or ,if the relation used in deriving the magnetic 

field from the C1J.rrent is modified. The choice between these alternatives made 

by Maxwell was to retain the relations that derive the magnetic field from the 

current, (11.6), (lle8) or (11.18) but to use, in the general case of non

stationary fields, the general current "tin Equation (10.25 ), which includes 

the displacement current and which remains solenoidaL The total current -i!'for 

media at rest, in terms of all of the C?mponents, is thus given by: 

~ 

and hence for stationary media the equations defining the vector field B are: 

~~ 

(12.2) \J•B = 0 

~ ~ 

and using c for j in (11.14) we have: 

--? ~ ~ 

(12.3) Vxt = fo (~rue •V xJt + ~~) = fo (~rue + ~~ +<J x J1 + ko ~) 

Note that each of the four te:nns on the righthand side of (12.3) has a distinct 
.:-+ .... 

oP dE 
physical meaning. The polarization current term ot and the term k

0
at have a 

...lo 
an 

current M • superficial similarity and their sum is equal to the displacement 

However, the polarization current represents a space-time average of actual charge 
..... 

motions within a polarized medium, ~Lile the 
aE 

term k
0
it is a mathematical supplement 

which is n~cessary to bring Equation (12.3) and (10.23) into agreement with the 

equation of continuity and does not represent a current having a physical reality 



127 

in the sense of charge motion. The similarity of these two terms has led to a 

great deal of speculation as to whether some moti~n of charge might not actually 
~ 

, ~E 
be involved in the vacuum <iisplacement curren-c k0dt , but such charge motion 

could only be measured by its magnetic effect and it is therefore mmecessary 

to introduce such charges as a physical concept. As will be shmvn later, by 

relativistic considerations, it is not possible to measure any properties of 

the field-carrying .mediu1n by physical means, and therefore one ca:nnot ascribe 

any material significance to the vacuum displacement current term. 

In the treatment of the polarization of dielectrics in Chapter 3 it was 

found to be mathematically convenient to separate the field whose sources were 

true ·charges only, from the total field whose sources were the true charges 

phis -the polarization charges. In a similar man.ner it is convenient to separate 

the magnetic field whose circulation density arises from true currents only,. 

from the total field whose circulation density-arises from true currents plus 

atomic magnetization currents. 

~ 

and d_.efin9 a nevi field H byg 

Therefore 
-'> 

.~D) 
+ dt 

if we write Equation (12.3) in the form: 

""'+ 

'. 

~ 1 ~ ...... ~ ...., 
(12~5) · H = r; (B -~ foM.) = fo - M H = the magnetic field intensity: 

(_~1pere- Turn/Meter) 

then (12.4) will reduce to: 
. ~---'-"'" .... . . _,. ~ -,. dD 

(12.6) \} x H = Jtrue + J"t 
+ 

Equa~ion (12o6) means that the circulation density of H arises from the true 

'd't 
current plus the total displacement current ;rr . By the total displacement :vve 

of the polarization current~ a~d the vaccum displacement current mean the sum 
~ 

dE 
k

0
Jp · Under. stationary conditions or quasi-~tationary condi tio_ns'* -VIre haves 

,...He1~e vre consider quasi .. stationary conditions to be those in which. the magnetic 
effect of the d:)..sp_lacement current is negligible compared to the magnetic effect 
of the true current. 
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dD 
at = 0 ' 

and in integral fonng 

(12,8) f J: • d1 • Jtrue 
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~ .·~ ~ 

\J x H = jtrue 

Note that in the sense of the separation between the effect that is produced by 

the total and the true charges and the total and the true currents respectively 

~ . ~ .~ 

that B plays a role that corresponds to E while H plays a role that corresponds 

~ 

to D~ as we can see by comparing Equations (11.13) and (12.8) with: 

ff ~ ~ qtotal 
(12.9) U E•dS ~ k 

0 

§ ;.d-; = 

The discussion of dielectrics in Chapter 3 was limited to the case of linear 

media, nru:nely media in which the polarization was proportional to the applied 

electric fieldo In ferro-magnetic substances, however, the case of nonlinear 

behavior is most common ~nd therefore we must discuss some of the properties or· 

-> 
the magnetic field which arise in cases -when the magnetization M is not a linear 

and often no.t even a unique function of the external fields. ..1\.t first we will 
~ 

asf!ume· M to be a g~ ven function of the material medium independent of external 

fields. In the most extreme case, that of a permanent magnet, there will be a 

~ 

magnetic moment M per unit volume, even in the absence of any true current_s. In 

. -+ 
this case, as we see from (1~. 7) 11 H will be irrotational and will therefore behave 

~ 

mathematically like an electrostatic field, while B remains 11 of course, solenoidal: 

(12.10) 
~ ~ - ___, ~ -~ 

\j X H = 0.~~ \j x B ;, fo '\j X M f 0 

However.~~ the magnetic field will have sources as we see by taking the divergence 

of (12.5) ·a:nd ·using (12.2): 

magnetic source density 
:,' ; 'I / ('"" \ 

. I 

---:> 
The 11magnetostatic field" H can therefore be derived from a magnetic source 
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density· fm which is equal to the negative divergence of the magnetization. One 

unit' of this equivalent magnetic charge density is usually known as a magnetic 
. . . . 

pole., In t.erms of this description a magnetic pole has no physical reality other 

than that the mathematical description of the resultant magnetic field of a 

permanent magnet is formally the same as the mathematical despription of the 

.resultant electric field of electric charges., 
~ 

Since the magnetic field H of a. 

permanent magnet is irrotational 9 it can be derived from a magnetic scalar 

potential ~m in the same way that E may be derived from the electrostatic potential 

fifo If we puts 

·~ ~ 

( 12., 12 ) · H = - 'J fdm 

then the resultant scalar potential$ in terms of the equivalent volume and surface 

pole densities$ is given byg 

(12.13) fdm ~ 4 ~ ~--;;.~-; - ffJ V;-: dJ 

The field of a' permanent magnet of a given mag:rietiza.tion can also be described -. 
by a vector potential A which is derived from the equivalent: surface currents 

and volume currents within the magnetized body., 

We saw that. the. surface .·current at a boundary equivalent· to the magnetization 
~ ~ 

is given by tpe tangential component of the magnetiza~ion 11 -n~ x M, and the 

equivalent volume current is.given: by the curl of the magnetization, as was shown 

in Equation (19ol4)o From (11.,19). the vector potential of a magnetized body is 

--? Po T \liM . ~~· ~ thus given by~ ~m· --4 --'> J ~ 4 j 
(12.14) .. A ,.. 4'n J r dv = r odS. 

from which the magnetic induction field can be derived by the use of (11.16 ). 

· Tn t:h,e case of a uniformly magnetized mediU!Il.t> all internal currents cancel 

and henc~ the equivalent surface currents are the only ones present. A cylindrical 

magnet magnetized in a direction parallel to the axis of the cylinder therefore 

has a magnet~c field equivalent to the field of a solenoidal coil, carrying current 
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on the cylindrical face of the magnet with the current flow lines lying. in planes 

normal to the axis of the cylinder. This situation can be described qualitatively 

-+ 
by noting that for a permanent magnet, H can be thought of as arising from a layer 

of equivalent pole charges located on the magnet pole faces in the same manner 

as an electrostatic field would be formed by charges so placed. On the other hand, 

~ 

B arises from an equivalent solenoid which can be thought of as be:lng wound on 

the cylindrical surface of the magnet in the same manner as a vacuum current field 
. ~ ,· ~ ~ 

arises. B/po and H are identical outside of the region where M has a finite 

~ ---> ~ 
vall;te, but they differ by Ivi inside of the magnet. Note that B and H in Figure 

(12ol) are actually in opposite directions inside the magnet, as is obvious from 

-'l> 
the fact that the line integr:al of H must be zero around any closed path. 

--"+ ~ 

Permanent 
magnets 
uniformly 
magnetized 

(B and H field--s of a permanent magnet) 

coil 

B 

Equations (12.13) and (12.14) describe scalar and vector magnetic potentials 

in terms of ,the equivalent· pole or current distributions o The potentials can, 

of course·,· be described in terms of the integral over the potentials of the 

individual magnetic moments themselves. If we start from the vector and 
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scalar potentials of a current loop, we will then obtain the expression: 

(12.15) . 7= ~~ ff[J: x V (~) dv 1 

and 

(1~ .. 16) 

By means of an in~egration by parts these expressions can be shown to be equivalent 

to (12.13) and (12.14). The.fields derived from either expression must of course 

be the same •. We tan show~ be 

dipole of moment ~ = JJJ iT dva 

vector identities, that the field due to a magnetic 

isg 

(12.17) ~. Vx r = ~~· fv{~ xV(~)~ --~~,:.v lV(!)~v(~) 
The last term vanishes except at r = O. From(l2.16): 

<12.ia) J?. -V ~m = ~ [V f ·V(;j1} -<;·Vl9(;) (4nl"
1 

The two fields differ only at r = O. 

Thus we have seen that permanent magnets may be described equivalently either 

in tenns of 11equivalent currents" or "equivalent poles." Sinc··e the entire 

description of magnetic fields has been based on the premise that they are produced 

by moving :qharge.~s* ,we .. ar:e }ed to _be.lie.ve ~h9;t ."t:he . in~e.rpz:etation of the field 

'*There exists no basic objection to the e~istence of magnetic poles; their fields 
are simply not considered here since there is no experimental .evidence as tb 
their existen6e~ • Tf single magnetic poles did exist, all the above equations 
would have to be supplemented. rt can be shown quantum roeqhanically that if 
magnetic-poles did exist 9 the magnitude of the "elementary" unit pole would 

have ,to be related t.~ .th.~ -~le~~nt:ary: .~h.S:r:g~ _by- .8: ccmstant factor. 

of a permanent magnet in terms of the circulation of atomic currents is a more 

' ~ 
fundamental one than the concept of magnetic charges, and that therefore B which 

-? 

arises from currents is a more fundamental field than H which arises from 11magnetic 

~ 

charges .. '' · H~wever~ the description in terms of H is more attractive from a practical 

point df' ;View 9 since it reduces problems that involve permanent magnets or problems 

involving magnetized pieces of 'iron whose magnetization can be determined by 

other "nie'!iiis, to problems in electrostatics. 
'j 
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The question mentioned above as to whether B or H is basically the more 

fundamental field can be formulated in a.different way. lf we ask the question, 

~ 

"consider ~ chaz:-ge q moving with a velocity v in a magnetized medium and let us - """" _.., suppose that the force acting on it is of the form F = q(v x ·x). Then should we 

~ ~ --? 

use·. B or H for X, or use a combination of them?" This question has been tested· 

experimentally by Rassetti by measuring the deflection of cosmic rays in magnetized 

iron, and has been studied theoretically by Wannier by analyzing in detail the 

motion of charged particles in magnetized media. The answer is essentially this t 

If the motion of the charged particles is truly random relative to the magnetized 

material, that is, it :i.s not affected by the plesence of the magnetized medium, 

to a first approximation, then the force that is exerted on a charged particJ,.e 

.~ 

corresponds to th.e use of B as the magnetic field in the force equation. If, on 

the .other hand, the particle is moving slowly and its motion is substantially 

affected by the magnetized medium, then the particle is effectively prevented 

from passing through the insides·of the equivalent atomic current loops and in 

this case~ since the individual current loops act like impenetrable dipoles, the 
~ 

averaging process favors a deflection that corresponds to the use of H in the 

force equation. Rassetti's experimental results actually indicate that the 

deflection for very high speed particles corresponded approximately to the use of 

~ 

B in the force equation. In order for the results to correspond to the use of 

~ 

H it would have been necessary for the deflection to have been in the opposite 

directiono 'rhe answer to the above question can be given precisely in the limits: 
~ _..,.. 
X(v--.c) "" Ba 

Thus far we have considered the case of magnetic media where the magnetization 

~ 

M is a given function of position as in a permanent magnet. We must now investigate 
' . 

the case in which we have an ideal,ly permeable medium, that is a medium which has 

no magnetic moment in the absence of external true currents and which gives rise 
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to a magnetic moment which is proportional to the field that is produced by the 

external true currents~ 

~ ~ 

The field equations are then: 

. ,(12o2). \joB= 0 

(12.8) f;. d-; = Jtrue 
~ ~ 

and if we assume that M = ~H we get a relation that corresponds to Equation (3.11) 

in the discussion of electrostatics: 

- . -+ 
(12~19). B = pp

0 
H ? = ':\n + 1 = the penneabili ty 

'Xrn = the magnetic susceptibility 

By means cif a derivation which is completely analogous to the one used in 

~ -:> 
Chapt~r 5·~ to derive the -bo~ndacy conditions for E 'ail.d D, the boundary conditions 

for' t ~d- ft for linear media may be shown to be a 

(12.20) (Normal Components) 

~ ~ ---+ 
= n~ •)'tJ_f2 H2 - f~ H~) 

( 12. 21) (Tangential Components) 
~ 

K = 

= 0 

the true surface current 
between the two media. 

---? _, ----':'> 

Q ¢~ - v ¢ ) = ~ x( E.a - ~) = t 
IWI ~ fo f 2 P\ 

on the boun~ary 

Note that. the equations· (12.2), (12.8) and (12.19) are mathematically identical 
1. ' . ' : •.•, • : 

to the equations governing station~ry current flow in a continuous medium in the 

presence of a non-conservatj_ve electromotive force: 

(9.,2) 

~ 

(9.,3) j = 

(9.5) ft 0 

whic4 led to the expression: 

~ " .Qi 
(9;;'l7D.' R = rl =L ;:s:-

i ~ 

for the "resistance" of linear conductors in series. This analogy gives rise to the 

concept of the magnetic circuit, namely the solution of linear magnetic media 



problems given by: 

R 
m =L 

i 

J.i" 
s. p. fo l. 

, 
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1\n = the magnetic "reluctance" (Amp/Weber) 
of the circuito · 

Note that this solution is based only on the correspondence of the differential 

equations for linear magnetization problems, to the differential equations for 

steady current problems, and that the _solutions themselves wi+l actually correspond 

only in case the boundary conditions for the magnetic and current problems are 

identicalo Tl;lis cannot be true in general •. In fact, it c~ never be completely 

accurate since the conductivity of free space is zero, while. the permeability of, 

free space is unity. This means that the magnetic circuit solution will only be 

valid if the permeability of the media being considered is quite high compared to 

1.~~ or at least if the regions o'f space that are accessible to the magnetic field 

in which the permeability is·comparab1e to 1, are small comparee! to those regions 

in which the permeability is much larger than 1. The set of solutions (12.23) 

and (i2o24) do, however., form the basis of industrial magnetic machinery design, 

since they permit an approximate treatment in cases where direct boundary value 

solutions are impracticale 

~·· 

• I • 
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CHAPTER 13 MAGNETIC BOUNDARY VALUE PROBi.EMS 

In· generals boundary value problems in the presence of magnetic media can 

be .attacked either by the use of the magnetic scalar. or the vector potential •. 

Problein.s involving magnetic media_, located in. external fields, where true currents 

do not enter the region of interest, are best treate.d by the use of magnetic 

scalar potentials. In this. case,· the. magnetic boundary conditions (Equations 

(12c.20.) and (12.21)) expressed in terms of the magnetic scalar potential are 

analogous to the electrost.atic boundary .conditions given in Chapter 3 if the 

relative permeability replaces the specific inductive capacity, and the absence 

of any quantity corresponding to true. surface charge and. the possible prese.nce 

of a true· surface current .are taken into account. We have, for the boundary 

conditions in linear media.: 

(Normal Components) 

(13.-1) 

( 13.2) 
~- -~ -~·. ~ 

n~·p 0 (p2H2 - P1H1) = n1 • 

(Tang~ntial Compone-nts) 

(13.3 ). it, x ~!io -k~fo J 
-? - --? - -;· ·~B 1 ) n1 X (H2 - H1) = !!l.. X ~ .-. :::.1. 

Po jl2 ]l1 
-? 

(13.4) 

where K is a. surface boundary current. 

--'11 

= K 

. (3.15) 

(12.20) 

·(3.19) 

(12.21) 

For..ex:~mple problems involving magnetic shields can be.trea.ted by electro-

static boundary value problem methods~ The only additional complication which 

enters in the magnetic problem is-the fact that in practical cases the permeability 

F fo~, a. particular m_ateria.l is not constant. This is especially true in oases 

when tl:e flux: density within the permeable medium: becomes high. In such cases 

of high flux density or saturation the method of successive approximations may be 

used. In this method a. solution based on the assumption that f is ·constant is 
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first obtained. Then the resultant flux densitY; is computed .and the permeability. 

is secured from ito The problem is then repeated using the new permeability. • 

This methcid'will give· an accurate solution to problems·where the field inside 

the 'perineable ·medium turns out to be uniform. The, problem· of an ellipsoid of 

magnetic material situated in a·uniform magnetic field is such a problem. For 

this reason, the torque acti:rig on an ellipsoid suspended in a uniform field can'. 

be used as a measurement of the pernieability of the material of the ellipsoid as 

a function of the· external field. .Problems of the behavior of permeable media 

in high fields where·. the resultant magnetization is appreciably non•uniform are 

essentially impossible to treat by purely a:rialyti·cial . methods. 

Probleinsin which currents are present must be tre·ated by the use of the 

vector,potential unless it is possible to introduce an equivalent dipole sheet 

in place of the current. The vector potential obeys uniqueness conditions that 

are similar:to those .obeyed by the scalar potential. We can show this by a proof 

that is very similar to the proof used in Chapter 4 for the uniqueness of the scalar 

potential. We will use the vector form of Green 1 s•theorem or Gauss' divergence 

theorem in our proofo If we substitute: 

(13.5) 

into Gaussv divergence theorem (1.7'): 

we obtain: 

----j. 

dS 

~ .__. -+ 
U, V and W are arbitrary vector functions. 

(1;.7)JJL<"V, x ~)·( Vx tr) - U · V x <V x Wl] dv • § tr x <V x W)•ar 

Let us now consider a region in space that is bounded by the surface S and has a 
; ;. 

volume v. within which there is no current flow. In order to accomplish this 

it may be necessary to choose subsurfaces which will exclude the regions of current 

flow. Thus, for all points within v. if we let: 

·...:..:....,.' ·---;. -~- '--'> ~ 

(13.8.) jtotal=O ,..W=A ,U=A· 



and using the field equations& 

.. '4 ~ ~- ·:. 
(13 • 9 ) \l x B =pojtotal 

Substituting into Equation (13.7) we obtain: 

(13.10) JJf (Vx A)2dv = ff (:A'x 7) • ;J; =I (7 x-; 

whi'ch can be put into the form: 
. . . 

. JJJ·' . ~ ~2 ....;. -
(13.11) (\l x A) dv = ff (B x n1 ) 

~ 
• AdS =! 

~ . . 

~ 

• ~) dS 
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the tangenti~ 
component or B . 
parallel to the 
surface and pe~ 
·pendicular to s. 

Now let us assume that A in (13.10) and (13.ll) represents the difference between 

alternative solutions corresponding to the same boundary values of either the ) 

. . ···~. 

tangential cdmponent of the magnetic.field of induction B, or the vector potential 

t. 'The :righth~d side of (13.ll) then vanishes since it is evaluated on the 

boundary where the alternate solutions are equal. On tJ:l,e other hand, the left hand 

side of (13.11) is positive definite and hence its integrand must vanish. So 
_.,_. . ~~-4 

\J x A must be zero throughout v and hence the field B = \l x A is unique. 

This means that the tangential component of the magnetic field or the value 

or the vector potential. on the surface s uniquely defines ·the magnetic field with.in 

the volume bounded by this surf~ce. This is equivalent to the analogous electro

stati~ 6onsider~tion in which the value or the scalar potential on the bounding 

surface or the v.alue o:f" the normal electrostatic field defines the electrostatic 

field.in the volume bounded by this surface. It is possible of course to carry 

the analogy _of this procedure still further by writing the vector potential 

. . ..-? 
within v explicitly in terms of the currents j within v and the boundary values 

of the field over S which are chosen such as to make the field outside of S equal 

to zero. The sufface terms will then correspond to the complementary solution 

of the differential equation while the volume integral of the currents will 

correspond to the particular integral of the differential equation. We shall 
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not carry out the details ,of this process here~ .yve shall, however, obtain the 

particular integral which can be made equal t,o the general solution in case we 

let our boundary expand to infinity in a manner similar to the electrostatic case, 

that isll the solution Which corresponds to knowing the sources over all space., 

The differential equation whose parti·cular integral is to be obtained must first 

be.derived from the field equations (13.,9) by the use of a vector identity for 

the.double curl. This gives us: 

-? l~ ---}' ----? ~ 4 2 - --!> 

(13._12). \J x \\J x A;=\J (\J " A) - \J A = foj 

Some care must be used in the interpretation of the operation of the symbol \7 2 

2-; 
when it is ~pplied to a_ vecto~.. In a Cartesian coordinate system \7 A means a 

ve~tor whose i~ component is \J. 2 Ai. I:n a non-Cartesian coor,dinate system it 

means a vector whose i~ component must be evaluated by_ the use of the identity: 
. 2.-----? ~ ~ ~··· ~· ~ ~ 

(13.13) \1 A ... -v x(\1 X A)+V (\/ • A) 

-'> ~ __, 

The choice of \J • A thus far has been left arbitrary since A was only defined 

-7 - -+ 
in terms of the equation B = \1. x A.. It is here convenient to take: 

-'» ~ 

(13.,14) \1 • -!'- = 0 

This does not involve any ;new physical assumptions., We shall find later when 

we are cc;msidering non-stationary currents that· a more complicated expression 

must be substituted for (13.14) in order to preserve symmetry between the electric 

and the magnetic case~ and in the more general application to obtain relativistic 
. . - ' ' 

covariance of the resulting equations. Assumption (13.14) reduces (13.13) to: 

(13.,15) 
2~ ~ 

\l A= - fo j 

This is the vector form of Poisson's equation. The particular integral of the 

scalar Poisson equation is the Coulomb potential, and since (13.,15) is the 

superposition of three scalar Poisson equa~ions, the particu:).ar in;tegral of 

(13.,15) is: 

.-%~ -; · Po j : dv 9 

( 13., 16 ) A = ~- ... · r .. 

~ 
Strattons "Electromagnetic Theory" 11 McGraw-Hill, 1941. 

... 
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which becomes the general solution if the integral extends over al:l of the· 

currents that contribute to the field. 

·'the·solution of (13.,15) 1 subject to arbitrary boundary conditions, is usually 

considerably mora complicated than that of the corresponding·scalar potentie:l 

-+ 
equation (1.16 )~ The reason for this is that A actually does not have three 

independent com:rone:rits, but only two independent components, which arises from 

the ~astriction of (13ol4 )o This means that we· cannot expect to expand the components 

~ 

of A in normal orthogonal functions and then have a sufficient number of boundary 

conditions to determine all of the coefficients since there are too many functions 

to be fitted. 

There are several methods which can be used to get around this difficulty 

and solve the equations: 

, 

We shall mention one, which is more fully discussed by Smythetf' 
' ~ ,' • • I 

~ 

For example, if we express A in terms of two scalar functions U and W, each 

of which obeys Laplace's ·equation~ by the relation: 

~ .. --?> ~ ~ ~ 

(13 .. 18) A = · \7U + \l x (a1 W) (a1 is any unit vector) 

'then equation (13.14) is automatically satisfied by (13 •. 18), as can be verified 

. ' . . . 

by inspection. The number of necessary boundary conditions is thus reduced from 

6 to 4 and orthogonal expansions can be used for U and H. 

In two dimensional problems, a simple use can be made of the vector potential. 

In a two-dimensional problem we assume that the fields are not functions of the 

z coordinate. If also, all current flow is parallel to the z axis, it follows· 

from (13.,16) that the vector potential has only a z component. If this is so, 

then the magnetic fields are derived from the vector potential by the equations: 
. . . d Az 21Az 

( 13 •, 19) B = - , B = --.:X oY. y -OX. 

*smythe, ~ 1 :Static and. Dynamic Electricity, n. McGraw-Hill, 1939• 
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and Laplace's ~qua.tion becomes: 

Equation (13.14) is then satisfied since A has only the z component Az which is 

not a. function of Zo Since the z component of the vector potential obeys the two 

dimensiona.1La.place 0 s equation (13o20) we can make it either the real or the 

imaginary part of a. complex potentia.lo The only difference between this case and 

the analogous two-dimensional electrostatic case that was discussed in Chapter 5 

is that the z c.omponent of the vector potential Az corresponds to the stream function 

lf' in_.the el!9ctrostatic caseo That isg Equations (13 .. 19) and (13,.20) are the same 

mathematically a.s the e:quations_~ __ wh~ch _r~l~ted the. stream function to the 

*These- equations are {5o·3.) and the relation: 

(
&\ - a\fjcf'fi 
dx')'i' ... - a x a y 

found in the footnote on page 52o It 
il. ~ 

(13ol9) to get the slope of a B line, 

ma.-y be seen by dividing B ~by Bx in 
~ y 

that the B line corresponds to a. i = constant 

line 'or a stream line .. 

corresponding electrostatic field., Since the fonn of the Coulomb potential for 

each rectangular component.of the vector potential is the same as the scalar 

Coulomb potential~ the vector potential of the line current, in two dimensions. 

will take the logarithmic form: 

(13.,21) A = ti, J1n(~\ 
- z 2n r 1 ) 

and the corresponding complex p9tential is given bya 

The imaginary part of W9 the stream function ~ 9 is the vector potential. There-
. . .. 

fore we can use all of the methods developed for finding the stream function 

in the solution of electrostatic problems in two'dimensions for the solution of 

two-dimensional magnetic boundary value problems. 

An important method of solution is the use of complex transformations, .such 

/ 

--.j\ 
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as the Schwarz transformation, to transform the solution of simple problems that 

involve currents in the neighborhood of permeable media having rectlinear boundaries 

into more complicated configua tions. For example, theproblem of a line current 

located at a given distance from the surface of a semi-infinite permeable medium . 
. 

is soluble by the method of images* and therefore the solution of various 

·problems· con~erning slots or gaps in permeable materials under the influence 

of magnetizing windings can be derived from this simple image solution by means 

of a suitable Schwarz transformation. 

A three dimensional case capD,ble of analytical treatment and also of practical 

importance is the case of cylindrical symmetry, i.e. current flow in coaxial 

circles only. In cylindrical coordinates the differential equation obeyed by 

~ 

A~, the only component of A, is: 

\ri ~ ~ J o2
Ari_ 1 ?:a Aci ¢

2
Ai. 

(13.23)-L~ X C\Jx A) yf = ari + f 'dj ~---,- + ~ zi = 

This separates into solutions of the form: 

or: 

(13.25) 

Solutions can then be obtained using the boundary conditions on aii. interface of 

constant f between regions (1) and (2): 

(1) (2) 
( 13.-26) - Arj = Arj and: 

(13.27) 
. 1 d ( (1)) 1 . d (2) 

,pm df fA~ - fC2J df (fArj) = jsrj 

I~ ~ -==?I ~ ----? 
corresponding t~ \/ • B = 0 and \j x H = j,. respectively. Since only one component. 

~ 

of A is to be 'calculated, the solutions are similar to the electrostatic case. 

*The image current here is of the same magnitude and sign as the current in the 
origin9:l conductor. 
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CHAPTER 14 1\1Al..l'f't;LL' S EQUATIONS 

Stationary Media , 

In electrostatics, the electric field was conservative, that is., w·e had: 

(1.10) 
-~--~ 

\7xE=O 

~ 

iJYe have seen in Chapter 9 that there must be electric fields, such as E' in 

Equation (9.8) which violate this condition in order to produce stationary currents. 

It is found experimentally that a non-conservative-electric field is actually 

observed in the presence of varying magnetic fields. The law which describes this 

situation is usually known as the Faraday Law of Induction and can be formulated 

as follows: Consider a circuit of resistance R carrying a current J and containing 

an electromotive force [_. If the magnetic flux !m' which links this current, 

defined by: 

(14ol) ¢; 
Lm 

changes at a 

. (14.2) 

-" dS 

is· found ~experimentally that: 

This means that the current which flows in the circuit differs from the current 

predicted by Ohm's law (9.6) by an amount which is equivalent to an additional 

electromotive force equal to the·. negative time rate of change of flux through 

the c~rcuit. Note that (14.2) is an independent experimental law and is in no 

way derivable from any of the relations that have been previously· used. In 

particular, contrary to the statement that is sometimes made., Faraday's law -of . 

induction is not the consequence of the law of conservation of energy applied 

to the overall energy balance of currents in magnetic fields. Equation (14,.2) 

is formulated· in terms of the total flux passing through the given circuit. This· 

flux can change for several reasons. It can change because of changes in the 

external field v.rith time. I_t .can <:;hange l:>e.c\iuse of motion of the circuit itself 

or parts of the circuit. We shall consider (14o2) to be an experimental law which 

holds for all such casese That is, we shall expect that (14.2) will also hold 

,.,., 
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for currents in moving media. It was :recogn:l.zecl by Maxwell that the Faraday 

Law of Induction had a very much more general rd. gnifi canee than the case' actually 

described by Equation (14.2) would indicate. Equation (14.2) can be written in 

the equivalent form: 

f
-?f ·-;. . ~in 

(14.3) E•dJl. =- dt = JR -E. 
which indicates that in order for (14.2)to be valid, there must be an electric 

field along the Wire which i's non-electrostatic. However, from the boundary 

conditi~h (3 .19) that requires the· tangential components of the elect-ric field' 

across the boundary of a wire to be continuous, we can conclude that (14.3) is 

also valid in the region that is immediately adjacent to the wire. Since the 

'charact·eristids:of the wire, namely its resistance and its electromotive forces, 

are not c~ntained'in the left hand side of (14~3) it appears to be likely that 

this relation is in fact independent of the presence of a current-carrying conductor 

and is a general physical law relating an electric field in vacuo to the rate of 

change of a magnetic field. If we make this induction, then (14.3) can be 

transformed into a differential form either in the case of free space or in the 

case of a stationary medium. In either case, after substituting (14.1) irito 

(14.3) the total derivative of the flux integral can be writtenas an integral 

of the partial time derivative of the magnetic field, giving: 

and, using Stokes 1 

~;~ 

(14.5) \j X E = 

d ~ ~ ~B § 
~ 

- <it B•dS ~ - f dt 

theorem ( 1.14 ), we have: 
·~' oB 

- ()t 

~ 
• d3 

Equ~:~ion (14.5) expresses the modification which Faraday's Law of Induction 

introduces to the condition of irrotationality which was valid in electrostatic 

fields. Therefore we_now have expressio!ls· for both the source d<::nsities 

' 
(divergence) and the circulation densities.(curl) of both of the basic field vectors 

4 -? -'' 

E and B.· From (3.3), (3.4), (11.15)l! (12.3) and (14.5) we have& 



...........,. ~ -1 
(l) \/~ E = ko ftotal 

~ ---?> 
(2) \/.•B=O 
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1 ---+ ...... 
= k - (P - \7 • P) 

o l true V 

Equations ( 14.6) arE;l the .. formulation of Maxwell's Electro Dynamic Field Equations, 

valid for media at.re~t .. The restr~ction tq material media at rest arises from 

the OlTl.is~?ion of any convective current terms in Eq. (14.6) (4) and in the trans-

formation. from Equation (14.3) to (14.4) when flux changes due to motion of the 

medium were ignored., ,Eqt1.ations (14.6) are written in terms of th~ equivalent 

vacuum,-charges or currents which give rise to the fields and contain the expressions 

for the equivalent current and charge densities explicitly. If the additional 

~ ----? 

.field vectqrs D_ 13.nd II a;re introduced by the defining equationst 

~ ""'---'> --'> 
{3.3J D =;k

0 
E + P -(12.5)Ji=~-lt 

. Po 

then Maxwell's field equations become& 

(14. 7) 
.. ---:> ~ . 

(1) '\} • D = f\rue 
- '---:? ---'"7 . 

(2) \j • B = 0 -

~ ~ aB-
(3)\JxE=-at 

' ~ 
~ ~ ---; an 

( 4 ) \l x H "" jtrue + at' 

The form of the field equations in (14., 7) appears to be· simpler than (14.6 ), 

but it is actually more involved physically. The solution of these field 

equations is only ·possible if additional constitutive equations are available 

..... ~ -~ ~ ~ -~: . 

connecting D to E, j to E, and H to B, such as: 
~ 

----> . ~ .--,~. ---"j. ~ B 
( 14., 8) jtrue = 6"" E, D = kkoE, H = PPo 

for a linear medium, or whatever forms apply for a non-linear medium. 

·.l: ... ,./ 
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Moving Media 

It is necessary, to u~e considerable care in extending the field equations 

to the more general case when the media in which the fiel'ds are being measured 

are consi'dered to b.e in motion. We must first derive the subsidiary theorem which 

. ' ' . 

expresses the total time rate of change of the flux across a given surface in 

. ·... . . .• __. 
terms of a surface integral of the vector function B, even in case the surface 

itsel:f across which the flux is being evaluated is also in motion. Let ~m be 

. --. 
the flux of the vector field B, across the surface Se We are looking Tor the 

~ 

DB . · 
function Dt defined by: 

(14,9) .k~m ~ ~ f jj', d-; ·ffCiJ • dt 

~ 

DB 
In order to evaluate Dt consider the surface in Figure (14.1) in a position 1, 

at a time t 1 , and in a position 2 at a time t 2 • By the rules for differentiation 
a? 

1 

') 

Figure (14.1) 

we have: 

(14.10) 
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If we apply Gauss' theorem at the time t to the volume enclosed by S1 and S2 

and the traces of the edges of sg we have: 
'' ' 

(14.ll)ffv·--; dv_ ~ f <Bt • dS: -Itt • d~) f
~ ~ .... 
Bt 0 

( u dt. X d.Q ) 

Note that the flux change across the side surface generated by the motion of the 

boundary of s is included in the last term of (14.11 ). Also note that the flux . 

across the surfaces S1 and S2 iri Equation (14.11) is considere_d instantaneously 

at a gi yen time t, _sinc,e Gauss 1 theorem only applies to instantaneous values of 

~ -> 
the vector field B. If we expand the value of B qn S2 by- Tayl~r 1 s theorem to 

...... 
get the value of B at the time t -+- dt in terms of its value at the time t, we get1 

~ 

4 -+ aB 
(14.12) Bt+dt "" Bt + ~t dt + - -

Substituting (14.11) and (14.12) into (14.10) and passing to the limit, we obtain: 

d.. - a B 

ff-4 -,.;. ff ._. 
dt B o dS=- . o t·' o 

and using Stokes 1 theorem and: 

(14. 14) 

we obtain 

-~ ~ 

dv = u • dS dt 

the desired relation: 
~ ~ 

·~ .ptx u•)· a1 k tV· £av 

~ -'>· '-,--4 

(14 .. 15) 
DB dB ___, 4 --., 
Dt = () t + 'V X . (B X u : + (\} " B) u 

The first term of this expression represents the change in the flux through S 

that is caused by the time variation in the vector field. The second term 

represents a change in the flux that is caused by flux loss across the boundary 

of the moving surface. The third term repr:esents the change in the flux that is 

caused by the passage of the surface S through an_ inhomogeneous vector field. 

Let us now use Equation (14.15) 

differential form in a moving medium. 

from (14.3) and (14.15)g 

to express Faraday's law (14.2) in 

--'> 
Si.nce B is always solenoidal, we 

(14.16) f ~ • a!= - d!m = -ff[t! + 7j x (!J'x 7J J • ciS 

have 
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-?l ~ 

We have designated the field byE' arouti.d'the circuit since B' is to be measured 

in the n10"?-ng frame of:· reference because Faraday's law applied specifically to 

the current measured in· the wire- through Which the flux was changing~ no matter 

what might be the
1 

cause· of the flux change.' By Stokes·! theorem~ (14.16 ):, when 

. :·the· -integrand is taken out of the'- integral, becomes:
~ 

~ ~ dB ~ - -~ v X E': = - 0 t - v X (B X u) ( 14.17) c 

~ ' ' 
where E' still represents the'field measured in the moving medium. 

can be written in the faT;": 

l:.....:l> -:-7> ~ --;, 
(14~18). '' \j x(E 1 - u x B) 

Equation (14~17) 

We 
---'>. ~ -~ 

shall now show that the argumei1t of the curl in (14.iS)~· E'- u x :B~ 

actually represents the field ·which is measured ~y a stationary observer. The 

reason for· this is that iui'-observer ·carrying a charge q through a magnetic field 

-~ ,- ~- .__,~ 

B with a ·velocity u wi 11 experience a force_, -q ( u · x B), in addition to the force 

of the electri~ field If which ·may also be present. Hence the electric field 

obse~ved by a stationary observer is equal tb the ~lebtric field Et observed by 

' -'). -
the niovine; observer, minus the effective field u X B and hence, in terms of the 

' -> "' ' 
field. I\; observed by a stationary observer, Equation (14~18) becomes 8 

-~ ~ aa 
( 14 o 5)- \j X E = - ~ t 

. ' . I , : . . ' ... 

This means that the differential formulation of Faraday's Law of Induction is 

indeflendent of the motion of the medium inside of the field. This is as it should 

be~ since (14.5) is 

4 ~ 

fields B and E, and 

purely a field relation in tenus of the equiva:l€mt vacuum 

' 
should therefore be independent of the characteristics of 

the medium_, including its motion. 

However., the electric field observed by the moving observer does contain 

'' 

two terms~ namely the "induced field 11 produced by the time rate of change of 

. ~ -'-t- ..• . .. . 

the external magnetic field_, and the "motional field11 u x B, produced by the 
~ ' j ' 

motion of the observer in the magnetic fieldo Note that in this discussion it has 
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been assumed that the electric field.proper :j_s not affected by.the state of 

motion of. the observer a.."ld that only an additional equivalent electric field is 

introduced as a result. of the motion of the observer in the magnetic field. This 

assumption ,is actually ,justified only in cases when· the. motion of the observer 

is small compared to the velocity of light, as will be shmm later by a relativistic 

analysis, and therefore all of our conclusions which we shall dravv concerning. 

· Maxvvell' s equations in moving media will only apply when the velocities of such 

media are small compared to the velocity of. light. 

We have thus concluded that the third of Maxwell 1 s equations in the fonn 

of (14.6') is not' affected by the m9tion of the medium in which the fields are 

measured. The first and ses:ond equations are not affect~d by this mo~ion either., 

since. no~-relati vi stically the. charge density of the medium is not affected by 

. . 
the state of motion of the observer. The only modification which must be introduced 

is the addition of terms to the currents that appear in the fourth of Maxv,rell's 

equations in (14.6). Two additional terms· are nE:)cessary, !3. convective term and 

a correction term to the polarization current. The convection current, due to 

the motion of the charge density and equivalent polarization charge is given by 
. -;;. ~lit 

~ ~ ~ . aP DP 
u Cftrue- 'J• P). The correction term which replaces the term ot is i5t 

which takes into account the charges lost due to the change of the polarization 

flux across the moving surface. To enUm.erate the various currents appearing in 

the total current. which gives rise to magnetic fields: 

--? 
(1) True currents j. 

(2) Convective currents of true and polarization charges given by 

~ . ~ ~ 

u <ptrue "" \J · P). 

(3) Currents caused by the rate of change of the polarization and the 

motion of polarized media., in analogy with (14.15), are given by: 
4 ~ 07 

DP oP -+ ~ ~ . :4 ~ ~ 
Dt = at + \j X ( p X ·u) + ( v • P) U 

*· · See Equation (14.15). 
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'~ 
d-E 

Vacuwn displacement current k
0
dt 

cur rent _is .contained in ( 3). 
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The other part of the displacement 

l t t > ~ Maxwel $ .equations in a non~magne ized medium moving v.rith a velocity u, slow 

compared to the velocity of light, are therefore g:iven by: 

(14.,19) 
~~ 

(1) v· D= ftrue 
-+ ~ 

(2)':\J • B"' 0 

~ ~ 

(3) \jX E= 

The constitutive equations lifhich give the tru,e c1-1-rrents in the moving medium 

and th-E":- polarization of the moving medium, are derived from the fields measured 

in the moving medium, and are given by; 

) 
~ ~ ·-? ~, '' -'> 

(14.20 j"' o-(E: + u X ,B)_ . .:a--E' 

=-7 . ~ ... ~~ 
P = k 0 (k-l)(E'~ ~ x B) 

If 1Ne consider a non-charged· dielectricj Maxvrell' s equations can be written in 

the form: 

( 2 )_ 

(3) 
. ~ 

_ dD 
- fcdt 

'1'hi s shows from the macroscopic point .of view that ·a moving polarized dielectric 

·• i ~ equivalent to a magnetized material of magnetic moment 

.. ··.' ~ .-> -?-
(14~22) M

8
q = P Jt u : 

This tan be easily understood by considering a polarized slab of material moving 
·, 

; 

'at right; angles to the direction of pol,arizatione. Under these conditions there 

iS an equi valenj; positive current: moving tn one direction pfJ.rallel to the .direction 
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of, motion, and another positive current displaced from the first current; due 

to the motion of the negative charges, moving in the opposite directioz:. These 

currents give rise to a net current loop and thus a magnetic moment. Hence the 

moving polarized dielectric will give rise to a magnetic field which is indi'stinguish-

able from that of a magnetized mate'rial. This has been demonstrated by the experi' - -
~ 

ments of Roentgen and Eichenwald and others. 

As an exa':';1p le of these considerations let us consider a conducting bar., as 

seen in :fi'igure ( 14.?,), which is. i!!finJtely long and has a rectang:ular cross 

section., and is moving vvith a velocity u relative to a constant magnetic field 

~ 

B, which is directed·at righ-J; angles to.the direction of motion of the bar and 

which is const~nt in time. contacts touch the conducting bar at 

sliding con ta.cts 

galvanometer 

Figure (14.2) 

points which are on opposite sides of the bar across a line perpendicular to the 

direction of the magnetic field and to the velocity as sho•vn. Let us investigate 

how we can reconcile the phenomena observed with our previous consicierations. 

Physic~lly speaking, one wo_uld expect a current to flow in the external stationary 

loop. If an e·lectron moving with the bar is considered, we find that an effective 

~ ~~ 

field given by E 1 = u x B will act on the elee:tron as a result of its motion in 

...:, 
the magnetic f,ield B, and that a: current through the contacts will be produced 

. ->~ 

which will be measured in the exte'rnal c:ir.cUit by a staticrJB.ry observer. "\/xE must vS.nish, 

-+ 4 
since B is not changing in time. Whether the source of B is stationary or,is in 
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fi,eld description must be describable in terms of the behavior ·Of the field · 
J • ••• 

quantities alone, inci.ep~ndent'or'the'nature of the'·.mechanism'which produces't:he 

fi,eld guanti tie so Henc;e a stationary observer must observe a ffield that has a 

v$ishing curl; if, as appears logical by the above electron argument, there is 

an electric field, then' such a field must be irrotational, i.e., electrostatic. 

The effective electric fields within the moving bar will cause a current to 

flow within the bar causing charges on the bar to move to the faces and these 

ch?-r.J•;es.v.\ill pro~uce the o_bserved external elec~rostatic field. On the other 

hand, the same charge displacement·will exactly cancel the effective electric 

~ ~ 

field.u x B produced within the bar and therefore if we consider an integration 

path partially contained in the bar and partially outside of the bar, connected 

by the sliding contacts, then we shall have a c.ircui t over which the line integral 

of the field will ·not vanish since we· have a contribution to the line integral: 

in the stationary part of the path and none in the baro This result is ther.efore 

in ·agreeme'.1.t with the physically observed result that an .electromotive force of 

magnitude uBL is measured across the bar. Note, however, that if the electric 

field wer.e measured ent.irely by a stationary circuit,··then this field would 

actually be irrotational, that is, purely electrost~tic. 

~ ~ 
If we imagine a small hole drilled through the bar transverse to u and B 

and consider a charge describ'.ng a loop threading this hole, no work will be 

~~ 

done on the charge since the u X B· term produced oy the transverse force on the 

charge exerted by its neighbors is nowmissingo 

-!I> 
If the galvanometer link is moved relative ·to the bar in the field B again 

the EMF BuSL_ is observed, since the role of the link' and the bar are simply 

interchanged in the above integrationo The follmting table summari·zes some of the 

cases of. relative motion:. 
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' ' 

~ 
Electromotive force 

-- measured by the 

e Bar Source of B Observer observer 

Case 1 u 0 0 us X 
,> 

Case 2 0 u 0 0 

Case 3 0 u: u uB~ 

Case 4 
> • 

0 ui3~ u u 

Case 5 0 0 u u'3l 

Case 6 u 0 u 0 . .. 

_: 

The results in the above table are characterized by tv!o salient facts: 

'(1) 

(2) 

_... ~ 

The· state of motion of the source B is irrelevant as long as B is uniform. 

Absolute motion cannot be detected in this arrangement. 

The latter fact is an indication that· Maxwell's equations, if carefully 

interpreted, are in agreement Vlrith .relativistic prinCiples. This will be show:n 

later in greater detail and generality. 

·.The situation is more complicated in case there is in addition to an external 

~ ~ 
magnetic field B, a field caused by the magnetic moment M of the slab, either 

induced or.permanent. Our conclusion that the electric field observed in.a 

stationary loop wi 11 be a purely electrostatic one still remains valid. However, 

the source of the electrostatic field will not .become fully clear until permeable 

media have been introduced into the equations for moving media. This, unfortunately, 

cannot be done in a reasonable way -vvithout introducing relativistic considerations. 

However, the result is physically clear, since the source of the magnetic fi.eld, 

provided it is conste.nt in time, does not effect the considerations. The force 

which acts on a moving electron within a moving bar will be independent of 

whether the magnetic .field that produces that force is produced by an external 

magnetic field or by the magnetic moment of the bar itself• Therefore we should 

~ 

expect to obtain an electromotive force, given by u3JC as before, where B is the 



~· 

I 

153 

magnetic field in the moving magnetized bar. We would also again expect that the 

total electric field measured ~Y· a·<:stati.onary-·ob~.~rver·.i-s: e,l;·e:Ctf·ostatl.c, . .; The 
•' •. "• , '' • , r ·C. ' ' . ,·.. . 

/\' 

only part which appears still to be paradoxical is that the effect of amoving 

material should be describable in terms of the sum of the effe·dts:'·of it:s 'atomic 

components,; and since 'a moving magn·et is essentially an assembly of current loops, 

we would therefore conclude that the motion of the loops carrying a·· stea'dy ·Curren~· 

gives rise to an electrostatic field. This, as vrill be shovvn later, by relativistic 

consfdera:tions, is in 
-~ 

fact true. 'VVe sh,a:ll show that in general if the medium 

,· '.·' -~-

of magnetization M is observed by an observer who is moving with a: velocity u relative 
''· .. 

to the medium 6 then the observer will observe a:n equivalent electric moment_, 

given by: 

(14. 23) 
-? 

peq = 
1 -> ~ 

c2 u X M 

and therefore: 

-4 ~ 

( 14.24) \} • E = 

will define the sources of the field. Note that this effe·ct., although it appear$ 

deceptively similar to the classical effect: 

~ -'> ----') 

(14.22) Meq = P x u 

is actually only explainable in terms of th.e special theory of re1ati vi ty. It 

is caused by the fac.t that a charge moving in a circuit appears to spend a 

different amount of time~ traveling in the direction parallel to the relative 

motion between the circuit and the observer, from the time that it spends m•oving 

in the anti~parallel direction. This gives rise to an effective polarization 
' 

that is perpendicular to the direction of motion and lies in the plane of the 

current loop. We shall discuss this effect in detail later .• 

~ 

If the length of the magnetized slab is finite., then the field E is no 
~ 

longer irrotational . since~~ :f. 0 in the rest frame. 



In fact: 

~ ~· 

\]xE= 
~ 

~B 
- ·-= + at 

__.. ~ ~ 

, :- \jx (ux B) 

~-
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(since \l -. B = o. and sinqe temporal and spatial variations are co~nected by 
:;: ... 

d ~_,. ~ 

~t = ".... u .. \7 for uniform motion· u) • 

. 4 ~ 

Hence if B is no longer uniform. then E is no longer irrotationalJ its curl is 

·~ _, 
however identical vvith the curl of- (u x B) 1\rhich is also the effective electric 

field acting in the moving medium. 
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CHAPTER 15 ENERGY RELATTONS IN THE _ELEC'rR011AGNETIC FIELD 
AND FORCES ON CDRRE}TT SYSTEMS 
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We shall now consider some energy relations that are associated'with 

electromagnetic fieldso Iri the discussion of the energy relati~ns in electrostatic 

fields in Chapter 7, we succeeded in associating an energy density with the 

electric field by considering a spe~ific pr6cessJ namely, the assembly of charges, 

in which the work that was done and the changes in the fields could be calculated. 

It was possible to obtain a free energy density of the electric field, in the 

thermodynamic sense, by balsncing the .work and the energy tenus. In order to 
' ' . . . 

treat the ertergy of a magnetic field let us start by considering a process in 

~ 

which a battery which produces· a non-electrostatic field E', is feeding energy 

both into heat "losses and into a magnetic fielde If we take the scalar product 

-+. 
of j and the equation: 

_..,.: .... ~ . 

(9.4) j = <J(E + E') 

we obtaing 
~ ~ 

E' • j 

-;2 . 4 .. .....:. 

=~-Eej 

The lefthand side of (15.1) represents the time rate at which the battery does 

work, the first term on the righthand side represents the Joule heat loss in 

the-current-carrying medium 9 and the last term on the righthand.side we 

tentatively identify as the rate at which energy is fed into the magnetic field 

produced by the currents. If we consider the fields-to be slowly varying, that 

is, quasi-stationary so that the displacement current terms need not be taken 

into account, we obtain from Maxwell's Equation (14.7)(4): 

(15.2) 

If we substitute (15.2) into (15ol) and integrate over all space, we have: 

(15.3) 
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Using the relationg 

~~~-~----+- _j 

(15.4) \] ~ (E x H)= H ~ \] x E - E ,. \] x H 

to integrate the last-term by parts we obtain: 

I!~7x7dv=f1io'fj xEdv-f~c(ExH)dv 
-~ 

ff E• v xH dv ~ - J[[ rr D ~ ~ dv .. fJ _EX ~ ~ d~ 
and ~ropping the surface term and substituting back into (15.3). vve get: 

•\ ;. 

·ffJ ~~~H'j2 dv 

e.. (Rate of Joule 
heat loss) 

~ 

+ ffi! • ~~ dv 

~(Rate at which energy is 
fed into the field) 

We can neglect the surface term generated in the integration by parts, since 
. . . . . . . : ' 

~ -'-7 .. 

E x H varies at least as l/r5 in electrostatic and quasi-stationary magnetic fields, 
! 

.. ·.· 

and therefore the resultant integral vanishes at least to the order l/r3
• Note 

~ ~ 

however, that this will not be true in case E and H represent radiation fields 

which fall off as 1/r.. The surface terms ·will then represent a constant radiation 

energy losso Since we neglected the displacement current ten1 in Equation (15.2), 

we are justified in neglecting any radiation contributionr, at this point subject 

to further study of the energy balance when radiation terms will be taken into 

account., The ~ame thing applies to our electrostatic field energy studies also. 

In this analysis we are using, separately, energy relations in electrostatic 

fields on the one hand, and que_si stationary current magnetic fields on the other 

hand. We shall see later how these concepts can be modified in a consistent 

way to obtain the general energy expressions. From Equation (15o6) the variation 

in the magnetic field energy 6um can therefore be given-by: 

( 15. 7) c) Um = ~ If • S Jt dv 

This is analogous to the electrostatic expression: 

*rf the term __ ~~ had been retained in Eq. (15.2), a term %E·~~ dv would hav~ appeared 

in Eq. (15.6), corresponding to the rate of increase of energy of the 
associated electric field. 
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,~ repf.eserits only. a free energy term· as was 'the case with U. In order 

to'pU:t (15~7) into the'fbrr!l 'bf an'integral over the magnetic field energy derisit§, 

the ·expression ~ust be'made integrable. That is we must assume a functional 

-·· ~ relati~nship·between Hand B. In case the medium magnetizes linearly~ (15.7) 

can be integrated in the same manner as in the case of (7.14); giving: 

(15.8) ··urn = ·} fff1t. 1 ctv 

:;; tn. Iion-·finear materials such as ferro..:magnets, (i5.7). can o~ly be integrated 

between definite states and the answer "VVill in generai deperid on the past history 

of the sample of iron that is being considered. In.the case of ferro-magnets the 

cyclic integral of (15.7) i::; 'i:r:t ge:deral not zero, but has a fi:r:tite value when 

~ 

B is-. evaluated ~round a complete ·cycle.; as in a field produced by an alternating 

curre11.t •. T.l;le cyclic energy loss is given by: 

·U = (((_[. J'i "· dft dv 
m· ~··~ . . 

Equation (15.9) says.that the energy. expended. per unit volume when a magnetic 

ml:l,terial ~s carr,ied through a magnetization cycle is equa,l to -the area of its 

hysteresis loop, when plotted in the H - B plane. 

Equation (15.8) gives directly the energy dens~ ty in terms of a volume · 

int~gral over the fields., If instead we wish an equation for _the energy expressed 

as a volume integral over the current sources of the field, we_need only to 

--» .:; . . ·-+ ...:.....; 
express Bin terms of the vector potential:A, and H in terrns of the stationary 

f . . .' •• 

current field equation (15.2). This gives: 

(15.10) Urn = ~ {ff }( ~ >(fi .. x A). ~v 

and integrating by parts and dropping a surface term as was done in (15.5) we 

obtainz 

(15~11 ). 

This expression is analogous to the expression for the electrostatic energy in 

terms of volume charge density and the scalar potential •. 
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This expression, and Equat~ons (15.7) and (15o8), although derived, by a . 

p.articular 11virtua]; proce~,>sfl, can be taken to represent.the general expressions 
"' •• ·- 4 ~ :' • • • 

for the energy of the magnetic field expressed as a field integral or a matte_r 

• 
integral r;especti;v:ely, si:n,ce the expressions depe,nd only on the final fields, 

: ~ ; ~ . •· ·. . ' 

and not on the nature of.the.process, 

The factor 1/2 in (15.11) is similar to the factor 1/2 in Eq. ( 7.1) and is 
"""). 

due .to the f.act that t,he vector potential A includes the fields of the currents 
. ··' ~·: ' ·' • •• c , • • ',. - • • •• r ' . • 

-? 
;;j ... t:qell).S:el,ye,f>.,, ,The,.interaction energy of a system of currents and charges in .an 

-:.. . ~ ,\ ' ' ' ' . ~· . ' •·. ~ .,. : . .. ' - . . . 

. ~ 

e,:>QteJ::;n~~~fie.ld.,of potentials ,0 and Arespectively is given by: 

(lS,lf,; ,;interaction=/{?' -;:external + f' ~external} dv 

l ',. \ . . . 

. ;''':we ~:Will n6w use the energy expressions for two purposes; first, to derive 

expressions for the forces between currents in terms of the currents themselves 

and suitable geometrical parruneters which depend on the location of the currents; 

and second~ to express the variation of the magnetic field energy in tenns of 

variation of the currents, that produce the magnetic fields and the variations in 

the geometrical coordinates. 

Let· us solve this problem by analyzing a system of n geometrically linear 

'":8ircuits carrying currents· Jk~ For these line circuits, the energy expression 

(15.11} reduc'es to: 

(15,,'13) u 
m 

where the transformation from the vector potential line integral to the fluxes 

~k linking the kth circuit has been made by the U[>e of Stokes' theorem, (11.16) 

and (14cl ). To derive the forces, let us consider that. the i th circuit is 

~ 

,:! .. . ·.· ...... 

subjected to a virtual, infinitesimally slow velocity v.. Then the rate at 
4' · .... ~· '. ·,•.•J . ',-. ·; . ]. 

which an external force F. acting on the ith circuit is doing work is equal 
]. 
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~ 

to Fi • Uf. The rate of energy change must be balanced between the foll.ovring ~ · 

four quantitiess 

(1) Rate at which mechanical work is being done by the external forces. 

....... 
'· 

' •• f. 

(2) 

(3) 

(4) 

Rate of change o.f magnetic 

Rate of Joule heat losses .. 

Rate at.which work is being 
,, . :,.; 

. within the circuits. 

field energy. 

done by the electromotive 

Equating the . overall rate change to zero, we obtain:. 

forces 

••. ' ' '· --l> .· -·· -~ 

< 15.14 r · F i • u; 

;: } .. : (: -:· ·. .. . l. 

of energy 

·' dDin 
~(dt 

+4>n_ Jk2 ~ - , -rf= Jktk' = o 
c:=l . • ·. ~k=l 

.··.(Rate ,of. mech~ 
anicS.:l work) 

~ ' i ,· .' 

,-(Rate .. of 
.change of 

magnetic field 
energy) 

-·· 

, (Rate of Joule (Rate at which 
heat loss) battery does work) 

We are assuming that the magnetic field energy U is explicitly expressed as a 
m 

. th 
function of the coordinates xk of the k current loop and .of the. current Jk 

fl~wing in the kth loop as independent variables. Note that because· of the 

different terms in Eq. (15 .. 14), it is not justified to sirnp:j.y equate the force 

~ 

on the, i"th, circuit·: Fi. to tlle negative gradie~t of the field energy '£k at constant 

current, a conclusion,:whjch would·be .j_ustified only if no other energy terms 

than ~ were presen:t.\! · 

Let us now consider a_ special type of ·constant current process 1 namely let 

the external ele.ctromot.i ve forces be. adjusted as a function of the virtual velocity 

------? ~ 

ui corresponding to the rate of a single parameter xi' so that the currents within 

-the system remain constant. In this case, if we substitute (15.13) into (15.14) 

and use Faraday's law (14~2 ), we obtain: .. 

~ -> 1 
n. d~k n 

•' d~k 
Fi "! Ui + 2 LJk "dt -2Jk dt = 0 

k=l k=l 

''j: 



or: ,_ 
(15;15) 

Hen~~~ , 

• (15.16) 

~ ~ 

F i. • w:i = 

F. = 
~ 

dUm· oUm 
;rt = ;;;X.ll:i' 

~ J ·constant 

~k constant; 

J constant 

k f i 

is• the force exerted ~ the field ~ the i th conductor. 
~ .: ; .) ' ' "; ; 
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Note that the opposite 

sign has been obtained from the sign which would be expected from elementary 

consideration if t~e other energy terms were neglected. This means that in order 

to maintain a, cqn?tant current in t~e c~rcuits, as :the geometry changes, the 
'r. 

. . 
external batteries must do exactly tv,r.i'ce "j;he amount of work that :is done by the 

external forces, in addition' to supplying the Joule heat losse·s. Equation (15.16) 
j ' ~; ·,: . • . . 

is very useful when it is desired to calcuiate the forces acting on current 

carrr.ing circtl.its if the magnetic field energy is expressible in terms of the 
... 

current producing tl}.e field. 
·; 

To e?q'ress the magnetic field energy 
.. _,· •. ,, i rt' 

')" 

(15.13) u = 2L Jk ~k .m .. ·. 'k=l •;.,, , . 

as ·a.': function of current and geometry, it is useful to introduce the concept 

of inductance~ The flux through 'the :kth, circuit is given by 

< 15.17) P k = J) 1 . d~ = fJ <v x 1) . ds: = 
--;. 
A in. turn can be eva.luated by writing the ·integral 

ft. -+ 
d.£.k 

of the vector form of 

Poisson's ·equation (13.15) ·in the forfu, ·similar to (13.16) but expressed· as a 

lhie integra:1~- · · ··_ ,P.o · ~ 

1 
.. ·. -·· Ji ~ · • 

. (15,18) A(:X:k,) = 4rt L[' . . rik: ' . 

Substituting into Eqs. (15.13) and (15.17), we obtain 

(15.,19) ~ = ~ L.k. J. , ~n. d{~---. !l:k .. ~ . ~ '; 
~ 

(15.,20) 

•This equation is written in terms of force components; x. here signifies anyone 
of the possible geometrical parameters of the ith circuit.~ 

,. 



..... 

where 

= T._-k; .· (,:· . ...... 
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is a purely geometrical quantity, called the mutual inductance between the ith 

and kth_ circuit. The force acting on the i th circuit is thus, from .Eq. (15.16 ): . 

.•...... · .. · ... ~--
-,~ 

F i = + · ... d xi . 1\n 
= .. l t L ·;Jj 

. 2 J ' k . 
J=const. 

Note that in the sums of Eqs. (15.20) and (15.22) each term for which the two 

indices are different occur twice, while for equ~l indices, the term occurs only 

once. The mutual energy of two circuits is thus: 

(15. 23) 

while the 

( 15.24) 

where the Lii are called the self inductances. 

The force expression (15.22) is in a.gr~ement with the original magnetic 

interaption expression Eq. (ll.l).; If we substitute "Neumann's fonnula 11 (i5.21) 
·:· . ' .- . . ,. 

into (15.22) 

(15.25) 

(15. 26) 

(applyi~g 

F~ = E_o 
4n · 

. . 

to two circuits) we obtain: 

··. .f· f ' ;-4 ---:7 ~ ( 1 )' 

J~ J2 r <oJ.l .•. c&2) v ·_ r;:; 
1 2 

which is identical ~ th Eq. ( 11.4 ). 

Th.e force equai:fion. (15.16) can also be written in the simple fonn: 

"' dUffi 
L 

dL·k oL .. 
' J 

Ji[ 
~J 

(15.27) F. =~X· ... 1/2 Jj Jk ox. = Jj . o xi ~ ~ jk ~ 

~ . ·, .... J const. J 

the i~st step follows since''only the 'term for which either j = i or k = i. depends on 

:D{'i a:Q:d gives ·n·6n-zero .deri-vatives, arid since L'ij ·= LjH (15. 27) can be written as: 

.. } ···;·: 
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(15.,28) 

J canst. 
-. ~-i 

~. . ·' '· 

where pi is the flux linking the ith circuit. 'This e;~ni'ss:i.:6n. is~'-in evid~~t- •• ,) 

agr~f;l~e:If~--1-::iw~~}\_~~E:l, E(l.~mentary force relation: 

~ -? ~ 

Jl,5,. ?,9-) _ -:· <;J;f .,"' J d~ X B 
~~ \ . ' .. ! . .::. ·" ~- .. .! t= ~ •. ·!~ •.•• - •. ~. .'.. :::. . ... . .. 

These considerations enable us to_express the general variation field energy 
· .. ·, 

as a function, independently 1 • of the geometrical pa
1

rametets· X~ and 'of the currents • 

Since: 

(15.30) 

we have (note each term occurring 'twi'ce )a 

1k =[f('L L .. J .) 
i ~ j l.J J 

~J. L dLij -Sx. - J] + J. 
l. oxi -:· l. l. J, j 

Hence, from (15.19) and (15o22): I - -

(15.31) urn =L{f. d J. + F
1
. __ 

• J. J. 
J. 

8'x. __ -·-} 
- --- 'l. -

where 'pj_' is the total flui linking the ith cir6uit.- Note that -positions and 

cu;ients' ;)ia:Y.· th~ r'ol~s of' ~xt~'n'sive variables in the' termodynamic sense, while 

the forces and the fluxes play the roles of tntensive variables. 

Note also, direct froni·- (.1.5-.14 )-that -·the "Ba_ck E.M.-F _., t€n~ms can be ignored 

in force calculations if the flux linkages are held constant; it follows then 

directly that: 

(15.32) 
au · 

m 

'.;' 

~xi p in contrast to ~q~ (15.16) 
constant 

The self: inductarices and mutual inductances ·can be calculated by several 

means other than-_ N~~ann 1 s- formula. One method is to use the _defining equation ... ~ , .. .. ... .. . r ;. . 

(15.19). The fl~-':;linking: the jth circuit due to.the curr,en~ in the ithcircuitJ 

, . can<be: ey~luatec} qire0tly; f1!:om the known field or vector potential of the i th 

-:cd,:ro'\1-i,.t. A -secor1d ·me:thocJ: wl;l.ich i-s ,_particularly useful in _:case conti~uous current 
. ~~ ._.:. 

distributions and therefore partial flux linkages are involved is a computation 
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,. 

which uses the magnetic fi.e1d epez:gy directly~ namely by use· of Equation-s (15.8) 

= ~/2 fJJ It • ~dv 
~ ' - -:'7· -
H and B !llay' be computed by methods 'that have already been· discussed. In this 

case, "'-th~ cal~ulaiion. ot inductances is- then carried out by the evaluation of 

certi{~-:i~tegrais of'· the soluti;ris of bo~dary value problems.· 

:} . . . . : :~ ' ; ·... . . 
In the calculati:ons of the inductances of current-carrying conductors, it is 

.. - . .. .· 

usually advantageous to- separate the problem into two parts; first, the calculation 

of the external inductance~ that is the inductance associate;d vrith the field outside 

of the wire; and second~ the calculation of the contribution to the inductance by 

the field energy of the field insid~.the wire,. It is necessary to make this 

separation since the inductance due to the external field cannot be computed by 

using the assumption that the conductor has a zero radius~ since this will 

' 
generally lead to a logarithmic divergence of the integral involved. A lower 

limit must be put on the coordinate in the integral representing the flux or the 

energy in the external field and then the contribution to the inductance by the 

field within the wire must be computed separately. This latter calculation 

generally gives a term 1~ich will depend on the permeability of the wire. At 

high frequencies this term becomes negligible. since the currents do not penetrate 

i:nto the wire. At lower frequencies, and particularly in case the' current-carrying 

. . 

conductors are ferro-magnetic, this.· internal term may give an appreciable 

contribution: 
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In Chapter 15 we have calculated the forces between current systems in terms· 

of the currents 'Ni thin the cu.rrent_ systems; and th<e ;p.ecessary geometrical 

quantitiE!S• T~ese forces are, of course, as ~auld be expected, re-expressions 

of the o,rigina,l .. Ampere interaction law given, in E9-uati?n (11._1 ). We can, in 

analogy to the electrostatic case, derive an .expression for the magnetic body 

force per u~it V:()lume in tems of _the field, the pemeE~,bility and the current at 

a given point. In the electrostatic case such a body force was defined by: 

(~_.2) • · .. i¥ = -~ F: •-: dv .. 

~ 

The exuression for F the bo.dy force was: 
· ...... .-.·· .. ·~ .. :.·.·:·:".(· ·: . -. .V 

Under the following restrictions: 

(1) The mediwa is linear, that is, its permeability y 
.':;. 

is not a function 

of the field. 

--.· 
i·s no pennanent magnetic lnoment rl:1 present. (2) There 

(3) There 

. . . . . . ... d ·. 

is no magnetostriction_, that is * = o. 

We can derive for the magnetic body force the expression; 

.. I~. i.s again. possibl~, as should be the case in a satisfactory field theory,. 

to derive. the to:t.al for9 .. e on a volume element, boundeg by a given surface, in 

tems of the value of the field on the boundary of this volume. 'l'hat is, it is 

also possible in the magnetic case to define a stress tensor from which the volume 

force is derivable by the tensor divergence relation (8.21). The form of the 

Maxv.rell tensor in the magnetic case, in the absence of a magnetostriction term, 

can be shown to be~ 

, .. 

.... 
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"The E'inste'in 'sui:nrna:tion co'ri:Ve~tion mentione'd' in Chapter 8, has been assumed 

her~~ 'i'he · geom~trical in:t~fpr;~tEl:tion of this tenso~ leads to the same conclusions 

about m.a:gn~ti6' ... fo:t"ces as 'were reached in Chap=ter 8 about electrical force's. 

Thes'e' S:re' that the dir~~tion of 'the mS:gnetic field bisects the angle between the 

norn1~1 to a surface' and the direction of the resultant magnetic stress that acts 

' ori this. surface. 'The magnitude ot: the magnetic stress normal to the magnetic 

field or parallel to the field is given by HB/2. 

Thus far v.re have considered the. electrostatic field ~d the magnetostatic 

field, or quasi-stationary current fields separat~ly.. We considered energy and 

force pr9hlems. separately for the tvro cases., deriving expressions for the electr,ic 

and magnetic energy densities separately• If we now consider the general case 

in which no restrictions as to the time rate of variation of the. field· quantities 

are ,impqsed, then we must inquire as to which o.f· the energy, ·. ~orce or momentum 

expressions will, ne.ed modific~tion~ and :Which one,s can be taken o.ver in the more 

general·tl,leorywithout modification,. We shall restrict our·considerations to 

vacuum fields or non-permeable conductors, since no additional inf.ormation of 

particular interest will result if this restriction were not imposed. 

Maxwell's equations in vacuo were shown to be: 

~ ~ 

(14.7) (1) v • D =ftru'e 
~ ~ 

(2) v • B = 0 
~ 

~ -~ dB 
.. ; (3) \] X, E .= - .rr ·, 

' '-=7 
•';' -- ~ --:-? an 
'' (4) v X H = j.true. +-. at·· 

The'se equations· completely represent the behavior of electromagnetic field when 

they are conside_red ir;L combination with suitable .c,onstitutive equations and 

:}:>ound(;;try c,ondi,tions •. This is true even for rapidly varying fields, or at least 

!fO interna) .. contrad,i0tion is present if ;an ,arbitrary rate of change is assumed. 
·. . •• '. "·''¥. ' '·. . .. . ' 

Cf?,r:e m'+st.be ,taken in case con.stitutive equations are to be used, since. generally 
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the material constants are dependent. on the frequency of tl).e _fields. We vnll 

_frequently restrict ouselves to vacuum conditions in order to avoid unnecessary 
;j .: . . . . -

complicatiop.s dU.e to su.ch special properties of the constitutive equations • 

. ·. An energy integral of _Maxwell's equations can be obtained by taking the dot 

~ ........ 
prod11,ct of. th~. third and fourth equations of (14. 7) with. H and E respectively. 

Subtracting +;he two equations that result, and using,the well lmown vector identity: 
. '-4 ___, ···~ . ....:...., . -? -> ~ __,. -> 

(15.4) v . (Ex H) = H • <v x E) - E • cv x H) 

we ob_t.aiiJ.: 

(16 .,3) 
;::::?- ~ --"> 
_\/ o (E x H) = -

~- --..· 
aB ~ ~ _.., ~ an 
p·t o H - E • . j - E • "d't , 

~ . --"> 
Taking-the volume integral of (16.3) and using.the.linear relations B=pp.0H.; 

~ -> 
D = kk0E and ·the divergence theorem, we have: 

' (16,4) - }t §f~ (Ji' • i+ E' • p')dv ·Jlf E' • j dv + f (E"x·~ • d"f 

The left-hand side·· -of (16 ~4 )' represents· the :rate of- decrease of the sum of the · 

electric~and:magnetic f1eld energies (7.19) and (17.3) 'that were de-rived in the 

static· case's.- Using Equation (15.1), the first term: ori the right-hand sid~ of 

(16.4} cari :Oe written as:·> 

(JJ-? "-? rrr . 2 ~ 
(16.5) )JJ E• j dv = ))j { ~- E

1 .l) dv 

Equation (16.5) therefore represents the sum of the Joule heat loss and the· 

negative rate at which the electromotive forces. are doing v.;.ork. 
-4 

(E' is the 

electromotive force field.) Thus (16.4) becomes:. 

(16,6) ; ;}\ fl/2(ft~E'·t)dv ~~ f dv -IJt•.j dv + J{,.(F1Ji).di( 

~Rate of change of electri~ (Rate of ~(Rate of work ((Sur-face rate 
and magnetic field energy) Joule heat . by sources of of<:energy 

.loss) electromotive transfer) 
force) 

The third term on the right-hand 'side of Equation (16.6) is a radiation 

ene.rgy term :.Vhich 'has p~evi6usry· been neglected, since for static and quasi-static 

. . 

fields it can be made to vanish 'i'f an arbitrarily large enclosing surface is used. 

for the integration.· As. we shall s'ee lat:er,. the electric and magnetic radiation . 

... 
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.. -

fields of charge moti9ns and ·currents fall off in general only as 1/r at large 

distance's and therefore the integral Jf (i' ~Il) • ds'witl approach a constant 

value ··.;~hen evaluated for an arbi ·trarily large surface and thus may contribute 

to the energy balance. 

The vectors 

(16.7) 
~ .~ ~ 

N =EX H 

is knovm as the Pc:>ynting vector and in terms of Equation (16 .6) it can be considered 
. . . . ~ 

to represent the electromagnetic field ~nergy flow per unit area per unit time 

across a given surfaceo It must be noted, however, that only the entire surface 

integral of if contributes to the energy balance and since questions of localization 

qf:energy cannot be,decided uniquely by experiment, paradoxical results will often 
~ ,1 ' • • • • . ' • .. ' 

be obtained if one tries to identify the Poynting vector vnth the energy flow per 

unit area, at any particular point. .Among other things, since only the surface 
., 

integral· of the Poynting vector con:tributes to the,overall energy balance, the net 

energy flow in the electromagnetic field will always vanish if the divergence of 

the Poynting vector is. zeroo If, for example, we have static superposed electric 

and magnetic fields, we may have non-zero values of the Poynting vector at various 

points in space, but the divergence of the Poynting vector will vanish everywhere, 

.. ';: 

implying that radiation does not contribute to the energy balance in this 

special ·case. 

Equation (16.6) can therefore be considered to represent the overall energy 

balance between the electric and the magnetic energy of the field, the loss due 

to resistive heating, the work done by sources of electromotive force, and the 

radiation loss. It appears ther'efore even in the case of time-varying fields, 

that we can re~a~n ~he expressions derivyd for the energy densities of the 

electrostat.ic an_d tbe magne·tostai;;ic fields. The~ only addition~l consideration which 

has been introduced in order to conserve energy is to assume that radiation fields 

may carry energy in or· out of the volume of integration at a rate that is given 

by the surface integral of the Poynting vector. 
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Let us now apply a similar consideration to the momentum balance in the 

elec~romagnetic field~ Let us inquire as to whether the tensor divergence of 

the tensor formed from the sum of (8.32) and (16.2). the complete Maxwell stress 

tensor: 

(16.8) T.;J· = E. D. - 1/2 6 .. E.. Dk -t- H. B. - 1/2 f . H. R • ~ J ~J ~ ~ J ~J --k :K 

will still give a volume force which is in accordance with experience. If the 

tens_or divergence of (16 .8) i~ taken., we obtain: 
' · .. '·. · . . ·.·· aT. · · · · C1D; a E· · 

. ~J J l. . 2 dk 
(16~9), Fvi = ax .. = .Ei ax. + Djr. ~ 1/2 E k 0 ~-.' ' . . ' . J ' . J J . . . ~ 

E:'quatiori ·(1Gl9) cati.'be e~pressed in ve'ctor form by using Maxwell's first equation 

(14. 7') ~n···t:ne· f'irst t'erm., noting that the third and seventh terms involve· gradients 

of k litnd' J.l, ·:res;?ectively. noting that the secqild and fourth.terms become; 
I . ~ _,. 

--::? ",~. ~ . ··. · . . · , . aB 
'~n x ( \) x E) which by Maxwell's third equation (14. 7) is equal to D x CJ t ; · 

~ -.> ~ 

ncltitig that the sixth and eighth terms become., -B x (\) x H) which by Maxwell 1 s 

fciurth equation· (14 .. 7) is equal to -Ff x (j~rue + :%· ). and noting that the 5th 

~--:> 

.terni vanishes 'since \) • B = 0., 

~ ~ 

(l6,.io). Fv=E ftrue 
ko 2 ~ . Po 2 .- ~ ~ ~ ~ 4 
2 E \J. k - 2 H \J )l - B x jtrue + ~ (D x B) . 

The entire volume force of Equation (16 .. 10) may be expressed as the sum of tvm 

ter.ms: 

~ ~ 

(16.11) Fv = F 
ev 

~ ~ ....,> 
+ ~ (D X B) 

first term: 

(16 ~i2) 
-;). ~ 

F~v· = E (> t~ue 
2 ._. Jlo 2 ~ -+ -+ 

E \J· k - 2 H \J f - B x jtrue 

is the ordi~ary volUme fo~ce acting on material bodies in a quasi-stationary 

· electromagnetic. field~·· The volume force. resulting from the presence of true charges 

*W-e 1 t· th 1 t d t t · t' t are neg ec ~ng e e ec ro.,. an magne .os rJ.c ~on. erms. 
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·' 

or inhomogeneous dielectrics in an electric field or of true currents or inhomo-

geneous permeable material ~n a magnetic field is fully acc~>Unted for by (16.12). 

The second term in (16.,11) is new and is proportional to the time rate of change 

of t'he Poynting vectoro The volume force (16.ll) may be expressed as• 

~ ~ . .·~(~x n) ~ di( = ~ + !2:. c)jt 
(16 .. 13) Fv = F ~v + kko?Jlo . Cl t = Fev + kkcJlP.o at F ev c2 at 

where: 

1 
.. ,_ ... ,<~.~ ·~4) )loko "" ~ 

~ 
Fev is the volume force whose existence is dependent upon.the presence of 

material bodies carrying charges or endowed with dielectric or permeable properties. 

On the other hand~ the secona term in (16.13) does not vanish even in vacuo and 

I 't:h~refo'r~ it WOtild SUper.fi6ially suggest the paradoxical idea of a VOlume force 

~ ~· \' ' ; ( \ : . ' I .. ' ' 

on the vacuum. This term has evoked a great deal of speculation and does fit 

into''~ ether theoey iri which vacuum is supposed to be endowed with various 

mechahical pr6p~rties.which.9 among other things~ enable it to transmit elastic 

wa..;es arid: :~ich. also enable it to sustain body forces o The body forces can be 

~raiismitted from the ether to matter across the boundaries between the matter 

. find the ether'o The only way that such an ether force could be measured would be 

by me.ans' of the ·action of the ether on matter. 

According' tb Lorentzv electron theory the only force which has physical 

existence is a resultant force which arises from the space-time average forces 

acting on material charges and currentsa namely.~> forces obtained by averaging: 

'· .. ~ .. ~~-> 
(16.,15) F=f(E+uxB) 

Also,. accordirlg 'to the Special theory of relativity.~> no measurement can be devised 

which can; date~ine the' velocity or other properties of the ether and therefore 

its exHrt~nce' cannot.'be established experimentallya and no physical law can be 

contiiigent upon: its e:iis~e~ce~ Ther'efore if we adopt the point of view that the 
' ! :, ~ ' ..• 

only,,vol~E3. f~rp~ ~ich. haf? a place in a p!,lysical.the()ry is a force which is 
• ' ' .• . ' • ' • .. - . l ' . • • . . . • . . . • . ~ - • • . ' 
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be subtracted out. We then have for the volume force, when k = f = 1, which is 

equal to the Lorentz forces 
. '()T· • 

(16.16) F i = ~-
, v. o.xj 

·. ;" 

If we apply this equation to a volume containing both matter and radiation and 

' 
boundedtby a finite surface, (16.16) can be written~ the form: 

Fi = fTij dSj- ~it f Ni dv 

Since the body integrated force Fi represents the total rate of change of mechanical 

This equ~tion states that the sum of the rate of change of the mechanical-momentum, 

of a _particular volume, pl'l.).s a term equal to the volume integral over this volume, 

of the Poynting ~ector divided by c2, is equal to the surface integral of the 
- : . ' ', ~; ~. 

total ¥~~~:1. :~~-tress transmitted across the surface, surrounding this volume. 

If it. were possible to choose a surface that was large enough so that it was in 

field':"'fJ7ee space, then the sum of the mechanical momentum and th.e Poynting vectot: 

volume integral term would be constant in time for there would be no stress trans-

mi tted aero ss the integration surface to change the momentum of the system. This 

implies that the_correction tenn, whose introduction into (16.16) was deman~ed by 
i • • 

· the phy~ical reality of only the volume for.ce on matter, makes a change in our . 

concept of momentum necessary. 

In the absence of measurable physical properties for the ether we are forced 

to modify the law of the conservation of momentum by having it not only apply to 
;_· . .. 

the_momentum of, m~tter alone but also to include a momentum density of th~ 

electromagn~tic radiation field which is eq';lal to the Poynting vector divided 

*We have omitted a term which,in matter, is given by (lp -l) .2...Jf. N· dv 
. ·. . c2 ~t ll ~ 

which is ·a~tually a matter term.present when an electro-magnetic wave travels 
through matter. Its net impulse due to a finite wave-tz:~in always vanishes. 

.. 



171 

by the square of the velocity of 'iight. The Poynting vector therefore appears 

in a dual role', both as carrying energy and also as carrying momentum. It will 

turn out in the special theory of relativity that the property, which transfers 
1·-~ •i· · ... : ,' .• 

the energy, also corresponds to a transfer of momentum in the proportions that 
·': -~· , .. ·.· ' 

have been derived here. Actually» this is a more general property which must _be 
( .: • ,;./ • :.. I ~ I " 1 '· 

true of ail forms of energy flow o 

A new consequence of the. introduction of the surface ter)Jl into the conservation 

laws is the possibility of balancing ene_rgy and momentum ove~ part of a system 

only. In the case of balancing e.nergy the surface integral over the Poynting 

vector permits obtaining conservation even over parts of a system, whether 
''' 

radiativeoprocesses are present or not. To illustrate this point, consider the 
~ ·. . . ... 

simple process of a battery (E.1) feeding a current (j) to a resistor ((J""), 

Fig. (16.1). Consider the energy balance 

~ 

j 

I ...., • E' 71 
I 
1-- -

FIGURE (16.,1) 

over a volume V bounded by a cylindrical surface 

as shown. By elementary considerations: 

~ -+; 1 .2 
(16.20) E = j;~ H = 2 j a ; N = ~~ a .. 

where N is directed outward. .Hence: 

S of 

r--, 
f I 

~ 
,R 

t 

'V 

lenth ~and 

(16.21) 5 ~ ..... ... . . .2 e-rr/-J) ·J~r .2 
N•dS = - J - L . . cr a- dv. = - Joule Heat. 

radius a 

Energy is thus balanced ccms·idering the field as "feeding" the resistor via the 

Poynt~ng· 'vecj;or, without explicitly introducing the source of the energy, i.e., 

~, 

the ba t;tery1i (~ · .) .• .. 
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cl!APTER. 17 RADIATION PRESSuRE 

We have seen that the ether theory and the Lorentz electron theory or 

special theory of relativity differ in their points of view. In the ether 

theory, forces are acting on the ether and the ether is acting mechanically on 

.. ; . . . - ' 

matter, while in relativity theory no forces are acting on the ether. In fact, 

!': ·'. 

there is no· ethero But in the relativity theory electromagnetic radiation carries 

momentum which in addi Hon to the mechanical momentum of the matter involved is 

Let us investigate how these considerations effect some explicit 

cases' of the inte~action of ~ad:iation with 'matter. 

t.et.~s first'consider a plane polarized plane wave incident normally.upon 

a slab of material which absorbs the momentum of the electromagnetic Wa.ve fully 

~thoutreflecti~n .. Let they coordinate be parall~l to the electric field of 

the incident wave, and the z coordinate be parallel to the magnetic field of the 

incident wave with the wave traveling along the X direction. The Maxwell stress 

tensor is~ 

bij [ '] 
( H> o 8) Tij = E1 p j + Hi B j - . 2 · E\c . Dk + Hk Bki 

The stress tensor has. only thre~ non .. vanishing components which are all located 

on the major diagonal of the ma~rix.. These terms are given by: 

( 17 o 1) 'I'xx "" - ; [By Dy + Hz Bz] = - g 

'I'yy ""'E D 1 [ BJ 2 Ey Dy + Hz = E D - g y y y y 

Tzz = H B -z z i [ Ey Dy .... Hz Bz] = H B - g z z 

This results in the matrix: 

~g 0 0. 

T ... 0 (EyDy -g) 0 

·0 0 (HzBz -g) 

The force derived from this stress matrix·, using the correction term in (16.13) · 

which makes the volume force agree with the Lorentz. force in a material medium; 



using ( 16 .16 ): 

(17 .3) F . "' 
VJ. 

~ i ~()[(EX l)i)· 
ax.: - · 2 . tit 

The three 

(17o4) 

.,, ... ,· ... 

., ::: .... ·· .. :. 

. - J c . . .. - . 

components of the force area 

. F:VX = - 1/2 :X' [EyDy + Hz BJ 

Fvy = 1/2 fy. [Ey ~y- Hz_ B~ 

Fvz = 1/2 k [Hz Bz -By DYJ 
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The• y and.~ .components of the force will vanish over the slab of material cupon 

·~ ~. . . 

which the E and H fields are impinging, since the fields are not functions .. of y 

or z. · The ·Poynt'ing vector has no y 'or' z ·components o · The· x component, however, 

, .·. does not vanishg and in fact can he integrated, giving a total time· average 

pressure on the slab of material: 

(17.5) P • [o;u dx = 1/2 [kk0 E
2 

+ l'f'o H
2
] 

which is exactly equal to the negative of the energy density of the incoming 

radiation field. 

The term'depending oil the time has been omitted for the reasori that;if By 
!f{ 
and Hz of the inc6m.ing wave vary sinusoidallyJ then when the time. average of the 

pressure is taken, the time derivative .term would only contribute a transient 

variation~ while the energy density term, will give a secular variation. This 

means for a suffi?iently large averaging period for a continuous wave train, that 

the time-dependent term does not contribute to P. If we are considering the net 

impulse that is transmitted by a wave train of finite length; then the pressure 

must be int.agrated from time equal to minus infinity to time equal to plus 

infinity, and in this case the time-derivative term will also ~ntegrate out. 

The only case in which the time-dependent tenn will contribute is to the instantaneous 

value of the pressure dur:in:g the ab~~-rption of a wave train. The time-dependent 

term will give rise to a fluctuation terni which'represents the'fiuctuation of 
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the momentum of the radiation field. The addition of this term therefore does 

not result in any experimental differences in the radiation pressure from 
1
the 

value that it would have according to the ether theory w;here this term is absent. 

We can summarize these results by stating that the phenomena of radiation 

pressure is in accordance with· the- concept of moriJ.entum ·of electromagnetic waves 

and the mote general concept of momentum carried by any energy transmitting 

prooesse However, the radiation pressure considerations do ~disagree with the 

results of the classical pr~relativity ether theorye Since the radiation pressure 

that has_ been computed here by general considerations must be identical with the 

Loren"j:;z_ f.o:rce,. it must be possible to compute it directly by calculating the 

in<?-u~ed currents, .in the medium that absorbs an electromagnetic field, if a 

particu,la,r,m()d~~ of ab~orption is used, such as, for instance, finite conductivity. 

This calculation can be carried out easily and-in all cases does give a value 

for the radiation pres sure that is equal to the energy density of the incident 

radiation. 
,-· 

As a second example let us consider the radiation pressure produced by 

radiation th~t.is non-polarized and traveling in a random direction when it strikes 

a material n;tediumo By symmetry the only non-vanishing component of the volume 

force (17.3) is the component. of the force normal to the surface which.we shall. 

designate_bythe subscript 1 • It is .given by: 

Due to the fact that the ith and the jt~ (}Omponents of the electric field are 

uncorrelated, the time average value of all of the cross terms vanishes, 

--
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Al;o ''since iD: the· ~artdo~ orientation· of· the fields the square of each component 

ha.s the same a. priori probability$ we have: 

Therefore the value of the normal force becomes:. 

. . . 

where U is th.'e energy dens:tty of the incident ra.dia.tiono Integrating from the 

absorbing medium into field-free space; we obta.il1: the result that the t.ota.l 

radiation pressure is equal to 1/3 of.the energy density of the incident wave: 

(17.11) p ~ 1/3 u 

This theorem gives what might be called a.n equation of state for radiation in a. space 

bounded by absorbing walls., This equa.t.ion of state forms the basis of thermodynamic 

deri va.tions of the Stefa.n=Boltzma.nn law imd the Wien displacement laws for, black 

~ody ra.dia.t:i,on., 

! .. '• 

.. ·.: ..... 
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CHAPTER 18 ELECTROMAGNETIC WAVE EQUATIONS 

We shall now consider the form taken by Ma~elP s equa~fdns 'if they are 

reduced from a system. ~f four first _order 'linear -.p!irtial differential equatiop.s 

to ~ ~y~t~ of two second order ,linear partial differenti~l equations •. Maxwep 1 s 

equations are: 

(14.7) (1) 

(2) 

(3) 

/ 

--.;. ~ 

\J o D = ftrue 
4 -:> 
\JoB=O 

Consider a region where there are no true char-ges and no sources of EMF so th~t 

---? 
Ftrue = ,0" and' E' = o, and wher~ k and )l are not functions of the coordinates. 

. . 4 ~ 

Take t~e,, curl of Equati?n (14o7)(3)_and substitute ffoH fo~ B: 

(18ol) . :V,x cyx E)-~- ;t[~.~- (pp:n~ 

Substituting from (14. 7 )(4 ), we have: 

~ ~ .... (-?> ~) 
(18.2), : . \J.x (vx E)=- PJlo'gt' .·jtrue + kko: t , 

(18.3)· 
~ ~. ---l> .. ·. 2~ 

\](\]c. E) -\7 E 

----7 ---:} 

Since \1 • E = 0 in the charge-free field, and using 

(18.4) 

where# 

nlr d~~ 
\7~-+- c:=.-- uu 
v c2 ~t2 '' o 

1 
u k = -· 
1 o o c2 

--+ . 
c)E 

a-- = 0 at 

(9.3) we obtain from (18.2): 

Equation (18o4) is known as the general wave equation. Usually only the 

second or the third term individually in connection with the first term is used 

in the solution of a particular application of this equation. In a non-cond~oting 

medium the third term vanishes, giving rise to a wave equation for waves that 

travel with the velocity v = l//.ffokk
0 

1

• In a conducting medium, the second 

-~ 
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term is. usua'lly negligible, ·and~'we Kre· tE3rt ·With the differenti-al equation .for 

heat· :~c6:hducti.6n •or diffusion.' 'i'he re1at'iie inagni tude of the two terms can be 

ea:sily estimated' by assuming that the field varies sinusoidally:. 

( · ·).·---)> -~- iwt 
18~5 ··• ·E = ·E

0
e · · 

When this 'is substituted l.nt'o the wfi.ve equation (18.4') we get: 

'(18.6) \]2E
0 

-+ ~ ~ w?.;.;.~ 0 crwl; = o 
c 

We can.· re-express the a;;ef'ficients in ~a:ri'ous 'ways. If, for example, we introduce 

have the' teTations: 

(18.7) ·' (].)·_:In free spade, p·= k = :3., t:::.··~ 

('2)': 'In· a mediumi p ·f 1,'·-:k fl~ ~;;.. -~ where u = the velocity 

of tb.'e' e1ectromagnet'ic wave in the medium. 

. . 
The relaxation time of ·the dielectric, which _we discussed in Chapter 9, isa 

·· (9.:2cr) ·· \ = ~ 
Substitutin·g :(18.7)(4) and (9.,20) into (18.6) we have: ..., 

(18 .. 8) v 2E: 1 [1 - ~T-J ~ = o,. 

Hence, if the relaxation time I is long compared to the period 2n/W of the 

si;nusoidal vibration, then we have essentially a propagation equation, since the 

imaginary term drops out. On the other hand, if the relaxation time is short 

compared to the period~ then the imaginary term is large compared to unity and we 
, . 

. "' ,, 

have essentially a diffusion condition. 

For all pu~e metals the relaxation time is of the order of lo-
14 

seconds, 

so that the diffusion type of equation is valid from zero frequency all the way 
·,,, ..,: 

into the optical frequency region .. This means that in metallic conductors even 

~ a2E 
in the ultra high frequen?Y radio region the propagation term ~--:2 can be 

c at 
' ~ t.' • ~· .• 

Olllitt.ed rr6Pi' the wave' ~quati9!l, (~8~4 ).· ~o"pu,t 'it in d:i,fferent terms:, the 
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disp~ac~_eni; curr~Il;t is ne&ligi:t:le. re1at~\(e to the conduction .current in metals 

at the hig?est .frequencies that are the,o.r:eti:Q_ally attaina~le .with macroscopic 

oscillators. In the~ optic~l ,frequency region, b()th term,s may become important, 

due to the fact that the displacement current term and the oonduction curre~t .• 

term become of the same order of magnitude and therefore indistinguishable. The 

binding and the inertia of the electrons in the~metal introduce phase lags between 

t~e, ._.~~~.ctronic motions and the incident electromagnetic. fields. The two terms 

do Il.Pi?. p4ysically represent .different phenomena in the optical frequency ~egion, 

but simply represent a current with one component in phase with the field and 

another component that is in quadrature with the field. The quadrature current 

component is physically not a displacement current term, but it effects the 

propagation equations in ,the.sameway as a displacement current would. In the 

optical region therefore, the distinction between the dielectric constant and the 

conductivity is a purely formal one. They represent respectively the real and 

the im~,ginary parts of a complex dielectric constant • 
. : 2, -'· ·~ · .• 

The ratio: between the magnitude of the conduction current and the magnitude 

of the displacement current can be rewritten from the relations of (18. 7) as:-

(18.9) 

where: 

(18.10) 

is a resistance whose numerical value is 376.7 ohms. This numbe~ is sometimes 

called the characteristic impedance of free space. It can be shown that a 

conducting sheet whose resistance is R
0 

ohms per sq~ar~has exactly the same 

,· 

reflecting conditions on the incident wave as has free space itself, provided a 

'-
reflector is placed a quarter wavelength behind such a sheet so as to effectively 

make the impedance behind the sheet infinite. Such concepts are, of course, 

ractic.al considerations, but we shall avoid extensive discussions of 

square sheet is- -independent of the dimensions of the sheet. 
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such analogies i!l ~~vor of, considering the characteristics .of the electromagnetic 

fields themselves. 

The significance of the ratio (18.9) might be· stated by saying that if the 

resistance of e. cube of e. medium~ whose edge is ;t in length~ is. larger than R 11 . 
. . . 0 

then in such e. medium the displacement current is dominant~ ·while if the· reverse 

is true, the _cond4ct~on cu~rent governs the behavior of .electromagnetic fields in 

' 2 ,_ d2 

0 =".· ·-.-ft42-. 2 . ,, .. _ _ lf . c dt 

The_ wavca equation (18.4) is then reduced to: 
' .. :-:-"7 

.. (18.12) Ot-·rfo~ :~ -= o-
~ 

An identical equation can -be shown to hold for B by taking the curl of (14. 7)(4) 

and using e. process that is analogous to the one ·that wa·s used to derive (18.4 ). 

Let us now re-express these equations in terms of the potentials of the electro-

magnetic field. Due to the relation expressed by the induction equation (14.7)(3), 

it is no loriger_possible to de-rive the electric field solely from e. scalar potential 

Jt, but the ine.grietic field as a result of (14. 7)(2) is still derivable from e. vector ' 

potent'ial by the· equation: 

--+ ~ __,;. 
(11.16) B =·'\} x A 

If Equation (11.16) is assumed to hold~ then the electric field can be derived 

from the sum of the gradient of a scalar potential and a supplementary non-

cons~rve.tive contribution from the rate of change of the vector potential. That 
,. 

~ 

(18.,13) 

deri :ve E from the scalar and the vector potential by: 

...; ~ ~It 
E = - 'V fl1 ... a -t -_. 

isJ we m~y 

4 
which makes E conform to the relation (14.7)(3). 

--? 
As before J the divergence of A 

remain~ undefined, or at least remains undefined within an e.ddi ti ve a~bi trary 

··:........ 
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1'unction o-f posi tion:e·: Let us ·now define the divergence of A by the so-called 

Lorentz condition: 

(18.14) "f!·:""A + ~ :e. +· pp-
0
- o- 11 c. o 

_c 

whi;~h' i~' free space becomes: 

'·(······)~~ i ~i 
·- 18~15 · \l · A + 2 ~- t = ·o 

c 

Th~ LOrentz 6ondition.appears to be a very arbitrary introduction of a 

subsidiary relation. As we shall see, it has the advantage of introducing complete 

symmet'r'y.betweerithe scalar and the· vector potentials, 'namely, it makes th~-scalar 

and the vector potentials obey the same differential equation (18.12) as-those 

obeyed by the fields. It turns out that the Lorentz condition assure's a· relativistic 

covarian·t relation between the scalar and the vector potential. If we introduce 

the defining equations (11.1.6) and (18.13) and the Lorentz condition into the wave 

eqaution,; (18.12). a,nd si:rp.plify, .we obtain the symmetrical set of equations a 
. ' • _, > ' • ' ~ -~· kk i t ' . it . ~ 
. (18.,16 L,., :'7 . A, - . 2 -_ .2 -. uu0G'-:' ~t = ,~uu 0 J 
, .. , ..... -' ..•.. V . c d t ·/I . o 'I 

: ·: } . ' ; ' ;: ·. 2 El:.; .i2t- . ~t _e_ 
(18.17) \1 ¢- 2 2 -p-p-0 0'- ~t =- kk 

_. .... .. .c at o 
~ . ~ - . 

~ ~ ~ 

... c, ... Here j 1 _represents a current given by j 1 = O"'E 1
, that is, only that part 

_,of :the_ c1,.1rrent density which is produced by the electromotive forces and does 

not contain any part of the .current that is induced by the ele_ctric fields .in 

the conducting. meditun itself. I'n free space these equations become simply: .. 

(;l8.,18) D. A= - p-
0 

"1 .. 
D p (18.!9). JL=,- ko 

-~ 
wHere j 1 ·and (' are the sources of the electric field and are produced by external 

agents.. These equations are known as the inhomogeneous wave equations. Their 

complementary solutions, namely the solutions of the equations: 

(18.20) .D"t.=. o 

(18.21) 011 ':' 0. 

will be shown in general to be wave solutions. The particular solutions of 
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Equations (18,.18) ap.ci,:(lt3,,19)'ar.e ex~'ressil)l~·~!i,.J;e;f!Tl~:~.C,{~~tegrals over·tlie charge 

and current distributions. We are theref()r.e i~'t~re..?t·~d: ·~r.1 .obt.ainirig · :6ofh· the · 

homogeneous, '<:ompl\:;rrie'ntary solutions, and also the parti'(}ular source 'solutions, 

of Equations (18.18) and (18 .. 19). 

By inspection of Equations (11 .. 16) and (18.13) ·it can be seen that the resultant 

electric; and rriagrietic fields are unchanged by transformations of the 'typea. 

---7> ~ ~ 

(18,.2.2) :A• =.:a ·..:vlf. 
' ' 

( 18.:~·~3) ' ¢'' \b :~ +"~ c '! . 

where lf ;is 'a· function of the coordinates and the time. This means that if any 

physical h.w invol v:i.ng electromagnetic interaction is to be expressed in terms 

~ 

of the general electrodynamic potentials A and j1 then such a physical law must 

also be unaffected by a transformation of the type (18.22) or (18.23) •. These 

transformations are usually known as gauge transformations and a physical law 

that is invariant under such a transformation is said to be gauge invariant. 

' ' 

The property of gauge invariance, if possessed by a physical law, insures that 

this physical law\rlll not lead t~ consequerices that cannot be formulated in 

terms of the interactions of charges and currents in terms of electromagnetic 

fieldse 

Note that the ·~·elocity c:::::.. 1/~ of electromagnetic waves in vacuo 

enters into the equations as a characteristic constant of the theory per se, 

not as a constant describing a particular physical parameter entering the theory. 

This is a feature of Maxwell's equations at variance with the law~ of classical 

mechanics which contains no characteristic constants. Classical mechanics can 

be scaled freely with respect to all physical quantit~es; Maxwell':S equations 

can be scal!3d;·in I'elat.ion .to.length and time individually .but not as to velocity. 
' ~ 'J .. , '' ' ' 

It is this fact which indicates that the l~ws of classical electrodynamics are 

actually relativistic in the sense of introducing a characteristic velocity. 
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. ,c~ER .19 ___ _soLurtoNs ·o:F ·m tLEdTttoMA.Gmtc ·wA.v'E EQ.uArro:Ns 

Plane wav~ ·soiutions in 'statioriaij"ll1edia 

Let .us. consider first the solution of- the homogeneous equ~tions: 

(18.20) Dt = o 

·,(18. 21) 0.¢ Cl 0 

in the case •in whj,ch all fi-elds are functions only of the distance of a given 

plane from the origin as in Figure (19.1). If this distanc~· is f . and if 1 is 

~-
the radius vector from the origin to a point on the plane, and i~ n is a unit 

1,. .. 

'.< '-., ..,,-t 

Figu~e (19.1) 

. (All fields .are constant 
on such plane surfaces) 

\, 

vector normal_:o the plane, then all operational derivatives are functions of~ 

only and the \} operator becomes: 
. -7' . . ·• 

(19.1) v~-: a~ 
and Maxwell 1 s equat~ons (14. 7) in the absence of charges, become: 

.. --~ 

(19.2) (1) rl • ~ D ~ 0 
~~ 

~ at 
·.(2) .n • 1"T = 0 

~ -~·-
""? i3E ~B 

(3) n X a~-=- ar 
~ ··'""'> 

~ . ~ H "'?>. d. D 
_ '(4) n x ·d·-~- =. j + -n-

If. we tak~ the. scailU" product of 't and the fourth equation of {19.2) and use 

the relat:Co~s (3.11·)-'and '(-9.3) :;e hav~·=:: 

(19.3) 7; · [~' + a~t} £ ~· o 

.. 
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4 •··r~ 

Equations (19.3) and (19.2)(1) imply that the longitudinal components of D and E, 
. ·,: 

that is those components that are perpendicular to the plane surface in Figtire 

(19.1 ), are independent of~. and that their time dependence f,ollows an exponential 

decay law in accordance with the characteristic relaxation time of the medium. Th'u·s: · 
. ':. . . : . : 

~t 

(19.4) . ~ = En~ e-t}r = Eno ~ kko. 

This means that the only longitudinal solution of the field equations is an 

electrostatic solution and that, in the presence of finite conductivity, the 

electrostatic solutions will vanish exponetially in time. 

Performing the same scalar product operation on (19.2)(3) we have& 
.. -~ -..; oB 

(19.5) n • 'Ft = 0 

Equations (19.5) and (19o2)(2) show that the only solution compatible with -the 

field equation~, for the .magnetic field component normal to the plane surface-
. . 

,' 

in Figure (19.1), is a stationary uniform magnetic field. 

If there is a non-static part of the wave, it must be composed of transverse 

fields or fields whose vectors lie parallel to the plane. The velocity with which 

this transverse wave is propagated in the direction 't, if(}'= 0, is given by: 

c 
(19.6) u =-

-~ 
Each transverse wave component·obeys the one-dimensional wave equation: 

2ii! 1 d-2i' 
(19.,7} 'd~2 - u2 dt2 = 0 

-4> 

which may be derived by eliminating H between (19.2)(3) and (19.2)(4), securing 
,, ,, 

the Telegraphers I Equation, and then setting o= o. The general ,solution of 

( 19 • 7 ) i ~~=. 

(19:.8.) E-= g(~- ut) + ,f(~,+ ut) 

~ 

where g ~nd fare arbitrary functions.- If E is, assumed to have a sinusoidal time 

variation~. the soluticm ror (19. 7) is a 

= i(K& _! Wt) 
(19.~) ,E E

0 
e _· ? _ . ~ 



wJ:?,·.ere K is give~ byg 

~ {))-+ 
'(19.10) K=~u= 

,;._- ·• . u. 

··+-> 1 u 

~-u 
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. t;) ·.· •]: 
,K=-=-

!.u ... ~:. 

'By gi:meral ·theorems in Fourier analys'is,· the gen~·ral s~lu·tion of the 

;· :· ''homdge:riei:m~ wave equation· can be· expanded ir{tertns of Fourier integ-rals over the 

.... -~ 
three components of the wave propagation ve 0tor K, which ;j.-s related to the . 

frequency by the relation (19.10). The Fourier integrals are taken over all 

~ 

of the positive and all of the negative values of each component of K. In 

addition, the resultant fields are summed over all possible polarizations. Thts 

gives the general expansion of the solution of the homogeneous wave equation in 

terms of a super-position of plane waves. This expansion has the form: 

~ Z-3 [~ ... ilt~ i(;.; -l.Ut) 
( 19o_ .. ll) E = X · · · · aJ · e dK1 dK2 

j=l .· j . K 
-00 -00 ~ 

The ~·ire unit .ve~t~r~ in the three coordinate directions. The ajK are amplitude 

functions of the frequency for the three coordinate directions, which may be complex 
•.• -~ " : ! - . 

t~ gilie arbitrary starting phases. 

In a si~ilar way, it is also possible to generate a solution of the homogeneous 

wave equations in terms of an expansion in spherical waves, or in terms of an 

expansion in cylindrical waves, that is fields whose magnitude is dependent only 

on distance and azimuth relative to a given a.Xis. Wnich of these expansions is 

the more convenient one to use depends on the synnnetry properties of the problem 

being considered. · 

Plane Wave.· Solutio:hs. in Moving Media 

Let us now consider a plane wave solution in one dimension in case the medium 

in which the electromagnetic wave is being propagated is in motion with a velocity 

--? . . ... 
v relative t·o the observers The pha."se velocity of propagation that results under 

these conditions was measured in the Fresnel-Fizeau convection coefficient 

experiment. The experimental result was that the phase velocity was given by 
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an equation of the· type: 

'(· 

'• ( 

·n == {pk.' == the index of refra.cti on of optics 

c 
Uo=-

{yk' 
= the veloc1ty~of the wave in the medium if the medium 

is at rest, v = 0. · 

~· = :~nit vector in direction~ • 

We shall riow show that Equation (19.12), which will later be derived rela.tivisticfl.lly, 

is also in agreement with Maxwe:j.l's equations in moving media., provided that we 

~ ... 

interpret the velocity v as the relative velocity of the medium to the frame in 

which Maxwell's equations are va.liq, i.e. to the frame in which the free space 

velocity would be c. Maxwell's equ(')tions, in the absence of permeable materials 

and in the 

(19 .13) 

absence of true charges and currents, in moving media. from (14.19) are: 
-:) -; 

(1) '\} • D = 0 _, ' ; ~ 

{2) \j•B=O 
· · · ...-. ~ · a· a 
(~) \j X E • - at 

_... ~. [d}t ~1 ~ ~ ~v ]) 
(4) \] X B :;: Jlo Lat' + ko at + \}x (P X J 

The polarization is Eiven by the.effective field in the moving frame by: 

~ ~-4--j-

·{14.20) . P •:k
0

(k•l){E +vi B) 

Note that !il!l of the fields in {19.13) and (14.'20) are the fields which would 

be measured in the stationary frame of the observer. Note also that any results 

derived here will be carried out only to the first order in v/c. Let us substitute 

-+ 
P the polarization field (14.20) into the fourth equation of (19 .13) and using 

(19.13)(3) ~~ have: 

~ ~ . \, ~"R .. dE . {~ o.'t ~ -,I> - :t] 
(1~!~4) 1 .\1 xB = p0 Lk0 ·at ,+ k0 (k-l) C}t•+k0 {k-l) v x d t +vx (Ex v)J, 

Vx t= ~f~f + 0 ~)(- -:x <Vx 1l • Vx <i x -;J}J 
'I - ..... ·- •··-~··~"'"' ..... .. 

. .. . .-· rr. ··... ... .r r . . 
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For a plane wave solution using (19~1) this becomesa 
~.;:/~;:·; · ,·!.:..·:r:-~· ·· · :·- rrl'·,, :··r ·;-

(19.15) ~X }f § <2 [:r + ~ - F[" 1 X (;tx't1} K X a;~'~)}j 
~. 

Note that v ~s independent ,of the coordinates. 
. ·' ~ ·-··· ·. . : -- ·• . 

Expandi:~g,~~;tripJe cross product, 
~ OlE~· 

and, since the wave is transverse, omitting the 

taki'~g the ;url 'or both ~ides of (i9.l5):, ·, · . ; 

term n • ~- ',. ~"'e_ obtain, by 
i." . 

.. . . ~ . 

. . --~ .. ~.- :: .. 

' ~- ·,•·, 
,1 

.... · .. 

where the velocity of the wave would be u in the medium if the medium were at 
0 

; - ~ ·,! _.,. ,. • • 

·.· .. ·'.. -.~ 

rest. This ~pproximat~on is justified since we are only interested 1n the correction 
::· :~ ··_· .:: ·:·::.:;)~: :"·:-.:r· ,:::- L . __ ,. ·· · ···: .,_. ··, ~ ·.q-. t 1 ._,, ·"'' - 'i :·· .. '" .. ..,: -~ .. 

term to the velocity. Using (19.17) we have:. 

u~2 t:rc ~~- }) 2 ~:iJ ' 
-I ~ .', -· 

·-. h ~ ....... ;:·- < l --..•· .. · 

which is the wave equation that corresponds to th'e propagation velocity: 

(19.19) u = uo [1 c (1 - ~) 2::-;{J112 

which agrees i;;o: the .order v/c with t}le Fiz.eau 

,. · ... !.. ( 1),. -~ -+ 
· .'~- u + 1 ~ it . v • n 
·:· _:.-; o,., . . . ·. ';' 

resuit given in (l9;,l?)o 

physical interpretation of (19.19) is that the -9~ly part-pf'_,the prop~gation velocity 

of the wave:.which: is_· affected by· the motion· of:the medi~ through wh:i,ch the: wave' 

is passing is t];lat:part __ ·which_ is proportional to:.· 

; (~9 .. 20)' '1 - !. -~ i~ - 1'' oc ;)10· ;/if: < 

' ' ' ! .. k ' k d t ' ' ~ t 
·. . . ; .-·.·.:: ,. ' . .: . . .. ·.· "'. 

This fraction is proportional to the ratio of the polarization current to .. the 

d~splacement curr~nt. Since a polarization current .. 9-oes _actually correspond to 
~ ;·· ~ 

the motion 'or 

of the wave :which corresponds t.o these di.poles will be affected by i;he velocity 
i ~ ! 

.. } 

' ' ' 

of the meditim. The effect of a medium _on: a plane wave. is. ,in) general simply t;hat 

If We have also omitted a term'ti .if.. 'ffi; this term will vanish in the next 

step {Eqo. (19 ol6)) due to the rr X tperation. 
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the· medium is pola.rized'by: the 'incident wave and that the resulting dipoles ·retard 

the wave which is· coherent~·with the· incident wave such that:;thEi oom.binattori with 

the'prim8.ry .. wa;ve co:tresp~hds···t6 the overall phase 1 te1bo:tty~, loci..tj. It is 'this 

coherent retarded component which. is being radiated from a moving source· in: this 

case,;: and." which. gives. rise to the'.Fresnel-Fizeau coefficient. Note that all these 

results are consequences of the classical non-relativistic electromagnetic theory. 

We shall later show that these results are also in accordance with 'relativistic 

principles.'· We shall not discuss other e~a.inples of problems involving plane wave 

propagation, such as boundary value problems. propagation.:i.n non-isotropic solids, 

etc. These problems are covered in optics courses. 

Solution by Fourier Analysis 

Let us concern ourselves with the integration of the inhomogeneous equations 

and let us investigate only the particular solutions. The inhomogeneous wave 

equations, for the vector and scalar potentials. in free space are: 

D ~.· ~ 
(18.18) A = fo j' 

(18.19) 0.¢ = f!; 
subject to the free space Lorentz condition a 

v~ ...L~ (18.15) • A + 
c2 at = 0 

' 

from which the fields are derivea by: 
--,). 

~ 

-~ "JA 
(18 .13) E = -\l11-n 

""'""":> -!> ~ 
(11.16) B = \l X A 

·L~t{;.s te!v:iew th~· solution of the analogous static problem. Irt the static case, 

(18.19);;redhced to Pbissori's equation:' 

whose particular solution was: 
' ., 

;·. +·. \. 
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; N~te ,tha:t; the integrand is a- function both of the point of::observation p and the 

point _of integration p 1 , _ an¢L that- the time does- not 13-ppear .expliCitly .• --
.. · .. · .·. I ' ' 

: . We.- are looking for a solution of' {18.1~) and (18 •. 19) that· is· similar in;f'orm 

tp _(:l9 .• ?1). We wish: to, stugy the modification·: of'., the solution of' (1•16) that_ is 

,c~used by th!9 presence ,of tl:m ttme~dependent. t;erm ·in (18.18) and (18.19)• Both: 

. of-- th,~se; equation:5 have the general. form.:. 

(19!>2?) __ Qtp-:(p,t)-=,.;. g(p,t)-- ,•','. 

~ 

Let_.us ,~!>sum~ t4?-t the .source function g(p,t).can be-.ana}-yzed by.the Fpurier. 

ir.rt;egral ~ 

(19. 23) 

. -. -c::o 

f -iwt 
g(p,t) = gw(p)e dw .-

-Ill() 

which has the Fourier inversions 

. •.;c· .-

,•·, j 

Let us assume similarly that the general potential 'f (p,t) can be analyzed into 

Fourier components by: _ 

f
OD -iwt 

yJ(p,t) = lfw(p)e 

_DO 

(19.,25) dW 

with a corresponding inverse relations 

: , .. 

By substitution of' (19o23) and (19o25) into (19.22) we see that the Fourier component 

~w(p) obeys the differential relation: 

2 w
2 

liJ 
\l ~w + 2 1 w = - gw 

c 
(19.,27) 

which i~ similar _to Poiss~n' s equation. LE;Jt us SY!J-thesize the solution of' (19.27) 

out of the superposition of a set of' unit pqint sol11tio~s ?orrespondi~g to a source 

at the point p 1 9 with the source gW (p) = J (p-p 1 ) which obey_ t~e _equa:t;ion:, 

2 ~ -
(19 .. 28) \] G(p,p-')+ 2 G(p,p')=-6(p-p') 

- c ,. 

where S (p- p') is the Dirac &runction defined in (5.48) and (5.49). The 
, ,. 

resultant unit source potential G(p,p') will be a:furi.ction b'oth''of the point's ·: 

-· 
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p and P'''" , The. partial .so1ution. ;c·orre'spondi:hg to the frequency •tt..> of the total.· 

source is. them given by the. '.supe.rpbs1tion:·. 

(19.29) f w (p) ·~·· {ffgw.(P') G(~,p~ )dv' 

If we let r represent the distance between the point p and the point p 1 1 the 

' ~; 

resultant solution of (19.28) will be spherically syrrunetric in r, and hence the 

solution at every point other than r = 0 will be the solution of the differential 

equation: 

(l9.3b) 
1' d.

2 
_.·-,...._.._ 

r d.r2 

· which integrates immediately intoi 

, A·. c :riKr 
(19 .31) G = r e . 

~ 
K = c 

The solution is valid everywhere except at r' =· .. o. To evaluate the constant A 

let us consider the vol).ll'll.e integral of the differential equation (!9.28 )J. with 
.-..... ' . '·.· . { ~ . ..· : 

the. definition of the d function (5.48) we obtains 
. . ' . ·. . .. . . ,· ; . ·-~ ~ . . ' . . . ' 

(1~.32 ).JJJV 2 
G. dv. + ~ 2 fJf G dv = -1 

The se~ond ir1tegral vanishes, as the integration volume is shrunk to zero, since 

th~ s~ngula;-ity of G at r =. 0 is only of order 1/r. The first term can be trans..: 
' . 

. f_o;n:ned by means of Green 1 s theorem to give: 

.. (~.9.,3~) JT V G • d-;: = -1 

~ 

Operating on the solution (19~31) with the\] operator,. and then substituting 

into (19.33) we obtain: 
. :, 'i .. !_-

(19.34) IF [- ~I A .• 

~ 

i r 
2 
r 

which in the limit as r'"'"'--70 becomes: 

(19.35) -4nA = -1 

So: +iKr 

iKr 
"""'? 

• dS = -1 

(19.36) 
1'. ,_ 

G(p,p 1
) = 4nr e is the solution of (19.28). 

Substituting into {19.29) we obtaina 
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The efft?ot of the SE;lcon.d term in (19,.,27.) is therefore :the introduction of. tl1e 
,,• .:; 

exponential factor in the Coulomb type int~gral (19• 21 ) •. · If we use (19 .2·5) to 

resynthesize the time-dependent potential function in tenns.?f its Fourier 

components we have: 

( 19.38) i.V (p .t). r r., (p):i(A)t dW • 

. If we introduce a new time defined bya 

·>.; · · r · K:t 
(19 .. 39) t 1 (p,p 1

) = t! 0 = t. ~ W, where 

dt.Udv' 

.·. ·,· 

c = 

The new time t• correspond:;;.~o shifting the origin of time by an ~QllJlt.equal 
·' ' • j ' ·. 

to the time that it takes a light signal to be propagated~ from point p to point p'. 
• .~ =. . . r· . . 

The Fourier transformation can be ·eviHuated by using (19. 23) giving: 

dv'. 

Note that' now' the p,oint of obse~vat:i.on p is contained. explicitly both in the.l/r. 

term and also by means of (19.39} in the time at which the time'-varying current's 

or charge's are introduced into the integration. Mathematically, both the plus 

and th~ mitius ~ign in (19.40) are valid; however,. only the minus sign appears to 

ha.ve phy~ica1~ significance~ The fuinus sl.gn corresponds to the cause p.roducirig the 

effect preceding the effect, which is pi"esumably neb'e'ssary' ill aphysi?a.ll:Y mea.ni:ngful 

t'he:()ry<<~:1~q.~ ·. ( 19 ~40}::Wi th thenmin:u·s: :s ignl~:Q.ly: . .tts.oknown -a1sr·;.the;.:reta·rde~:-:Potentia 1 

solution· of th~'inhomogeneous wa~e equation. The: sol~t:l.on with the pius sign is 

lmown as the advanced potential and appears to have no physical' significance, 
: .· 

although at various times att.~mpts, have been ma~e. to·~use the advanced potential. 

to explain certain difficulties in electrodynrunics. 

A retarded potential might be visualized as follows. Consider an observer 

located at the point p in space as seen in Figure (18.2) and let a sphere whose 

center is at p contract toward p with a radial velocity c such that it has just 

contracted onto the point p at the time of observation t. The time at which this 

information collecting sphere passes the source of the electric field at the 

•• 
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(Sphere reaches 
! a.t· 'tiih~ 't) i'" 

·t"- .: • -i• ;, '' '· 7' 'c' '; •' ·~ 

.. · ~ 

' ~- -~ j ' •• 

~-: ...... -· 

.:i: 

I;'.,. 

,. . ·; ; 

Figure (19.2) 
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( infor·ma tion collecting 
sphere) 

(sphere passes source 
at time t' = t ·- !.) ' c 

point p' is the~ 'the time ~t,\vhfch the source· produces the effect which ·is felt 

at p at the time t. If we denote by the rectfi.ng).llar br.acket symbol[ J that 

the variables contained within the bracket are to be evah-lated at the retarded 

time t•, in this sense, then fr9m Jl9.40) the integrals of the inhOm.ogeneo).ls wave. . ' ~ . ' . ... 
equations (18ol8) and (1~ ... 19) corr:esponding to a currant distribution j{p') and a 

. ( 

.. ' 

charge distribution p (p') are: 

(19.41) "!(p,t) • ~ f9;:;A dv' 

(19.42) 

If the time variation of. the scalar and the vector potentials is assumed 

to be: 
. .. -iwt 

i(p,t) =. ¢
0

(p )e 

Then a single sinusoidal component .of the solutions (19.41) and (19.42.) may be 

written: 

(19 .. 44) dv' 

..... ~~-: ... ' . :. 



A '• ,• 192 
'··~· .. •, .. ''"; . -·" 

Only the real part of either the poten~_i.afs or the ·charg~s represents the actual 
.. · 

physical quantityo 'He. wil~ use\ the-"·'convention of a negative .~aginary exponent 
··.; 

in the time variationo Obviously'the .. ~ign of i could be reversed without changing . ~~ .· 

the physical quantitieso The el,~ctromagnetic ·,;f~.~1ds can be derived from the potentials 

"·. ~ 
i. ; by! 

-~ ,,, 

( 18.13 ) ... ' ~ = -v ~ - ~ ~

(11.,16) · .: 1: ': -f:l· X 1:,: •, . 

p '·:·{~~). ·:~,i 

.... ~ ~ "' ,, ' ;· __ ,, ; .. 
The gradient of the monochromatic' scalar'poi;ential (19.45) is, after commuting 

.. ,,._,,, "' 

--? ~, 

the \J operator with f , changing it to \J to operate on the coord~nates of the 

source point p', {omitting c..J from j and ( )~ 

(l9.4S l,cV~o w(P l • :- 4~ 0 ~ ~~:!~iP' 1 
dv' 

= - 1 _(({, Jj(e:!.Kr) dv'' 
_.4nk0 JJrtt -rJ 

'II 

~Viow<Pl ~ ~~;(¢-) 4v', 

r~ .· . ~. ~-~ ·.· .. :. ; , . . ~ ·~ , .... 
The elect'ric fie~-~ therefo-re b'e·comes.J (since $t ~ - i·W) 

(19.47) ioco (p) • 4 !~Je~;(~~r~ dv' + ~w[ff1w~~ .-_dv' 

And the magnetic field in a similar manner c!;I,D. be .. d~v:elop~d frorii:· 

7 Po -4 _rrf.;weiKr po (((-? ~.(eiKr\ ·. 
(19~48) B0 w= 4n \lxj)j r~ dv'= 4n »J j~\J_'( -~--- t.(~~·r,· -~· 

~ ~ .. ·. ·, ~--

A change from\] to \l' ,was made after the vector transformation has been made 

......; - ~ 
in terms of,the· 9 ci.perat·or, .. noting·that '\}:does not operate on ·j~ · 

We have seen under the modification of retardation, that the Cqulomb field 
, . 

. '. . ____, .. '. 
integrals do not contain the operator '\J .operating on 1/r. only, fiS ~s the qase 

in the non..:ret:ard.ed·-expres'Siori; ,but ope·rating on:ei~ /rinsteado · When·the .. 

differentiation indicated by the gradient operator is carried out on eiKr/r, 

two terms will be secured. One term will vary· as 1/r ,and :the :oth,er term will 

vary as l/r2• This will be true both ·in the expreflsion for the e1~ctric field 
. :~.. '\ -:\ 

and th.e magnetic field
1 

• We have seen that the -1/r t·el)p ~mig:h,t give. a finite·. 

,, 
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contribution in terms of· tlie surface integral•-of the Poynting· vector,. and that it 

therefore represents. a net radiation energy ltHis\~ -The zone in which: the 1/r tenn 

is dominant is knoWn., as·:the wave· zone,· or radiation· field' zone· of the system of 

radiating charges and CJJ.rrents, while the zones of higher. order radial dependence 

are knovvn a.s the quasi-stationary or induCtance fieild zones. 

The expression (19.48) for the magnetic fields, permits us to cOTI1pute the 

t_otal energy loss by radiation for an arbitrary current distribution. If only 
' ! . . . . . 

the 1/r de~endent radiation field is taken into account, then (19.48) Cl¥1 be 

writ~en a.s: 

(19.49) _uoftw ~ ~ 
. I · . rad ra.d 

= - dv 1 , 

-The. rate of energy lo s·s from the radiating system can then be calculated explicitly 

,. 

in terms of the current distribution. It is seen by comparing (19.47) to (19.49) 

.,.... --+-
that in the.· radiation field, E and H are· a.t right angles to each other and 

that·the ratio of the magnitudes is given byi 

. ~0 R - -0 - k 
. 0 

The time average of the Poynting vector is therefore given by: 
-a. =+- ' . 

. . ' · ~ E"'"x H 1 /ji6' 
2

_, 

(1~.;5~) N = 2 ="[f'F; H r 1 

where the time averaging of :the sinusoida..l components, which were assumed in 

(19.43) has produced the factor of two in the denominator. Substituting .(19.49) 

into (19.50), we obtain. for the time average of the Poyting vector a.s a function 

of the position of the obs_erva.tion point p; 
. '. 

In gehera.l this fonnula. d'oes permft the calculation of the rate of radia.ti on 

froni a· ~gi van· system of currents. If the point of observation is a.t a. distance 

. r large:: Cdm}?~~ed: to ~the ·dtTJiensio#··i:ti"-Of the· rS:di9;ting s.ystem, 8.S is. the- c·a.s~ in 
{. ..· . . .'. -; ,: ;, ··' ' ... , .... ' 

. .. . . , r· : . . .. . , ! .:· •• \ • • , • • •. . • ••• 

. the !a.diat~c;;ri.}roin a~omiC ., q:r,~rge ·~ystem,s, then ~he function 1/r i~ the iri;t~gra.l 
' • ·, t · ••. ~ ; ' • .' . ' 1• ' ' •• '! ·.; ' . . . •· . . \, . . ~ .' ·, . . .. . 

·.\': . it· ' 

is a slowly varying function compared to the remaining functions, and the rate 
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,of ~q;t~l energy radiation" c~n. then- be expre,sseQ. -as an integral over. a sphere of· 

raqius-. r which reduces to_;an integral over the.: s:oJ:id ,angle fi subtended at the.: 

poi:p.t.9f !rad~ation. ,. l'.p.e fir,t:al relation for .the rate·-:of total energy radiated. 

by<~ 9 ~::~~tin:~ ~7~ .:~ :b:;:~f flj, <t x ; , l• iKr 4v' 2 d1L 

~ ~ * ··:····'' , ·: ·_.· rJ,•dS · · 
where d.!t = 2 • 

r 

;,._,.+r the radiating system is small in 'extent, not '6'niy compared to the distance 

from th'~""':ftfd:i:.it'i:ii~ system to the 'ob~erve~, r )~ R1 , but aloo relative to the 

wavelength of 't,he radiation~>> R1 , -then the factor_ eiKr will also be a slowly 
. ; ~. •' 

;.:· 

varying function and theref~re it can be expanQ.~d in a power series about the 

~~.:1;1; :fl~V~:'ie~~·V-~· ::·~oS,SfJS that depend on ·successively ·higher powers of the f'requen~y. 

We shal~---~nv,~s~;igat~. this ;expansion e.qu~tion (21.16) in ·more detaiL later. The 

various terms of this expansion represent the so-called multipole expansion of 

the radiation. This discussion has not included the induction field contribution 

at all, and in fact we have not proved explicitly that the induction field does 

not contribute to the radiated energy, but have onl;y, proved that the induction 

field cannot contribute to the energy that is radiated over a surface of very 

. . .... ,· 

large ·r-adius, since its higher': order of inverse' radial depend~nce causes the 

surr'a:ce 'integ~a:ls 'br' the .induction :held to vanish. 'the evaluation of 'the Poynting 
. -

. . . 

vect·or' ·a..;,:er' a given surfl:we •'which does take into 'account the induction fields 

would actually give a zero time average contribution but a n'on-zero instantaneo~s 

value to the energy flow, which' impl:i,es that .the ,inductio~ f-ields give ris;e to· · : 

ep.~rpy,fluc,tuatioris ·in the_r~diation ·field·~: :.l,n par:ti~~lar, ::if w~··have· a radiating 

system,, whose ,oscillations are non-sinusoida:+;: which undergoes 1?- net change in 
':,'f '. ',' 1:. ' .' ·r I • •' '· - : 

its confi-'uration '.thEm net ener can be 'transferred into:d:ihe induction field. * Eqs ~ (19.51 'and (19~52 ·''give the radia'tion rates corresponding to a given 

Fo~i.e~ CC>~p~n~p~s .• ) 1-twill_.p_e shovffi (see· Eq. (23~22)} that ~e ~ta:J; rate of
2 

_ 
radJ.atJ.on J .. s g~ve'n by 41rJ;'Urildw or: (19.,52) 1 dW::~QK~JTf 1Jf (Jw x r )eiKr dv' I dJldec>. 

. . '. - ' . .. - :· .. · . ' - dt .. 11" . . 
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CHAPTER 20 THE WIECHERT-LIEN.ARD POTENTIALS 

Let us now consider the application of the retarded potential expression 

(19.42) to the computation of the radiation of an electron. In this application, 

I 
a certain difficulty immediately arises. In classical electrodynamics the only 

thing that is knovm about the electron is the fact that it has a certain total 

charge and any calculation of its. radiation field cannot involve any details 

of how th:j.s charge is distributed geometrically in the electron. On the other 

hand, it is impossible to assume that this charge has a zero physical extent, since 

various divergences will result. Also certain features of the radiation field 

are actually independent of the radius of the electron, provided only that it 

is small compared to the other .dimensions in the radiation field. In our discussion 
. :· 

of the electron and its behavior, we shall assume that it has a finite ragius, 

but we shall ·ascribe physical significance only to those properties of the electron 

which are independent of tln:e magnitude.of.the.radius. 

One immediate difficulty arises in the application of the retarded potential 

concept to the radiation of a system whose total charge is knovm. If[f] is 

the retarded charge d·ensi ty within the charge system, which must be substituted 

into Equation (19.42) in order to secure the correct potential f3'(p,t ), then it 

does ~ot ronov• that JfJCPJo.v represents the correct total charge of the charge 

system. The reason for this ap~arent paradox is that the various contributions 

to the integrand of {JUr[j0J dv are evaluated at different times and that during 

the time that elapses between the measurement of the charge at the various parts 

of the system as the information. collecting spher•e of Figure (20.1) sweeps over 

the charge, the charges may move and appear more or less dense. than they should 

. 
to give a correct value for the total charge. We can illustrate this system 

best by a detailed consideration of the information collecting sphere. Consider 

the sphere .of Figure (20.1) converging onto the point of observation p with a 
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velocity c.~> and let it gati:er informati.on as to the charge density within a 
• .· 'I ~ . . ~-- : .. "i ; ·:· i',.: 

.,. .... p •••• -.,---.::-·-~-···· 

.·.·:·-. 

area element 

certain c~arge system as it sweeps across the charge ~stem. The sphere arrives 
. ' ''l '~: . . f • ' •. •• {. . 

. at p at ~he ~ime t~ . If the cha:rge system has an aver_age velocity component in 
·:, ..... .~:' · .. t' ·.;. i. 

the s~e direction as the motion of the converging sphere, then the volume integral 
'<.'.Li. 

of t~e retarded charge density >vill give a result that is in excess of the total 
• ~- r ..,, • . < ·.rc.: ~- :'' ::' :.· i .• 

charge.. If the charge distribution has an average velocity component in 

opposition to the velocity of the contracting sphere, then the integral will 
l . "' • . . ! • • . • • ' -~. ~ 

give a result that is less than the total charge of the system. 
. . i . 

This situation is analo~ous to the problem of taking a census of the 

population of a country. Let us assume that a group of cen.~\ls takers converge 

upon the 11 information center" w'ith a certain speed~ let us assume that they measure 

the population density at ~~ch point as they travel. The. correct· population will 

differ from th~ total of the census takers'. informatio~ depending on whether 

·.' 

the population had a net migration trend with the census takers (in which the 
. ~ . -

true populatio~ i?,less than the sum of the reported densities) or against the 

. census, ta.kerso The retarded potential of an approaching charge will be larger 
{.'' 

than that of a receding charge at the same distance from the observer since the 
_ . .-. 

approaching charge stay,s longer with the information collecting sphere. Let us 
: .. ' '. ,-··. 

consider the radiation field of an electron whose velocity is comparable to c. 
• .• ·j 

We shall assume that our electron is a system about which we know: 
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(1) The total charge of the electron is e. 

(2) Within a certain volume V9 all parts of the electron's charge are 

-? 
systematically moving with a velocity v. 

Let us now consider the. sphere sweeping across this electron in Figure (20.1 ). 

~ 

Let r be the radius vector from the charge to the point·of observation to which 

the sph,ere is ()';mverging. If the. cha_r:ge system is at rest, the amount of charge 

which th,is, sphere will .. cross during: the time dt as the sphere shrinks in radius 

dr is given by [f] dAdr. On t_he other hand, if the charge system is moving with 

a :velocity 'is a qu_antity of pharge which is less than [f] d.Adr b! the amount 
~-? 

Crl dJI. v;r dt will be eros sed by the sphere.; 'I'he total cbarge eros sed by the 

sphere in terms of the retarded charge density Lf] ·which is observed b:;.' the 

information collecting sphere, is therefore given by: 
~-~ 

(20.1) de = [fJdAdr - [VdA v;r dt 

Bu't''d.t ·a~d dr a:re related bya 

(20.2) 

(2<L3) .. 

givin'g: 

dt =~ and· 
c 

·. dAdr = dv' 

(20o4) 
. r :l ·- 4_., 

de = .· Lf j ·dvs - · [p] !.:.!. dv 8 

rc 

Solving for the retard~d charge density, we obtain: 

(20o5) [f]dv 1 "= d~¥ 
1--, · cr 

!J 

[f] dv 
1 = __,d.,...e...,. 

¥.¥ (20.6·) 
r 

r--
c 

Hence an approaching charge appears to have a larger effect, measured in terms 

of its effective retarded charge~ 

(20o 7) , fff [('] dv 

than the true total charge: 

has. If we substitute this retarded value of the charge density and volume 
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element expression into the retarded potential expressions, (19.41) and (19.42), 

we obtain: 

(20.9) >t= 

{20ol0) 

which' are knowri a."s the Wiechert-Li~nard potential of a single: 'electron. At the 

limit of; a point ch,arg~~ the- distance dependent tenns are slowly varying and 

can b~ taiceit outd.de bf the integral 

electronic' :charge', we obtain for the 

(20.,11} )t = -~n~ [· e-+=+] 
- o r•v 

r --' .. ·.•. .. . .c 

i. =Po ~ - 4n 
r 

ev 
-+ J ~~ rov --c . 

si gn art d, s irfce .I de = e 1 the known 

potentials of a point charge: 

. "•, 

which should be valid for all values of the velocity. Note that these expressions 

a:re independent of the extent of the electron and are therefore independent of the 

detailed model used. The fields of the single electron can then be derived from 

these potentials in the usua~ way. The details of the field calculation will be 

taken up later. In general, since the relation of the "retarded" position to the 

11 present 11 position is not always known, if the charg~s, are accelerated,_ the 

Wiechert-Li~nard potentials pennit an evaluation of the pot~ntials and fields 

only in terms of the retarded positions and velocities of the charges. If the 

charge is in uniform motion, it is possible to also .eXP,-ress the potentials and· 

the fields in terms of the "present" position of the charge since in this case, 

computation of the relation between the retarded and present positions is possible. 

Consider an electron as in Figure (20o2) that is moving with a uniform

~ 
velocity v in the x direction. The potentials of this electron at the retarded 

position [i J are given by the Wiechert-Lie'nard potentials. Let e be the angle 

~ __,. -+ 
between v and r

0
, where r

0 
denotes the present position of the ei'ectron. Let 

::· 
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us e-faluate the Wiechert:..Liknard ·'d:embmitiatot · ~ = [r - ""t.;JtC:] in terins of the 

present position of the· electron. The square of s can be written as·a 

;(20.13) s2 
= ([r] - [_'t~~'t)

2 

and since, by the geometry of Figure (20.2), ~ x -:= [1] x :;"; s
2 

can be 

retarded present 
·' ··-position~' 1'~ · · ·'! ·~position 

-----------------------0----------------------------~-o-

,.l 
' ..... 

transformed into: 

P' 

(20.14) s 2 =ro 2 -c~~"f; 

J 
e 

observation 
{point 

0 
p 

Hence, expressing s explicitly in tenns of the-present position coordinates, 

s = -1 X 
2 

+ (1 
-' 0 

., ' 

where:; : ~ ·. 

(20~1.6) ·r 
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The Wiechert-Lie'nard potentials for, the ~ifo~rrlly moving. electron in terms of 

s are given by:, 

(20.17) 
e 

4nk s 
0 

(20.18) 
t =poet. 

4ns 

'.· .. 

The fields are easy fo compute explicitly in this case. The electric field 

·.· : i s .·.gi van by: 

-;> 

E = 

The time derivative c~ be evaluated in terms of the spatial derivative by noting. 
!, . . . 

that the field must be carried by the u.p.iformly moving charge that is producing 

the field. A sta:tionary observer will observe the same change in the field during 

the time dt at a given position that an observer m<o moves a distance -vdt~ from 

the position of the· stationary observer~ Will observe -with the time held constant 

ciurirtg' .. t~fmov~. Hence time derivatives can be replaced by: 

'.'~. - v .Q_ 
(;lt-- &x 

Note that the sign in (20el9) causes the field to be the same at a time dt later 

as it was a distance vdt behind at the. start. Substituting ( 20.19) into (18.13) 

the components of the electric field becomes 

Ax_ = A~ Ay 

( 20.20) 

(20.,21) 

(20o22) 

E 
y 

E 
z. 

eyo 
(1 - ~2) = 

4nk
0

s3 

·ez
0 

(1 - ~2) "' ·4nk
0

s3 
_. 

Although A has only an x component, the electric field is syrrunetrical in its 

three components. Note also that the electric field is directed toward the 

"present" position of the electron, using a negative electron, of course, a.ri.d· 

not toward the "retarded" positiono Hence vectoria.lly the alactric·field is 
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The magnetic field of the uniformly moying ·el-ectron .is given by! 

'~ ....... 7 ko __. -+ e v x r 
( 20 • 24) H' = u ~ x E : 4n"' 3 ° 

1 o ro (1 -.~2 sin.-e)$72 

Note that for low velocities~ ~~0, s--:!>r, that (20.23) and (20.24) reduce to "the 
•' .. · , ... 

Coulomb (1.3) and Bfot-Savart (11.8) fields of a single charge. For high 
'\" _.. 

velocities, ~~1, the magnitude of E depends on the angle between the direction 

of motion of the electron and the ra~ius vector~~~ As seen-in (20.23) the 

field is increased in a direction at right angles to the direction of motion in 

the ·r~tio of. 1/{ 1 - ~ 2 ,,' while i:n the direction of motion the field is decreased 
,. . .: .. · 

in the ·r~tio : (1 -. ~~)'.- Therefore, at ,very hi~h velocities the field resembles 

more and more the field in a plane wave. For a short time, as a high velocity 

electron passes an observer, he sees a purely tr:~ns~~rse electric and magnetic 
. . . . 

field. Note· that the field of a uniformly moving electron is a non-radiating 

field in the sense that it does not represent:an: ene:fgy lqss. ·This can be shown 

by ~; d_~r.E:l.~rt. ev:alu!'ttipn of ~h~ Poy:rJ.:t,ing. VE)ctor corr€l sponding. to the fields given 

above. 

~, ~R:1A~-~;~PJ1~!~7:Li.~7lftt~ J?ot.ep;ti,~l~, 1( ~lj-.~) and (20.10 ), and the consequences 

deri;ved, f:r?m,.. tpan, were obt8:in~d. as. integrals of ~he inhomogeneous wave equations 

, y,(l,S, .1,8) ~~- ,Jl8.1fl) whicl,l in_ turx~, w~;re derived fro!ll Maxwell's equations (14. 7). 

In mak:;ing ~l:J.is .dpqvatio.l':l~- _it; vyas implied. that _e_v_en .if. the charged ,system was movfrtg 

at a higb--·;v:elocity, ;n~ ch13.nge ,in the. basic equations would result1. ·Whether .this 

is actp:~l.~y se~:.!Jrlll d~pend .on an e~xamination of. M8.XW'ell Is equat~ons: .l?yrelati vistic 

princ:i,,pl€lcs~: ._ p~ t,urns put t.hat provided cer:tain interpretations in :tl:J.e meaning 

of the mechanical quantities are made, that Maxwell's equations do conform to 

relativity principles, and that all of the consequences that have bee~ de~i!ed 

therefrom, including the Wiechert-Li~nard potentials, remain valid, ~ven a,t high 
; . ' 

relativistic velocities. 



CHAPTER 21 

' '' ' . I ~. 

THE HERTZ--;( ~CTQll ~IH~~ .. ~F._ ~q~UTI:ON OF 
THE WAVE"E~UATIONS 
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Si:hbe'the scalar·and.the vector potentials are· not independent, but in 

vacuo are connected by'the: Lorentz condition: 

(18.14) 

. . - . 

and, since the charges and the currents cannot be independently specified, but 

are connected by the equation of continuity: '" 

·- .,, .. -~-~ .ap . . -
(9 .1) " -v . _j + ~ t :: 0 

to calculate. the field of an arbitrary current and charge distribution for all 

zo~e-s, i~ci.uding the induction field, it is usually advantageous not to derive 

the field: f~om ·.the scalar and the vector potentials. In fact, it can be easily 

shown that ~f the retarded pote~tial forms of the vector potential and scalar 
r, . 

dv' 

dv 1 

are assumed,. then the Lorentz ·cond.iti'on is a direct consequence of the equation 

of continuity and vice versa. 

tn order to derive the radiation field it is advantageous ·t·o substitute a 

single fUnction to represent the current distribution and the charge distribution, 

which'is chosen in such a way that the continuity equation is identically satisfied, 

•and to represent the radiation field by a single potential which is chosen in 

such a way that .the -Lorentz condition· is identica:lly ·satisfied. The former 

co'ndition .is met by deriving the current density and the charge densities from 

a single vector function 1(p''), know:ri. as the polarization vector, which is a 

function· o'f the source point p 1
', by the relations: 

-1> -> 
( 21. i) - '0 · · - n .. P 

I true - - v -~ ~ 

(21.2) -. j -. = .§!.E. 
t:r:u:e at 
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It is seen by inspection that the equation of continuity is satisfied by this 

choice, but that an otherwise arbitrary ,current distribution. can 'he .represented • 
. i' 

~ 

The polarization vector p is related to the true charges and the true currents 

~ 
in the same way that the dielectric polarization P is related to the polarization 

charges and the polarization-currents. 
. •.. f' .. ::'. 

Howev:er, this .is only a. mathematical 
_.,. 

parallel and_~: ,should be emph?-~ized ~hat .j ~df represent the true. c:harges 
' . ·. ~ 

which constitute the external sources, of the field, and that tterefore p is different 
. ~ ' ' . . . . 

~ 

from the ordinary polarization vector P. 
---)> 

way the potentials A; and yf, and which at 
' ', .~- .. \ . ...... : ' : -..... . . ~ . . 

4 

A vector which combines in a. similar 

the same time implies the Lorentz 

condition, . i~ the vector n which is defined by the equations·~ 
.•. (:• '·}-(.. : '. ~~ . 

..... . .1 ~ ri 
(21.3) A= 2 at 

c 
•., .. ,;'it hi. knowh a's ·the pola-riZation potential~ or I-Iertzian vector.· Sihce the' 

operation ·indi-cated by (21.'3) is :linear, 1 will obey the homogenhous wave 

equation in sm.irce.:.:·free space 8 .. 

(21.4) 0"1= 0 

By combining the definitions (21.1), (21.·.2) .and {21.3), we find that the Hertzian 

vector obeys the same inhomogeneous wave equation, with 1 as 'the. source, that 

the ordinary potentials obey with the current and charge densities as sources. 

That is, we have: 

, (21:5) ,0~ • ,\72 ;f_ cl2 ;:~ • - z 
The retarded potential solution of (21.5) is therefore given by: 

(21.6) ri(p) ~ 4 n~offf~if~:;) dv' 

for arbitrary. time variation and ~bys · 

~ - 1 ((('~(p' )eiKr(p,,p') 

(21.7) nw(p) = 4nkoJJJ r(p,p*) ' dv' 

for .sinus6ida1 time variation. The fieHds Can be derived from' the Hertz ian 

vector by the 'use ·or the defining equations (21.3)'. If we let£ 

( 
. ) "7 .. ~ ~ 21$8 Q·=vxn··· 



then the magnetic field is given by: 
- ~~ 

., - )'' ~ 1 u Q 
-(21.9' - B = 7d't 

and 'th.e ~lectric 'field is giverl: by: 

(2l.l0) 1 =v · ~ ct 
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Tii~ cal,cula.tion ~f a. radiation field therefore reduce's to the calculation 

~- . '-:? .: . . 
of the n vector from a given polarization vector p by the retarded potential 

integrai (2l.6) and then the d~rivation-of the f:i'~lds from equatio~s (21.8), 

(21:9) a.~d. (2l.1o). 

We shall apply this meth~d to the .calcul~tion·:..of the fields of a. current 

and charge distribution in a case where we a~e observing these fields at distances 

from the sources that ar~ la_rge compared to the extent of the charge source 

distribut.ion, and also where the .exte;nt of the charge distribution is considered 

to be reaso,nably .sf!la;ll ,compared to the wa-ye length of ~he outgoing radiation, 

as shown in Fj_gure (21.1). To put these assumptions in.other words, the 

,;:. 
.. , ._,.~. ) 

·., ;.·.- · ._;;/.. ·-: ·_ · ·· \• (x•·,y' ,z 1 

(source point) 

p(x,y,z) 

R(p) 

v----:..-(charge and current distribution). 

Figure (21.1) 

point) 

retardation over the. co/rent and charge. distribution is sm~ll compared to the_ 

retardation that arises as the signal is propagated from the charges to the 

observer. For example, if these restrictions are applied to a nuclear system 
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whose radius is of the order of the ·electron radius .. this would imply thati 

"',· r 
'!: 

. ,._ 

RJ. (p') (.<. ~ 

When the above approximatron holds for a radiating system, then the function 

ei~ . . ~- · .. 
---;:- is,.a slowly varying-function. relative to the variation of p itself in the 

integra·l"(2l.,t7)~ It ·is therefore natural to expand this function in a power series 

about the origin of the charge distribution in terms of. the distance R 1 (p 1 ) from 

this origin to p 1 the source point, , and on the ·other hand, to consider the 

asymptotic behavior of this expansion for large, distances R of the observation 

point p from the center of the charge distribution.' The parameters of expansion 

will in a natrual way .be taken as r~tios to the. wavelength ~r = ~ • Such an. 
i~ 

expansi:on of the function ,,e can be derived by considering the e:<:pansion 
r 

re1at'iire to a. shifted origins 
iKr · ao 

('21.12) .~ =' n ' £ (2n-+ l)Pn(cos e)Jn+l/2 (KRJ.)~+l/ 2 (KR) r 2~ n=o 

eiKr ' 
which expresses the function ---r- in terms of a parameter R which represents 

the distance from the point of observation to the origin, and a parameterRJ. 

which represents the distance o_f _the source point from the origin as seen in 

Figure (2lol). In accordance with the approximations of (21.11), we are interested 

in the values of the function depend;i.:hg on RJ. for sma~l values of RJ. and in the 

values of the functi~n depending on R for Li~ge ;alues of R. For values of KR1<< 1 .. 

the R~cdependent functiort is given' by: 

e2 
R ._..., for a· nuc_ lear- system, this restriction is a definite 
·1 · · 4nk mc2 

0 

tt 
- Since 

energy limit for the outgoing. radiation .. since: 

and hence: 

where E is the energy of the outgoing radiation. 
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while the asymptotic value of the R dependent function for RK>> 1 is given by: 

(21.14) 
J2' eiKr 

. Hn+l/2 ~~)._ln. 1KR' 

where the asymptotic phase shift t'erms are being neglected. since they do not 

e;ffect the magnitude of the field at large distances. 

thus .becomes a o<>. 

;;·(21.~5), eiKr -+ eiKR [_ 

r R n=O 

2n· n! 

(2):1·)1 

eiKr 
The expression ---

r 

Using' this expansion the rlw vector of Equation (21. 7) will bet 

Note that this expansion exp'resses. the radiation field in terms of a sum 
. ·. :. :::; .. _._. 

of m~ents of various orders of the polarization vector of the charge distribution 

and that the Legendre term automatically defines the angular distribution o'f the 
' .· J • 

field corresponding to the various moments. The relative magnitude of the 

contribution of the various moments Will depend on the symmetry properties of 

the charge dist:dbutione 

The zero!!i. term, n = 0 gives for the :;(w vector. 

. . · __, , . eiKR ((( ~ · eiKR -+ 
(21o17) no~ ~p) = 4nkoR)Jj P,)P'_)dv' = 4nkoR p~ 

where h i:: §S P:., dv'_ is the total dipole moment of the distribution. ~ is 

'the 'same as the dipole moment discussed in Chapter 2. The next higher order 

terms will only become important in case the dipole term vanishes, that is, 

if the distribution do.es not. have a net oscillating dipole moment, but has 

oscillations of higher symmetry. Let us first consider the dipole radiation 

field in detail. In order to obtain the radiation field from the polarization 

~ 
potential ( 21.17) where we assume PJ. to be parallel to the z ax1s, we must 

4 
calculate the Q vector defined by (2lolO). As seen in Figure (21.2) the 

., .. 



a 
\ 

-> components of the n 0 ~ vector in spherical polar coordinates .are! 

"' n , cos,~ : P1 ~~.s e ~ilffi . 
(21 .. 17a)nR , ow, . . , ·:;: : , . ·~nko~.··- ' 

.... : .. 

. :' 

X 

' Figui'e (2i. 2) 

The components of the Q vector are~ 
ow 

~ 4 1 [~ .. ·(s .. 1·n n..;d) _ .·~¢91 · (2lol8) QR = (\7 X n)a = R sine 0~ ~n~ .J 

~ ·~·!' 

Q9 = (y X n)(:) = 
' . ' . ' 

Qyi • <'J x n )~ = } [ln (~ne) -~eR ] . 
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The only nonvanishing component of the Q 0 ~ vector is therefore the azimuthal 

component ~o:~e· mignitua~~·, by (21~~~hs ~ •··· 

(21.,19) Q.¢"'Pl4~~:Re (~-iK)eiKR 

Th;::~::~ t:: :~:r!~n: 1 o::: m(~~~ ):~~ i.•• 

y 
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and the components' of the electric field r·rom (2l.lOY are: 

1 - ·a ( . ). p1 cos 9 ( 1 ) eiKR 
(21.21) ~=Rsin9a9 _sln9Q~ = 2nkoR2 R-iK 

1 d Pl sin 9 (1 iK 2) .KR 
Ee = - R ~ R (R Q¢) = 4nkoR ...• ·RZ .. Ir- ·K . e1 

Note-'that the· zytagnetic field has two terms, the first is the induction field, 

and the second term is the radiation field. The e component of the electric field 

has three terms in'it, the first term is the static dipole field varying as the 

~--

inverse cube of the distance from the dipoleJ the second term varies as the inverse 

square of the distance and is called the transition field. The transition field 

will not,
0
contribute to the radiated energy but it does contribute to the energy 

storage during the oscillation. The radiation field alone is simply given by: 

VJKp
1 

sin e eiKR 
( 21 • 2 2 ) Hrt = · -

JU 4nR 

(2L23) 

of the electromagnetic 

The radiation field 

{21.24) E' • ~~k:~:. [<h.x ~) x ~ 
~ 

The Q vector can be interpreted s~mply in terms of the equations of the lines 

of force of the radiation• The equations· of the lines of force are defined by 

the differential equation: ..,,. 

(.21.25) * (RQ sin e) dR + !e (RQ sin 8)d9 = 0 

The solution of (21.,25) valid in all cases when the current flows· along. the z 

axis, is: 

(21.26) RQ sin 9 = constant 

Upon substituting the expression "from Equation (21.19), we ob.taina 

(21.27) R-l sin2 9 cos (KR - W t ~ tan-1 .KR') = ~onstant 
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This is an exact equation applying both in the radiation and in the inducti9n . 

field. When we consider the radiation field alone and include the time variation 
,., .. 

that we have omitted so far, we have: 

(21o28) . sin2 e cos (KR - wt) = constant 

which is the desired equation of the lines of force. 1he lines 9 = 0 are radial 
.. , ' ..... '. . ' 

I .·.I .•• ·,I, . ~ 
lines. The field ±;:;,periodical radially with the radial spacing corresponding 

;. . . ~ : \ ;'. ' ,: . : (. : ··~. f: : 

I.--.,'',',.'.!.:: 

Figure (21.3) 

Figure ('21.3). 

(electric field lines are 
shown) 

'-+ 
Near .the: so~rce ~ Qomplete expression for Q must be used which indicates how the 

equatiqns ,of 1-:the .. 1ine s of .force grow from the static case into the.· field of the 

wave zone pattern. Lines ·of force ·in successive states of the radiation are 

shown in the figure. 

Let. us .now eons ide~ the· significap,ce of the higher moments that' contribute 

---+ ·\ ' ' 
to the n, ·Y~.ct,or. ,.Cp11sider t}1e term .for .n = 1, in the general expansion (21.16 )t 

*True for large values of KR only. .r or small values of KR the apparent phase 
velocity of the wave front is.;> Co 
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which.' 'can be '~itten as a 

(21.30) 

· ....... 

Let us write the ~ntegrand in tensor notation. 

·~· 

Let the components of the 

~ 
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vector R1 ,be. ~i' .an,d let t~e ,c?mpon~ts of the 
• ~ • .. - ~ . j 

radius vector R be x. and let 
~ 

'' 
the components of the polarization vector be .. p.. In tensor notation the integrand 

'• ' ~ 

. /' 

is then given by p. (x. 'x~). 
J ~ ... 

This is a function of two sets of parameters of 

the distribution, namely p.. and xi'. The dependence on these two parameters 
,. ' .J 

is generally not a sy:mmetric one and it is therefore convenient. to break up the 

tensor expression into two terms, .one of which is symmetric and one of which 

is antisymmetnic. That is, let .us puta· 

(pJ· X • t +. p • X • t )x • .· + (p • X~ t 
; ( ' t ) = ~ ~ J ~ ·. J ... p. x. x. 
, .. J ~ •.. ~ .. ' 

(21o31) 
2 

This process is analog;ous to the process that is often used in tile mechanics 

of continua, Il:amely of 'separating a general strain of ~ elastic solip into the 

sum of a pure strain,represented by~ syiiunetric tensor and a body rotation 

represented by an anti symmetric tensor. Putting this separated tensor back into 
>,•.._, 

the vector notation, the integral· can be written as: 

(21.32) + X • ( p.. X~. t + p • X • t )] 
~ J. ... ' ~ J 

dv' 

Let U.s consider the· significance of the anti symmetric term first. 
... 

Si'flce R is. 

not a. function of .the primed variables' of integration·it can be taken outside 

of the,;o;integral sign, making • -tile integral of iit·e· first terma 

(21.33) ~ 1 X §)c7 X R~ )dv' 

The significance of the integrand:can easily be recognized by replacing the 

. . __. _.I. 
pol:ariza .. tion· :vector by the·:cu·rrEmt. Since p = • j i(.\)' for sinusoidal time 

• • • •. ···"! •. ~ •• , 

if) 
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varfa HoD., the .:1ritegta1 be6o~~s: 

(21;34) • • ~ ·:~[ff(1x ~ )dv' 

-The· fntegrai · i~ exa'ctly equal· to 'the magnetic moment~=.---~ JIT"~ x j dv' 

of the current distrib~tion and J;lence. the ;fntegral becomes finally: 

_(-21~36)._. i~(?x_:). 
~ 

and .~he cqrresponding 1\ yector .for the anti_symmetric part on1y, becomes: 
. ~ .. •. •, .. ' ~ ,.. ·' . ~ ' ' ,. 

K 
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The field can be c'6mputed ·directly. If we o'mit the induction ·terms, we obtain, _.,. 
by calculating the Q vector and differentiating with respect t.o timet 

~ 

(2~ o37} , . B • t• 
1 dt ip0 K2 [1 x (;/: x 1.)] eiKR 

::: 02 () t = 4~R3 .. ' · ···· ·· ·an ~-
sym. 

which can be reduced .to:. _, • 

·• (21.38) H!nt~~ " K:;~ I! X (ignoring phase) 

. sym. 
Note that this is exactly the same mathematical form we had in (21.24) for 

the electric field in the case of the eleqtric dipp1e radiation.. The radiation 

field _described. in (21.38) is known as .a magnetic dipole radiation field ~nd it 

is exactly the same as that of the electric dipole r_adiation except for the 

fact that the r?~e of the elec'tric and the mag:t:letic vectors _are int_erchanged •. 

Magnetic dipole radiation corresponds to a current distribution mich has no net 

electric oscillating dipole moment but which has a sinusoid~ll~ varying circulation 

of the charges. 

Now let us consider the phys.ical significance of the symmetrized term that 
'. '- ; I ' ;. ,,',;. ~: '. '.": - ) '~· : 

was dropped from the discussion at Equation (21.32): 
. • t. :., 
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The synunetry of (21.39) will become clearer if we write. it,. iJ:lste!'ld of in terms.,,_ 

of the components of the polarization vector 1, in ~erms of the. -~h:ii.r_ge densi,~ 
·-:·· 

f (p') and, i:h'e coordinates-··of _th_e _charge density._ 'Consider a quantity defined ~Yt 

(21~40) Qij ·;:"ff' xi'. xj' dv';= -% ~~:,: xi' xj' dv' 

which is known as the electric quadrupole moment of the charge distribution.-· If 

we express·'th'is''in terms of the' polarization vect~r and integrate by parts~. and 

omit the integrated out parts by the expedient of h~ving the volume of integration 

extend outside of the charge distribution, then in terms of the 'quadrupole moment 

~ 

of t}le ,charge distributi9,n:.. the_, 1;- vector of the radjation becomes: 
·' t ... • ' ·. . . 

(2lo41) 

Note that this procedure is 'fd€n1ti681 to the procedure which we could. have used 

.in the dipole case, namely the quantity p
1 

is given by: 

(21.42) hj -ff[ (' "~j • dv' = JJJC- ~ • '"t)xj ~v' cjfJ -~ ~!, xj • dv' =Jffpjdv' 

which is the e~pression used in (20.17). Since the quadrupole moment is represented 

by h symme·t;ic · ~ trix: · 

(2JJ~~43} ;,tiij·= ff[p'(pt;)x~,-~j' dv' 

it ;6a.n> be .·,tepreserit~d by a>fa~ily of quadrics de:rived from the quadratic formt 

(21.44)' xi xj ~j_j ~- C == constant 

In tehr1s: 'or the par~~te'r C of this equa·tfon, the 1T vector can therefore be 

written as: 

. : (21 ~45)'. ·1-r = ·KeiKR 

8'iik0R2 

'. f·' 

-' :·. 

~ 

indicating that the direction of the 1r vector is everywhere normal to the 
. i· 

quadric surfaces defined by the quadratic form of the quadrupole matrix. Let 

us calculate the components of the fields that correspond to a general quadrupole. 

Let us choose a system of axes x, y, .Z# ,that ~.orrespond to the principal axes of 
. " --~ . 

the quadrupole quadric. The components of the 1r vector are therefore given byt 
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r.·· 

: .... \ • .. : .. ' ,. ·, 

iKR 
.. ,, : .. :., ..... , •··"·'·· ;.:1r •• -,·'e. · ... ·····s'1··n· e·, ·s:~.·n ... ·"r/·~·· ........ . ' < )• •) f • ' • - '( I • ' • \ '< · ,•'•,:"·.•,,',, :·,:,·;,,' .... · .. ' ''. '·'· ,, .....• ·y.· '· ''81T·k

0
R ... ' · · · ·· · · ·· ·:I 

.). .... ; 
· . . ,; •. ! 

'"! .. I·. 

If we take the curl of these expressions, we will obtain the components of. the 

-+ 
Q vector: 

(21.47) 
iK2eiKR 

l61ik
0
R sin 0 sin 2rj (~ - ~) 

Qrj = ;~~~~ sin 26 [ (~x + ~ - 2Qzz) - (~ - ~) cos 2~ 
~ 0 

And from Q the electric field components are: 

(21.48) 
K3 eiKR 

Ee "' 32'fl'k
0
R 

while the magnetic field components are: 

(21.49) sin e sin 2r/ [ ~- - ~ 

Note that the fields depend only on the differences in the quadrupole moments. 

There are no radial components, and only the radiation fields are given. 

r,'"; i .. : 

Two features of the quadrupole radiation fields can be noted by inspection. 

First, in case two of the moments are equal, that is, if the quadrupole is a 
; 

spheroidal distribution, then if the polar axis of the spfieroid is taken to 

~ 
be the z axis, then the only non-vanishing component of the Q vector and hence 

of the magnetic field, will be the azimuthal component given by: 

.iK2 eiKR 
(21.50) Qr/ = lB'ft'koR sin 29 (~ - Qzz) 
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Second, in general, the distribution will have. two nodal cori~{ :vyhere -ther~ is 
~.~~ 1· 

zero field, compared to a single nodal line in the case of a dipole distribution. 

Physically the quadrupo~e distribution ari~~s:f'rom: a pulsating, charge'distribution 

of such symmetry that the dipole moment remains. zero during ,.the pulsation. The 
- . ' . 

simplest example of a quadrupole is two dipoles osciliating:irt-·opposition, but 

displaced ~ slight distance from each other. 
'~ ' :· ' . .. ,. ' . -. ... . ;, 

--
-~.;· • j 

-.. -.. 

.. . t ,-_, 

'. 

1-
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CHAPTER 22 · THE COlrvECTI.VE POTENTIAL 

In Chapter 2o, we derived the Wiechert-Lienard potentialst 

(20~ll) 

.. 
A: 1 

4Trk0 

a 1 e 

... 
ev 

2rr ..., ~, 

o L - v ~ r:J 

47Tk0 t_T·- '• 7] 

" 4;koo r:~·,. iij 
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which give the potentials due to a point charge moving with an arbitrary velocity 

__. ... 
v =- .o ~· From these potentials we obtained \the electromagfetic fields of. a uni-

formly ·n10ving ·charge and in particular studied the angular I distribution of' the 

fields for charges moving with high VE!looi ty. 

Considerable oare must be exercised in applying these equations in such oases. 

The Wiechert~ti6nard potentials were derived from the retarded potential solutions 

of the wave equation, (19.41) and (19.42) and the wave equation in turn was de

rived from Maxwell's equations (14. 7). The wave equations (18.18.) and (18.19) 
' ' ·. - ~ . - . 

represent, as they stand,.· corre.ct equations in one particular frame of' reference, 

which classioally_was called the ,ether frame. Or to put it in other words, the 

velocity of' propagation of' electromagnetic radiation would only be c in that 

partioul~r frame in which the .wave equation ~s valid. As can be seen by substi

tution of the Galilean transformation relations: 

(22.1) x'.:..x-vt. 

t' ... t 

into the wave equation,the wave equation in the x't' frame is not the same as in 

the xt frame and'no longer represents propagation with the velocity c. If' we take 

. . ........ 
. these conclusions at face value~. we would therefore conclude that the velocity v 

which appears i:h the Wieohert-Li~nard potentials represents the velocity of the 

electron·relative .to an observer at rest, where by rest we mean at rest relative 

to the classical ether frame in which the wave equation is valid~ With this 
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~ -+ 
definition of v» no restriction that ~·be small is necessaryo Actually 9.:.this 

restriction will be removed later by the Theory of Rela:,i~+ty in wh~ch}'he LOrentz 

transformation is substituted for the Galilean transformation and in which the 

wave. equation remains valid for alt ·frames o We shail is how if the treatment is 

carried out relativistically that the Wiechert-Li~n~rd potentials will remain in-
, v .t ~ , I, 

tact and that all conclusions derived therei'r.oni wpl"retnain valid provided that 

the relative velocity between an electron and a~ observer is used, rather than 

the velocity of the electron relative to a stati~riary eth~~· .. Even though the con-

. ::· ., ' !· ., • .: .•. , .. " . ... ; ,· 

elusions which we shall draw from the Wiechert-Lienard potentials and the wave 
! 

equations appear to be li~iteds in.fact so limited 'that th~i; extensive use ap-

• ' ~ '< ., • 

pears to be unjustified$ we shall derive our conclusions with the understanding 

that we shall later show relativistically that all conclusions obtain~d here will 

·, 

remain vaiid provided the change in the interpretation of the velocity is made as 

i!1dicatedo 

' ' 
It is instructive to see how our conclusions regarding the field of a uni-

formly moving charge can be derived directly from the inhomogeneous wave equationso 

The inhomogeneous wave equations (18ol8) a~d (18ol9) a~e subject to th~ subsidi-

ary condition (18ol5)o If we consider the field of an electron which is moving 

With a uniform velocitys then the time derivatives and spatial derivatives are no 

'longer independent because of the fact that the field must be carried convec-

tively with the electrono This fact can be expressed mathematically by:· 

(22o3) 

This exprt?ssion 

same amount in 

pare it to the 

a 

d ::. 
at 

indicates 

time dt 

same field 

that, any. field, paramete.:r at a given point changes by the 

that it would .change if at a fixe9 time one would com-
.. 

parameter ev~luated at a dist~nce =vdt displaced in 

the direction of the motion of the elec~J;"Ono Let us. write .. one. c~mponent_of the 

inhom~geneous wave equation (:1,9o22) as::: 

'" 
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,(22.4) 0 ~ (p) ·= - .g(p)-

aJ:ld let us take the velocity parallel to the x direction• Using (22.3) the in-

homogeneous wave equation therefore becomest 

(22.5) d2 '¥ "" a2·'+' 
-~ x2 0 y2 

which by the substi tutiona: 

(22.6) ; Yl = Y 

: -g(x,y,z) 

can be reduced to a simple electrostatic .Poisson equationr. 

(22. 7) 

of which is .the ordinary Coulomb 
' . . 

potential:• the solution 

(22 .a} . -~ (pl) = ...L f··. . g(p'l)dv'l 
41r r(p , p , ) 

. . .. ' 1 ' l ' ' v . . 

Transforming back, this becomes:: 

(22.9) · lj} (p) ::: 4 ~ [ g(p;dv' 

. V· 

where:: 
.: . 

(22:.10) 

Note that this is the same potential which we obtained from the Wiechert-Lienara 

potentials. However, in this case the question regarding the propagation velocity 

of the corresponding wave and the relation between present and retarded paten-

tials does not enter, since by a suitable transformation we have succeeded in 

transforming the equation to be solved (22.4) to a static equation (22.7). As 

we shall see later the purely mathematical process (22.6) is in reality a Loren\tz 

transformation in which we transform the observer's position to a frame at rest 

relative to the electron whose field is to be computed. Note also that these 

fields·' are :non.,.radiating fi·elds. 'This' qan be shown directly by evaluating the 

Poynting. ve:ctor' over a spherical surface enclosing the charge. It can also be 
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shown by noting that the electron ob:viously does not radiate in .~he primed frame 

,in which it is at rest and there.fore presumably will not ·radiate .. from the sta• 

tionary observerv s point of view in the unprimed ,frame o 

... ,. .. 

The scalar and vector potentla,ls of the charge· can therefore be witten in 

(22oll) 

(22ol2) 

from which the fields can be computed by the method described earliero It is 

instructive to calculate the force whi-ch would be exerted by these fields on· . 

. . ...... 
another electron which is moving with a velocity v parallel to the original 

electron producing the fieldo This force ·is given by the Lorentz force expres-

sion (16ol5}& 

~ ~ ~ ~ 

(22ol3) F ...,. e(E + v x B) 

which9 using the potentials (22oll) and (22ol2) and Equations (llo16) and (18ol3) 

becomesg: 

(22ol4) 
~ ~ -?--? 2 
F= e(E + v x B) = e 

47T k
0 

which by expansion of the vector product becomes& 

(22ol5) 

which can be written in the form~ 

.(22ol6) 

whereg: 

(22 ol 7) 

is called the convection potential o .. The force.· of one electron. on the other. is 

therefore derivable from a scalar po,teJ+;tial 9 .'f l> but thi.s scalar .. potential goes 
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not have spherical synunetry about the position of the field-oric;inating elec-

·· tron. In particular, since the direction of the force must be perpendicular 

.:... 

to the surface of equal convective potential, we would conclude that t~1e force . 

. ~ 

. F 2 exerted by the electron e1 at (x1y1 z1 ) on the electron e
2 

at (x
2
y2z2) is per-

pendicular to 

(22.18) 

shown in Figure 22.1. 

Figure (22 .1) 

-:) 

.~ .F 
2 

s: conste surface 

On the other hand, the reaction force F1 on the electron e
1 

is perpendi-

cular to the corresponding ellipsoid (shown dashed in, Figure 22.1) referred 

to the co-moving electron e2 • Henc~, except when the line between the elec

trons is parallel or perpendicular to the direction of motion, the forces of ac-

tion and reaction do not appear to be co-linear and therefore if the two electrons 

were connected by a rigid bar, t~ere would be a couple acting about the axis 

perpendicular to the line between the electrons and the direction of motion. 

Such a couple should be experimentally detectable. Trouton and Noble attempted 

to measure the torque on a suspended charged condenser at various parts of the 

year, when presumably the velocity of the condenser relative to the "ether" 

would differ by an amount of the general order of 30 kilometers per second, which 

is the magnitude of the velocity of the earth in its orbit about the sun. Actually, 

no such effect was observed. This null effect can only be explained correctly 
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by the theory of relativity. We can see immediately that if w~ interpret the 
,;.,. 

velocity as being simply the relative velocity of the. observer and_the co~moving 
• . 'f r ' ' ' "! ' '· .· ,, 

charges 9 then since the observer is at rest relativ~ to the suspended condenser, 
1 

• ,~I, • I , ' : I · " '. - ' 

no effect would be expected. On the other hand, if we would observe the condenser 
·, (.. . .. :) 

froni a frame .which is also in motion' relative to the suspended condenser, then 

. .;. 

we should observe such a couple •. However 9 the question arises as to how such a ~ 

:··; - .;, 

couple would be observed~ and. the answer is by either observing an angular accelera-

tion or by balancing the couple with another known couple such as a torque in an .~-. 

elastic suspension6 We shall find that not only the magnitude of the electric 

torque is changeds but also the magnitude of all mechanical torques is changed 

by exac~ly the same law (Eq. (22.6)) as a function of the velocity of the observer. 

Therefore the state of equilibrium remains invariant independent of the observer's 

state. Hence relativistically we would obtain a zero torque either in a frame 

moving with the electrons o.r not moving with the electrons. 
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CHAPTER 23 

RADIATION FROM AN ACCELERATED CHARGE 

Let us calculate the complete electric-and magnetic fields from an electric 

chargee which is assumed to be moving in accorda~ce.with the conditionr.. 

(23.1) 
" 

where x.' are the coord.inates of' the charge and t' is the time of' _emission of' the ., l. 

_sig_ nal _emitted at xi' which will arrive at x. at time t. Note that. this statement 
. l. 

assumes the existence of' a universal time scale which can be established by signals 

travelling, with infinite velocity strictly. a non-relativistic concept. Never-

theless, this procedure, owing to the fact that we are treating the process only in 

one frame in which the wave_equation_is valid, leads to rel-ativistically correct 

results at will be shown later• 

The velocity and acceleration 

~ ~ ~ 
v = .ax• v = 

d t' 

of'· the charge:;. 

d~~. 

;}t'2 

are thus considered as given, by virtue of' the influence of' external fields or 

possibly by the influence of' the i'ield.qf' part of' the charge on the other part. 

We shall discuss this. poip.t later. 

The Wiechert-Li~nard potenti!i1s thus represent the following functional re-

lationshipsa 

(23.3) ¢Cx1 ,t) = e 1 = e 1 

s {(xi -:- Xi' (t' )]. (3 (t f )J 41ik0 
-,. 

4"1t"ko s 

(23.4) 
-7 

1<t•) 1 A(x1, t) = e = e 
411k

0
c ~{[_xi - xi •(t' )J, (3 ( t f )j 41rk s c 

0 

where {xi,t} 1-ef'ers to the field point and. (x1 •,t•) to the source point. The 
,.... ., > 

field J?b.hlt p(xi) .and source point p'(xi') are-connected by the condition:-

.. ,. (23.5) . r(p,p') = .r t ·_ '(x. -:x:. '/1_112 

L1=1 l. l. J 
and s is given byr. 

(23.6) . 
.. -+-

s=r-~·r 

= c(t - t•) 
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.-:, -> 
When we derive the fields E and B from the po-_tentials (23o3) and _:(?;3:~4) 'by the 

regulations go 

-7 ~ --:;;. 

(llol6) B = \l X A f.,., 

-~ ~ ~ 

( 18 o 13) . E = = \1 JZf ;., o A 

at ~ 
we must notice that the operator V · is a vector operator v,;.h'ose components · C) 

"dx. 
~ 

are partial derivatiVeS at COnstant time ts and therefore not at constant time. tVo 

Partial differentiation with respect to x compares the potentials ~at neighboring 

points at the same timeo These potential sigrialS' originated fro~ the charge at 

different times o Similarly d- means ~ and hence refers to the 

d t . ot X·=constant 
comparison of potentials at a given p.oint ov;~ an interval of time during which 

the coordinate of the signal originating charge will have changedo Since only the 

time variations with respect to t~ 

problem) 
9 

we must transform d ··· 
ot x· 

J. 

(virtual present position 
when v--is asswned 

· to be constant) 

~q 

are given (in the original description of the 

-....:y 

and ·v 

c 

to expressions in terms of . -~ 
atg xi 

p(xi, t) (fi~~d point) 

·p 9 (xi 9 ,ti')(retarded 
. position) 

p" (true present p~sition) 

Figure (23ol) 

Note that it is in general impossible to express the fields in ter.ms of the 

. I 

npresent positionr. of the accelerating electron as it was in Chapter 20 in the 

case of uniform motions. but that. the distance 1' refers to the retarded position 

p 9 of the charge 9 as seen in Figure (23ol)o Note thatg: 
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(23.7) dr 
dt' 

xi=constant 
and, v~ctorially:~ 

(23.8). 
-+ 

dr = 
dt' 

~ 
- v; 

= 
-+ ~ 
r • v 

r 
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It -+ 
To relate o to d , we note that explicitly r is given by the functional relationt 

n at' 
(23.9) r =·f ~i• xi'(t'~ = gti,t~ 

and, functiona~ly (23.5) can be solved1br t' in terms of ~i and t, since xi' is a 

given function of hence&: 

(23.10) r = 

where t' = h(xi,t). And thus:: 

~ ~ = "t- g:·J = :~. '!t: . 
-? ~ 

- r • v dt' 
r ~t 

or, using (23.5), (23.7) and (23.8):: 

(23.12) . a-t' = 1 = r 
a:t 1 - ¥' • "$" s 

/ rc 
Similarly:· 

(23.13) 
~ --!> ~ ~ ~~~~ 
V r = - o\) t' = . \l ' (r) + £ \) t' = !. - r · • v \l t' .. ~ t' r r 

~ 

where by \7' we mean differentiation with respect to the first argument of the 

function g in Equation (23.10) only;: that is, differentiation at constant re-

tarded time t'. Therefore: 

(23.14.) 

and we have:: 

~. (23.15) 

-4 ..... 

Vt' = - r 
so 

for the required transformation of the differential operator from the field point 

·x Note that t) implies differentiation at constant xi but not at constant· xi'. n 1 
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coordinates to the radiator's coordinates~ 
I , 

From we have: 

(23ol6) 

and using (23o7) and (23~8) and a series of vector iden-
-'!? 

Using \1 's 

tities, we 

(23ol7) 

Similarlyg: 

(23ol8) 

-') 

4trk0 B = 
e 

~ ...!..;>) 
+ r • v 
, c2 

Y + ~ !. X .. 't X (r -4 -n--ko 7 ~ "t x 1'c 1 _ 12 2) -+ ( ~ ~ 
e c2s3 c3s3 r 

and after simplification and c'omparison with (23ol7) we 
-> --+ --+ 

see thatg 

(23ol9) B = r X E 
rc 

__. 
Hence the magnetic field is always perpendicular to E and 

~ 

vector r o 

The electric field is composed of tviTO separate terms. 

Equation (23ol7~ varies as l/r2 for large distances and is 

with the 11 convective 11 field of a uniformly moving charge. 

the retarded radius 

The first term in 

formally identical 
. . . 

...,. ~ -
We. might call rv=r-r~ 

= (Cit) (see Figure 23.,1) the nvirtual present radius vector", i.;e. the position 

the charge would occupy "at present" if it had continued with uniform velocity 

from the point p'. The l/r2 term is thus simplyg 

..... 
Einduction = e1v (1 - ~2) 

4'frk0 s3 · · 

(23o20) 

This is identical with the field (20o23) of ~ charge in uniform motiono This 

field is analOgous to the quasi-sta:tic or induction field which we discussed in 



~I 

225 

connection with the radiation from variable current and charge systems in Cha.pte.r 

20. Equation (2.3.20) does represent a. non-radiating term in the sense that it· 

does not contribute to the energy flow over an infinitely distant su:rfa.ce; it may 

however contribute to the net energy loss of the electron. The field is neither 

static nor convective·a.nd in general a. net change in field energy will take place 

. 
which must be supplied. This energy loss ·will cause a. reaction on whatever out-

side force is responsible for the electron's motion. Detailed calculations .. 
in the next chapter show that this reaction force will be proportional to -1t 

and therefore has the character of an inertia. ·or "electromagnetic mass." 

The second term 
~ 

.-(23.21) E d = ra 

in Equation (23.17): 

~ ... ~ 
e r x (rv x ~) 

41\k s 3c2 
9 

·is of order·ljr and therefore does·represent a radiation field in the sense of 

contributing to the energy flux over a. large sphere. Similar conclusions hold 

for the two terms of. (23.18). l.et us now consider seve.ra.l important cases of 

this radiation field: 

Case 1:: Radiation at Low Velocity 
,.. _ _. ..... 

In this case r = rv, s = r 

(23.22)(a) 

(b) 

....., -
Erad = 

~ 

B 
rad 

. . . 

(~xf) 

Equations (23.22) (a) and (b) represent a. field that is forma..lly identical to the 

• 
field of .a. radiating dipole (Chapter. 21) of moment pt == "¢ e/J-. 'the angular 

energy distribution sho\m in Figure (23.2) of the radiation .is therefore simply 

the sin2e distribution discussed there. 
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· .. 'lines· 'Of eq'u'al f'ield · 

intensity" ... 

Figure (23o2) 

Integrating the Poynting vector of (23o22) over a sphere, one obtains for th~ rate 

of energy loss from the accelerated charget 

(23o23) * 

* -dW = .2e2 v2 in Guassian units; all remaining equations in Chapters (22·- 25) 

""""(i't'P 3c3 

41t" k 1( uss~an 
are written ·so that they can be reduced to _Guas sian units by putting e e2 ]=~ 2 1-Ga~: : .': . • ) 

.• ·. OMKS .. 

Case 2 g; 
. ..... ~ 

Bremsstrahlung, 1.f v \\ v:: 

~ ~ ~ 
In this case$ v is not necessarily small, but v and v are parallelo Under 

(23o24)(a) 

(b) 

which differs only by the 3 ( f e) .. 3 factor !_. = 1 ~ cos from ·the slow electron 
3 . 

s . . . 
(23o22)o The qualitative effect of thi-s factor is to (dipole) case of Equation 

increase the radiated eriergy in the forward· direction, compared to the backward 

direction, as shown in 'Figure (23 o3) o 
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lines of equal ) 
field intensity 

To calculate the angular distribution of the radiated energy quantitatively con-

siderable care has to be taken in the definition of what is meant by "the rate of 

radiation" of the charge. We shall compute the amount of energy lost by the 

electron per unit time corresponding to a time·interval dt 1 during emission of the sigm. 

that is, the rate of energy loss -dW of the electron itself. At a given field 
. ...... .. d'tT 

point, the Poynting vector N represents the energy flow per unit time. Therefore 

the rate of energy loss of -the electron into a given sc;>lid angle d .0. is given byt: 

(23.25) .:.9!: (e)dn=jNidt r2dn. ~~~I\~ X itl dt r2d~ 
dt' fdtT w 

= k0 cE2r2 dt d[l = kocE ~ r2d!l. 
dt' r 

from (23.12). Hence the directional rate of energy loss for the accelerated 

electron is t: 

(23.26) 

which is· the equation giving the energy loss for the situation shown in Figure 

(23.3). 

·The correction s/r from time of sigilEll arrival t to t:lme of emissd.on t 1 can be 

physically interpreted as follows: The energy emitted by the electron in a time 

dt' is located in the volume between two spheres, one of radius r about a fixed 

point p' and the other of radius r+cdt' about a point p which is a distan~e-~dt' 

from the first point as seen in Figure (23.4). 



~ -->' 
!:.!!, dt 1 

r 

. ' 

Figure (23o4). 

Consider the element of this volume dV subtending a solid angle 

at p 9 o ' By geometry:: 

(23o27) dV::: dA: (c;, 1 ~ 1)dt 9 
::: ~s d.Adtv 
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dfl.. 

dVc. dAdr 

. 1°~ 
dr.:::. cdt 9= r dt 1 

dr~E- "t;~dt' 
d.!l::: dA 

r2 

and the energy dWd!l contained within this :volume in the solid angle an iss: 

(23o28) dWd.!l = (k0 E
2 

+ p 0 ~) cs dAdtV = koE2 ~ d.Adt 9 . 

2 - r r 

in agreement with our former energy loss considerations contained in Equation 

(23c25)o 

1'he principal application of these considerations is to the calculation of 

the radiation from an electron which is retarded along its own direction o~ 

motion (Bremsstrahlung) o For an exact olassic?-1 calculation9 it would be neces- (• 

sary to put the exact variation of acceleration with time into the equations 9 using 

the stopping power of the material upon which the electron impingesox For a 

X 
See Compton and A.llison

9 
''X-Rays in Theory and Experimento" 

• ...... 
simplified discussion 9 let us assume that v is constant while the velocity de= 

creases from v to Oo This gives a resultant VJpulse" of radiation of energyg 
0 
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(23.29) 

.1 4- '"i\ d.rl. 
-~-cos e) J 

The angular distribution is again tipped fo~m~d, in the direction of motion. 

The radiation is polarized with the electric vector lying in the plane of the 
.. : -+ 

radius vector and the direction of deceleration .v. Equation (23.29) can be used to 

estimate the total efficiency of an X-ray tube• In practice, however, both the 

angular distribution and the polarization of the outgoing radiation are greatly 

modified by scattering of the ele.ctrons in the target material. 

The frequency spectrum of the outgoing radiation can easily be obtained by 

Fourier analysis of the outgoing field. Let us assume for simplicity that a change 

6't in the velocity takes place in a very short time 6.t• and that p <:<:. 1. During 

this time interval, the radiation field is:· 

E(t) = e sin e f:lv = e ·s:j.n e 6.v ~ (t-t0 ) 

41T k0 o2r At' 4.1rk0 c2r 

where ;. = Cl. v 1 and we have expressed ;. as a b function, ~ = ~ (t-t
0
)6:v 

A't"" 

Jf00

vdt = Llv, where t
0 

is the time at which the radiation take~place. 
-oo t 

If we put: 

then:· 

(23.31) 

which, except for phase·, is independent of W • The frequency spectrum of the 

energy loss,corresponding to a field whose Fourier components are E~, 

. obtained as follows:: 

can be 



but: 

(23.32) 

I < 
' '•. ',:_ ·~· 

E2 dt dS 

': 

·~·-:.-: .,_ 
' ~ . 

(~ t.(1) 
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a~J[·(· E·t../~iw':t ·a:wJ]·. 
-co 

: . • • • ;~ ~-; . ; _,· ,' • •. ' f • : ,_: . ' .' ~ : 

.(' . . 

dGJ 

since E_~ = EW~ Hence the energy lo~s corresponding to a given freqtiency 

. .'~. 

band d(..J isg; 
:<:.' .. • 

(23 o33) dW 

Hence for our specific spectrum (23o3l)~ 

(23o34) -WwdW= e 2 
" b,v. dW sin2 ~ ) 

2 . ·r· 'ii 
e sin e d9 

4'1(k0 c 0 . 2'\i 
0.·. 

·,"':: 

The spectrum is. thus constant on a. frequency seal~ o A\ctual1y the spectrum 

. . ~*"·· 
will be cut off at the point where the <kinetic energy of the electrcing · · 

(23o35) KoEo = i/2 mv2 = h4). max 

... ~ ': 

The ideal spectra on a frequency and wavelength scale are shown in Figure (23o5)o 

Equation (23.,34) can be expressed in terms of the number of·quanta dN = 

=Ww dW~W which are "shaken offn during the velocity change. This givesg:. 

.. ,. 
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• _!_(6. v)2 
31t"'\ 0 

' ...... 

The number of low frequency quanta diverges although their energy is finite. Thi:s 

feature is also true in the more exact treatment.,. 

- ~ ~ - - -- - - - - - - - - - - - - - - . - - - - - - - - - -
':#< See e.g. Heitler, "Quantum Theory of, Radiation." 

Energy 

w 
)I 

-----------··--

Energy 

Frequency 

Figure (23. 5) 

- - - - - - - - - - - - - ~ 

,).min 

Wavelength 

Case 3: No Restrictions on the Acceleration or Velocity 

In this case; "tis not necessarily small or parallel to~ The general 

:radiation field (23.17), in .combination with the rate of radiation considera-

tions that lead to (23.25) give the following general relation for the directional 

~ate of radiation: 

(23.36) -dW (e) 
dt' 

dA = e2r 

161't2k0 s 5o3 

It turns out that, when integrated over the total solid angle, this leads tor: 

(23.37) 

for the total rate of radiation. We shall see later that this.expression can be 

· derived by a simple relativistic transformation of Equation (23.23) to a moving 

.frame of reference. 

let us now consider the _practi,gall;v imJ2ortant case of an electron moving in 
**Even classically the extent of the spectrum to high tA.:r is only due to ou:r simplifying 
~SJHDnption of zero· collision time. · A Fourier analysis of a finite collision time 
'process will automatically remove; the high frequency components. 
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a circle of radius a with a· constant angular veloci ty(AJ, as sh()vm in Fig~re (23 o6) o 

. ,. 
'. 

\.,; . 

·_; 

! •. · 

p 

Figure (23o.6) 

-+ . -~ -+ -+ ~ ~ ~ 'a . 

Since rv= r-(Jrr F. 0 r .= ~r cos e;: v • r = vr 'sine, we haveg . 

(23o38) t X ctv··x ~~ 2 = [cr'" = 1r )A· sin e .:, ~r2_(1' ~··'(3 co~ ej2 

= v2r4 (! ...... cos ~:t 

So we have~ 

d!l.= - ~ 2 ir 2 JfJ = cos e) 2 

161\2koc3 (1, = p cos e)'S 
(23o39) =rurv (e) a.n. .. 

The resultant· pattern has zeros at e =· cos=l@ o For la,rge (3s. the pattern 

is very much more intense in the forward direction than 'in the backWard direc=' 

tion as is shovm in Figure (23o 7) o. As-~ -+-1~ the radiation becomes a sharp 

forward rayo 

.f~. .s.', ·~ '• 

Figure· (23.c.7)c,·,; 



2.3.3 

The total rate of ,radiation be'COmes, :f'roni (23.37) or inte·gration or: (23.39):; 

the rate of .radiation is proportional toG!._)4 for high velocities' at const~nt 
. w 

0 . . . 

in a constant magnetic field but with a variab'le rad.ius. radius and to(~)3 

W
0 

= m
0

c2 where m
0 is the rest mass of the electron. V'f = total energy of the 

radiating e1ectron. 

------ ---- ----------------- --- ---- ~·- ~--

~ ..:. 
In the general case of arbitrary direction of v and v, the position of the noaes 

can be constructed graphically, as shown in Figure (23.8). Since the radiati0n 

. ~ ~..., 

vanish when r v= r- ~r is fields • 
parallel to ?, we can find two points A and B 

lying on a circle of radius r about Q and which lie on a straight line parallel 
• ' + ~ 

to ":'which passes through a point Q such that OQ=r~ • OA ·and OB are then the two 

-+ ~ 
nodal lines; the nodal lines are always in the plane defined by v and v. 

Figure (2.3-S) 
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Classical Cross Section for Bremsstrahlung, -in a Coulomb Field .· .. · ~- · ... 
J ••. 

At low energies. Eq .. (23 .. 29}(due. to.Sommerfeld) gives the,-appro~;Up.!l:!Je yield 
. - . ... . .. . . ·.. .. ~· . 

. • . - .. ; . . . til . - .• ·... . ·.•. . 

of. low energy x=rays if empirical value~ of v-are used~ At higher energies and 

. particularly for heayier targets, the 'x-ray yield has· to· be· considered to be due 

to radiation in. deflection of the .electron in t.he .. -Coulomb: field of the· nucleus .. . - . ' . -

We can make a simple classical calculation which. ccmtai~s· essential~y._alJ,. of the 
!•I' l . , 

physical features of the more detailed treatment .. 
'' 

Consider an electron of velocity ~passing a nucleus of charge Ze at a 

distance b. The electron will suffer a transverse accelerationg · 

• Z e2 ;_ b · 

v = 4VkrP~ (b2 + v2 tz)J/2 

In order to calculate the radiation loss and the spectral di~tribution using 

Eq. {23~33) we have to Folli'ier.analyze'v~ This givesg 

(23 42) v. = _!,..[7< t) e :iw tdtg ..].._ "f~ __ b\£0>0 cos w t . 3/._2 . dt,~-
. • w 21r ·. .. .. ·. . • 211" ~ 4'1rk

0
n{) (bZ + V2 t2) ... · 

-~ ~ 

decreases 

=(2~) 

exponentially for 

• 1 Z e
2 

v w = 1r Z:1Vkom 

' ·= 0 

2W K 
Vl 1 

large values of the ar,gument. 

1.. 
vb . 

We shall therefore takeg 

The radiated energy/unit solid angle is thus, .from Eq.' (23 • .33)g 

... 2;2'·· _.· 2 2.2. 
=Ww d w d_ .. n.:~ _ ~- . .. 1-...L\ e .AAll 8 d~ d..K)).. 

2 
. · .1f2 \ vb ]r. 4f'koc . 

e . ... -· ' 

41fkomc2 is the classical electron radius~ This can be expressed as Here r 0 = 

a cross section for emitting quanta of energy 'hw·~ 
· · Pmax · 

( ) de-'_ lrta~Q 2 ~[:r· )ada)[. --~- ~il!!!.l _ 1,2 _!2roflog~~-ma ~- (dw) 23 .. 45 dw - 2 · sln g Q . "'.·- b _w] - 3 2 b ~."tu 
· ~- · tr . ·····"···· min ~ min _ . 

W< _.:!,_, 

bmin. 
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The limit bmax is defined by the effective limits to the Coulomb field"due to 

the "screening" of·extra.nuclear electrons. The lirilit bmin is defined by the 

fact that the electron is localized only to a distance or the order of~/rnv. This 

same limit also puts the cut-orr o~ the spectrum at iiW~ rnv2::::::::;. kinetic energy. 

This classical calculation is of course approximate. The approximations 

made here are: 1. 'Only the transverse accelerations are considered. 2. Relativistic 

considerations are ignored. 3. The quantum cut-off is introduced only in order 

of magnitude. 



CHAPTER ·24 

'\· • ,·. 1.~·. :-.~ ::) ·~'lt!~·.~· .::·.:-~· ;.:: ;; .~;· __ ··:-

It was shown :l.n Chapter 16 that the. law·· of conserva-tion of mementum could 

'be reco'nciled i-ii th.'· an el~ctrical 
-7 ' -v ~> ~- . 

(24ol) ·F = e(E+v x B)· 

only if' a morii~~tunu 

(24~2) 
··~ . .,..... . 

:;; E ;:··n· 
or 

' • .. •. • ·:. ,j -. -' ~; ~~ ~;::; i-: ·-~-· ... 
interaction of the form8: 

,·,_ .; ' 
'--· ... , ... ".: 

.·-; 

·.-: 

:., ... _·, 

~.,: 

~ .· ... : .,.· 

is assumed to. be contained per unit volume of the electromagnetic fieldo 

Similarly the electromagnetic field carries an energy density of the amount~: 

(24o3) 
~ ..._., ~ --? 

Uv = E o D + H o B 
2 

in order that the law of conservation of energy of a closed system containing 

both matter and radiation be obeyedo 

If we attempt to apply these considerations to the radiation field of an 

electron$ we are led to the following conclusionsf;. 

lo If ~n electron is in uniform motions its field will add to the momentum of 

the electrons since for a small virtual change in velocitys the momentum of 

both the particle and the field would change simultaneously. 

2o If _an electron radiates by virtue of its acceleration~ produced by an ex= 

ternal force$ the external force must supply both the radiated energy and 

the momentum required by the change in fieldso The only vmy the external 

force can supply the energy is by a reaction force of the electron pro-

duced by action of the radiation field of the electron on the electron 

itselfo 

Let us examine these two conclusions in somewhat greater detaiL Let us 

first consider the electron in uniform motion moving with a velocity v ~<..co 

If the velocity is changed by. a small amount &';!,. the magnetic field changes 

' / 
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by an amount:: 

$'t = 1:2. '3 S1 X t 
41i r3 

(24.4) 

Consider the magnetic flux passing through an area in a narrow strip normal 

to ·~~and passing from the electron to oo as shown in Figure (24.1). 

r 

PO 

+T+1"T 

.... -t+-t+ 
+"1'1"1" ' 

e -~~-z ... 
Figure (24.1) 

The flux change thus produces a. riet voltage around the path indicated. At til 

point near the electron_ the ~ield. is given by ~E~: ~~~ and hence the impul~e 

received by the o'harge due to a cha:age .S--if in velocity is or the· order: 

We see immediately that this impulse wou:J_d 

be infinite if the electron were a. point electron; if the electron has a. f~ite 

extent of order r
0

, then the magnetic field would react its maximum at r 0 a'Q.d 

then go to ~ero at the center of the ·eleotrort. For a. finite electron we wo~ld 

have .a.pproximatelyt 

(24.6) ~?';1 e2 ~;}' 

41t"k0 r 0 c2 

which as far as the accelerating ·force producing &vt is concerned is equi-

valent to a.n'effective "mass" of. th\3 order: 

(24.7)* 

- - - - - - - - - - - - - - - - - ·- - - -
* m = e'2 in Gaussian units 

;-? 
- ~ _o_ - - - - - - - - - - - - - - - - - - - - - - - - - -
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This mass expression was derived by directly computing 'the iri~n~'tia1 reac

tion of the field on the driving force" By the·· -~ener.~l' dort,siderei.t'J!on-~' of 
_.., -·,,.,,..,..... ... .,; ....... _. 

Chapter 16 9 we should also obtain the same expression if we integrate g ::::; E x H 

02 

over the, fie;I.do Ag;:~.ins if we take. the .f-ield to be that of. a .pQint··~c~arge 9 the 

integration will diverge so that a lowetr 1imi t corresponding to a finite radius 
... i 

r
0 

of the electron must be introduced i?to the region.of integration" For small 

values of , !) this integration can be carried out easily, using the fields of 

Chapter 20~ Equation (20o20) ffo; The result ts*s takings~ r:: 

(24o8) 

. . . ·oo -· .. ·-.--. 
~ ["' - ~ ·- --"> 
G = g dv = 4 U o V: _ 

r
0 

· 3 
0

2 

* See Becker!) '~Theorie der Elektrizi tat, n Vol"· II,_ Pga 4~ £:f e 

- - - - - - - - - ~ - -
whereg 

•. j ~ ' • . .-;. • 

(24o9) -~I' 
~ -I> 

uo E 0 D dv ';: 1 e2 -
81l"k

0 

. '' ~, '. 

ro 
ro 

is the electrostatic field energy of a point charge e of finite radius r
0

o With 

the exception of the numerical factor, this expression is again in agreement with 

an electromagnetic mass qfthe orderg: 

(24ol0) 
,., 

ID"" 
2 ' e -----

as beforeo The agreement between (24ol0) and (24.,7) i•s· br course require·d by 

the general considerations of Chapter 16 ;-

At high velo~ities ((4 -+1) the fields of Cha~ter 20 must be used with 

s I ro The resultant relation between momentum and v~loc~ :tY depends o,n the 

assumption that is made about the behavior of the shape .of the ele<?tron on its 

motiono It may be assumed that the shape of the_electron remains rigid, inde= 

pendent of the motion, as in the Abraham eiectron, or contracts, a~ was a,s

sume~ by Lorentzs in the ratio{l- -~ 2' i,n,_~e direction of moti<:m.". If this 
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latter assumption, which is plausible today by virtue of relativistic arguments, 

is made, we obtain: 

- (24.11) _ . 't- It, tio 
. --3 c2 

~

v 

?1 -~2 i 

,where U0 is given by (24.9). With the.exception of the faotC?r. 4/3, (24.11) is of the 

general form: 
I 1 • 

(24.12) 

~ -?, 
G= mv 

m: m..q 
=:;~1_.;._(3_2'!1t1 

Uo-= moc2 

m0 = electronic rest mass. 

which we shall later prove are the correct relativistic expressions relating mass, 

energy, and momentum. ·The extra fa.ctor 4/3 is however, significant and indicates that, 

the purely "electromagnetic mass" calculated here is too big by this factor.* In order 
-Uo 

to make the total mass a relativistically correct_ quantity, an additional mass Jc2 

must be present, whose origin·is not electrom9:gnetic, which.will lead to the overall 

observed quantities which obey the relativistically correct relations (24.12). This 

extra mass {or energy) -U0 /3c2 presumably .represents the non-electromagnetic binding 

- which must be present to make the charge system of the electron stable. . 
*Note that the ratio of electromagnetic momentum to total field energy is independent 
of r 0 and hence independent of any of the approximations made in the fields. 

We have considered how the momentum of the field affects the effective mass of an 

electron and also how physically this mass term is due to a reaction on the for·ce 

which tends to change.the velocity. of an electron which is in steady motion. We now 

would like to obtain·the reaction force whi'ch must be present if the electron is 
• -+ 

accelerated with-an acceleration v, giving.rise to a rate of energy loss: 

-AWW 2e2 
(23.23) ~ e v 

dt 1 = 611' k
0
c3 

where we are taking fJ to be smallf* 
**This restriction is not basic since, as will be explained later, it can be removed 
by a relativistic transformation. 

This reaction force should be giyel). py:_ 

-? ~ · e2 ;2 
- (24.15) F • v + 61rko _;;J = 0 

-+ 
This equation obviously has no solution for F which can be instantaneously correct 

··for all· t:irne, sin.ce '1 and~ are basically un'correlated. It is 

. ·' 
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... -

therefore not possible to solve (24ol5) instantaneously but only when~aver~ged 

over a large enough period of time. This means y,f course that we a.re .. 'riot 'balanc

ing energy between the force and the radiatioh field '_inst~rt~~~ou~iy·l:lut''th~t an 
., 1 

extra. fluctuation will be available which will be ·stored in the ·ir{d.uction field. 

On this ba.sis 9 Equation (24.15) becomes: 
' .~. . . •' -

f2 J~ ··' 

(24ol6) (f • ~)lt9 2 ·2 . 
0 + e v dt' = 

tl 
61T"k

0
c3 

tl 

integrating by parts~ 

(24ol7) 

The i~te~rated term is the "fluctuation" term' referred to. above; f_or: a per~~Qdic 

motion or an accelera~ion occurring over a. limited time it will not .a.ffec.t .~he 

integrated energy balance. On thE! average 9 energy will be preserved if .. we putg: 

(24ol8) ;:ad = e
2 ~ 

611k c3 
0 

as the radiation reaction force. The total reaction caused by the interaction 

of the fields of the electron on itself demanded by conseriration of energy and 

momentum is therefore;:: 

-+ 
(24ol9) F = e 2 

where g: 

(24.20) = 4 

3 

Note that we have arrived at thts reaction force from the point of view of the 

conservation laws rather than by consideration of the direct intera.ctiono 
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".1- ' .• , .. , 

It will be instructive to also study the direct computation of (24.19), which 
..... 

" ' Wa.s · O'riginally due· to Lorentz, in which 'F is derived by direct integration of the 

interaction of ;the radiation field, of part of the electron, on the other parts of 

the electron. This calculation very olearly shows the limitations of the theory. 

In making the calculation we shall make the following four assumptions. 

(1). We shall choose a frame such that the element de of the electron on which 

another element de' acts, is at rest. ··1(t)de = 0 

(2). 
.... .:.. ~ .. 

None of the quantities v, v, v etc. ch~nge grea.tly during the time it takes 

for an electromagnetic signal to cross the electron. This is equivalent to:: 

(24.21) v < ~ 0 
,. 

(24.22) • 02 v<<. ':: .. 
ro ~· I 

•• .:. 
(24.23) 7<<. vc • etc~ \"". 

ro 

·. The. solution is effectively a power se:des expansion in I ·= r 0 :: e2 * 
. ' ·· .:. 0 - ----. I 

0 41T'k0mc3 

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - ~ 

* 1"" = e2 in. Guassian units. 
0 -. 3 ·· me 

' . 

(3). The fields based on the Wiechert-Li~nard potentials will be used even if 

their correctness at dhnensions of the order r 
0 

is doubtful. Therefore,, only 

terms not containing r explicitly will be. considered as having physical signifi"!" 
0 . . : : . . . 

canoe. 

(4). The electron distribution has spherical symmetry. 

Consider an ~lament de of the charge .at P. affected by the element de' at p', 

as shown in Figure (24.2). 

;" .. 

\ . 

. ·J ~; :: 



242 

. :SO).lTC~ ,point 

(field 

Figure (24o2) 

~ .· 

Using Equation (23ol7) 9 the electric field at p is given byr, 

.. (24o24) 

Note that the field is expressed in terms of the electron's condition at t' and 

hence for totally arbitrary motions, the problem would be insoluble without 

knowledge of the electron's entire pasto It is only the restriction (2) above 

which permits discussion of the problem at allo In order to allow integration 

of (24o24) over the entire electron, all velocities and accelerations must be 

referred to the same time of arrival t of the signal at p.. Using as.sumption 

(12.s, ~(t) = 0 9 and assumption (2), we have:: 

(24o.25) ~(t 9 ) = ?(t)- !,!j(t) 
c 

. • ' ' • • 2 
."'t(t') = ~(t)r +"1(t)/::) 

·c 2 ~ 
(24o26) 

s=
3 

= r=
3G 3~(t) c-: + ~r~ct) 0 7\ ~ 
l_ 0 2 - 2 \ 0 3 ~ j 

(24o27) 

Let us carry terms to l/c3 only; to this order ~/c2 = O(l/c4) will be neglected& 

,..., 
j 
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Substituting t: 

(24.28) 

+ 3 
2 

(24.29) 

~ 
(v • 

·~ #] + r + v 

~ 2c3 ·. 

'When averaging over a region of spherical .synnnetry, we have ri = 0, 

rir j = ..!. r 2 ~ ij, and hence J: 

3 

(24.30) dE. = de' . (- 2 ;. + 2. 
J. - J. -

41rk0 3 c2r 3 

Integrating over de' and de we obtain for the self-force t 

(24.31) 
-+ w. --;+ 
F = e2

v - m 1 v e .mag. · 
61tk0 o3 

wherer, 

(24.32) m = el.mag. 
de de' = 4 U 

- 0 

8'fTk0 r 3c2 

where U
0 

is the electrostatic energy of the electron in its own field. This is 

in complete agreement with the results (24.19) required by the conservation laws. 

~ 
Uote that. the v term in (24.30) is independent of the extent of the elec-

tron and therefore presumably independent-of the detailed structure of the 

electron. 
~ . 

The v term, i.e., the mass term, is structure-dependent, but its re-

lation to the electrostatic energy is not. It is clear, however, that the 

electromagnetic mass is at least of the order of the experimental mass m. It 
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would be useless to carry this calculati'on to higher order, since the following 

terms would form an asc~nding se~ies in' ro arid,V:o.uld, there·fo're ]je-:·structure"" 

dependent ahd presumably not of physical significance o 

The preceding discussion shows .that there· are· the following unsolved 

difficulties in classical electron theory~: 

(:1) o The theory gives a !'elation between.ele.ctrostatic field energy and 
. . 

mass
9 

but does not indicate why either of them should be finite 

for a point field source. 

(2) c The electromagnetic mass of the .. electron is. insufficient to account 

for the entire mass; the electron must-have non-electromagnetic 

mass; of unknown origin to account for its stability., . , 

(3)o The condition (24.,23) which was necessary to permit the radiation 

calculation is equivalent to putting:_ 

(24.33) 

This means that there must be.an external force large compared to 

the radiation reaction force in order for the theory to be valido 

Hence 9 the force equations derivedhere do not apply to a free electron 

but only to a bound electron. If .(24o31) were applied to a free 

electron, we would have a differential equation of the type~-

(24o34) ~~ ~= 0 

k ~ T' e2 ";t 10~2 3 
0 ~ . sece: 

41/k
0

mc3 

which leads to ari integral involving terms in ~t/'lo '\Nhich ieads to 

ari extreme instability of position for a free electron ~1ich is con-

trary to facto 

~uantum mechanics has n~t. solved these_difficulties, but has in fact added 
. {"' .· ··. 

others to them, vmich cause similar difficulties to exist for the charge as 

. ., 
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they do classically for the mass of the electron. The experimental values, of e 
I 

and m can of cour~e be· used. !is .. '9ef'pre to describe the external behavior of the 

.electron; the real problems concern themselves with the detailed description o!' 

the electron itself. 

. ; ,-· .. 



, CHAPTER 2 5 .. _·,' 

' • I ' · .... 
, ,_: RADJ:ATION FROM ·A ·B01JND ELECTROl'J 

) . ,.. ~- .. . . . . . •' . . 

The theory of radiation reaction discus'sed in Chapter 24 can with some con-
. "'i: . 

fidence be applied to radiation from a bound electron, provided that none of the 

conditions given there are viol~te,d, •. 

Transient Vibrationsr 
4 --+ 

Consider an electron bound to a center of force with a harmonic force F=-loc 

corresponding to a natural frequency W 
0 

= AA The equation of motion,, includ

ing the self force of the electron, is then::* 

(25ol) •• X + ,, \ 2 
vvo X 

••• ·x = • •• 2 ,- X 

3 0 

In accordance with Eq. (24.33)s this relation is valid only if the right-hand 

side#is small. If this is true, we can write: 

(25.2) 
••• 2 " 

:X: ~ -- W0 X 

and hence if we let 7' = . 2 "r w 2 
3 0 . 0 

(25.3) "~ + . Yx + w 2x = o 
0 

whose solution for small y is g· 

( ) ·_ A iW0 t -('Y'/2)t 
25.4 x - e e 

2 
= e 

61rk~c3m 

w 2 
0 . 

, we have:. 

Eq., (25.4) corresponds to a damped wave train after a given amplitude has been 

excited by an external impulse. The energy of the wave falls off as 

(25.5) e 
=Yt I 

and hence y-l is the mean duration of the radiated pulse 1ivhen averaged over 

energyo This is the classical quantity corresponding to the qua~tum mechanical 

n·life~time~' of the excited state produced by the external impulse. 

The condition for validity of Eq. (25.3) is that 

. ., 
* The mass reaction term is of course included in the. mx term. 

- .-
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or W ((j .. 

0 0 

o~. _in terms of the. q,uantum energy of the outgoing radiationi 

(25.6) 
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This limitation is therefore entirely unimportant in the opti·cal or X""ray fre- · 

quency regions. 

' . . . 

The line-width of the emitted radiation can be obtained directly by Fourier 

analysis of Eq. (25•4). If; 

then a:' 

Ort 

(2 5. 7) Ec.)' ::: E0 1 
2f ""!""i.,...(u>--.--W..-.....o)-·· _+_Y __ 

2 

Corresponding 'to an intensity: 

(25.8) 1 
(W -W

0
)2 + ...:!.. 2 

4 

• Nonna.lized such thatr 

(25.9) 

The full width at hal£ energy is therefore r 

(25.10) A:w': y ... 2 "'"" •. ' 2 
· - r o""'o 3 . 

corresponding to a1 width in wavelength t: 

(25.11) A~"" 2'tl" ~Wo = 21Y' • ! ot"0 = 41T r
0 
~ lo-12 om. 

W' 2' · 3 3 
0 



Note that this width is constant~ in~ependent of'.:the f.requendy us~~d.;:i. In practice 
. . C; ! ... ;·.~ 

this is of course not the only source of the width of a spectral line, since in-
·: ' ~., .. . . . . .· i,_ ... , '.i_,·_, ~: ....... ~('~ ~-

terruption of the wave ·train due· to interatomic collision aii.d Doppler frequency 
.. , ;,;:?:· Q 

shifts also contribute to tne;· line width~ 
. ·.'' 

(2 5,;12) , ... 

which .:follows from the above relations~ is of cour,se equivalent to the. relation:: 
_1·. ;'. 

(25ol3) 

wher~ A E = t. ~w .9 corresponds to the quantum mechanical relation between the life .... 

time and the energy width .of a sta:tie o 

Forced Vibrations 
\. 

The previous equations give ··the motio.B- and the consequent radie.tion of a 

bound electron following a transient disturbing impulSe; this is .the classical 

·theory' o:f spectral emissiono Let us now consider the steady state motion of an 

electr·on in a sinusoidal external field. The resultant radi~tion will be coherent 

with the external field and will, in general~ inb3rfer~ with it. The relations 

that result from this consideration will give the cla!)sical. theories of light 

scattering 9 absorption and dispersion. 

The equation of motion of the bound electron in an external field 

~ ~ "Wt 
E = E 0 e~ of angular frequency ~ is: 

(25.,14) 

where Y is the same as it was in Equation (25o3). The resultant stea,?-y state 

motion is given byg; 

(25ol5) 
4 -+ 
X= E 

o. 

., 

: [w 0 2 -~tiwYT'·iLJt 
Let us analyz~ this .§olyti'O.n as applie-d th seve:ra1 cases o 

/ 

;l 
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1. Free Electronl' (a) Scattering by Single Electron (Thomson Scattering) 

The displacement and acceleration become, for the unbound and weakly acoel~ra-

ted e·lectrons: 

(26.16) ' 
~·~ 

• x =:: eE 
J m 

• ··" \ -;: 0 
J' ~0 

• 
I 

v--;;o 

If ~ ((o, Equation (25.16) using; Equation (23.21), gives rise to a radiation fi~ldt: 

(25.17) E' = e (sin 0(.) x 
41rk

0
rc2 

"""" ~ where o(. is the angle between E and r. as seen in Figure (25.1). 

(Incident plane polarized 
wave) . 

i 

Figure (25.1) 

The rate at which re-radiated energy crosses a unit area is a· 

(25.18) 

(25.19) 

where r
0 

= e2 
·-4-tr_k_

0

_m_c.,.2 

= r 02 sin~ ~··(I~ .. )· 
.· r, 

,. 

is th~ classical electron radius and.:: 

p (field point) 
E' 



,• 

i 

(2 5o20) (a) 

is the primary intensityo 

2 
Eo 
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. ~ . .·· . '- .· . 
• .. • •• -~-· •••••••••• .,_, h .... ·• ,.,_ ...... . 

~ .. 

.,,,. ,. 

(2 5ol9) is better expressed in terms of the· scattering a.figle e and the polari

zation angle r/s which are related by~ (See Figure 25o.l) 

cos ol= cos tj sin e 

; 2 e· ) .. -.cos .. 

If tllre pr~marywave is unpolarized,· (Leo.-~andomly polarized).we.have:, 

.. averaging, over rjg 
'• 

. (25o20) (b)' ,, 

since: 

The total rate a:t 

(25o2l) 

(25o22) 

sin
2 oL = 1 (l+cos2 e) 

2, 

which energy is re-radiated 

dW = -!J r 2Nd.ll. 
dti 

dW = 

w 
- I r 2 [~1 + 

0 0 

2 dW =· 81r I
0

r 
0 

~i 3 

0 

is 

cos2 

2 

the ref ore:: 

' .. '.d.n. = sin 

e) 0 21i sin e d@ 

'· .···. 

This corresponds to an effective scattering cross::-s~ction per 

(25o23) 

and a differential sea ttering cross-section per unit solid angler. 

(25o24) d 0"7, = r 0
2 (1 + cos2' e) 

d..fL 2 

e dSd~ 

This cross-section is shovm graphically in Figure (25o2):: Note that classically 
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the scattering is synunetrical in the forward and backward directions. 

1 

1 ~r r 0 2 d..!'L. 

1 
2 

(quantum-mech
anical .for ; 

-------A.:::___J -f.i. w = 0 .:2mc2) 

0 ~----~--~----------~~----------------------~----~9 
~2 ~ 

Figure (2 5.2) 

(tuantum-mechari.icalJy:" tlie scattered radiation is more cbncentrated in the for-

-'- - - - - ,_ - - -- - - - - - - - - - - - - - - - - - - --· - -- - . - - - -
*See e.g. Heitler~ "~~The Quantum Theory of Radiation," seconded., Pp. 149-161. 

- - - - - - - - - - - - - - - --- - - - - - - - - - - - - - - - - - - ···-
ward direction, even for relatively moderate energies. (See e.g. the case of 

scattering at 100 KEV in Figure (25.2). 

(b). Volume Distribution of Free Electrons. 

This case applies to the ;following cases of practical interest:~ 

1. Refraction of X-rays. 

2. Refraction of electromagnetic waves in the ionosphere. 

3. Re-radiation by a "plasma" in an electric discharge • 

. . 
If we have N electr~ns per unit volume, each electron, -when affected by an in-

finite incident plane wave will scatter the radiation in accordance with the 

Thomson scattering formula. This scattered radiation will combine coherently 

into a plane wave whichwill interfere with the incident wave, thus modifying 

t'he effective velocity of the wave. ···. The· case could be analyzed therefore by 

analyzing the superposition of Thomson scattered wavelets. It is, however, 

simpler mathematically to treat 

an entire volume element rather 

..... 
the re-radiation, due to certain polarization P' from 

...... 
than that from a single electron of displacement x~ 

T,hese two quanti ties are related by:: 

(25.24) 
_. -+ 

' P = Nex 
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-""> 
The effect of the polarization is to add the polarization current ~p 

. . - . . . . .at· 
~ . t 

vacuum displacement current k
0 

CJ E as a circulation source of magri~tic 

Equation (1.4.6) becomesg: 
. 0 t <. ;._ ;~·::"''·' '"'·' .. ;. , . : 

(25~'25)'' ·: . . -~X "t::-Uo\ko~t + ~p. _]· .·.> ":~ 
· ... . . ·[_at .. · dt_.···· 

This e·quation
9 

when combined 1'li th thi3 equationg: 

i· ~ ~ --7 
·(14o6)(3). \lxE'=-,dB 

O)t 

•' 

in the usual way!J yields the homoge,neous wave equations:: 

(24o26) 

w·here ~ 

(25o2 7) v = c 
n 

is the propagation velocity andg: 

( 2 5o 28) n =_ {,-1-+ -,~-P-,-.-., 

~ k0)?j 

0 . 

to the 

field. 
,I', •• 

! 
[ ' 7•-· ·. 
-t>~ 

is the refractive indexo The local field (see Eq. 3..,41) is given by: · 

(2 5e29) 
~ -~ ~
E.Jl. = 'E + _L 

_3k
0 

· 

-4 --> 
in isotropic dielectrics and sirriply by E)t = E in dilute systems o 

We have therefore for effectively dilute systems (always true in the free 

electron case)~ : 

(25o30) k = n2 = 1 + Nei1J, 
'lio \ I 

and froni. (25ol6) g; 

'(25o31) k ::: n 2 = 1 ... Ne2 

k w2-o m 

If we put 7( = 2._ for the reduced wavelength ari.d r 
0 

= · a 2 .. 

W 4'11'k
0
mc2 

,.)> 
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. for the, classical electron radi-us~ ,_this can be· written as t 

. (25.32) 

Xhe index is therefore less than -unity and th-us radiation penetrating free electron 

materials can exhibit the pheonmenon of total reflection. 

Note that the refractive index, being a meas-ure of the netphase velocity 

caused by interference of the primary wave and the induced polarization radiation, 

is sensitive to the sign of the scattered wave amplitudes, while the measurement 

of scattering cross sections is not. Investigations of the refractive index 

therefore yield more information abo-ut the binding of the electrons than do 

scattering measurements. This has recently been demonstrated in analogous experi-

ments on scattering vs,refraction of neutrons in crystals. 

2. Bound Electrons 

(a) Scattering by a Bound Electron 
. . - . 

The radiation scattering cross section of a bound electron becomes, for -un-

polarized primary radiation:· 

(25.33) . .. .w4 
cr - a-: o _(_w_2 ___ 4J-::2:-)~2 -+-( Y-w-)"'"'2 

0 

where 0"' ::: S'R" r 0 
2 is the 'Thomson .eros s section. 

0 3 

:J:;he same· a's in the free electr.on case. For strong 

(25.34) 

The angular distribution is 

binding; i.e. {wo>'>W 
. 'l_y <<'We 

(~~ 

~-- giving a cross section depending on the inverse 4th power of the incident wave-

~ength. Equation (25.34) not only holds for scattering by individual bound 

electrons but also for scattering by small polarizable regions if they are small 

compared to the incident wavelength. This is the case in scattering by small 

regions~ caused by density fluctuations in the atmosphere. Equation (25.34) then 
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gives the Rayleigh scattering of a gas: of fluctuating· ·denSity, ;rdlic:h·.is re~pdrisi-

ble for the blue of the skyo ~· ' ... ·' 

•' ~ 

The scattering cross section can become very large if w ~W (resonance 
.... 0 

.. 

scattering)o · In this caser 

(25 0 35) c;- = 0""0 (~oy 

which can give a cross section greatly in excess of the classical area of the 

electrono 

(b }o Index· of Refraction of Material Containing Bound Electrons 

For bound electronss Equation (25o30) becomes~ 

(2 5,.36) 1 
2 2 

(w ... w + i wy) 
0 

In the high density case, if th~ distinction between local and external field 
. .. -? --

becomes important~ this becomes· (since E
0 

in Eqo (25ol5) is now to be identified 
__.,. . 

with·the local field E.Q_ g.iven by (25o29))g; 

(25o37) 

where K 
0 

3 ( ~ : ~- ) =_ .3. ( n-n~ -+ 12 )_ ;:: _.;;.2,...4_'fr_H .... r2.;;;.o -. -.__,..,·r 
.. K =K:+~K 

0 

= Wo~ K = (;\.); r=.::!.. o 

0 c.· c 

If not all the electrons have the same bin_ding or damping but only a fraction 

f. has binding V'Ja.Ve numbers K. and damping width (in wave numbers} r. a we ob~; 
~ ~0 ~~ 

tain for the 11Molar refraction~: 11 

(25o38) 

whereg: .. 

· N = A:vogadro~s. number.;. 
0 

M· = Molecular weight<>· 

g, · = densityo· 

f. 
~ 

This is the general disper-sion f.:'or;mula :whi:ch gives both the real index of re• 

fraction and the absorption coefficiento 
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CJIAPTER 26 

THE. EXPERIMENTAL BASIS OF TEE SPECIAL THEORY OF RELATIVITY · 

Th 1 . t --+ . . th f 1 f th . f . 1 e ve oc~ y v appear;tng ~n e . ormu ae or ·e rad~ation rom a mov~ng e eo!-

. tron, as derived in the previous .chapter, denotes the velocity relative to a frame 

O'f reference in which the wave equation:: 

is valid. Substitution of the Galilean transformation for uniform translation 

parallel to the x axis:: 

' (26.2) x' = X - vt 
y' • y 
z:' = Z'. 

t' = t 

will not preserve the· form of (26.·1); ·electromagnetic effects will therefore not 

b'~ the same if·observed from different frames movine; with a constant velocity 

r·elative to one another. Specifically the velocity of propagation of a plane 

wave in ·vacuo would not retain its value c = 1/@o. If we accept the basic 

c'orrectness of M:axwell' s equations and classical kinematic laws, then there exists 

a: privileged frame of reference, the classical "ether frame", which is the on.ly 

one in Which Maxwell 1 s equations are valid and in which light is propagated with 
'-cl 

the velocity c •. 

The concept of a privileged frame is foreign to classical mechanics •. The 

b~sic equation of motion of n point particles interacting ~~th potential func-

t'i'ons V depending on their separation:: 

(26.,3) mi-:;i = ;,~ V [v(xi - xjD 

i'S not changed by a substitution of the type (26.2). Thisinvariance of the 

laws of mechanics is only true for transformations of the type (26.2), repre-

senting linear translations viTi th un:l.rorm velocity and non-accelerated reference 

fii:'a.nies. A frame in which a body on which no forces are acting is unacceierated 
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is called an ''in(3rtial" frame; we can therefore formulate the invarianc·e of t.he 

mechan~cs all inertial Xra,mes· are equivalent.* .. ' ;-.• 

*The 'definition of an "inertial frame" g-iv~n ~bo,;e is. a.t best very unsatisfactory, 

since the absence of forces can only be detected by the absence of acceleration:, 

unless the sources of the force are knovm., In a ·field theory a:ri inertial frame 

is therefore undefinable and ·a force field and a state of acceleration of a frame 

are basically indistinguishable. This fact is only recogniz€d in the general 

theory of relativity; we will assume here that an "inertial frame" can be realized. 
- - - - ~.-·- ·- - - -;-._ ----------

This statement is sometimes known as the principle of Galilean relativity •. 

Therefore~ we have .seen that the principle of Galilean relai;ivity does apply 

to the laws. of mechanics but does not apply to electrodynamics. We are therefore 

forced to choose between the following alternatives: 

(a ) • A principle of relatlyity exis.ts. for mechanics, but not for electro

dynamics. A preferred inertial frame (ether frame) exists in electrodynamics. 

(b). A principle of relativity exists for both mechanics and electrodynamics, 

but electr6dynamics is not correct in the Maxwell formulation • .,; 

(c). A principle of relativity exists for both mechanics and electrodynamics, 

but the laws of mechanics in the Nevvtonian form need modification. 

The choice between these alternatives can only be made on the basis of ex-

perimental results o We shall see by analys,is qf the relevan:t experiments that 

alternative (c) 9 in the form of the special theory of relativity, is essentially 

correct. 

: .: . .. 

TJ;le. experiments in question essentially fall into. three· classes:; 

(a)~.- j\ttempts i;o locate a prefe,rred. inE;~rtial frame for the laws of electro-

dynamics. 
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(b) •. Attempts to obtain. deviations from the laws of classical electro-

dynamics. 

(c)~ 'Attempts to observe deviations fr·om classi-cal mechanics., 

A reference list of relevant e::icperiment·s is given· belowr· 

REFERENCES ON THE EXPERIMENTAL BASIS OF TEE 
SPECIAL TEEORY OF RELATIVITY 

lt~ Miller; Rev. Mod. Phy. 5, 203, 1933. 
· Discusses in detail Miller's small positive effect on the ether drag 

experiment. 

2?. Kennedy; Proc. Nat. Acad. Sci., 12, 621, 1926. 
Michelson-Morley experiment using step mirror technique. Null result to 
.! 2 kmjsec •. 

3!; Illingworth; Phys. Rev., 30, 692, .. 1927. 
Repetition' of Ref. 2. lTull results. to + 1 km/se'c. 

4t. Kennedy and Thorndike; Phys. Rev., 42. 400,. 1932. 
Interferometer with unequal arms. Null result to + 10 km/sec. 

5f. Comstock; Phys. Rev;., 30, 2671 1910. · 
'• be Sitter·; Proc. Amst. Acad., 15~ 129 7-, 1913 •. 

.. . '16, 395,. 1913. 
Spectros·copic work on binary stars. 

6;~ · T'olman;· Phys. Rev., 31, 26, 1910. 
Thomson, J. J~; Phil-:lua.g., 19, 301, 1910. 
Stewart; Phys. Rev., 32, · 418-;-1911. 
Emission theories;· new source .theory and ballistic theory. 

7l Ritz; Ann. de Chim• et. Phys., 13, 145, l908 
Original source emission. theory:. ·· 
See also:: Tolman; Phys. Rev.,. 3lf 26, 1910 

~. 136' 1912 •. 

8:1 Ma.jorari'a; Phil. Mag., 35~. 163, 1918. 
37; 145, 1919. 

Moving source and mirror ·experiments. 

9~ Miller; Proc •. Nat. Acad., 11, 306~ 1g25., 
M. :M. interferometer using-light from sun., 

10~ Kennedy; Phys. Rev., 47,. 965, 1935. 
Critical discussion Of geometrical effects of high order in Michelson• 
Morley experiment. 

11• H. E. Ives; J. Opt. Soc. Am,215 (1938). -Doppler Shift 
j( 

Tnis list covers only some. of the· basic early work. For further references see t 

. . 



258 

. ~ 

lo Tolman:: "Relativity, Thermodynamics and Cosmology." 

2 o Pauli t '•Relativi tatstheorie, n Encyclopaedia der _1,-Ja.thema,tis(::}J,~I). fNaturwissen-
schaften, Vol. V '(special reprint)~ - · ; - · · : ... · · · ' ' ·- -·. " ' .. 

3o Bergmann~: "Introduction to the Theory_of Relativ;ity." 

Let us first consider some of the experiments -whichhave a bearing on the 
. ' 

question of an absolute ether.. f'rameo--· In -Chapter·22 we have already discussed the 

expkriment of Troutcin and No~~e on measuring the_ tor'que. 6:0: .a· susp'ended charged 

condenser. Such a torque was predicted on the basis that the wave equation, and 

therefore the retarded potential· solutions~ are valid only in. a·given.ether frain.e't 
•: ., 

and assuming that the earth's orbital motion would assure that the e'arth would 

not always move with this e-t;her fr~me o However, when the experiment was per-

formed, a null result was obtaitiede 

Another attempt t·o lo.caltz~- the ether frrune was the M,icheis(:m-Morley experi-

. . 

ment shown in Figure (26.1). Eight from~·source Lis-split into two path~ by a 

half-silvered mirror at P. The split beams _are reflected at mirrors s
1 

and-.S
2 

respectively and return through the half-silvered mirror to an observing tele-

scope at F. Interference fringes are 

telescope 

(Half silvered side 

(Path equalization plat~) 

Figure (26ol) 

-.)# 
I 
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o·bserved a.t F. Let us assume tha.t the instrument is moving with a. velocity-: 

parallel to s1P relative to a. stationary ether. Classically the time for the 

beam PS1P to complete its pa.ssa.ge is~ 

(26.4) 

The time for the beam PS
2
P must be corrected for the fa.ct tha.t P will ha.ve moved 

by a. distance [(see Fig. 26.2) during the time light travels from P to s
2

; g is 

given by:: 

(26.6) . J 

.V J 1 
+1: 

and hence: 

(26.6) 

~ 

-r----
1 . . 

·,, 

·--.... < ~ ~ --....-~. 

Figure . (26.2) · --,-, 

1 

&2 = 2 !2/o 
{l-(82' 

rhe difference A in optical pa.th is therefore: 

(26. 7) A= ..... 2 ··[.~. . IJJ 11 - r;2' -.; 1- (J ~- ~2 

tr th~. ins.trurnent is rotated through 90° (i.e.. :_..e
1 

a.nd ..e_
2 

intercha.11ged), the 

number of fringesN that .are expected~o shift is approximately: 

· (26o8) N • <1,. + .Q.?) fl' 
~ 

The experiment wa.s originally performed by Michelson -and Morley with a. null 

r"esult accurate to!. 10 Ian/sec. Tha.t is the velocity of the earth relative to 
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any i'ether frame" must be less than!_ 10 km/seco Later experiments by Miller(l) 
-:, """ 

,. ,. ··.-· \ . 

gave a .positiv~ indication of a velocity of 10 -kmisec. (which is ]e ss th~n the 
·.····· .. ! !···•·( I •' 

earth~s velocity of 30km/seco in 'its orbit!) apparently directed toward a cer-

-~- :" . " . . ~- .. ' 

tain point in space. The accuracy, of the eJ:Cperiment was greatly improved by 
.. . ' 

Kennedy(Z) and Illingwort~??'.v u~iri:~ 'a ste·p,nfi;~or technique:· the mirror s
1 

is divided. into two halves of slightly different: tll,i.ckness; the telescope is 

focussed on the mirroro The field then has two halves whose inte'nsity cqr-
·''· ., 

responds to tvvo slightly displaced interference patterns, as seen in Figure 

A. B 

A.= Balanced intensities 
B = Unbalanced ~ntensi-ties 

;·,,, 

Figure (26o3) 

·Split Field of 
Telescope 

The field is balanced for fringe position A,. but riot forB: since the match 

occurs on the steep sides of the- :Gi.£ensi ty curves, much greater sensitivity 

(--1/1000 fringe) was attained. Kennedy> obtained .a, null result t'o.:!:. 2,.pn/seco 

and Illingworth to + 1 km/sec. We can therefore accept the null result with con-

T!J,e sear9h for a preferred Tram~ for.electrodynamicswithout further modi-
~. '· 

fication of electrodynamics or mechanies therefore appears to have beep. unsuc-. 
),' ·'· . . . . . 

cessfuL An attempt to .preserve the concept o'f the_ pr(")ferred' ether frame is con-

., 

tained in t~e Lorentz-Fitzgerald contractiqn hypothesis·which proposes that 

motion;: relative to the. stcatio.nary ether. frame .contracts all bodies in· the ratio 

{ 1, = (32
1 

in. the,·<li;r-ec,tion oLmo.tiono·. J.i in Fig • .(26~1) is therefore given by 

• 
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,Q_ . = 5l 
0

; where Q. 
0 

,is the length of ..Q · when at rest 
2' .. ' 2 . ' .. 1 1 . 

relatiye to the ether. Hence (26. 7) becomes~~ 

(26.9) ~ = 2 rzo ~ ol 
{ 1 _ f3 2• 'L 1 -. 2 J 

If. (j 10 .-.J=. 0 0' and no fr:inge shift is obtained on interchanging arms. ,.1( ~ as was the 

case in the experiments mentioned, no fringe shift occurs as a function of velocity. . . . 

. Ii' }_ o f ..Q o 
' . 1 .. ; 2 

(26.10) 

, then even vli th the Lorentz contractions a fringe shift of:: 

N t . .Ql o - _Q2 OJ· ( ~22 • (9~2) 
. ~ . 

. . 2 2 
is expected from the velocity change due to the term c.rs 2 . - (J ) • 

. 1 Kennedy 
(4) 

constructed an interferometer using a .path difference essen~i~lly as long as co

herence of the source permitted. The square of the velocity of the instrument is 

presumably given by:: 

(26.11) c
2 (1 2 =liveloc~ty of earth in)+ (surface velocity)+ /velocity~ 2 

~ orb1t around sun of earth \of sun~ 

which should change by:: 

(26.12) 

every 12 hours ·.and by:: 

1 (26.13) 

v 
E 

+ v 
R 

+ v )'~ 
s 

every six months. Neither· effect was observed, in contradiction to the Lorentz 

c.ontraction hypothesis. 

·A further. al tern.ative in which the concept of tne ether could be preserved 

would be to consider ·the ether frame as attached to ponderable bodies. This 

would automatically give a null result for terrestrial interferometer expe:d .. ments. 

However, the assumption of a local ether is in direct contradiction to the follow-
.. t, 

ing well-established experimental factst. 
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(a) o The aberration of u:f'ixed 11 stars~ 
-' . J 

(h) o The fizeau convecti~n 6oeffici~nt (Eqol9~12) agrees with a convection 

~ 

of the d P/"dt 
~ 

but- the k d. E term 
0 ~ t 

remains unchangedo 
·. '. 

If uhe ether .:ino;~d :.wi-;th: :the mei'dium~ the velocity would 

simply become c.±.U.e Note that the idea of an ether attached to ponderable 

bodies leads to discrepancies in th~ first order in ~ o 

These co~~iderati~n~ appear-to make the idea of a preferred frame unacceptable 

even if it is attempted to have such a frame not generally stationary but only 

locally stationary-~ We are therefbre i led: to the ·conclusion that a principle- of 
). 

r~~ativity is al::;o,valid in electrodynamics; this is possible only by either modi-

. : .· , r - - - -- - - -
fying the basic postulates of electrodynamics or the bases of mechanics. The 

types ofmodification of electrodynamics considered are the so-called emission 

theories 'in which the velocity of a light wave remains associated with the source 

rather than vvith a local or universal frame. ·Such an idea does not admit a field 

description since the effects at a field point cannot_ be made independent of the 

source. ,As anotheralternativeD we can consider thespecial theory of relativity 

which modifies the kinematic description of mechanics_such that a principle of 

relativity applies to both mechanics and electrodynamics. Let us tabulate these 

comparative ideasc 

~ 
Classical Special Theory of 

Emission Theory_ .Ether Theory Relativity 
s J 

.. 

!Reference No reference .S~~tionary ether No reference_ 
System. systemo ·as reference systemo 

system. 
--· 

Velocity VelOCJ. ty VelocJ.ty of lJ.ght Velocity of light of light is 
!Dependence depends on motion is independent of independent of motion 
of Light of source motion of source. of source o 

Space-time Space and time ·Spice and time are Space and time are 
Connec-tion are independ{mt. independent. interdependent. 

Table (26.1) 

. 
Let us briefly discuss the emission theories. All emission theories pro= 
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pose that the_ velocity of light remains c relative to the original source inde

pendent of the state of the transmitting medium. The only difference between the 

emission theories is the change in velocity Which would occur on reflection from 

moving mirrors. Three alternatives exist here:: . 
. / 

'1• The velocity remains c relative to the original source.* 

-·- - - - - -- - - - - - - - --- - - - - - -- -
*This theory, proposed by Ritz( 7), was developed to a fair degree of completeness. 

Rl. tz retained the two Maxwell equations:: 

4 .... 
r:)•B=O 

while. the other two equations (the source equations) are replaced by the require-

ment that 

J1 = 1 r [F] [t - r/6+v)] dv 
·. 41ik

0 
r 

where vis the velocity·of the source relative to the ether. This equation 

r.eplaces the ordinary retarded potential solution. In this way fields due to a 

moving source are definable. 

2. The velocity becomes c relative to the last mirror from which reflection 

occurred. 

3. The velocity relative to its mirror image remains c. 

The first theory was proposed by Ritz·and is the only theory which does not lead 

to coherence diffi;culties concerning the reflected light. These three theories 

w'Hl give differences in the first order in f in experiments on the interfer

ence between light beams reflected from moving mirrors such as those of Thompson, 

Majorana (a), and 'Stewart. ,All these experiments gave results in disagreement with 



theoryo The .reason for this agreement is that in any closed system o'f inter·fer

ing beams-
9 

t.he Ritz' theory will differ only .by terms' of,· th€i second ···order in (3· 
from the results obtained at constant velocityo. Tf~: e~ 1 g:o!! ·light trawls· from·a 

stationary source .. to a. mirror moving with: velocity v:;ai:rd rt3turn-s/ :then. the· effective 

velocity remains it does relativistically.-· 
..,. '; 

If the source is moving with velocity v
9 

th€m usi.ng 'the original' source 

theory
9 

the time required for light to cover a given dista.n'ce ;,£ on the forward 

trip is fl. while on a return trip after reflection from a mirror 9 it is ~ 
c=v o+v 

combined 9 these give a timeg 

(26ol4) 

J-rhiyh d~ffers. on1y_by t11rms in ,the second ord.er from the .cop.stant light velocity-

expression 6t"" 2.R.o Hence any terrestrial ~oving source and mirror experiments 

fail to give a first order con:tradiction· to the 'Ritz emission theoryo 

There .are 9 . howev~r 9 two. extraterrestrial experiments· which contradict any-

form of emL:;sion theory., One of: these. is the observed dynamics: of·;eclipsing 

binary stars by l])eSittero If lightp emitted by a star from the approaching and 

receding leg .. of the orbit- 9 travelled with different vel~oi tyJ then the time interval 

observed between successive eclipses of binary stars wouJ-d become highly asym= 

metricalo Actuaily no such effect is observed; in fact DeSitter concluded-that if 

vlight"" c + k vstar then k <oo002o ·The second extraterrestrial evidence is the 
. I 

experience of Miller that the Michelson-Morley experiment does not exhibit any 

change in result when light from the sun is used instead of terrestrial sourceso 

. This outline of the experimentat basis· shows .that experiment contradicts 

any reasonable alternative to the theory of.relativity~ rather than any single 

e:xperime~.it prqying the theoryo The exper:imental· tests are ·sumrnarized in Table 
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(26 •:2 ).. For the sake of completeness) experiments are included which have not 

been. discussed here and whose bearing on the subject will not become evident 

until the. theory of relativ~ty has been discussed in more detail.~ 
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··-~ __ ! .. .:_~~ 

; "• 

-.. 
:: · ... EXPERDi!ENTAL ·EVI1lENCE OF' TEE _;SPECIAL . . ... rJ. \ ' 

THEORY OF RELATIVITY 
' 

., . ,'. -~~ } · .. : .. 
' (2So2-) • 

... 

Ta>ble 

: · ... , ·. , ... . ' ,,l : ,J .. _,, . :,, : . . , '' · . 

Light Propagation Experiments from 
Experiments Other Fields 

Experiments § +' 

' 
tl) (J) 

s ro 
tl) 0 !»: (J) 

~ (J) s.. +' .· 0 
+' •rl ~- •rl m. tl) 

s:: .. 
s.. g· 0 (J). :>," 

' (J) til +'· ..-l s b.O +' 
•rl lill: s:: ,.s::, ..-l: 

~: 
1-i 1-i •rl 

0 s.. •rl . M (J)• (J) til 0 
•rl 0 j':Q ·rl :> •rl .. P-. . .£: 0 

~ H ..-l ::s 0: ..-l 
~ !-<• 0 ..s::· a' ..s:: ~ (J) ·rl • •rl . ..>:: +' !'il +' QO 
0 ~. P-. .p· •r-1 •rl s:: 
0 ' 0< 

. ·~· lS .' :>,. lS •rl ' fa . ro' o· bJ) I> 
s:: JJ. i=l! lill ' 

tl)' !-<· 0 0 •rl 
0< :>, 'C$ ' 0< :>-, tl) •. (J) +' s p:: 

•rl (J) •rl 1-i: (J) ro: s::· 0 s +' ..-l ro Ill: +'; . ..-l 
~· 

(J)• ::s +' 

Theory 0' 1-i S::. (J)> 0 H 0 ro .0 til: (J) 

(J)• 0 ~-<' 0 (J): 0 ~- ·tl). s:: 1-i ' rl 

I> '5 0 s.<, P-. ~~ o··. tr.l •rl ~: :.-»· ~ F< 
S::· s:!' 0 ..>::· ::s tf.)· 0 ~ s::; til· 0 
0, o: s:: E;: 0 S::; s:: ""' H 0 :z; 

·rl o· 0 . 0 w; ""-'' 0• 0 C$ o: (J)' ! 
+' ! til ,s. : (J) tr.l. •rl : ..-l. ..-l ·rl ~ s:: 
cj, ::s. ..-l bJ) +'• ..-l: .pi til: 0 +' 0 
S..· 

~~ ·(J) (J) s::· +' (J)' C$ S... •. P-. cj• p +' 
s... ~c! tr.l s:! •rl orl ' ..s::· •rl Q)· 8 ·rl . O• ::s 
(J)' S:J. 0: 

~ 
S::· I> 11.): o· !-<. s:: ·rl ro: tl)_:. 0 

,.0 ·rl •rl (J)> 0 •, (J) ·rl CiS~ (J): :§ CiS' (J)' H 
<tl p.:., ~ H ~ ~- A ~· :> D. p:::' ~ E-t 

' . 
Stationary ether f) v v N N N v v N N 0 N v 0 N 

.t= 

no contraction 

Lorentz centro and v v v N N v v v v 0 N v 0 v 
stationary ether . 

Ether attached to N N v N v v v v N 0 0 0 0 v 
ponderable bodies ' ..... ..:...':'..,.,_. __ 

Original-Source v v v N v v N N 0 0 0 N 0 0 

Ballistic v 0 v N v N N N 0 0 0 1'J 0 0 

New Source v 0 v N v N N v 0 0 0 N 0 0 

Special Theory 
v v v v v v v v v v. v v v v of Relativity 

... 
j 

_. ,:',. ";' .. ,I'~ 

r- agrees 

N = contradicts 
0 = does not apply 

:t:· 
,;•,, 

The experiments outlined above present evidence thatg: 

(l)o The presence of an ether 9 either stationary or convectively carried, can-

not be establishedo. 

(2)o Modification of electrodynamics of the emission theory type is untenableo 
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The conclusions then make it pla.usible to look upon the basic laws of meohanios 

as in need of modification. 

In 1905 Einstein proposed as a solution, compatible vnth the experiment facts 

known at that time, the following po~tulatesr. 

(1). All laws of el~otrodYJ:le.m~os (inolud_ing, of course, propagation 

of light with the velocity o in free space) shall be the same in all 

inertial frames, as are the laws of mechanics. 

(2). It shall be impossible to dev.isl3 any experiment defining a state 

of absolute motion or to determine. a prefe.rred inertial frame having 

special properties for any physical phenomena. 
' . 

It is clear that if the laws of physios obeyed these postulates, all the 

experimental facts outlined above would be in agreement with these postulates • 

We· must now examine the consequences of these postulates, known as the postu-· 

lates of special relativity. 

;,· 

-· i 
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CHAPTER 27 
.. r .t: . ' ~ -~ ~- . ; . ; \ ... \ : 

• '~ .·' r· .. 

RELATIVISTIC. KIHEMATIC's"· - . - ' .. 
- ~· ..... ) 

; . 

• .... . • ,. ·, • •.•• .. ! • , ... : fl, -t .... : . j" ·:· :: .~ .. ' :· . : 

. Vfe have seen in Chapt-er .26 that much experimental"' eVidence ·exists' ·that a 

principle of relativity exists for ali fields of 'ph.:js'i~,~~ :ihcl~dfdg electro

dynamics. This implies~ that am:ong other thihgs: ·'tlie' :"iie:l:oc.ft~/ o'f ptopaga:tion, 

cs of plane electromagnetic waves. iii free -~pac~ :inust: be. i~dependint of the 

particular observer 1 s inertial frames* This' st'atement," plausible' as 'it may seem, 

* The question is often raised vihy 'none '(J:f the fo,llowitfg dis~u'dsicib.s app'ly e ogo 

to the velocity or propagation or -sound or any other veiocity •.. The reason· is that 

the velocity of sound does require a' material .IJI.9di'll!ll :fb±- its 'propagation' and 
. --. -

ther~fore does. have. a pre.ferred ·reference systemo 

' .. 
runs grossly contrary to our intuition., Consider for example a light pulse start-

ing from a point P 9 _and consider this event as recorded by_ observers stationed 

in two framess one frame containing P at the origin~ while the other frame moves 

~ 

relative to P with a velocity v. Let the origins of the two frames coincide at 

the start of the pulseo According to the statement above 9 both observers must 

see the light wave propagating as a spherical wave centered at their respective 

originsg If we consider the position of the wavefront to -be an event permitting 

description independently in space and in time~ then this statement cannot be 

true. The independence of the velocity of light of the particular frame there-

fore requires a revision of the accustomed ideas of the possibility of specify-

ing the position coordinates of an event referred to a particular frame, but 

" 
specifying the tinie of the event by a "universal" time scale. The above paradox 

would not exist if there were no such universal time scales but if the simultaneity 

of the wavefront passing through two points was an observation which was not 

independent of the frame of the observer. If such a disagreement as to the 

simultaneity of time of passage-through a set of points was permitted to exist, 

then presumably a kinematics could be constructed in which a spherical light 
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wa;ve would be seen in both frames of reference •. 

Therefore, we are led to re-examine the concept of simultaneity. If we must 

abandon the existence of a universal time as not corresponding to reality, then we 

mu;st establish a mechanism whereby simultaneity oan be established in a given frame • 

Th.is mechanism must be such that a mea~u~ement of the velocity of light in the 

particular frame using its time and distance scale must give o. This means that 

the only way in which s-imultaneity oa.n be defined is by means of the velocity of 

light itself. This conclusion gives c a much more fundamental significance than 

just the velocity of propagation of electromagnetic waves; it introduces o into 

all the relations of physics. Among other things, thE) utilization of c as the 

defining element of simultaneity precludes the existence of the "ideal rigid body" 

of·' mechanics; if there were suoh ·a body, its ends would move simultaneously as 

observed by any frame and it would therefore be used as a means of establishing .a 

"universal time, n in violation of our forme-r conclusions. 

We therefore consider two instants of time -f). .and t2 observed at two points 

x
1 

and x
2 

in a particular frame as simultaneous 1ft~ 

(a) A light v.rave omitted at the geometrically measured midpoint 

between x
1 

and x2 arrives at the time t
1 

and x
1 

and at the time 

Or if t: 

(b) A light wave emitted at x
1 

at the time t
1 

arrives at x
2 

at a time 

t +. x2 - Xl _ t 
1 . . - 2 

·0 

The first definition of simultaneity will automatically assure that a light 

pu!se emitted at the origin will reach all equidistant points simultaneously and 

that the wave surface is therefore a sphere in a particular reference frame. 

Simultaneity of two events _at two spatially separated points therefore does not 

have a s·ignifioanoe independent of the frame. The relation of the time intervals 
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ob.;erved by two different frames is therefore dependent on the' spatial inte'rval 

between the events; the Ga~ilean transformation Eq$ (26.-.2 ). wh~ch transfonned 
~ ' ' I "' ·~·. •; ' ) .. ~ ! ·.-< ~--'· • •, ; 

temporal intervals as observed by tlvo frames independently of ?Patial coordi-: 
' • . " ,.. . ' ~ .- . • '· •.. . .-'I. ,.·· .. ~. ~ ~ . ~ "". 

nates therefore cannot be in agreement with the simultane~ty definition.- in terms 

of Co We must therefore attempt to SJ.erive the correspon.diJ?.g transformations from 
. ~ • • . ,, r .-, . . , . , .· ~ ·. • 

transformationo Such a transformation mus-t remain linear,.to assure mathematical· 
. . ~ : . . '. ·' 

equivalence of all points in SJ?ace and time, but the spatial and temporal.c0ordi

nates need not transform independently~ 

The desired transformation gives the relation betvif~~n the space-time coordi

nates of an arbitrary event (x_,y$·z;t) as obs~rved in.the ~frame and the space

time coordinates '(x'.oYVllzV~t 9 ) as observed '-in th~·L,'frame. This transformation 

must·obey the postulates of'special relativity (see'Chapo 26) for ·an event of 

any type o 1fe shall therefO're construct a set of ••Gedanken.:.experimente"* each of 

* Thought experiments. 
. . . . . 

a:o, ... CCI 

~ - - ~- - - - - - - ~ - - - - -
which will incorporate only one addi ti~mal feature of the transformation iri 

order to indicate how the basic postulates of relativity necessitate the nature 

of the transformationo 

Experiment I = Comparison of parallel measurin~ sticks oriented perpendicular 

to their direction of relative motion. 

p pB 

M y 

0 oa 

Figure (2 7 .,1) 

~~=velocity of~~-] -r ~ystem measured i,;z ' 

:rv I 

L 
\ 

x' 

.. 
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" ""' 1Let us assume that it is possible to 'b:ring the framesl..-1 andL..J of Figur~ (27.1). 

·to .relative rest and to adjust the two measuring sticks to equality, It is assunied 

· ~exp1icity that the propertie.s of .a given body of specified structure are inde• 

]pendent of its past history ~hen ob'served in a frame where that body is at rest 

l(c~lled the proper frame)*, it is therefore not .essential whether the adjustment 
. . ·- - ··- -- - - - -- - ·- - ·- - --. - - ·- - - . ·- ----............ / ~ 

=* The length of a 'rod when measured in a frame in which the rod is at rest is 

1called its "proper length". - - - - - ~ -- - - - - -·- - - - - ·- - - - - - - - - - - ·- - - -- - - -·-
10f lengths referred to is possible or not; it could for instance be specified 

~that the length of each rod should be a: given number of ·wavelengths of a speci-

~ied spectral line measured in each frame, 

Let the two systems approach each other such that the midpoints M and M' 

{coincide. Let light signals be sent from 0 and P at the time when 0 and P coin-

tcide with the y' axis, Si,nce OM' remain.s equal .to PM' during the motion 0 and P 
.;~. l 

:(Will appear to cross the y' axis simultaneously for both systems, and similarly 

tb' and P' >rlll cross they axis simultaneously in both systems. We ·therefore 

(conclude that along a direction perpendicular to the direction of relative 

motion simultaneity will be the same in both systems. Both observers can there• 

.r['·ore compare the positions of the end markers at time of cross-over and arrive 

,at the same. result since the time of observation for both ends is defined iden-

{tically in both systems. Hence both observers would conclude either OP~ 0 1P', 

·Pr O'P' ~ ··oP.; ·since both systems are fully equivalent as to their state of 

motion, an •asynunetric solution would provide--a means of determining absolute 

velocity,, which is ruled out by the post,ula tes. We therefore puts 

(27,1) y' = y 

and similarlyt 

(2 7.2) z,'t = Z: 
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Experiment II -' Compa:dson. of Clock Rates 

.· ·.... ~ ~ . - ~ 

In comparing ciock rates among moving syste.m~ 1 we are ~a~ed. vn th a .funda: 

mental difficul tyg" it is impossible to compare one clock in L .vlfi th one. clock in 

'£.' since they will not stay in coincidence;: we must ~o~p~;~ .tv;~ cl:oc~s in t with 

~· cl~ck in L 1 

and synch~onize ,the two c~~~ks i~ L ~Yt.light signa,~so ·, 'Consi~er 
that i~["'.at the clock positio~n a light :~gnal; is ~~i~te'd normal ~0 t·a.ud ;~:.. · 

. . . ~ . ' . 

fleeted at a mirror normal to the z' axis at a distancE( z 'from the c,lock and re

turned to the .. clockG (Figure 2 7 o2) 

and 
source 

v 

clockl 
Figure. (2~ o2) 

vAt __jclock 
,, '\ 

L will define the time interval between sending arid receiving of ,the pulse as:: 

(2 7 o3) 6t 9 = 2z' 
c 

~ can record the time interval /).t between the same events with tvvo clocks 

spaced v;6t aparto [concludes therefore» since c is independent of frame:· 

(27.o4) 

(27 o5) 1 

or 9 from (27ol) and (27o3)g: 

(27~6) 6t = ~t' 
' fl- ~21 

(~tv is the proper time in'terval) 

Note that the apparent asymmetry causes no paradox, since this is not a symmetrical 

situationo 6t~ is the time .interval between two events occurring at the same 

~\ 
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I . 

place in the'£:. f'rame. /itt is ~;l.ied the "P~?:P~~ time interval" between the 

two events. ~ton the other J:l!l11~' is_n?~-~ ~ro?eX: interval sinae.3it is measured 

by two ·clocks at different places •. A proper time interval, similar to the case of 

~ P~oope;r -:len~t~ :q~s~;~,sse~a;_bov:e~ ci4Ja;c"de£~i~itta'·~w:o't:i!-~~ ~i',"it-ll.ar~hyffd1if~-na.tti:re 
'•' 0 ~~ _, ', •• ~- (---='-"' C ' o•O• ' • M ' ' ' '' '• ~ 00 0 - 0 0 -0 • ' 

1 . • •· · ' .!. ·' " - • l...-\ • · r" ,~,..- ··• · 

p~, yl'l~.o}p,ck; 1 ~,e.:.g~-~ a_·p~r-t·~<:t41~·--radi:o.a.~t:br~·- d'EJ:o-ay.:;roorrs~~an'lr--'or"=tn-e- n'a:·tural·'~'ethuenoy 

~:f' :Al~ory.s_"!-,~1~ ~£',-, sp,e~og~~d~ pr-qR~r:, .P.im:en~i'-?ns:_ i'si'':-'·o~~·~tatft1 ,lin"~he1 ~r-ranre :vJfi-ar:e··:tluo'K 

ti~e: i_n te,r,yal~ ar-~::,9bS:9:fVabl@; a_:t .·D.s sin~t:lei:p'o'i:nt'j.: i~e\': in:::<a frame~. 'Wh,~'·re 1 suoh_t'-t( 

nolook" is -at re.st. -~. - : .• ·;_,,:·t.-:.·.-, •-.c:.--· c' ::: .. ' ".. :··"':--:·:;.'_ '':'rss·,·:····· 
• ( • ~ J - : .._ ,. ' •• " • 

. . , Np·bo. tl:leref'or~,·- tha~ .. L wil-l find· that.; his ·(not· proper} time ii:itetoval ::f$ :. · -~ 

lo~ge;r. th~n- the-proper time ·interve;.J:,,~mea·aured u(:f~ 'This''phenomenori it{~'own 
. . . ' . . . . ~ 

as, 'l;ime ~pati~n~*. L. oannot. judge the ra.~e of the ~ olooks, bu~ o.s we shall see 
• • - • • • • • • • • • •c--~· • - • .. • • • • -· • • • • - • ~ • • • • • - ~ - • •. • 

* The lifetime of._ a high v~loo.ity meson disinte~ra:tin'(f'irirtli~h'€ ~p~ear~ 
1

l~xl:gthen-

e~,- .to.· a g~_o;un.~~i o~-~a!~r~I. 11 ~h~nU·f•L'-'-llle::;inc;thec1~r:o;~~, (i~:e-~ ~th~'('iieson's) r·Fame' 'lij~ 
... · .. , ;;-··t ........ ~ ·····'·e 0 , :1. 0 )- .·J :)n'·,., hu·;: c-.c v'e sLo.iJ. ' 

:n:a:_i~Jl~• ~, _ ~- __ ~ •• - .... c_·, ~;1~<: ~:~- ~-,_:, ~. ~ -~ ~ ;--~. '_.:·.; ~- ·.;; ..;;, "· ~. ___ • _ .. 
. ; -~ .: _ .·: . '. . . ._.-, -:; ... ___ ~-- .. , .. _ ···j_-~··/-~.-~-,t.,.'_~·-:;D:~i·,..,:~: ~-~-, -~1~~~~.-~-:·.\:. f....-·l ~~~- ~- ~-;- • 1 .:~-.:.; ;; __ (: _,-

later wa\.ild .. oo-nsider them out of synchronism, whioh is reasonable sino~ ~imul~ 
\ ~ _ .. • _ .. , _ ~-, ''· --:.,_r-·-~..: ~- .... -·-~_(·-. -)_~_·.~- .. ----<.1-- (i~:..::- ~:"~c _;~:;.·;·:·~·":-:;) ·.~~.~ .... :·---._ .. ·'·' 

tanei~y b~tween 't"ve 'events displaoad along the x axis is not nn invariant• 

p}o"per·ty •. :· · 

• ,. • ' ,. , •• .--. ·•• ' t ' • ' , , ··_ ~ • .' ..._ • ' :; (~ :~ , I ., '. 

~- ,. --·----~----- ........... ---- .. -

frame •• ., . 
' ' '· 

----· --- ------ .. - •,.,__• -.. --- .. ~-~-- -:'"-'"'-"- .... ---- -· .... -.... ~ .. '""" 

: ' . - ,'• .. -'. :-.- .... ,_~, 1'( " .... ~~ ~ .: ··(~ ·, : -~-~-; n~~ '-~~l;)ic.<:: cf i (' :..~. i ., ! 

lll£per:Unsnt I% X ~ Comp,rison- oi' Lenstha P0:ralle1 to the Direction of Motion 

"· ·- Le;t ue consider t~. rod wh1oh ht~.s lA length x' in th~ frAnlG [
1 
in whioh :l.t h 

.. . • • ... ,- • •••• ''" "· ~-' "' , .. · ,., c - ••• ... -~ c ... ' --- ··· 1 -

l;n~th ba x'. In the~ trrun~ its lllmgth x would 
c •• ·- • ,.. ·- ~-- " 

e.t reati ieee, lat itB p:rOp@r 
. ' 

be th~ .. dists.no~: bstween. the G:tt.~s_o:£' -:ih~'- rQd_,ifie:lisured .. ~'!~d.mu1tlit~ie'ou!s-1~"- ~ i~lD in 
•"--~···~'">•' ,_..,L,__ .. , .• ,,.~~-·-• .,..~_-r_,., ..• _ ·•• ' -, ,-~~~ : 

' . " . .. . .. , . 
the sen.se of the .simultaneity def'~ri:l.tion 'in· t®rms' of a~. To':·lapA-ro.tcf the length· 

. - . c==· .. . ' . : 

oq~p~rl~_s.9n :f'ro;n th,e simul te.nai ty ot~.l:Oulation, l:Ot us l'ons'ide~' the. fchl.o~ini. ~-·- .· 

eve.nta Let e. light eouroe s t o.t one end of'-' the- rb:d san:tf a light' pu'l~e
1 

to:~·~-

, --·-
~0· •"\ i . ' .. 
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mirror l!.P at the other erid vvhere it is reflected back to the source 1! 

s·~~~-~-·----------~~·~---x-'~~.--------------B1 ___ _._ 

~ .... v 
M' 

Figure (27.3) 

Let 6.t' be the time interval betvieen the time of ~mission a.nd the time of 

arrival of the signal. Note that Clt' is a proper time interval, being ob-

serva.ble with a. single clock at-one pointe Evidently~. 

(27.7) 6tv :;:; 2xf 

c 

In-~ these same events appear to be more complicated. At the time of .~mission 

the source S? was at S 0 and the mi~ror M' at M
0

., (This statement has only 

unique meaning 1'1hen referred to [' .,) At the ti.ue of reflection, the mirror M1 

has moved toM and the pulse returns to the source S '·when it is r>.t s
1

• The 

time interval i:lt is thus measure.d betv;een the points S
0 

and s
1 

with tvro clocks 

(At is not proper) as in Experiment II.. Equation (2 7 .,6) therefore applies 

here also. By definition, we mean by x the disto.nce-S
0

M
0 

.. Since M
0 

has moved 

to M vvi th velocity v while the light moved from S
0 

to M with velocity c, we 

have g: 

(2 7 o8) S. M 
0 

X + v SCM, 

c 
s- M = 

0 
X 

1 -~ 

and similarly since the source has moved from s
2 

to s
1 

vvi th velocity v (where 

s·2M = x) while the light has tre.ve'led from M to s 1 vvi th velocity c:: 

I 

:E 
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(27o9) 

Hence:: 

(27el0) 

MS 1 = x -,! MS 1 
c 

d t = S oM + MS 1 = 2x ----
c c(l-~2) 

From (27 0 6) and (27e'7), this becomest 

(27oll) X = x' q 
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MSl= X 

1 +(3 

This relation, called the Lorentz contraction, again is asymmetrical in x 

and x', since it gives the relation between measurement of a. proper length x' 

(at rest) in L
1

and an improper length x not at rest in~. The length x inL 

was definable only by assuming the constancy of the velocity of light. 

Experiment IV - The Synchronization of Clocks 

By proper design of Experiments II and III, we have been abie to derive the. 

transformation of temporal and spatial intervals from proper to non-proper frames 

without calculating explicitly the error in synchronization 
. ~ -·. 

conclude to exist) of two clocks separated by a distance x' 

synchronized in ~~. 

6 (~hich Lwould 

e--' 
in L- ·which appear 

i . 

Consider two clocks synchronized in t and located a distance x' apart, 

as· se~n in Figure (2 7 .4). Let there be a single clock in L which will record 
:/ 

the 'times,, to and tl, 
. I 

in··~·are .recorded on 

when it 

the two 

passes 

clocks 

x' ... ·. 

the ends of x'; the corresponding times 

in·~ and ~re denoted by t
0

' arid ti'. 

Figure (2 7 .4) 
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Since t
1 

... t
0 

is a proper time interval in~~ vre can apply (2 7 o6) in r~verse·, 

givings: 

= tl ~- to 

11 - fS 2' 
(27ol2) 

The observer on L could apply the dilation equation (2 7 o6) to the rates of the 

individual clocks at the ends of x' but vvould conclude that they are out of step 

by an amount & z ioe o; 

(27 ol3) 
tl' =to~ + d 
{1- (32' 

Both observers have to obtain the same value for the relative velocity v between 

.the frames since if one obtained either a larger or smaD.er·value, the frames 

would not be equivalento Hence:· 

{2 7 ol4) t v - t v = x' 
1 0 

v 

(2? ~15) 

,, 
but since xv is a proper lep.gth iJJ L. 11 we obtains: 

(27~11) 

combining (27ol3), (27ol4)ll, (27ol5).and (27.,11)., we have:c 

(27ol8) [= ~ xv (32 
v 

The negative sign indica-tes that in the opinion of ~the leading clock (t
0
') 

in L 
1 
should have indicated a larger time*, in order to make the elapsed tinle 

* The clock that is ahead (ioeo met first) is behind (in time)o 

between t
0 

v and t 1 2 as observed by~ smaller o 

These four experiments have thus demonstrated four kinematic relationsf, 
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Io Distances transverse to the direction of motion are invarianto 

II. A time interval 6t measured ih a frame moving with velocity !_V relative 

to a frame in which the time interval6'\ between two events is proper (i.eo 

the two events occur· at one place) is given byt 

'(27.19) 6.t = 6\ 
_{1- ~2' 

IIIo The length ~x of a rod measured in a frame moving vnth velocity !_V relative 

to a frame in which the rod is a f rest and has the proper length 6 A is given 

by:: 

(27 o20) 

IV~ Two c.locks, synchronous in_ a given frrune, and separated by a distance AX 

in the.t frame appear to he out of synchronism as observed by a frame moving 

with a relative velocity -v to the clock frame by an amount given by:: 

(27 o21)* 

* See footnote on previous page. 

~ .. - ·-· - ... ---------- -·--- -- -------- - -- - -
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·cHAPTER 28 

THE LORENTZ TRANSFORif.tATION" 

In Chapter 27 we derived a series of special kinematic effects from the 

fundamental postulates of special relativity, each effect applied to a given set 
·- . .. ~ . ' - ~ 

of conditions arranged such that only one effect applied. We shall now combine 

these 1'effects" to give the general relation bet>~~e.n the time and space coordinates ·• 

of a particular event as observed from inertial frames in relative motiono 

. I . 

with the L frame, as seen in Consider a point event at a point P moving; 

Figure (28.1)~ Let this event occur at time t·' inL
1
and let the coordinates 

' . 

of P in L be (x', y', z;'). Now consider this same event· observed from a frame L. 
I 

in motion. relative.to ~ vvith a velocity ·1-:J, JL.et us choose the x and x' axis 

y y' 

X 

y 
0 o• 

X 

Figure (2881) 

as the direction of relative motion and let the origins and the zero point of 

time be so .chosen that at t ::: t' = 0, the tvro origins coincide. By the time 

t or t 1 respectively, we mean there.fore the time elapsed as measured by an 
I . 

observer in ~ or ~ respectively since the coincidence of origins. Let v 

I 
be positive if the origin of L moves along the positive x direction in 2:.o 

y' 
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From the:~ point of view, 00' 

. I 

= vt, but x' being a proper length in~ 

is shortened by the Lorentz contractic;mo Hence:~ 

(28ol) X= 

and hence:: 

(28 0 2) x' = x - vt II 
..(i- (32 I 

Again from the L point of view, clocks located at P and 0' (and thought by an 

'r'' ,· 
observer in£- to be synchronized) are out of synchronism by an amount:· 

'(28o3)· 

The clocks at 0 and 0' were synchronous at t = t' = o. Since .that time, accord-. ·. t . .·. •'. . .. 

ing to L, ,the L clocics have been running at a rate which must be dilated by 

1/-/1-~ 2 'to make it equal .to the rate of the clock on~ o c·ombining these tv,To 

effect:;;, .we havet 

(28.4) t = t' + x'v/c2 

{i- (32~ 

This, by the use of Eq. (28.2), can be reduced to:: : 

(28.5) t' = .t-xv/c2 

{1-~2· 

Excepting for the sign of ~~.L an~ ~
1

ar~ equivalent, in agreement v.rith 

the second postulate. We can also show from (28.4) and (28o2) that:· 

. (28.6) x = x' + vt' 

{i- ~2' 
·~ 

again in agreement with (28.2) e~cept 'f~or' the sign of v •. I,t also folloit(s,from 

the first ttexperiment1
• 9f Chapter 27 that: 

(28o 7) 

(28.8) 

y = y' 

z: = z.' · 

\ .· 

Equations (28.2) to (28.8) are the general transformations desired, subject 

I( 
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to the restrictions as to choice of origin and orientation of e.J!Zes as given 

above. The classical Galilean transformations corresponding to these relations 

would be~ 
,., 

(28.,9) x' == X - vt 

(28.10) y' = y 

(28 oll) Z I = z 

(28.12) t' = t 

Let us examine some o:f the comparative properties of the Lorentz ai1.d Galilean 

transformations. We can easi-ly show algebraically that if the Lorentz trans-

formation is valid:· 

(28ol3) 

This means that if a light signal is propagated in all directions vd.th velocity 

c from 0 at t = 0 as observed by L, then a light signal is propagated :from 0' 
. . - I 

in all directions with velocity cat t' = 0 as observed by.~ 5 The trans-

formations are therefore in agreement with the first postulate and resolve the 

apparent paradox mentioned earlier in Chapter 27e For the Galilean transformations, 

(28.,9) to (28.12)s _Eq~ (28~13) is not true; in its place, hmvever: 

(28cl4) 

+ (z; - z )2 
1 2 

which shovrs that independently the spatial interval and the .temporal interval 

in special relativity the combined space-time inte.rval: 

(28ol5) 

For a differential interval between tvvo events, the quantity~ 

·• 



is.. t,l.J;erefor:~ invariant. · If in a given, frame:· 

(28.17) dx2 + dy2 + dz 2 < c2dt2 
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then a Lorentz frame can be found in which the spatial part of ds is zero;·· 

i.e. where the two events occur at the same place; ds,=: edt is then c. times 

the "proper" time. interval a;:;. defi!led before.· We therefore .conclude if the 

1lspaoe-time" interval ds fulfills the inequa'lity, (28 •17). (time-like interval)) then 

ds/c repre~~nts the prope~, time inte:rval b~tV'reen the events. Conversely, if in 

a given framet~ -· 

(28.18) 

then a frame can be found in which dt = 0; in \;hat frame the tvvo events. are ~irriul-

taneous and ids is then their mutal distance. Renee if ds fulfills (28.18) 

' (space-like interval) then ids represents the proper length of the increment. 

No· Lorentz •· transformation with 
' ~.' . 

real f$..cari_rtverse the sign of the inequalities 

(28ol7) and (28.18), so that the physical significance of ds; either being a 

proper time interval (times c) or a, proper length·interval respectively, depends 

uniquely on the nature of the interval described. 

It can be easily shovvD algebraically that two successive Lorentz transforma

tions with velocity parameters ~l and ~ 2 are equivalent to a single Lorentz 

transformation of'parameter: 
r. \ 

.(28ol9) 

Lorentz transformations therefo!l:l form a mathematical .,grouptt., 

It is possible to obtain the Lorentz transformation equations in several . 

ways using simply the de.mand that the interval ds in (28ol6) be invariant and 
·~ "*r 

,,,_ 

that the transformations be linear; the second demand arises from the fact that 

all. points iri ~pace· and time should have identical transformation ·character as 

long as only inertial frames are considered. We must also have that if 
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x = f(xvs t 11
9 v), then x' - f(x, t, -v). As an example of such a derivation, 

vre assume:: 

(28o20) 

(28~21) 
'/ 

kx 1 . = X + vt 

where k is to be an even function of the velocity. By simple algebra: 

(28o22) 

To make this agree with the invariant interval ( 28.13) we must take:· 

(28o23) 

(28 .. 24) 

c2(1-k2) = v2 

k = fr(i2' 
giving the Lorentz transformation. 

· The Lorentz transformation treats x and t as entirely equivalent variables. 

It vras suggested by Minkowski to introduce ct simply as a fourth coordinate o 

Let us put: 

(28.25) 
1 

X = X 

x2 = y 

x3 = z: 

x4 = ct 

as a set of var.iables in four dimensional space.,* The space-time interval 

* Superscripts rather than subscripts are used h'ere for a reason to be ex.plained 

latero 

(28ol6) is therefore~ . 

2 2 2 2 
(28o26) ds2 = -dx1 - dx2 - dx3 + ax4 

The Lorentz transformation is therefore in a general sense the set of linear 

tran'sformations in 4-dimensional space which leaves ds 2 invarianto 

Th~· interval ds 2 can be vrri tten in a more familiar but physically ·less 

obvious form if we write~: 
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· (28.o2 7) _' -'. . .. . as- = ids · 

and hence::. 

· (?8o28) 

Since dx2 and dx3 are not affected: by .our special choice .of coordinates in the 

·.Lorentz transfo:tmation 9 let us consider only the· invariance of the two-dimensional 

sub-in terva lg 

(28o29) 
2 2 

ax2 = ax1 + .ax4 

Other than translations of origin, this interval is also invariant to rotations tb 

an angle~ in the x 1 ~ x4 P,lane~ (Figure 28o2), 

. x4 

9 

1 4 to a new set of axes x v - X v o By_ geometry: 

(28 o30) · 

(28o3l) 
' 

1 . .o x4 = -X Sln v + COS 6 

or from (28o25) and (28o27) .and putting e = if!:: 

(28o32) 

(28o33) ct' = -x sinh}!+ ct cosh)! 

- .i 
i 

. This is identical with tl1e Lorentz transformation if we put: 

(2_8~3,4) 
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Hence the Lorentz transformation is simply a rotation in the 4-dimensional 

space xl, x2 I x3, x4 • An "event" is therefore conveniently described by the 

four coordinates in such a space-time system •. Temporal and ·spatial coordinates 

are equivalent in this notation. Eq. (28.19) which gives the relation be-

tween the equivalent ~ for tvvo successive Lorentz transformations corresponds 

simply to the addition formula. for tanh rj. 

(28.35) tanh (rj
1 

+ ¢
2

) ::: tanh rf1 + tanh f12 
1 + tanh ¢1 tanh ~2 

This r,epresentation of the Lorentz transformation as a rotation in the 4-

dimensional space x, y, z, ict is a very useful concept but an artificial one 

since the coordinate along one of the axes is an imaginary variable. Let us 

investigate what the geometrical representation of the Lorentz transformation 

is in the real four-dimensional x:, y, z, ct space. Let us plot only xl :::X 

and x4 ::: ct to permit representation in a plan~. Under a Lorentz transforma

tion these axes'~ill transform into x•
1 

and x'\ as seen j_n Figure (28.3). 

This diagram is called the Hinkovrski Diagram and in it the trajectory of an 

/ 
/ 

/ 

Figure (28.3) 

event as a functio11 of space and time is called a world-line. 

The diagram must be interpreted with great care. The reason is that 

··• 
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t th · d · · t b d b th t · t · xl 
2 

+ x4. 
2 

dis ances on 1.s 1.agram carino ·· e measure . y e qu~n 1. 1.es .. as in 

Figure (28.2) where we artificially produced a ••Euclidean 11 geo:q1etry by .the imagi-

nary transformation (28.27)o A substitute for a distance measurement in_ this 

real space can be obtained however by n·oting in Figure (28 .4) that the family of 

hyperbolas: 

(28.36) xl
2 .~ x4

2 
= x'.1

2 
- x'4

2 
= constant 

lays out a conve~ent measuri~Z, net which permits comparison of the various quanti

ties involved. 

1 
x' 

Let us see hov'v we can interpret the various phenomena of relativistic kine-

matics in this diagram. Consider first the Lorentz-Fitzgerald contraction, Equa-

tion · (2,7o20). The Lorentz contraction considers the transformation of 

length x' 1 inL

1 

to the L frame. Considers. r'od OP' at rest in'i:._
1

• 

l:Lne of the end point P v on the Minkowski plane vii 11 move parallel to 
. I . 

a proper 

The world 

axis, from P to P', being a~ rest .(propE)r} in'L, Similarly the .yoint 0 v:ill 

move along the x' 4 ·axis (see arrows in Figure (28o4). When the len-gth of this 

rod ismeasured in L, the distance between its endpoints is observed v{hen they 

a;e s~ultaneous in L, i.e., along the x
1 

axis. The length of the rod in L 
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is thus the length OPo In comparing the lengths OP and OP' we must be careful 

to refer the measurements to the hyperbolic grid discussed above. It is easily 

seen that the hyperbolag 

(28o37) xl
2 

x4
2 

; op2 

crosses Ox 91 between 0 and P' and hence OP < OP' in accordance with the Lorentz 

contraction of proper lengths observed from a moving frame. 

Similarly let us consider the time dilation. Consider a single clock at 

rest in L 1
at x' ;::; t' - x -= t = Oo As time progresses the time interval rela-

tive to t 1 = t -= 0 will be represented by a world line moving along the x 14 

- ·r 
axis; the time interval measured in L , since the coincid_ence of the time origins, 

is thus Ot'. In L, 0 and t' are not at the same spatial point, however, in 

L the point considered simultaneous with tt will be at t where tt 1 is para-

llel to the xl axis. 

Considering that in the hyperbolic 11metrict' Ot :: OS, we find that Ot > Ot'. 

Hence L vvill observe a longer elapsed time than the proper time interval mea, 
sured in~-, in ap;reement with our former resulta 

The !viinkowski diagram shows the syrmnetry between the L and L 
1 

frames 

despite the apparent asyrnmetry of the tim.e-dil'ation and Rorentz contraction. 
. I 

In our examples,~ Vlas taken to be the proper frame for both spatial and 

temporal intervals. If L had been chosen the proper frame, then we would have 

PP 1 /10t and tt 1 If OP' which would have reversed the contraction arid dilation 

relationso 

A. Lorentz transformation wi.th p > 1 becomes complex and thus impossible. 

We shall later give a more concise formulation to this statement., On the _ 

........... 

M~nkowski diagram, this means that the x'l and x'4 axes cannot pass the-oone 

' 1 4 
(light cone) x -= + x • This means that a time-like interval ds 2> 0 cann.ot 



become spa.ce..;.like .irt .a:ny .frame but can become purely temporal 'if referred' to· the · 

proper' frame; conve.rsely a space-like interval ds
2< 0 cannot- be donie time-like in 

a.ny frame. but can become purely 'spatial if r.eferred to a proper frame o 

The light cone x
1 = ~ x

4 
thus divides the Minkowski space into four regions 

'{as' seen in Figure 28o 5) which have invariant significance:· x4 --· 

:-: .. 

· future ./ 
/ 

elsewhere elsewhere 

/ Figure (28o 5) 

l)o The two spatial interval regions labeled "elsewhere" represent 

regions where events are located which from no inertial frame can 

be considered to occur at the origino 

2) o The temporar region. labeled '•future~• ·represents events whose 

temporal interval relative to the origin is positive from any 

inertial frame,o 

3) 0 The temporal region labeled 11 pastu. represents :events whose 

temporal. intervo.l relative to the origin is negative from any 

:' inertial frame o 

" 

.'1 
X 

Let us now extend the Lorentz transformation to othe~ kinematic quantitieso 
' .. 

In the next chapter we shall introduce more general methods for obtaining 
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transformation relations between various physical quantities·ih:different in-

ertial. frames. Let us here simply derive the transformation equations of 

simple kinematic quanti ties cvhich can be obtained directly ·from the Lorentz. 

transformation. 

Let us wTite the Lorentz transformation in terms of differential intervals. 

Differentiating and dividing by dt' we obtain:* 

: ~e- s~a~l- u~e- t~e- s~~o~s- v-a:d- ~ ~ :~c ~o- d:n~t: ~h= ~e-lo:i~y- o; ~r:m: ~ 

relative to frame L, evaluated in~ 6 and Dx = dx/dt, etc. to denote veloci-

ties in a given frameo 

(28.38) 

(28.39) 

(28 .. 40) 

dx' 
(ITT 

dy' = dy' at 
dt t d't" dt.' 

1- ~ ax 
dt' = c dt 
dt ---~=====~~-

.{1 ~2 

dz:' = dz' dt 
w ~ crrr 

or putting~::: dx/dt; ~~ = dx 1/dt', etc., and substituting (28e40) into 

(28.,38) and (2~o39), we obtain: 

(28o41) Dx' = 

(28.42) 
u ' z U· . z 

Eqo(28.41) the "longitudinal velocity addition formula" is in agreement v,rith 

Eq. (28.,19) for the successive Lorentz transformations, since (28.19) must 

remain i~rue as ux may represent the motion of the origin of another Lorentz 
. I . 

frame relative to the L frame. 

Let us consider Eg.. (28.,40) in the form:: 

~. 
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(28 .43) dt' .·. 1 '!" vux/c2 

dt ..{1- ~ 2' 

If it vvere possible to make:· 

(28 .44) at' 
dt (o 

by a suitable choice of v, then the temporal sequence of two events 'would be re-

versed between the two frames under consideration. 'fhi~· ymuld be considered a 

logical contradiction ifr 

1) The two events represent a cause and effect. 

2) The sense .of time has an invariant significance. 

The latter point has been a question of some discussion. Let us assUt'lle here that 

the sense of time can be ascertained independen-tly in any frame, for instance, by 

use of the Second Law of Thermodynamics. This could be done by taking the posi-

tive direction of time to be the direction of statistically increasing disorder or 
····· . 

increasing entropy and of degradation of heat. Assuming this point, we therefore 

conclude that, in order that the sequence between cause and effect be preserved 

as observed. from any frame, that in any particular frame: 

(28.45) u'c 

where u represents the velocity of propagation of any event which can connect 

cause and effect. Obviously velocities like phase vel~cities, or velocities of 

geometrical significance only, are not affected by this restriction. The re-

striction also applies tq the relative velocities v of possible inertial frames 

so that it is not necessary to discuss the significance of the Lorentz trans-
1 

formation when {I - ~· 2 becomes complex. 

Let us consider· some simple applioatio1~s of the 'velocity transformation 

relations:· 

l. Fizeau Convection Coefficient - (cf. Cho 19, Eqs. (19.12) to (19.20)). 

Let u' be the velocity of light which an Obflerver finds for light propagated 
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in a plane vrave in a fluid moving with a velocity v relative to him. !n·.o. f,rame 

moving with the·fluid the light v10uld be propagated with a phase velocity: 

(28.46) u' = c/n 

where n is the refractive index. Transforming to a frame in relative motion to 

the fluid with velocity-van?. applying (28o41): 

(28.,47) 

to the first order in v/c. This is in agreement with the experimental facts and 

the classical electrodynamic result derived in Ch. 19o Note that in the classi-

cal discussion a relatively complicated mechanism was involved~ namely re-radiation 

from the moving secondary radiators in the fluid, which led to (28.47). The 

relativistic discussion on the other hand, led to this relation without any de-

tailed information about the mechanism. We shall frequently meet situations in 

vrhich a:ri end result is demanded by relCctivistic considerations but where the 

mechanism of attaining the result is far less obvious. 

2o Aberration - Consider a beam of light emitted by a star in the direction 

of the earth which strikes the earth in a direction transverse to the velocity 

of the earth. (considered along the x axis) as seen in Figure (28.6). In the 

x' 

Star 

'-lx = 0 

Earth 

~.-----~~r-----~-----------1~ -v 

L:' 
U..X:' 

Figure (28.6) 

(velocity of earth 
relative to star) 
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star's frame the process is simply the emission of light with velocity components 

\ 

u... = c· u = o. y , - X 
In the earth's r'rame;· the velocity components become from (28.41} 

and '(28.42): 

(28o48) ~~ =v 

•. "1' 

Therefore the angle of' incidence to the normal becomes:· 

tan ef= ~' = l or 

·uy' 1 i ~f->2, 
sin 9' = ~--

A ·mechanical emission picture, or st~tionary ether assumption would give tan e·, ~p 

:which is in: practice indistinguishable from (28 .'49). 
. -' 

On the other hand, any con-

·_ vectively carried ether theory would contradict (28.49) a~ it wou-ld. the Fize~u 

experiment. 

We shall obtain (28..,49.) again from mqre detailed consideration of the_ 

propagated vmve; it is, however, a.gam characteristic tho.t p.ny consideration of 

mechanism can be by-passed. 
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·CHAPTER 29 
COVARIANCE 

In the previous chapters, we have investigated the bearing of the principles 

of special relativity on the laws of kinematics. Y~e obtained new relations by 

applying the principles of special relativity to two regions of physics; kine-

matics and the propago.tion of plane electromagnetic waves. The principles of 

relativity apply to all fields of physics, however, for by no experiment in any 

field should it be possible to detect a preferr~d inertial frame. The bearing of 

the principles of relativity on other fields could of course be discussed by de-

signinij "Gedanken Expe_~i~e.nte" in th?se _fields and thus obtaining new laws valid 

in those fields. Or we could attempt to obtain transformation relations for 

physical quantities in these fields by applying the Lorentz transformation to the 
. . . . •. . 

time and space coordinates of the pertinent pre-relativistic equations and then 

trying to deduce the transformation relations for the remaining quantities. Both 

of these approaches are useful; in particular vYe shall use the thought experiment 

approach in our discussion of collisions. The direct transformation approach 

is frequently tedious. However, it was used by Einstein in his original wo:tk to 

deduce the transformation equations for the electromagnetic fields and to show 

that Maxwell's equations are.in agreement with relativistic principles. 

'l'here is a third approach which is by far the most pov1·erful one in ex-

tending relativity to other fields. This approach is to rewrite the equations 

of these fields in a~ which explicitly makes evident in which way the quem-

ti ties would behave under t:-... change to a different inertial frame. If an eque,tion 

has a form vrh:l.ch is invariant to a change in inertic.l frame, then an experiment 

based on this equation obviously could not give a. result depending on the parti-

cular frame of reference. The equation then describes a phenomenon which would be 

in agreement with the principles of special relativity. An equation vvritten in 

such a vvay that its form is independent of the choice of inertial frame is said to 

be nLorentz covariant." 
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The .Lorentz transformation can be written as a linear ·i:;ransformation of four 

t f Lor xj,· (x.l. x2. componen s o a vecv , , 

. . 

in a four-dimensional space; i.e. 

it can -be v.rri tten as:· 

(summation convention1) 

where Q,ji is given by the matrix: 

where:: 

(29.3) 

(29c4) 

(qj~ 

.r~ = 

y = 

y 0 

0 1 

= 
0 0 

-~Y 0 

v/c 

1 

1_1- ~2, 

0 

0 0 

1 0 

0 y 

i ·r 1 tl t · f tl t f th ' i · ive- 11.ave seen ·- 10. 1 · --1e componen s o · -" e .. ve c-c.or x transform in accordance with 

Eq. (29 .1), then an e~periment invol vin_g xi cannot yield a preferrecl frame. ·rf 

therefore any physical relation is written in the form* of a vector eque,tion j_n 

- - - - - - - - - -- - - - - - - - - - - - - - - - - - - - - - - - ... --
* By "formn we include in special rela tivi ~y the _11numericc,l ·aontentu of all 

equations; i.e., the magnitude of all general physical cons· 1 ~ants, etc. 

- - - - - - - - ~ - - - - ,_ 

four space where the vector cmnponents transform in acc-ordance vfith :Cq. (29.1), 

then such an equation is said to be written in Lorentz covariant form. If we 

solve (29 .1) for ) , vve obtain: 

(29.5) 

where:: 

0 0 +(lY' 

' 

' (•/) -1= 
6 1 0 0 

(29o6) 
0 0 1 0 

+(ItO 0 r 
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is the inverse matrix of (29o2); i.e., the matrix of the transformation corres-

ponding to relative motion of the frames witl'_l opposit~ velocity. If a q-qantity 

vvith four components A transforms as the reverse transformation of the xj, i.e., 
j 

as:: 

(29o 7) A.. ' 
~ 

then a relation. equating components of the type A. is Lorentz covariant also. To 
.J 

sum up, any quantities A. and Bj are Lorentz covariant if under change of inertial J . 

frame they transform as (29 0 7), or as:: 

(29.,8) B'i = Q..i Bj 
J 

respectively. A. is called a covariant* 4-vector and Bj a contravariant 4-vector. 
J 

- .... -- - - - - - - - - - - ~. -
* It is unfortunate that tvm different uses of the word "cov~riant'' are being 

made here, but this usage appec.rs to be accepted • 

... - - - - - - - - - - - - -· -

Notte that. (Q • i )-1 .. k 
J . and Qj a1·e related by: 

(29.9) (Q .i r:l Q.J.k = 6 .k 
J· J. 

where:; 

1 0 0 0 

[.k 
0 1 0 0 

(29.10) :::; 

J. 
0 0 1 0 

0 0 ·o 1 

Any quantity of the type: 

i1 i2 i3 - in 
(29oll) T. 

j2 j3 jm Jl -
which transforms like: 

(29.12)* 

...... -(Q~\-1 
Jrn} . 

I ' 
("': 
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_..,. ____________________________________ _ 
, ·-.' ··J ~:~J > z· 

* Tensors of physical interest can be represented by matrices. Matrix multipli

cation is usually r1on-coxiunutative. However, 1Nh€mwtitt~;r·;;ut'in component form 

as in (29.12), where the dummy sunnnation convent'ion is being used, the individual 

elements are numbers and their order does not matter •. (29ol2) is written in the 

standard form. 

'' 
ioeo, simply like products of covariant and contravariant 4-vector components, is 

called a tensor of rank (n + m). An equality between such tensors will also be 

Lorentz covariant. We shall therefore attempt to extend the principles of relati.,. 

vity.to other fields of physics by rewriting their laws in the form of tensor 
; . . . . ~ . I . 

eca,uations; t;h(3i:t;' _povarian~e is then self-evident and the transforinc'ltion laws of 

the quantit~e:;;. h1volved in the E)quations vvill follow from Equation (29.2), (29.6) 

and. (29.12). Of course, we have not proved, nor is it necessarily tru9, that the 

writing of the laws.of physics in tensor form is the only way of describing physi9s 

irt a covari~nt way. All vre can say is that it is a suitable way of doing so. 

Before pro ceding with this program, let us summarize e. number of useful facts 

concerning tensors vri th constant transformation coefficientso** 

- - -· .... 

** In the Lorentz transformation of special relativity, the transformation coef-

f
. . t ('\• j 
lClen s ~i are constantso In general tensor analysis, as is used in the genera~ 

theory of relativity, these coefficients are themselves functions of the coordi-

nates and repr~sent the partial derivatives of the transformation. I.e. (29.1) 

becomes, differentially: 
;·_, ... 

(29 .13) 
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covariant and contravariant vector components transform respectively as:, 

(29.14) 

·- - - - - - -- -~- ------- ~-- --~~-- ~ ~--- ~ - - - - ·- - -
1) A tensor of rank z·ero is called an invariant or scalar, i.e.:· 

(29.15) 

2) The product of a tensor of rank n and a tensor of rank m is a tensor of rank 

. n + mo 

3) When a contravariant and a covariant index of a tensor have the same index 

letter, the resultant summation reduces the rank of the tensor by two. This 

process is called contraction. The contraction of a tensor T.i is an invariant.* 
J 

* Summation over tivo covariant or two contravariant. indices d<JeS not lead to a new 

tensor and is therefore not an invariant operation. 

- - - - - - - - - - ------- -.---- - - - - - - - - - - -
4) By the basic postulates, the space-tini.e interval in special relativity (line-

element): 

(29.16) 

is a scalar invariant. It can be ·written i:h the form:· 

(29.17) ds2 = gij dxi dxj 

where:: -1 0 0 -1 0 

(29.18) 0 -1 0 0 -1 

(gij) = :. 

0 0 -1 0 -1 

0 0 0 +1 0 +1 

is called the "metric tensor" corresponding to the 1 ine -element.* 

~- - - - - - - - - - -·- - - -- - - - - - -
* In general ten~or analysis g .. is a function "or the coordinates. 

~J 

- - - - ~ ~ - ~ - - - ~ - - - -

It can be· 

proved easily by transformation,using Eq. (29.2) that g .. is actually a tensor. 
, J.J 

~ 
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_In Euclidean ~e~metry gij = __ J'ij o 

5) By use of the relation g; 

(29.19) B. = g .. Bj 
-~ l.J 

297 

.I •. 

each member of a set of cova-riant components B. can be assoqiated with a contra-. . . . . ,_. J. 

,. var.ia.nt tensor component. For the special form of g .. given by Eq •. (29.18) this 
. l.J 

process will simply reverse the sign of the first.three components. Note that 

g .. = gij 0 

. l.J 

6) The covariant components dxi corresponding to the basic contravariant coordi-
·., --. 

nate interval dxi = (dx, dy, dz, edt) is dxi = (-dx, -dy, -dz, edt) and:· 

(29.30) 

_ 7) The. derivative~: 

_]___ when operating on a tensor transforms like a:n additional 
Jxi 

covariant tensor romponent.* The increment of a scalar S can thus be W:ritten as 

a tensor relation:: r 

(29.21) = dS dx~i dS ___. 

~X~ 

--.~ ........ - ~ ... ~.--~·.J.- ...,,,at>-.--·-·-~.~~-----.-- ..... ---·-.-·-·---·---·-·---
* This is not true if the gij are functions of the coordinates • 

. ·a)- . ir ·th~ product of a tensor and a symbol of unknovm transformation character 

is a tensor, then that symbol transforms like a tensor also. 

A covariant relation in physics can be generated by one of the following 

processes 8: 

1) The relation is Jmovm in a special inertial frame, such as a proper frame 

.. -

where the system under consideration is at rest. If it is possible to vvrite 

a tensor equationwh].ch reduces to the special relation for the special frame, 

then this tenspr equation ,has genl:)ral .significance. 
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2;) A known tensor relation is converted into a new tensor relation by a covari-

ant tensor operation (the simplest example is multiplication by an invariant). 

3) An equation is obtained from a relation valid in a special frame by trans-

formation of the remaining quantities deduced. The resultant quantities are 

then expressible in tensor form. This process is the direct transformation pro- '* 

cess referred to above and isusually very tedious. 

A tensor theorem frequently of importance is the follmrring: If a four-

· vector ji obeys a relation of the type (conservation law; compare Equation (9ol)) 

(29 .22) 

and if jl, j 2, j 3 are different from zero only in a finite spatial region, then 

the integral in 3-dimensional space 

(29.23) J j
4

dv 

is an invarianto To prove this theorem let us apply Gauss' theorem in 4-space 

* (29.24) 

* d4x = dx1dx2dx3dx4 ;: 

= 

d
4
S = element of 3-dimensional 11 surface" normal to xk in 4 snace k - l • 

to the boundary· shoWn in Figlire (29 .. 1): 

x4 x4' d4s4 

(B) 

(A) (G) 

(D) 

Figure (29 .. 1) 
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Let the surfaces (A) and (C) be chosen such that the spatial compon,ents ·of.,j~ 
•'• . 

vanish on(A) and(C)o This'-cari be done since the region of non..;va.nishing spatial 

cbm~onents 6:t ji wa.s as~u;ned to be :f'ini te. Let (B) be chosen normal to the time
..... I .. 

axis'in a. ~::..fr'ame Vvhile (D) 'is chosen normal to the time axis in a L -frame. 

It then' follows from (29o22) arid (29~24) that: 

(29o25) _g)·· j4as4 = JJJ j4,a4sr4 
: ·· · . , . · .. B. ~:·D:· 

and hence, by geometry: 

(29o26) Sff j 4dv = §) j4' dv' = invariant 

which was to be proved. It follows similarly that if a "conservation lawtt; .. 
(29o27) dTlj = 0 

· dx1 · 

·. · ·nd 
a. tensor of.2 rank, then: ·applies to 

(29o28) ,J ,, 

is a 4-vectoro 

In the next chapters we shall attempt to express the laws of point mechanics 

and then the laws of electrodynamics in covariant form. 

:'.·, . 
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CHA,PTER . 3 Q 

RELATIVISTIC MECHANICS 

In the preceding chapter we have studied formal methods which will enable 

us to generate ".cov!lriant" laws of physics in the relativistic sens~. Let us 

use these considerations to formulate the law of co.nservat,ion of momentum for 

point particles. This will give us certain formal relations which we shall then 

show are in agreement v.ri th a thought experi:iilen:t involving an inelastic collision 

as observed from various frrunes. 

(30.1) 
~ ~ 
p = mu 

. ~- ·. . . 

The vector u does not constitute the first three components of a four vector, 

for ~ = dx/dt etc •• and dt is not an invariant. However, if we divide the 

contravariant vector dxi by the invariant line element ds we obtain a four 

vector~· 

(30 .. 2 )* i d i 
u = ..2S._ 

ds 

.· -rl 
· * Note that the components of this four-vector velocity ( lo u, 

c 
Y )··where 

0. ' 

Yo = ~/.%2 : ·, do not have the ·dimensions of veloc·ity but are dimension-
{1- U ,C . 

less. 

~ ~ - - ~ - - ~ - - - - - - - - - - - - - - - ~ ~ - - - - - - - - - - ~ 

'-, 

kn01rm. as the four-velocity. A covariant expl~ession corresponding to momentum can 

then be generated by multiplying (30-2) by an invariant quantity m c2 which is 
. 0. ' 

assumed to be characteristic of the particle, where m in the proper (rest) 
0 . . 

frame of the particle would be its mass. The four-momentum is thus:· 

(30.3)** 
. i 

P~ = m ~ c2 
0 

ds 

i . ** Note that the components of the four-vector momentum p have the dimensions of 

of energy. 

• 
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If vve formulate laws involving momenta in terms of pi we thereby assure their co-

variant properties. If we want to assure that the law of conservation of momentum 

shall be preserved in the frame~ork of relativity for. two particles interacting at 

a point, then in order that this law be independent of the inertial frame chosen, 

it must take the form:: 

(3b.4) p
1

i -~ p
2 

i = const. 

··· ·before· arid after the int~raction, rather than the classical law: 

-·'> -..>. ~ . 
(30.5) mtu1 + m2u2 = constc. 

with the assumption that m
1 

and m
2 

are constant. 

We are restricting this discussion to J?articl~s in direct interaction,, rather 

than interacting at a distance, since the total moment~- of tWo ~eparated particles 

at a 11given11 time has no meaning in relativity and since all interactions.are neces

sarily propagated with finite velocity. Therefore, 'momentum between separated parti-

cles has meaning only if each particle conserves momentum :With a field acting on it, 
' 

or if the interaction is carried by a particle interacting in succession with the 

interacting mass points. Strictly speaking then, each of the mass points considered 

here must have zero extension in: order that this discussion be rigorous; if its 

extension Vfere non-ze,ro; it Could no longer be considered rigid. 

The components of the four-momentum 

(pi) =_ mo . uc . ( 
. ~ 

. {l;,.u2Jc2 

(29ol6) for ds:: 

(po, mc2) 

_ .... _____ _ 
* If the spatial components of a four-vector conform to a standard three dimen-

sio.n.~l vector, we shall in enumerating the components of the four-vectors y.se 

regular vector notation, e.g. 

~ 

"" (dr, edt) 
. . . 

:h:r: ~ ~s- t~e-· o~din:r; ~elo~ity- i; -;_ ~i-;e; fr~~ .- Th~ fi;st th~e~ ~omp'Cm"ents- have 

the formg 
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(30o7) 
....:, ~ 

cp = (mu)c 

where~: 

(30.,8) m = 

Hence if it is desired to maintain the law of conservation of momentum in the 

classice.l form (30.,5) and in order to have this law hold independent of the choice ''" 

of inertial frame, the mass can no longer be considered to be an invariant, but will 

depend on the velocity 1 as measured in the particular frame, by the relation (30.8). 

The ~~!variation of mass i.rvi th velocity" is thus a necessary consequence of formulating 

the law of conservation of momentum in a tvro-body collision in a covariant mannero 

The law of conservation of mementum. (30o4) implies not only the conservation 

of the three "spatialtt components but also the conservation of the fourth component:: 

. (30.,9) p4 = 

Let us investigate· the physical significance of this quantity. Let us con-

sider the time rate of change of this quantity in a given frame. We can show al-

gebraically that~: 

(30.,10) 

or. 

(30.,11) 

d 4 d. 
(itP =cr-t 

2£.4 
dt 

Hence if we continue to .call:: 
..,. --7 

(30.,12) F = ~ (Not the space component of a four-vectod) 
dt 

the force~ ioeo if we measure force in terms of rate of change of momentum then:: 

(30ol3) P -F _.. ~ .d_..p = 0 u = u 0 P = Power 
dt 

represents the rate at which vvork is being done in a particular system., Hence if 

-- -the~law-of--cen·serva-tien-ef-ene-r-g-y-i-s-tG-hol-d-in a_par.ticular_fr.ame_,_ans:l_ if E is 



,, 
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the energy:: 

(30ol4) dp4 dE 4 
dt = Tt ; p. = E + const. 

The constant of integration has no particular significance since it .affects only 

the zero of energy; . since energy only manifests itself when changes of the' energy 

occur, we lose no physical significance if 1Ne put: 

(30ol5) 
·,.··· 

.. '··,;' 

We are thus led to the following conclu~i.ons :: 

1) Energy as measured by "work-content 11 and mass as me~:?-sured' by the momentum for 

a given velocity are interchangable concepts; when 6ne' exists so doesthe other.· 

Neither mass nor energy are invariants;.their magnitude depends on the frame of 

the observer by the relation: . 

(30cl6) 

where ";!is the observed velocity in a particular frame;, We have shovm that the 

change in ·mc2 corresponds to vmrk done by mechanicai forces; that it corresponds 
. ~ .. . 

also to change ::i,n energy under whatever mechapism might be involved implies an 
- . .. - .. . .,_ . . ,__ . 

additional as~umption whose justification rests with experiment. Experience in 

other fieldsjof physics, in particular nuclear physics, where the fractional mass 

changes bec1ome very large, certainly prove beyond any reasonable doubt that (30.15) 

is valid in this more general interpretation. 
I 

/I 

2) The•conservation of energy and the conservation of momentum are not independent 

principles; one demands the other for a covariant formulation. 

3) i 
The four-vector p which we can novr cail the energy-moment~ vector has the 

components: 

(30ol7) (pi) =. ( cr;': E) 

"' anif "the invariant pi Pi is:: 



(30ol8) i = E2 _ 2 2 
p Pi_ c p 

This relation between energy and momentum is t'nus valid in any frame. In a proper 

frame (p = 0) we hav-e simply: 

(30ol9) 

as expectedo 

4) pi is a contravariant vector; thus on changing from aLto aLframe by the 

use of (29.2), we have the transformation relations: 

(3'0 o20) 

(30.,21) 

P t = D ' z £ z 

,f .. -~· c:rx 

..fi- ~2' 

~I ~ 
If~ is a proper frame for the particle, (p' = 0, E' = 

v>ri tten in the follbwing form, ~seful for cornputationt 

(30o23) 

then, from (30.,20) :· 

(30o24) 

(30o2 5) ,, 
This relation corJ.•esponds geometrically to rotation through an angle p in a 

(cpx, iE) plane (cofo Chapter 28, Figure 28o2)e 

5) For. small velocities E reduces to the classical kinetic energy plus the urest 

2 
energy" m

0
c o By .expansion: 

.·" .. 

2 2 m_ u4 
m c + 1/2 m

0
u + l --~ 

0 8 -·? 
c•~ 

6) Since mass and energy are equivalent quanti ties·, any t-ransfer of energy 
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imi?l,ies .:tra~s:fer of mass and 'therefore. a momentum. r:;onsider. a motor,-.M:.,driving a 

.load L at 13, distance. x by means 
. I • 

of a belt as . seen in Fig., 
x: . .. I . 

(M) (L) 
·''-f.! ; I: 

Figure (30.1) 

lf the motor transfers energy at the ~ate dE/dt. to the load, the mass of L increases 

corre~pondingly ~ . the system, thus has a momentum: 

. (30.27) p =X dE 
cz dt 

If. ene.rgy_ ~s. ab.sorbed by a body a:t a given rate~ then ~he momentum of the body in-
j •• • '· 

creases
9 

to conserve the overall momentum we must thus associate a density of mo-

~ 
mentum g with any agent which transmits energy at the rate S per unit area in a 

given direction, 

{30o28)* 

given by: 

4 ~ 
g = s 

7 

------------- -----~-

* This relation can be deduced formally from the transformation prOperties of p 

and Eo. If "we consider L to contain a system of energy E of zero momentum then from 
I 

(30o20) in L we. will observe a momentum: 

This is equivalent to (30o28) and includes all forms of energy. 
a.. - - -

This relation is in agreement with our discussion of radiation pressure given in 

Chapter 17 0 If we consider electromagnetic radiation vrhich represents an energy 

~ 

flowS incident upon an observer, then in the absence of a force sustaining 

medium or ether, vve were forced to attribute a momentum density as r;iven by 
• .1 • ' •• 

. (30.28) to the·electromagnetic field. The fact, as evidenced by the failure of 

the various experiments which were devised to detect the existence of an ether, 

that eleHromagnetic radiation, has the singular property of existing in free 

' " ,~, . ' 
. [.; 

space, makes the system of radiation and absorber a closed system. The result 
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is that Equation (30o28) is required by the COJl1Servation of momentumo Equation 
\ 

(30,28) could be niade the starting point of our\mass-energy equivalence discussions, 

using only the assumption of conse~vation of momentum and the absence of an ethero 
·, 

This approach is frequently used in obtaining the rel~tion E = mc
2 

without the 

necessity of introducing the entire relativistic kinematicso 

___, 4 

7) The force F == dp in a given frame is not the spatial component of a four-vector • 
. dt 

On the other hand~ a quantity knovm as the "Minkowski force~':: 'r'· 

is a contravariant four-vectoro The components of Fi can be vrritten as: (from 

(30ol2) and (30.12): 

(30o30)* 

-~~ - - - - - - - - - - -
i . '·' * Note that the dimensions ofF, are those of a force o 

'. - -- - -
The transformation laws for force can be derived from the four-vector character 

of Fi., Let us restrict ourselves to the case where 1 is proper in theLframe, 

Leo u = o .. Fi:::: ("i,o)c In the~
1

frame (using the fact that ux' = v, since 

u :::: 0) we obtain: 
X 

(30o31) Fx' = Fx 

(30o32) Fy9 = Fy H 
/ 

(30o33) Fz'=FzH 

Let us apply these relations to the equilibrium of a right angle lever of 

equal arms shovm in Figure (30o2). Let the lever be at rest in theGfrarne and 

let it be in equilibrium in Lunder the influence of the forces F. and F as 
- X -· y 

shovmo For simplicity let the arms of the lever be of equal length j.., , ioe. in 

equilibrium: 



(30o34) F = F 
X y 

3CJ7 

I 
Let us now consider the system from a frame·~ • We would expect sta'tic equilibrium 

to be ah invariant property ·since otherwise the frames would be{ distinguishable. Let 

us analyze the Torces in L
1
• From the transformation ~quations (30.31) and (30.32) 

and the Lorentz contraction, it would appear .. ~ ... ~R~ 

•p -+ ., . I 
p 1-

~ F . '' y .~ 
', 

Fy'= 1-~2 

+' 
Fx +- F '=F 

X X 

---~~~ 

Figure (30.2) 

that a net torque of magnitude~ 

(30.35) L' = Fx.Q[t-(1- (?2
)] = Fx.Q_ ~ 2 

. .. I 

were acting. However~ this torque does not produce any rotation since, in~ ,Fx' 
~o be doing work on the lever at the rate Fxv; th~ angular momentum of the lever 

therefore increases at a rate: 

(30.36) dM =f._ 
dt ' 

(Fxv) v2 = Fx.Q_~ 2 

.C 

Hence in L u everi though the torque and the angular· momerit~m do not separately 

·~ vanish, the torque exactly balances the gain· in angular momentum. Equilibrium 

is thus ,:preserved as an invariant propertyo* 

*The above discussion omits entirely the mechanism by which forces are trans-

mi tted. through the lever; obviously the laws of elasticity will also be pro-

foundli modified by relativity; the lever cannot be treated as a rigid body, 

since the velocity of propagation of an impulse is limited. A more detailed dis

cussion '(See e~g. Tolman, uRelati.;;.ity, Cosmology and Thermodynamics," Pg.79ff.) 

seems 
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does not alter the above conc~sions. 

Equilibrium at a point evidently remains invariant since at a point all balanc-

ing forces transform by the same lavvs. 

8) Let us consider the 
....;. 

(30.12) F = 

We have~ 

(30.,37) 
-,) 

F = 

under the influence of forces. 

du 

dt 

From: 

Acceleration of a moving particle thus requires not only a force parallel to the 

acceleration but also a component parallel to the velocity. We shall show in a 

""'+ 
following chapter that the nLorentz force" F,e on a particle of charge q moving 

~ ~ -) 

with velocity u in an electric field E and a magnetic field of induction B: 

(30.,38) 
~ __.,. ""') ~ 

~ = q (E + u )( B) 

~ 

has the sane transformation character as the force'F above and can thus be 

equated to (30.37). The resultant equation: 

(30.,39) ~ [ mo"t . J = g:(t + -: l( 1) 
dt .fl-u2 /c!J · 

is the general equation of motion of a charged par;ticle in an electromagnetic 

field and is in excellent agreement ,.vi th observed particle behavior. 

We have been led to the change of mass with velocity by tvvo processes: 

first,by the formal approach of attempting to formulate the conservation of 

momentum covariantl:!; and second, have also indicated the possible deduction of 

the principle by.the consideration of the interaction of "free" electromagnetic. 

radiation v<i th. an absorber. We shall now show directly without reference to 

tensor methods, _how this principle can be deduced by use of the Lorentz trans-

formation and the requirement that in a two-particle collision momentwn be con-

served. 
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Consider two particles. of: equaJ props>rties colliding head on.· :L.et us choose 
- '., ' ' ' -

a frameL such as the center of mass frame _in which the collision is symmetrical, 

~.e.~ they appear to approach with equal velocit~es as in Figure (30.3). After a 

short period of coaiescence~ they will then depart with opposite velocities. 

Let us make ·the same postulates as ;ve. did before. in the more formal approach, 

''. ' 

i~e. let us conserve momentum and mass in any"frame 9 

(30o40) ml + ~ 
= M 

(30o41} mlul + m2u2 = Mv 
ya 

uR -uu 
•. _p aolllD 

0 

---.~ 

Hence, in L g· 

y 

ml Ul 

v 
M o----f.....--!'11'-

(velocity of 
ul' 

-CII 

center of mass) 

U2 

x' x 

V Figure (30a3) 

. where M is the combined mass during collision. But from the longitudinal veloci:-

ty addition relations, we have~: 

(30.42) 

Eliminating M and 

. (30o43) 

u! -+ v-

1 + u 11 v/c2 

reducing algebra.ically we 

1.1 ~·= 1 + uvvic2. 
=· 

~ 1 uvv/o2 f1 

obtaing· 

---u 9 -+ · v-

1 - u'v/c
2 

\ 

U212jc2 . 

u 2)c2 I 1 ' 
Hence~ in order to preserve the. cons.ervation laws (30o40) and (30o41) in all 

frames.9 we must have:: 

(30o44) 
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where m .is the mass in a proper frame. This is in agreement with (30.8) and the 
0 

further deductions follow as above. 

This description is of particular interest since it enables us to obtain 

from (30.42) the mass M during tl}e collision:: 

(30.45) M - m l 1 1 - j 2m
0 

0 Jl - ul2Jc2 + {1 - u22jc2: = fl - VZjc2 
l ~·· 

..{1 - ur2jc2 

This is larger than:: 

(30o46) 

,(1 - v2/c2 · 

which would be the mass of the two ma~ses of rest_ma~s m
0 

moving with velocity v. 
~"-

This increased mass represents the increase in energy of the ~vro particles during 

collision owing to the stored elastic energy or to the energy increase in case not 

all the energy is released again. The distinction bet1~en an inelastic and elastic 

collision therefo:re essentially disappears in the first part of the collision. 

Calculations of this "elastic mass increase•• are usually most useful in prac-

tical cases, eogo in calculating the available energy in the center of mass sys~ 

tem in nuclear collisions. 
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CHAPTER 31 

COVARIANT FORMULATION OF VACUUM ELECTRODYNAMI.C:S 
;_, 

Maxwell g s equations and their consequences lend themselves very simply to 

covariant description. This follows from th.ef,act that no· modifications are neces-

sary at all in the laws of electrodynamics to make them agree with the requirements 
r-, . , . 

of relativity. The covariant f~brmulation of the space-tim~ coordinates in t}J,e 
. ' 

equations automatically puts the rest of the equation in covariant form. 

RecalJ, that Wf:J introduced the Lorentz transformation by considering the co-
. . . ' 

variant formulation of the propagation of a plane electromagnetic wave. Actually 

: ' 

the form of the equations governing the propagation of any electromagnetic wave 

: • I 

already agrees with the laws of relativity$ since the D1Alembertian operation: 

(3Ll) 

is an invariant. 

Since time and space coordinates are no longer independent» it is t:lear that 

charge density and current flow are simply different aspects of the same thing. 

If we hav~ a, 1iproper1
i charge density fo in a fra.ni.e where such charges are at rest$ 

then the contravariant vector~ 

(31.,2.) 

·. ·: ; 

has the componentsg 

(31o3) 

.,~ 1: 

where g; 

.i 
fo 

axi 
J = 

'"dB" 
,, 

. i Cp 
....... 

) J "" 
u 

F = D 

c 

f =.y·-r=. 1··=· =f>c::;;::o ::;:::;;:= 
··ZI 2 

:- U fC· 

Hence the transformation equations of charge and current densities follow 

automaticaliy.· Since current and charge densities are components of a single 

.i' 
four=veotor J $ we are led to combine the inhomogeneous wave equations (18ol8) 

• 
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and (18.19) expressed as: 

(31 .. 6) = -

into a single equation~-
0 

(31. 7) 

where:: 

(31 .. 8) 

We therefore find that electric and magnetic fields are no longer quantities per-

mi t·ting independent description; they are different aspects of the same thing • 

The equation of continuity takes the simple covariant form:: 

dji = 0 

dXi 

and the Lorentz condition (18 ol5) becomes its counterpart~ 

(31.10) 

The gauge transformations (18.22) and (18.23) combine into the form:: 

(31.11)* J5i' = )ifi + d ( c o/) 
•8xi 

- --------- -·-
* Note that covariant components of ¢i are used, giving both the correct trans

formation character and the correct sign of (18,.22) and (18 .,2,3). 

The derivation of the field from the pi and any law of physical consequence must ..f'· 

not depend on the choice of the scalar function ~ • 

Note that Eq. (31.,4) which gives the transformation from a charge density 

at rest to a charge density in a non-proper frame, is in agreement with an in-

variant charge. A (spatial!) volume element dV is related to a proper volume 
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element dV
0 

by:: " . ... ·-·' . 

(3lol2) 

since only one dimension isLorentz · con~~acted. 
•'•.. . ... 

Hence:.:. 
-- . 

~· .i _ .... · . .-· 
. ,··: 

(3lol3) 
·.''! ":. '.1' : \ ' ~ 

and the charge within a givenboudary remains invariant •. Therefore 9 the :~lee-

tronic charge e remains a universal constant. Since no charges have been found 

in nature which are not integral multipl~s of e, total charge could be measured 

by a counting operation which should be invariant. These facts are all in agree-

ment with experiment. Note that the invariance of total charge·is·also a direct 

consequence of theorem (29o23). 

Let us obtain the integral of t~e inhomogeneous wave equation: (3lo 7) cor= 

responding to an (invariant) point charge e at a poiri::=t P. This integral.should 
- f.· l ,' •• 

correspond to ;the Wiechert=Li,nard potentials (20oll) .and (20.12). We know that 

in a proper frame~ as in Figure (3lol), the integral of (3lo7) is simply the 

Coulomb potential g 

(3lol4) 

Q;(:xqj) 

): 

e 

~ 
Here r is the proper vector d:iJ~\;an~e PQ; •. Th~ pptent.ial signal at Q; is1 to be 

0 . - . j. ,, • , •• ,_.. ' '~ 

\ 

measured at the time. corresponding to the retardation cbndi tion::~ 

(31.15) 



where:: 

(31.16) i.e. Rj = (1,ct) = 
~ 

(r,r) 
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To make (31.14) valid in any frame, we seek to v.rrite it in tensor form such that 

_, 
it reduces to (31.14) if u = 0. Consider the four-velocity:: 

(30.2) 

In a proper frame it has the componentst 

(31.17) 

Also the invariant:: 

(31.18). 

t ~ 
tl.q-'- = (0, 1) 

can be evaluated in the proper frame wherer 

( 31ol9) 

using the condition (31.15) which defines the time of propagation of the signal, 

we have:: 

(31~20) 
i 

u R'. = r 
J. 0 

and ( 31.14) can be written in tensor form:: 

(31.21) 
~ i . u 

ujR. 
J 

subject to the condition R -.Rj= 0. This equation is therefore now valid in any 
J 

frame, vvhether proper or not. Let us show that (31.21) actually does correspond 

to the Wiechert-tienard potentials. If we note that:: 

(31.22) = 

since:· 
,. 

(31.23) 

then (31 .21) has the components:: 

(31.24) ~ - 41r\ '!. ; ) 

..... ~ 
r • u 
.;;;._c___. ) 

-~-

* ... · . 
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where~: 

s =: r -
~ ~ 

r e u 

c 

,l 
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--~· L 
r-··' 

:f-·· 

Equation (31.24) is equivalent to Eqso (20.17) and (20 .. 18). Note -ho\veve:r'·that the 

significance of the velocity has changed profo_F~\dl.Y.~--- ~_n ~:._~a;pter 20 the' velocity 

was ineasured relative to a special frame in which 'the wave equation was valid; 

in (31 .:24) ·~tis the velocity of the observe~ r-~latf~~: 'to' the frame iil. vvhi,ch th~ 
; I ": .. l ' 

;"····:..···, .. : .. ,,,. 

charge was at rest at the t'iin:e of 'nemission" /Jf" the .. :'9}gnal. · Hence all ·our de-

~~i1ed ce.lcu+ations _of the £:iel~s of charges in v~riot;-s ,form_s of motion remain 

correct provided the velocity is re-interpreted_, in this manner e 

Thus far
9 

we have discussed the field equations en-tir'eiy in terms of 'the 

electrodynamic potentials. Let us no1v derive the fields from the potentials 

covariantly. 
-:,.. : ' ~ -? ' ' ' - - -

The:; field :Vectors E and B ·have different transformation character 

~ 

in three dimensional space. E is a ttpolartt vector, iQe. a vector whose components 

behave as do c<i-ordina te dffferences cif a distance vector tinder ci{a;_,_ge from a 

; ~ 

left-handed i;•o r~ght-handed ,co-ordinS;te _ system. B is an 11axialtt vector, i.e. a 
t 

f. 

vector relat¢d to two polar yectors by a cross product relation. All correct 
~ - . . .. . 

physical ·vector equations are equations only betvveeh one kind of vector. Axial 

' ' 
vectors canndt form the spatial components of a four-vectore On the other hand, 

~ - ..... ~ 
the equation C = A x B can be expressed in a "coordinate-sense" insensitive man-

-+ 
ner by describing C by a quantity:· 

whe,_reg:, 

(31.27) 

,i 
i., 

/ 

C •• ==A.B. 
l.J l. J 

K.-B.= 
J l. 

c .. 
Jl. 

the + sign ·_referring to; .a right-handed Cartes~an system 
; 

·--

left-h.an~~d syste_x;r;~ 

notation as~ 

For ex,ampl!3, the _ equa;tion 
. . . ' . 

~ ~ 

"\} .X E = 
.. '1'. 

and the - sign to a 

~ 
- B is vrritten in phis 
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~~~ 
and V x K = B as t 

. (31 .. 29) 
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C)A:. d&. .· . 
..... J .... l. :... B 
;). xi- d x. - ij 

J. 
-; 
E, on the other hand, is polar; it can be derived from the potentials by: 

(31 .. 30) (i = 1,2, 3) 

This leads us to the introduction of a four-dimensional antisynnnetrici field t~nsor 

F .. which, as a function ofr 
~J 

(31.31) 

(31.32) F. ; 
~J 

; 

The components of F .. are, in cor..tformity vii th (31.29) and (31.30):: 
~J 

0 

i +cB 
(31.33) F.·. 4 = 

~J 
-cB 

z 

y 

j~ 

-cB 
z 

0 

+cB 
X 

+E. 
y 

·-and the components of the contravariant tensor Fij 

j~ 

0 ~cB 
·ZC 

Fij 
i +cB 0 

(31.34) = ~ z 

-cB ·+cB 
y X 

-E -E 
X y 

+cB 
y 

.,.cB .. 
X · .•.. 

0 

are:· 

+cBY 

-cB 
X. 

0 

-E 
z 

...;E 
X 

-E 
y 

-E z 

0 

+E. 
X 

+E 
y 

+E z 

0 

= gin jm 
g F 

Note that (31.31) is in accordance with the requirement of gauge invariance 

(31.11), since:: 

nm 

~-



,Jl 

.. c9 2 = 
;)xi ~xj 

';) 2 

dxj ~xi 
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Since it was possible to write the ffeld: equations :covariantly in terrris of 

the potentials 9 it should be possible to do so in terms of the fieldso. We can, 

verify easily that the source equations: 

(3lo35) 

correspond tog: 

(3lo36) 

and the equations~ 
~-~ 

(3lo37) \I o B = Oz: 

Note.that·the agreement between (3lo36) and the equation of continuity (3lo9) is 

obvious f:rom :the anti symmetric character of Fij ~ Also note that despite the three 

free indices. in ~qe (3lo38), this equation represents only four non-Vanishing 

e~uations 9 ·:sinqe the equation vanishes identically- unless i / j I k. Eq. (31.38) 

can be written ·in a form resembling (31.36) by the introduction of the "dual" ~f Fij 

by the relationg 

(31.39) ' ,G. ij = 'PijkL 
' ,, ,· ~kl 

' l 

where pijkllis,a:::~~enso!defi~ed to bezero unless i fJ :/k/i'and ~qual to +1 
, .. "i" 

if ijk~ .. aZ:e ih •
1

cyclic order or have beem permuted an even number of times from 

cyclic ·~fder and equal 'to i if ijkl, are permuted an odd number of times from 
cyclic o'rdero ,.(31-~·38)- is .then ·equ~ivaJJent to~· ... ' ! .• • ; ).: •• 

(3lo4o) ~Gij :;; o 
( 

d ilf:L : 

This 1equation is written such as to permit the introducti<z>n of magnetic poles 
.. ·' ; 

*pij¥f strictly is not a :tensor but a 11'pse1;1.q.o.;.tensor 11 ; it· is not 'invariant to the 
11 sc:rew=sense 11 of the coordinate systemo G~J ·is thus,, apseudo-tensor an(j_ any ~ypothe

. t'ica·l'pole 4.,;,vector to 'he add~d to 'Eqo (3L40) is a· pseudo-vectoro ·· . 
; 
/t-, 

\· 



31S 

The tensor expression for the fields immediately permits a derivation of 

the transformation relations of the fields. Since from. Equation (29.12): 

(31.41) 

we. can easily derive the relations:: 

(31.42) E' 
II 

(31.43) B' 
II = B\1 

...... ...., ~ 
= Y(E + v X B) 

.... 
(31.44) E' 

i. 

(31.45) 
..... -;~ ~ 

Bl = :yt~ - ..;jc2 x Ei 
--+ ~ 

where .. Y= 1//~1---~- 2 ~
1 

and ~ 11 , B
11 

aJ:ld i;.L! 1.L are the components of E and B 

--'). 

parallel and normal to v, respectively. 

Equations (31.44) and (31.45) can be interpreted fairly easily physically~: 
- . 

........ 
the terms, other than the factor· 'Y; being linear in V' should be essentially 

classical, i.e. describable by W~xwell's equations without explicitly using 

relativistic arguments. Equation (31.44} corresponds to the fact that a. parti

cle moving reia.ti ve to a magnetic field, to the order (!. ~ ', experiences an electric 

~ ~ ._;. 
field E + v x B, as has been discussed in detail in Ch. 14. To interpret Eq. 

·~ 

(31 .. 45) consider a. finite region containing lines of electric field as shov.n in 

Figure (31.2h 

(at t~ end of the 
loop E = 0) 

I I 

I 
I ··'i" 

r I 
' 

/ 

' ' 
, 

' 1 

, , 
E 

Figure (31o2) 

. ~ . 
·consider the line integral of B around the rectangle indicated. To an observer 

._.. ....... 
moving relative to E, the flux of E through the rectangle is changing at the rate: 

~ ;( ~ ~.-I! ~ 
1. 6 E 0 d.A.. X V .:::. V x E • d 
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~ 

and hence since the circulation of B is produced by the displacement current and the 

I.; ~. -. : .· 
-· 

i [....) ~ = 
7 

(v X E) o 

the moving observer will observe an effective magp.etic field! 
-'> ~ ~: -) 

(31&48) Beff = B ~·vjc 2 x E 

...-+ 
in agreement with (3le45) for small (J o 

The transformation equations for the fields are of considerable value in the 

solution of practical problems involving the motion of electrons and ions in 

electromagnetic fields& It is frequently possible to transform either the electric 

or the magnetic field away by choosing a suitable Lorentz frameo 

The Lorentz force per unit volume g: 

~ .... ...., ...., 
( 31 o49) f =< F (E + U X B) 

is the space component for a four-vectorg: 

(31. 50) 
......... ~ 

ri ~ Fikjk = (f 9 u " r ) 
c 

The fourth component is 1/c times the power expended by the electric field/unit 

volumeo The total force acting on a chargeg 

(3lo51) ~q= f'6v 

is not the space component of a four~ve'ctor ~ but is given byg 

~ ..;\ (" ~ ~ ~ 

(3lo52) F ~ fCV = Oq(E + u x B) 

In a proper frame, since bq is an invariant (cfo 3lel3)s 

(31 0 53) 

and hence in general, from (3lo42) and (3lc44)~ 

(3lo 54) 

(3lo 55) 

F,,- ""FOil 

-1 -
"' y F 

o.J. 

This is in agreement ~~th the mechanical forpe transformations (30&31) ffo 

Hence equilibrium betvveen mechanical forces and electrical forces is invariant 

to the choice of frame> the nature of the force does not affect.its transformation 
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-+ ~/. ·. 
Also, we are justified in ;using the relation F = dp;dtwhioh we intra ... 

-, ~ 

duceda:s the definition of force, if for F we use the Lorentz force (31.52); Eq~ 

(3C.39) is thus the relativistically correct expression for-·the equation of motion 

of a charged particle in an electromagnetic field. 

'· 

".)I' 
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C~IAPTER 32 

COVARIAl'JT .. FORMU:LATION OF TEE ELECTRO!V'lAGNETIC 
. . ;FIELTI '·EQ.i:iATIONS IN lvTATERIAL MEDIA . 

From the electron theory viev~oint, the ord~nary Maxwell equations are the 

result of an averaging process of electrical quantities over regions large 

enough to permit m~croscopic observationo We showed in the previous chapter that 

vacuum electrodynamics may be described in a simpie covariant manner. It seems 

reasonable then'that electrodynamics in material media may also be described in a 

~ingle· covar'iant form. 

The principal element entering into macroscopic electrodynamics that is new 

is the fact that the current four-vector ji will in gen~ral have all four com-

ponents nori~zero even in a frame in which the medium is at resto In such a frame 

.i .11 
J. Wl. nowhave the c:mpon(,e~:s~: ·fo·), 

(32.1) (j }= L , 
.. c 

where·?· is the current dens i ~y in the proper frame. This vrould correspond to the 

vac·uutn definition. Let us·now; hoviever. consider the f~rm.Of the cornponents of ji 

in a non=proper frame. In order to correspond to the vacuum case, we must assume 

th t .i t . · a .J re aJ.ns the components~ 

(ji) ; a~ () 
in any frame, and hence~ 

\ 
\ ., 

(3~·.3) ·is physically clear; it contains the convective current due to transport 

of charge and the contraction factor which assures the invariance -of the charge. 

(32o4) is physically less obvious; it says that a substance which carries 

current" but is electrically neU:trai ( f 0 = "o) in a proper frame do~s not neces

sarily remain so wheri :observed from another inertial 'frame. This ~ffect can be 
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understood in terms of the_ kinematics. of the moving charges. Let us consider 

positive and negative charges in the prop;r frameL
0

G For simplicity, let the 

positive charges be B:t ~est (though this is not essential to the argument) and 

the negative charges be in motion. Let there be equal numbers of + and - charges 

. v-o 
~n '-- o 

The world lines of the.+ charges (shovvn as dashes) and of the - charges 

(shovm solid) as observed in L 0 
and in an arbitrary frame 2:: are shovvn in the 

Minkowski diagram in Figure 

ct0 - ·· ct 

Figure (32.1) 

The charge density in ~ 0 
is measured by counting + and - charges 

- -

it • lt . 1 It • . '0 . th 0 0 ' s~mu aneous y ~n ~ , ~.eo on e :x: ax~s; the charge density in'- is 

measured by counting + and - charges along the x axis (iee. averaging them 

simultaneously in ~). Note that the density of - charges along the x-axis 

is decreased relative to the density along the:x:
0
-axis, while_ the density. 0f + 

charges has changed less.,*- Therefore a net positive charge is found in L , ·. 
~ - - - ~ - - - ~ -c 

-- --- ..,. - -- . 
...,. ... - - -

* Note however that density of charge is -measured by counting charges per unit 

length defined by the intercept of the unit hyperbola with the respective axes, 

as shovvn in Figure (32.1). 
--------- ~ ~---- ~--- ~--- ~- ~- ~-- .-------- -·-
corresponding to the negative current in the neutral proper frame, in a.greement 

with Eqo (32o4)., 
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One consequence of this effect,: resu~tirfg ,!li~;e.:~~~Y: fro'lll.~~e differeh:c.~:-. :in :the 

simultaneity measurement of ~ 0 and L, -.is' the fact that ~a.':1leutra.l ~tationary 

current ~-~op• in •[:" 0 ac-qu:ire's' ani 'electr'ic 'rilonieri:t whelli' ob,served inL .• -__ Cons1d~r- e. 

rectangular· current' l·oop in Ffgure' (32.2) carrying a curfen't '1: 

T 
b 

.-. 

--~·--· 
T 

.b. 

_f_ 
.'lL.-_ ...-----~-y--~-w_._ ~- . -•- , ·~ 
- q:-~ "t 

c2 

X 

Figure (32.2) 

From the point of view of L the legs parallel to x 0 will carry charges of.;; 

thus the system has an electric moment: 

p = Vabl 

?"" 
= .17-x it) 

o2· ---

? ~ 
where M :: labS/S is the "magnetic moment" of -the loop.* . Quadratic effects 

- ~ - - - - - - - - - - - - - --:...- - - - -
* S is the vector area of the loop, \ S I= ab. 

__ , ____ _ 

- --- ---- - -- - - - - -
in v have been ignored thus far.. Shortly ~- shall obtain- the exact transforma··-

tion equation of the moments. 

Let us n~w _·write_ the_f~e~d _equations _.in n,tai:;ter • _I~ we divide the charge

current f~.&-vector i~to ~true" compone~ts ji and magnetiza.tion.o.·?olarization · 
0 I 

. 1 
components JM ' then Maxwell's equa·tions C3i.3'6) and (31.38) becomet 

dFi)_ (32.6) 

' .. ~ 

and: 

p 
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'{32 i'l). .. ~: ~ : ;d~iJ+· 9rjk.·:+ d1rki' = o.• .. : · :; .: ! ... c J1,: 

~ •' . .. "' ·1· dXlc 9.~~ . -· d~ 1 ~, • 

~ ~ 

whet:~, as bef~n~, -the Fij, are givel1:·:PY .th~ .matrix (pl.34) iri terms o;f B and, E_~ 

It is desirable, a·s befpre, to write (3·.2.6} in terms qf t}le true .char,ge. ang · 

currents as external sources_only, and to incorporate the "induct;Jd" chaf:ge-
. ,. t.'t{ 

/ 

currents into.: the f~elds. This can be done by introducing the moment-tensor 

Mij by the equation:: 

(32 .. ~r· 
- .. ,;; ...... . 

-~ 
i 

''iii Sil;6e ~he components of, j 1 f~re, presumably:: 

t 

A;:gj~:.·: ... oL.jJ- =(~ : ~' (>p) 
th.~~ corresponds .to .the .form:: · .. · 

(32~10}·. 

i 

.r-
j' ~ 

0 -Mz/c 

+M~/c. 0 

-My/c +Mxfc 

+P' 
X +Py 

for the components of the moment tensor Mij• 

If we introdiice a· new field rij:by:: 

(32;;11} 

cor.responding: to: the three· dimensional reiat:lons: ... · 

~ -+ 
H- = -+ 'M 

cB- -
ck

0 

• (32 .12 )* 

..... --: .. _ ... :-- -· ·'. ,.·.' ...... 

i ·. 

- - - -. . .. 
t.·: 

(32.13) ' 
"-·· .' 

:;; 

then the source equation (32.6) becomes simply:~ 

+M /c 
Y-

-P 
X 

-1~/C -Py 

0 -P 
~- ... 

+Pz 0 

. 
- -. 

.. ·,,,,, ...... 
~. . 

: ' . . ~-

l 
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(32 .14) dHij = 
.j 
J 

dxi 

"I • 
, .. .. 

j~ 

i 0 -Hzlc +Hi/c ... +D 
.:X: 

r ........ 
,. 

(Hij) = +H /c 0 -H /c +D 
z X y (32ol5) 

-IY/c +H:x:fc 0 +D . z 

-D -D 0 
y .. z 

Note the way in which the equivalent currents and ch~r.i;es. 1:1re derived fr9m the , 

moments. The sign in the definir;.g equations ~f the a.u?Cilia.ry fields also f9llows 

automatically as a. result of this formulation • 

. The transformation·properties of the moments follow directly from 

(32.10)c We obtain: 

(32.16) pr = PII II 

(32ol7) . M' = Mn 11 
~ 1'14 

~ ~ 

(32 e18) •pr = (P -
v :x:.M 

).l. .l c2 

-; ·~· ... ~ 
(32ol9) M' = f"'(M + V :x: P) 

J. . . .. .. J. 

(32ol6) 
-; 

is to be expected since P is the product of an ( inv?-ria,rrt) charge .and a 

~ --iJ 
distance divided by a. volume, if P is parallel :to _v, then the di~ta.nce and the 

volume contract in the same ratio. A similar argument applie~ to (32.17). The 
. . ',• -· ' . . 

·, '4 4 . ·, . ·. 

term v x P in Eq. (32el9) is a. purel;y non-rela.tivisti<;: t~rm ~rising from the 

.fact that convection of a polarized medium corresponds t,~ ~.· ne.t circula.:t,io,n of. 
' . -~ . 

~··, charge. We have met this effect before in Chapter 14, in the disqussion of 

Maxwell's equations in moving media f~om a, non-re~ati vistic point .of v.iew •. ·Con-
~ . . . ·:. ~ : ·, : . . '. 

sider an infinite polarized slab shovm in Figure (32.3). 
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(
Surface· 
currents 

F;om~~ a moving frame, this slab possesses opposing surface currents correspond-

ing to a uniformly magnetized medium~ 

Eqo' .(32o18) has no non-relat'ivistic counterpart. It represents, as already 

shown, the effect of the net charges when a current in a neutral stationary conduc-' 

tor is viewed from a non-proper frame. The extra electric moment is precisely 

t~t predicted by Eq. (32.5) and arises from the relativistic definition of. 

simultaneity. This equivalent electric moment resolves the apparent paradox of the 

uni-polar induction generator discussed briefly in Chapter 14.. We concluded there 

that a· current would flow when a conductor, in contact with take-off brushes, 

moves transverse to a magnetic field. No difficulties arise as long as the source 

~ ~ 
of B is external; the effect should, however, persist if B is due to a permanen~ 

magnetization of the bar itself. The external description remains the same, bu'tr, 

since the· permanent ~agnetiiation is to be describable in terms of equivalent 

Amp~rian currents 'alone, the question arises how such currents could produce an 

ele~tro~tatic effect when viewed from amoving frame. This description leads to 

no difficulties, since we can now interpret the electrostatic field as due to 
- - '- -

the· equivalent ·electric moment 1 x Mfc2 
o Inasmuch as this equivalent moment is 

only a consequence of the relativistic redefinition of simultaneity, unipolar 

induction is fundamentally a relativistic effect .. 
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CHAPTER 33· 

CDVARIANT _FORMULATIOJ'Sr OF 1'JtE CONSERVATION LAVVS OF ELECTRODYNAMICS 

In Chapter 30s we discussed the conservation laws as applied to point mechanics. 

We found that the law of conservation of momentum and the law of cons~rvation of 

energy are no longer independent concepts but are in fact parts of the same law., 

Now we would like to extend these concepts to vacuum electrodynamics .. 

The conservation laws of electrodynamics have_ the. form ·(see Chapter 16) · 

written in three-dimensional tensor language g: 

(33.1) ! ~~ + f Eiui ·~ - k,·; t [(E

2 

; 
02 B

2
~ (Conservation of energy) 

(33.2) ci 0 ~- . ..., ~~ 
- ( T • • ) + _ p E_ ~ ... + ( u. x B) 4 1 (i X~ , . ~J . :,, ... 

(~urface ~chanical 
term) volume term) 

~ ~ ~ 0 
Here N == E x H. is the .Poynting vector and Tij 

.'. ·_'. 

= -k a· [(ix :1):i.l (Conse~vation 
0 0 t . -·- ' .. ' . J of momentum) 

c(- ---Electromagnetic 
field volUm.e term) 

"'" EiDj+ Hi Bj..,; cS~j (EkDk + 1\:Bk) 

is the :Ma:iGvell stress tensor. Equation (33.,1) balances energy between radia-

tion loss ov~r a given surface enclosing an arbitrary volume with the rate of 

mechanical and thermal work and the time rate of change of the electromagnetic 

field energy within that volume. Equation (33.2) balances the forces transmitted 

over a bounding surface by the electromagnetic field with the rate of increase of 

the mech~n,~ca,l and electromagnetic momentum of the system bo~nded by-the volume., 

The~e _tv~o _equations can be combined into a single .relation by introducing 

the energy-momentum tensor of the. ele_ctromagnetic field defined by the symmetric 
·' 

matrixg 

•' .J 
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~11 Tl2 T 

·13 

(Tij) .pl2 
0 0 

(33 .. 3) = T22 T23· +cGY 

0 0 0 

Tl3 T23 T33 +cG 
z 

+cG 
X~ 

+cG 
y +cGZ +W. 

.4 4 2 -

where G = N/c is the momentum density of the field (l.!ldW= (koE2 + )loH2 )/2 is 

the energy density. The conservation laws (33 .. 1) and (33 .. 2) are then equivalent 

to the. simple covariant relation:. 

' . 
is the four-vector representing the Lorentz force/unit volume and rate of work per 

unit volume of the electromagnetic field on material media., 

To show that (33.,4) is actually a tensor equation, we must not only show that 

it is correct algebraically but also that Tij is a tensor. To show the latter, we. 

note that 

(33o6) 

Note that 

(33.,7)* 

Tij 

the 

can 
b:- genera~te:kfr~m .t~e 

T · = k F .'F --
J .0 jk 4 

~ .. - . 

tensor Fij by 

(~Fkf F l 
c) j k~ 

the tensor operation: 

second term is simply the invariant \'trace" of J.ik.Q.:: 

F~ FkR = 2(c2B2 ... E2) 

------ -- ---- ~·- -·~----- ·- ~ --
=" The in variance of c2B2 - E2 shows that the ratio between the electric and 

magnetic fields in a plane electromagnetic wave is an invariant. 
- - -~ ... -

Therefore T\ is a tensor and so is Tij = gjk T~ ., The proof of the correctness ~' 

of Equation (33 .,4) then remains an algebraic computation which can easily be ~one. 

We can draw· a number of important conclusions from the form of the energy mo-

mentum tensor of the field .. 

1) Though the classical electromagnetic conservation laws are in agreement With. 
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rE3lativity without, further r.n.9.9if_ica,t~,on~. ,they are iptimate1y connectep wi~.fl one 
., ;. ' .•' . ;. . ' ~ '• ~ ' ! ·. ,· ', ' -~ •. . .r \ ; ) ' .• '-:; .._·· ' ' ' r, ~ ., ' '' 

another o 
. . . ,•_:~ ' . 

2) The transformation laws applied_ to (33.o3) s~ow aga,.irl; _the equivalence of 

energy transport and moment~ flow. 
, .· . . . . ,_-_, 

3) Let us consider a volume Y containing totally a. quantity of free electroma.g~ 
. . '· . . - .......... --..... 

netic radiation, but no charges or currents. The energy tensor thus obeys a 
.. ' ' ' -.. -

. ''conserve. tion law e ii 

(29 .2 7) 

.. ;· 

and hence 

~Tij = 0 

Cixi . 

according to the theorem (29 .,28), 

·. Gi ·( JJ{ o ~v, rrr ~ldv } 

is a contravariant four~vector alsoe Hence the momentum and energy of a radia-

tion pulse totally contained within a finite volume has. the same transformation 

properties as a. material point particle. Note that this is not true for the 

total field of a charge» since (29o27) is not satisfied. We shall study this 

point in detail shortly. The invariantg 

(33e10) 

is zero for a plane electromagnetic wave; henc~ the equivalent particle proper

ties of such a wave correspond to zero rest mass. This is in agreement with the 

.. 
fact tha.t 9 since the radiation _is propagated with velocity cp it could obey the 

particle transformation laws and still yield finite-~omenta and energy. only if 

•. ! 

its rest:..ma.ss· :l.s zero e All these facts are in agreement with the ttlight quantumn 

c~ncept:·· 

·..-_· 4') 'i:riricenst~te of equilibrium" is to be a.n invariant property of the system, we 

con·i{i~d~' t:h~·t n:ot only electro~~gn~tic forces
9 

energy, .momenta~ etc. must be de-

scribablE? by a tensor relation of the form fj "" - d Tij / dXi but all such me-

.~ g~.an~cf-,L quanti tie:~ when applied. to a continuum~rnust obey an~ equation of this 

. :forPl~ ~ence ,(33o4) w.ill be a valid equation~ e.g. in a medium under elastic 

""' 
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-4 
stress where W is the mass density (includi~g elastic energy£), G is the mechani-

0 .. -

cal momentum density, and Tij are the elastic stresses. This yields the trans-

formation equations for all quantities entering into the mechanics of continuua, 

Note particularly that the mass density of a continuous medium cannot be treated 

as a scalar or even a component of a four-vector {as is the electrical charge 

densityt) but is- the (4,4) component of the mechanical energy-momentum tensor. 

The quantity m = Jff WdV h~s the transformation character of a mass as before. 

These facts are in agreement with the existence of a fundamental unit of charge and 

the apparent lack of existen oo of a fundamental unit of mass. The tensor compo

nent character of the mass density is of importance in the formulation of the 

gravitational action of matter in the general theory of relativity. 

5) The "phasen y5 of an electromagnetic 1:vave- is 

(33.11) 1" = ""t ~iJt = E-+ ~i(it.7-tot) 
0 0 . 

defined by the relation: 

\ir/=)wave prop~gation vectorl=;t-l 

w = angular frequency 

The zero point of a field must be an invariant physical fact and hence one would 

expect j?f to be an invariant. Therefore, we can v.Tite:: 

(33.12) 

wheret: 

(33.13) 

(33.14) 
' 

·-

k· . l 

ki 

= 

= 

(it, -W/c) 

- cit ~/c) 
Since kiki = 0; ki transforms exactly like an energy momentum vector of a parti- f? 

cle of zero rest mass. This is in agreement with making the momentum and energy 

...... 
of a light-.quantum proportional to k and W respectively; we saw in Conclusion 3 j~ 

above that the momentum and energy of a electromagnetic wave also transforms like 

a particle of zero rest mass. 

-+ 
- Equation (33 ~14) which defines the transformation character of k and tV pro:-

vides a simple method to obtain the relativistically correct expressions for the 



T!. ,., 

~ 

::.--,. 

3.31 

Doppler shift and for the aberration of star light. 

Consider a. source at rest in a frame L 0 
radiating in the x direction such 

the. t ~ :;:: tJ..J
0 
/c. In a ~ frame we obtain r'rom the Lorentz transformation applied 

to k4
g; 

( 33 0 15) ~= c'Y(wo ~~kx~= (AF(l-f.;) o ~ 
\:c i ) ~l-f;'?:' = '~ --/ tf{f 

This is the expression for- the relativistic Doppler shift& The expression for 

i 
aberration can be obtained similarly from the spatial components of k and gives 

the relationg: 

(33ol6) sin e = ~ 

for the aberration angle ~, in agreement with Equation (28o49). 

6) It is to be noted that only the electromagnetic momentum and energy of a 

free wave have the transformation character of a particle of zero rest mass. For 

examples consider the electromagnetic field of a point particle moving with 

~ 

velocity u in the x direction. In the Lorentz frame· in which the charge is at 

rests the energy 

(33ol6) 

momentum tensor ha.s 

Tij "' (. ~0.~ 
0 

0) 
w 

0 

I 

only the components 
I 

d.g (.3 = lj)2.!)3 

(true only when integrated 'over a three
dimensional volume) 

when W is the electrostatic field energy density of the charge. In the general 
0 

frame it follows from the lLorentz tran_sformation that 
0 

(33ol7) Tl4 = f3 (Wo = Tn) 

.1-(3?2 
20 

(33 .. 18) r44 
"" 

Wi6 - (!tun 
1 = (32 

Hence the momenta and energies of the field become::-

(33.;19) 

(33,20) 
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v<here dV
0 

is the volume elerq,ent in .the JCest frame. But if the charge is spheri-

cally s;ywnetrical- in the rest frame_, we .have:: (3.3,.21) fw
0

dV0 :: U0 and: 

(33.2.2) J~lldVo ~ Kc f(E,! - i .Eo2)dVo •- K~fo2dVo =- U~ 

where U
0 

is the electrostatic energy of the chargc,and where we have used the 

app1ica.ble to a spherically sym."lletrical charge9 that ~ = 1 E2 
X ]'" • 

Hence 

(24ell) 
~ -J> uo G "" 

4 u 
3 ""'1i 

"{l ~2· ··,: c"' 

' ... , 
-~ 

u "· 
(33o23) u "" 

. 0 
(1 

~(: 
·~ ---~- + 

~ 
3 

~ 

These relations obviously do-not transform as components of·a 4=vector and there-

fore we obtain an additional argument for the fact, discussed at length in Ch. 

24 9 that the electromagnetic mass of a particle cannot constitute the total mass 

of a charged particle. 

It is of interest to >'H"i te the equations of an electron in an external 

field in Hamiltonian formo These equations must of course be equivalent to the 

force equation~ 

(3le50) 

Let us describe the motion of the particle .in 4~spa.ce as a function of the 

n ..L ~ it · ... ., + i ( .. i · .. 
proper u1.me_. s; lee•.• .Le,, x s; and p (~) be the positions and momenta of the 

particle. Let p
1

· be the momentu.m conjugate to xi and not necessarily be equal 

-1 
·to the p-· defined before. VVe are therefore looking for a function: 

(33~24) 

which will yield an equation of motion equivalent to (3L50) of the form: 

ds 
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(33.,26) 

Let us derive this Hamiltonian from a Lagrangian L by the relation: 

(33o2 7) X.= 
where the Lagrangian obeys a variational relation: 

(33.28) = 0 

The variation is to be taken over neighboring worldlines connecting two events 

P1 and P2 (Fig. 33ol). 

4 
-:xi:' 

~--------------------------_.--xl 

Figure(33ol) 

Consider a Lagrangian of the form 

(33o29) 

Let us derive the Eulerian equation corresponding to (33.28)s: 

(33o30) 



Since J u:l "" $ ~~'C~ "" ~ ~ xi a.nd since the x:l., are functions of s 
9 

we can write: 
d~. d~; 

(7>'2 "1) d¢'i avJ. -1 d ¢1 '!;\j ~. t) ()i,..'l 

~iL ~ ads =- : ·-~·..., 

d :x;'j ds ;) XJ 

We can integrate the first term in ( 33.,30) by parts (noting that $ 'Xf.j vanishes 

at the limits)~ giving~~ 

(33o32) 

S inoe ·t;hi s 

Henne~ 

ij .. 
"" F j .. 

J 

in aoeordance vrith (3L,SO)a Eq. (33~29) i:s thus a correct Lagrangian and 

(33,.35) P. "" dL ~ m ~.21u 
b '11 t-==n--==> ~ ~~.., i 

~. ~u.:t 

. i 
ar··e the momenta .o:;onj ugat,e to :x: o 

The Ham:i.l ton ian b~ 

(~3 ?.'") a'f ~ -L + ,.,ip ~; 
Vt aUO.., 

""'' "o 
Jc 

") 

m 0 c'~ 

~ 

2 
((pi ·~i)J U•U:i, 1 

=· ef)(pi "" 2 ~ 
= 1,· 

~m
0
o, 

This Hamiltonian again gives the correct equati'ons of' motiono From (33o25) 9 

(33c26)~ and (33e36).., we haveg 

dxi 
d~ 

or, uaing (33.3l)g 

( i p 

(i~. 



'-•'' 

(33 $3,'l:.Y· 

as before o 

du. 
_J:. + 

ds-

. . . . ; ~ 
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L: 

The H:arnil~onian and Lagrangian functions. discussed above are not the ordi-

nary functions which use the time as an independent ·variable. We can, however, 

:~: r easily obtain the II conventional" Hamiltonian~· 
' .. _. 

(33 ,.38) 
~~ 

H = H(p~ X 9 t) 
... ; 

in relativistically correct form from the "world'' Hamil toniane 

(33o39) 

·by a simple calculation. We are looking' for the function H which obeys there-

lations (3-dimensional) 

(33e40) - dxi _ ~H o --- -~ 

dx4 d Pi 

. 
' 

We shall show now that if we so lye _the e.quation: 
.. ··, 

(33o41) 
\0 ~ ....,. ·. . •. ' 1 m.· c2uiu = - 1 m .c2 
"' (pg X,p P4; c:it) = 2 0 i 2 0 

--.. _, _, 
= P4CPn Xg ct)j) then P4 has precisely the properties 

(33o40). From (33o25) and (33o26) we have: 

(33o42) , 
~ •' . ; ~ t ;· ·' ~ : ,. . 

. [ 

'., '.· .. 

: -~·· 

dxi 
' :· '4 = 

dx 

' ·' . ( .-·~'- .. ,._ 

.1. = -* ~eX 
~ p4 

(~4) 
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(33o43) 
1 

= 

Hence since pi = (-cp, p4 ) and sip.ce from (33.41), considered solved for pf-1=, 

dd-f + ~d-e ~ P4 = 0 

~Xi ~ P4 ~i 

Equations (33 .. 42) and (33.43) become:. 

(33.44) i ::: 1, 2, 3 

Hence_ p4 (1, i, t) is identical with H(t, 1, t). 

~ -> r1 .... 1+ .... 2 
(33.45). H(x-, p, t) ::: e>" + c · V (p ~ e.A:) + 

Hence:: 

- 2' 
(m c) 

0 

i = 1, 2, 3 

is the relativistically correct "ordinarytt Hamiltonian describing the motion 

in ordinary 3-space as a function of time. In the absence of an electromagnetic 

field, this takes the simple form 

' (33.46) 
~ ~ ' ~r;-+ 2 - 2 2 

H(x, p, t) = "f (cp) + (m o ) 
' 0 

in agreement vvi th the expression· for the total energy. If m
0

c >> J't--e'1'\, Eq. 

(33.45) takes the non-relativistic form: 

(33.47) 

Note that the relativistic Hamiltonian is given as a square root expression with 

the roots of either sign formally permitted. These negative roots give rise to 

(J 
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neg;athre energy states when this Hamil tonia.n is used in quantum mechanics. 
· .. \ :' 

An interesting consequem·ce of the general form of the Hamiltonian is the 

fact that classically the a:verage value of a' fun6tion depending on the coordi-

nates only of a. system in thermal equilibrium is independent of an external 

magnetic field. The mean value of such a function f(x) is given by: 

(33 o48) f = 

If v~.take the Hamiltonian in the form (33o45) or (33o47) with,d = 0, we can 

make a. transformation 

(33o49) 
-+1 -+ ~ 
p = p - eA 

The Jacobian of this transformation is unity and ·hence, since the integration 

~ 

limits in (33o48)'are infinite, the value of (33.,48) becomes independent of A 

~ 

and hence BG The existence of a'magnetic susceptibility therefore implies the 

existence of states governed by other than the classical equations of motion. 

/ 



CHAPTER 34 HAMILTONIAN FORMULATION OF A~LL 1 S EQUATIONS 

In the last chapter we have 'formula ted the equation of motion of a point 

particle in an external field in a .covariant manrier, using a Hamiltonian formulation. 

We now aim to formulate the equations of motion of the field, i.e. Maxwell's 

equations, in terms of such a. system. In trying to do so, a n(:lw' consideration 

affects the discussion, namely the fact that the number of degrees of freedom, 

in the mechanical sense, of a field is infiniteo Before attempting such a 

formulation let us therefore study the transition, in Hamiltonian .formulation, 
' '' ' ' 

of a system of a N degrees of freedom to a system of an infinite number of degrees. 
·;I 

Let us consider a set of N point particles or equal mass m connected by a 

set of springs. of lengths a arid force constant k. Let 1 i be the displacement 

from equilibrium of the i th mass. (See Figure 34 .. 1.) 

m m m m 

·~~· 

h- a 
._., .... 

a ~I ... .a ...,~ a • I 4. a --.4 
i FIGURE (34 .. 1) 

The solution of this problem rests on finding a sui table. Lagrangian L such 

that i:he equation: 

(34.1) J s L( '>(i' 
.. 
'"{ i, t) dt = 0 

represents the correct equation of motion. For a problem in classical mechanics 

we know that t 

(34.,2) L = T-V 

where T and. V are the kinetic and potential energies respectively ... By the 

geometry of the problem we thus have: 

(34 .. 3) 

which can be written in the 
N 

(34o3) L = L a £.i 
i=l 

form: 

where: 



339. 

is a quantity which we might call 'the ''linear Lagrangian density". Equation 

(34ol) .for the Lagrangian (34o3) gives then the usual equation of motion of a. 

set of coupled oscillators; orthogona.llzation of (34.3) yields the set of normal 

modeso 

Our principal interest here is to let the number of degrees of freedom tend 
( 

to infinity; we shall do this by letting: 

a -:!>dx 

(linear mass density) 

(Youngvs modulus) 

We have thus replaced the discrete index i by the continuous variable x. The 

Lagrangian: ·theJll b ec om.e s: 

(34-7) L • U [}' ~ 2 - y(~) 
2

] ax. [:Lax 
where_: 

. t} . ~ 012 
_ y(lin 

Jhe Lagrangian density acquires thus an explicit dependence on the spatial 

derivatives of the "field coordinate"~ o 

Let us derive the Eulerian equation of the variational principle (J4.l)o,; 

We obtain~ (,I 

{34o9) [! L dt =S JJ ,L dx dt 

Substituting Eq. (34o8) and integrating by parts in the usual ways we obi:;ain, 

ignoring explicit time dependence: 

at" f[(~d7• J~] f~~) • ~~] ~t~t)}ax at· 

"ff{~-}x~iJJ-~~ ~~)JJt~ dx dt 

SfL 
(34olO) 
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where .the integrated out part has been made to vanish by ,the condition that 

d~= 0 at the endpoints of integration over .to Since ~lis.' ~n arbitrary function 

of X
9 

we thus obtain the partial differential equation: .~ · 

(34~11) ~~· c -~ ~(~) J- ~t @(~) j = 0 

which is often written in the form~ 

f~-:t~t~J =O 

. where~ 
s£ _ Ci£ o 1 C>£ ~ 
~-~=a; l_d(~)J 

is called the "variationaltt derivativeo Note that in going· to tli.e limit-, : ·, · ,, 

of a continuous variable we have replaced a system of N ordinary differential 

Lagrangian equations by a partial differential equationo 

Usingt•tneJ;.agrangian:delsity(34~ 8)s Eqo (34ol2) yields immediately the wave 

equation: 

~211 ~2"" 
( 34 013) }.l .:::.....:.L. ~ y ~ = 0 . g 

I at2 ·() x2 -

corresponding to compressional waves traveling with velocity / Y/y. '., 

Let us now generalize these considerations to a three dimensional field '( 6 

where 1._ may be any covariant parametero .. The action integral (3J.,l) then generalizes 

to: 

(34ol4) ~ I = ·J" fJ £ dv dt = 0 

or: 

(34ol5) 

This-formulation is evidently covariant 9 Let us again vary the functional 

dependence of ;l on '1_ and *X:i .6 but c~nsider the xi as fixed, independent 6 

·coordinateso Partial integration gives: 

(34ol6) 

(l 
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leading to the covariant Lagrangian equations: 

( 34ol7) ( i = lg 2, 3~ 4) 

To obtain an explicit time dependence.9·_these can .be written in the form: 

(34.18) . f~=; t[ t$} . ( . ~) rc = -~ t 

where 

[£ ()£ d ~ s o't J 
. (34.19) dT =J"f -Clx"\~(~~ 

Our program is thus to find an~ such that Eq o 

Q(._=l,;2
1

3o 

(34ol7) will lead to Maxwell's 

equations. Clearly this discussion will apply to any field theoryo 

·It has been possible to state the action principle and write a Lagrangian 

, partial differential equation in an evidently covariant form. Tci introduce a 

Hamiltonian, the time has to be singled out among the xi as has been done in 

Eqso (34.18) and (34.19). We can then define a "momentum density"conjugate to~: 
. ~ c£. . 

(34o201
) 'ir(xRt) ::: a(fi-) 

and a Hamiltonian densityg 

(3do21) Jt ( "l ~. '\1; X 1 t) = rr(~ 1) =L 

The Hamiltonian equations foll~w in the usual way: Consider an ·increment dH 

of tre totalHamiltonian H = f'J/dvt 

dH = Jt~ d1T+1(d1 - d&~) aG~)- :~ a1 J d v 
using (34.19) and (34.20) this becomes, on partial integration: 

(34.22) dH =[< ~ d'ft' := ir d? )dv 
Since: 

~ "{ . ~ 'lr a 'r) J dv···. 
(34.23) H ::: )~ 1r s ~xa' 1 » ~ 

(34.24 dH f[~~ dt"+ :~~) d~} ~~ d'+}~;) d~)}v 
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Integrating by parts and usin~ (34.23) and the notation used in (34.19), we obtain: 

. ~ 
1 = ~ 11 

0 ~Jf. 
11~ ~-·--rr 

as the new form of Hamiltonvs equations. 

Hamiltongs equations(34.25) lead to the usual meaning of the time rate of 

change in terms of Poisson brackets. If/\ is the density of a physical variable 

L~ ioe. if L = JA dv, then, using the process used in obtaining Eq. (34.25) we have: 

(34.26) 

This is analogous to the usual Poisson bracket. These expressions lead to convenient 

.. -starting points for quantizationo 

The discussion above leads to definite field -equations if a Lagrangian density 

-..f). • 
cl,...l.S, g1.ven. In order to lead to linear field equations, the Lagrangian must not 

dh . 
contain powers of n or~ higher than the sec~nd. As the simplest example we 

.l d xl 

leading to the field equations (from (34.12))2 

(3,4.28) [D= ?~ 1. = o 

a momentum densityg 

1 0 . 
(34.,29) 11 = 2 a"?t 

c 

and a positive deflldte·Hamiltoniang 

(34,36) >I'· ~ { c
2

'1t'
2 

+ (~ '1 )2 
+ ll1 

This is the scalar meson field of Yukawa, Whose poin~ solution is: 

The electromagnetic field leads to a more complicated formulation. Pre-
.. 

sumably we are now deali~g with a vector field
9 

i.e.g 

(34.32) 
/ 

·l 
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The Lagrangian will have 3 parts: 1) a mass term for the mqtion of material 

particle so 2) an interaction term bet·vreen particle and field. 3) a field term 

·corresponding to the field equatione 

Terms (1) and (2) can be written from our former considerations: if we take 

(34.33) ~1 g
0 

= proper mass density 

we know that the· corre('lt motions. of point·. par}'ic1es in an exte~nal field result. 

In the choice of t
3 

we might be guided by a classical analogy: let us choose t 3 

such that 1) ~ is an invariant and 2) L3 is a quantity analogous to the classical 

difference between potential and kinetic energy. In an electromagnetic oscillation 

energy oscillates bet~een electric and. magnetic energy, just as in a mechanical 
. . 

oscillation energy oscillates between kinetic and potential energy •. We are thus 
i 

'~ 

led to take: 

(34.35) 

Note that the field equations: 

(34.36) 
~ ~ <Y? 
~xE= v - ~t 

are already implied in the connecting equations: 

(34.37) Fij = ;J~ - ~ 
~xi dxj 

corresponding to: 

~ 

(34.38) 1::: -~~- ~ ~ 

The total Lagrangian is thus: 

A further motivation for · a choice of the Lagrangian is the connection 

between Lagrangian density and the energy momentum tensor (Eq. (33.3)). If we 

consider the Hamiltonian density to retain the meaning· of an energy density then 

we can put: 

(34.40) 
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Hence ·from (34~40) we can 

from which we can form the covariant generalization: 

(34o43) ~ . ~t, o(~~'\ -~£~ 
. ?J:rJl) 

Note that the choice- of Lagrangian fulfills both Eqo (34o42) and T
4 

4 
=)(,as 

requiredo The Lagrangian selected in Eqo (34o35) is thus in agreement wi fu the 

s~ress tensor (33 .. 6)o 

We can show easily that the ta~rangian ~ 2 +~ of Eq .. (34.3,4.)&(34 .. 35) leads to 

MaxwellUs equations .. We have sho~ ·that ~'l give~./the correct motion of a particle 

in an external field (see Eqs o (33o28)ff) ~ considering~ +ot:3 separately is 

equivalent to ignoring. the ba·ck reaction of the field on the motion of the particleo 

Treating the overall Lagrangian will le~d to the difficulties already discussed 

previously in .the delayed interaction calculations o 

Note that 'this choice of;!, is not uniqueo Since tre · equations of motion 

. will depeng_·on the fields Fij which in turn do not de~end on the qua~tity~$ s 

any function of ~9J'!. when added to 'ot will still be a correct Lagrangian .. 
d:x? 

It is 

customary but not mandatory to use the L;rentz condition~-"" Oo 
~x]. 

FromEq .. (34ol7) we obtain .• using ';;;;i""~ +';!
3 
and~f = jja 

J 

<
3
4.4

4
) ~~xi d(d~) ·k~ d:i l <!(;:!) [(#;1- ~)(~- ~~~J-~O;i 

which are MaxwelP s equations o This calculation can of course also be carried 

out using the three~dimensional formz 

k { 2 4 ~ 1' 
(34o45) £...= ··~- (c

2 
B ~ E

2
) ~A o j +f r/ j 

and. Eqo (34.19)o 

(Fij) 

f) 



345 

In the three dimensional language we have: 

(34.46) v(~ = c Aoiv 

(34.47) If"'= - ~ 0 Ed.. 

.. i~e·.>>t an~:;~;~ ·c:~oni6~11y c'onjugate.i .·These varb.bles ~ive a H~,iltonian density: 

'• .... · (':L~a)~~ ~ ko(~1t ~~.~~· ;!)~\~~('~ko(~tl ;~~~· ~~· ~'ko(~~ 2 
r. '· · ...... . 

= dc, ";l2 + k0 (;f x l> 2 
+ (i• -~~) 

The last tenn can be made z~r;o by, a :P.~rtic~lar oh6~6,e of gaug~; at a;n,y rate since 

~·g = 0 the volume integral of the last term vanishes and thus does not contribute 

to the energy. 

Hence: 

(34.49) 

This method of defining. canonical variables o:f' the ·f-ield ··clearly con-tains 

. ·. 

no physical information beyond the content of Maxwell's equation; The main reason 

for treating the subject is1~_ a) the particle motions and the fieid equations are 

.tre.atE3dr. :PY, ,:th.~:: -.;arne p:r;-ocedure ·and· b): transition -to quantum electrodyruunics is best 
·,. - ....... > • 

• f% .. ·, 

accompl?-,,sh~q thfough _j_;he:)::an.onica:l rformula.tiort- of ;the fiel,d.:.-· 
·'';,•' 

An alternative$ and possibly physically more interesting
1 

wgy of_ tre11ting 
' . .J" 

Maxwell's equations in Hamiltonian form is to make the number of degrees of freedom 

of the field finite by confining th!3· f:~e1d, to a "box of dime~.sicms L., ~et_ us 
. ~ -~ . . 

··.!j"; 

take boundary conditions subh that the field functions shall be periodic with 

period L in the three dimensions. 
'· r \ ~ 

•• l. •• ,. .. ; 

Let us take the Hamiltonian as: 
.. !'' ' ... 

. ".' !' ~~ .... ,, 

(34. 50) 

Since the solutions are periodic, they can be expanded i~ space b:f a Fourier 
i 

' . ' 
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integral; i.e • , if we put : 

(34.51) 
~ 1 
uk,~ = -(L-)":!:""'3/~2 

. ~ 21"" ... ~ -+ 
then anY. v~ctor function can be expanded as a sum. over k = ~(ii + m j + n 1) and 
" ~· ~ . . 

over the unit vectors Ek~. The£k~.(i\.:.1,2,3) permit,an arbitrary choice of polari
.z?..tion. 
'~ . As an example. we C~t:l expand t 

(34.52) 

We can derive the auxiliary relations: 

~~ 4-41 
(34.54) \) •uk"A = k• £kr, 

~-> ....::, .......;;> .• 

\7xuk'A = k x t k). 

Let us apply these relations to a pure, i.e. transverse radiation field. We oan 

then choose, a "gauge" rj = 0 and .thus take: 
. ....~ 

. ( 34. 55) . '\J • A = 0 
' :; ~ . . 

~~ 

V•E = 0 

In .:that. case 'it • '('k~ = 0 and hence the summation over f.~ will include only 

. ~ -!> ~ ... ·~ .·. 

two components (kl and €k2 for each k where e:k~ is .L to k. Hence: .~· 

'(34.56) 

f 
~~ _...., 

(34 •. 5· ?) · .. 'iT2 · 1 ~ " . i (k+k') ~r . 
dv = 3 L L e .. , . p k pk' dv 

· L k k' 

" :3 J ~ PJ<: P -l<: dv -~ Pk P-Jc 

·~ . ~ 
Since '\\""is real, the sum (34.53) is equal to ·-its complex conjugate; s~nce uk"' = 

~* u-kr. we must have:· Pk :.o· p,:k • 

Hence: 
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· Also» from (34o56) a.nd (34o52): 

J
:-'>~2 . I. 

(34o59) ("Jx A) dv =L i k 

k1>). ·.· . 
Hence: 

' (34o60) 1 , ·~I 2 .

1

2 .. . 2

1 

· ... 
1
2 J 

H = 2 L_ p + k qJ.C/t. 1: .. 
kj)~ kA. . .. ,. '" 
. . . I .-

This is the same a.s the Hamiltonian of a. set of ha~onic oscilla.to.rso. Thus·· .the 

equations of the electromagnetic field a.re equivalent to the equations of motion 

of a. set of harmonic oscillatorsd 1 ;~ .··· 
··.' < '·,,., (\ ('• 

~: 

··,_·:·,· . 
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