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1 Introduction

Classical atomistic simulations, also known as Molecular Mechanics simulations, use simple
potential-energy functions to model molecular systems at the atomic level. In this
representation, atoms or groups of atoms are represented as spherical particles that interact
through relatively simple potential functions such as Hooke’s law, Lennard-Jones and
Coulomb potentials. These representations are then used to sample the conformational phase
space of the molecules via simulation techniques such as Monte Carlo, ligand-docking and
molecular dynamics (MD). In MD simulations, the particles obey classical equations of
motion, generally Newton’s laws or Langevin dynamics, which allow for the
characterization of the time evolution of the molecular structures, their fluctuations and
interactions, and therefore the investigation of the system’s kinetic and thermodynamical
properties.

Since their introduction to the Physics community during the 1950s,1 MD methods have
grown in complexity with refinements both of the accuracy of the energy functionals and of
the sophistication of the methods used for the sampling of the relevant phase space. The
force fields used in biomolecular simulations include a set of potentials based on physical
models, along with a set of associated parameters which are obtained by fitting to
experimental and/or quantum simulations. The potentials are mathematical functions of the
nuclear coordinates only, since the Born-Oppenheimer approximation2 justifies the omission
of the electronic degrees of freedom. Bonded atoms are represented by two-body, three-
body and four-body terms, based on bond distances and bond and dihedral angles. Non-
bonded interactions, commonly modeled by Lennard-Jones and Coulomb potentials, are
generally described by pairwise interactions.

Long-range electrostatic interactions are crucial for the stability of proteins, nucleic acids,
glycomolecules, lipids, and other macromolecules, and their interactions with solvent, ions,
and other molecules. Electrostatic interactions in biomolecular simulations have typically
been modeled using the atom-centered ‘partial-charge’ approximation in which the full
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charge density of the system is replaced by point, fractional charges assigned to every atom.
For instance, the simplest models of water assign one partial charge to each atom of the
molecule. If higher accuracy is required to reproduce a specific property of water, then extra
charges (representing, for instance, the lone pairs) and/or multipoles and/or polarization are
added to the water model. Even in the “simple”, purely partial-charge model of
biomolecules, the long-range Coulomb interactions quickly become the computational
bottleneck. Their treatment demands carefully constructed algorithms in order to avoid
artifacts3 and to take advantage of the existing and emerging computer architectures.

Historically, simple models of biological molecules have been used mainly out of necessity
due to restraints imposed by absence of experimental data (or data at low resolution) and
algorithmic and computational limitations. In many cases, very simple models have proved
quite successful, such as the coarse-grained and lattice models used to identify the main
features of protein folding. However, biological systems in general are very complex and
experimental data is often at too low resolution to infer details of, for instance, molecular
recognition processes. Since one of the main reasons to use molecular modeling is to predict
molecular properties that are difficult to observe experimentally, molecular modeling often
finds itself in a paradoxical situation where its predictions cannot be validated
experimentally. What has become clear, though, is that the monopole electrostatic
approximation is inadequate, and that the importance of an accurate representation of
electrostatics cannot be overemphasized for challenging situations such as molecular
recognition and computer-aided drug design.4

In this review, we primarily treat electrostatic methods for classical biomolecular
simulations in explicit solvent, with special emphasis on the accuracy of the electrostatic
representation. The first part of the article is dedicated to reviewing computational methods
for dealing with the long-range nature of the electrostatic interactions, including traditional
methods as well as recent extensions and developments. The second part of the article is
dedicated to reviewing current methods for representing the molecular electronic charge
cloud, that go well beyond the point-charge representation. In addition, we discuss various
multiscale approaches at the Quantum Mechanics/Molecular Mechanics level and at the
Molecular Mechanics/Coarse-Grain level. The general trends in both cases are towards more
accuracy and proper treatment of electrostatics. We finish the article by describing other
challenging developments and giving our perspective on the current state of the field.

1.1 The electrostatic problem

A classical electrostatic description first requires a choice for the representation of the
continuous quantum electronic density. While the positive nuclear charge can be considered
to be discrete on the atomic scale, the representation of the continuous negative electronic
charge distribution is considerably more challenging. First, one has to decide how much of
the molecular electronic density should be assigned to each atom. This “charge assignment”
problem is nontrivial, as it is desirable that the charge distribution assigned to a particular
atom be transferable, i.e., relatively independent of the molecular or condensed phase
environment in which the atom finds itself. Second, one has to decide how the assigned
atomic density should be represented mathematically.

The partitioning of the extended molecular charge distribution is a key issue for improving
the accuracy of current force fields for large-scale biomolecular simulations. Traditionally,
electrostatic interactions have been modeled using a set of fixed atom-centered point charges
or “partial charges”. In fact, popular classical MD codes for biomolecular simulations assign
partial charges to virtually every atom in the system. The most popular methods for
extracting charges from molecular wavefunctions are based on a fitting of the atomic
charges to the molecular electrostatic potential (MEP) computed with ab initio or
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semiempirical methods5 outside the van der Waals surface. These nonbonded potentials are
then expressed as a sum of spherically symmetric atom-atom potentials. Such a description
is known to represent an important source of errors for current force fields,6 primarily
because the monopoles or partial charges can vary enormously with conformational
changes.7 In fact, a realistic physical molecular representation generally requires dipole
moments (e.g., to model the lone pairs), and quadrupole moments (e.g., to model the π-
bonds). Alternatively, more charge sites can be added to the molecule.8 In principle, such a
“distributed multipole” description can exactly describe the potential due to the true charge
density, at points distant from the expansion centers where “penetration” effects are
negligible.6 However, even with these improvements, the fit to the MEP remains poor in
regions near the atomic nuclei where the charge densities overlap. As a consequence, the
electrostatic interaction energy must be corrected for the “penetration” effects at close
range.9 Finally, even if a distributed multipole representation gives excellent agreement with
the MEP outside the van der W aals surface, and even if continuous functions (such as
Gaussians) are used to represent the electrostatic potential inside the van der Waals surface,
a totally reliable and stable representation of the electronic density requires the inclusion of
polarization to account for the variation of the electronic density caused by intra-and inter-
molecular conformational changes, as well as general changes in the atomic environment.
Additional complications arise when there are changes in ionization states, as discussed in
Section 5.

To begin, consider the simplest representation of electrostatics given by the monopolar
approximation. The long-range effects are most pronounced for this potential, which decays
with distance r as 1/r. The charge-assignment scheme based on fitting to the MEP is
mathematically an under-determined problem since, in principle, innumerable distributions
of different charges can all produce the same electrostatic potential outside a surface that
encloses all the charges. This process is particularly poor for the case of “buried charges” for
atoms in the interior of the molecule. However, once a set of charges has been assigned, the
calculation of the Coulomb electrostatic potential and energy due to the given set of charges
is a well-posed mathematical problem: knowing all the partial charges qi and their positions
ri, one can compute their interactions, no matter how complicated the configurations of
charges may be. In practice such computations are not trivial, due to two main
considerations: the finite system size and the size of the molecules. Since all simulations
have finite-size constraints, the long-range nature of the interactions, as well as other
quantities that characterize the properties of the system in the thermodynamic limit, are dealt
with through boundary conditions. With respect to molecular size, for a system with N
charges, the electrostatic energy is computed via a sum over N(N −1)/2 pairs, and is
therefore an (N2) calculation. Thus, a direct computation of all the pair interactions is often
too costly for typical biomolecular sizes.

An additional problem related to size is that biomolecules need to be solvated. Since
molecular biology takes place, at least partially, in an aqueous environment, and since the
physiological environment of a biomolecule cannot often be adequately represented with
present computer resources (not to mention the fact that many of the details of this
environment are often unknown), most simulations of proteins, nucleic acids and
membranes assume a water environment. As each water molecule is represented by at least
three charges, a large amount of the simulation time is consumed in the calculation of water-
water interactions. Such an explicit solvent environment is often desirable because it
captures the delicate interactions between the solutes, water and ions, and the formation of
hydrogen bonds. All of these interactions can sometimes be crucial determinants for the
molecular structure or function. However, the high cost of computing the water-water
interactions and of fully sampling the phase space often makes the use of implicit solvent
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methods desirable. These methods represent the solvent as a dielectric continuum where the
solute-solvent interactions are described in the spirit of a mean-field approach.

Computationally, the electrostatic potential for a system with explicit solvent is computed by
either solving the Poisson’s equation or explicitly adding the individual charge potentials.
For the monopolar case, these equations are given by

(1)

and

(2)

where qj, j = 1, … N represent all the partial and ionic charges, including those of water.
Instead, in the implicit solvent representation, the solvent is replaced by a dielectric
continuum function ε(r) that varies in space. The charge density in the resulting Poisson’s
equation contains the charges due to the solute, plus another term that accounts for the
counterions and co-ions in the solvent. If the mean-field, Debye-Hückel approximation is
used for the salt, then the resulting Poisson-Boltzmann equation (PBE) is

(3)

where Nsolute is the number of charges in the solute, cs is the bulk number concentration of
the s-type ions of charge qs, and Σs csqs = 0. This PBE already contains an approximation, as
the exact potential of mean force that would enter the exponential has been approximated by
qsφ0(r). The PBE is a non-linear differential equation, and an expansion of the exponential
leads to a second approximation, in which the second term of Eq. (3) is replaced by the

linear term . The linear approximation is only really valid in the limit of
extremely small ion concentrations. There has been considerable debate in the literature
about these approximations, and we will not cover these issues here. The major difficulty
with the PBE derives from the sharp and fast variations of the dielectric function, whose
values for a protein in solution are not clearly determined, and whose representation is
essentially arbitrary. Its description must involve a function capable of fast variations in
space, but with numerically stable gradients. At present, solving the PBE numerically is still
a relatively slow process. Hence, other simpler implicit solvent models, such as the
Generalized Born approximation, have been developed.10–15 In addition to the polar
(dielectric) screening effects, implicit models have to reproduce the apolar components of
the water interactions,16,17 mainly the van der Waals contacts and the entropic cost of
creating a cavity within the solvent. Often, implicit models are used for quick estimates of
free energies, especially solvation free energies.18 In this article, we will not review implicit
solvent methods, and will simply refer the reader to relevant review articles.12–15,19–21

Let us now turn to the problem of the finite size of the system, which necessitates a proper
implementation of boundary conditions. Boundary conditions may be conveniently divided
into periodic boundary conditions (PBC) and non-periodic boundary conditions (NPBC).
Generally vacuum and implicit solvent simulations are coupled to NPBC, while explicit
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solvent simulations generally are carried out with PBC (NPBC in explicit solvent can also
be implemented with real-space methods). Intermediate approaches, where the solute is
surrounded by a thin layer of explicit waters, have also been treated with both NPBC and
PBC. In these models, special care is needed for the boundary between the explicit and
continuum descriptions, as this may become a source of artifacts. Although both NPBC and
PBC have been criticized as introducing artifacts in the simulations, there is growing
consensus on the soundness of PBC in the treatment of long-range forces. A brief review of
these issues is presented in Section 2.8.

In this work, we review important algorithmic developments used in biomolecular
simulations with explicit solvent. We will not consider the treatment of systems that have a
finite size, such as quasi two-dimensional systems in slab geometry. Methods developed for
this geometry include several adaptations of the Ewald summation,22–26 Lekner
summation,27–33 and the MMM2D method.34,35 Real-space methods, such as multigrid or
fast-multipoles methods, can naturally deal with these types of geometries.

2 Methods for computing the long-range electrostatic interactions

In this section, we discuss algorithms currently used to compute the long-range electrostatic
interactions in an efficient manner. We start the discussion with Ewald-based methods,
which are more specifically described in Section 2.1 to Section 2.3. The Ewald summation
was the first method to give an exact calculation of the electrostatic potential. Its importance
cannot be understated, as the method has become one of the corner stones upon which many
other methods for the numerical computation of electrostatic interactions are based.

Ewald introduced the method in 1921 to compute the electrostatic energy of ionic crystals,36

whose mathematical description is given by a Coulomb series that is only conditionally
convergent. The 1921 paper is a follow-up of Ewald’s earlier work on the theory of X-ray
crystallography and the development of the concept of reciprocal lattice (by Ewald and
Laue).37 Ewald’s aim was to calculate the electrostatic potential and field due to dipoles, but
he faced the problem that these quantities diverge at each dipole’s position. The calculation
can be easily done using Fourier transforms, but Fourier methods were not well known at
the time and without them, the problem is mathematically challenging. As described in
Ref.,38 a vital contribution came from a discussion with Peter Debye in 1911 during one of
the Arnold Sommerfeld research group retreats, where Debye suggested the use of theta
functions. Ewald later applied a similar approach to solve the electrostatic lattice potential –
this method is now known as the Ewald summation.36 Ewald’s contributions turned out to
be seminal: he is one of the most important contributors to the theory of X-ray
crystallography, and the side project on lattice potentials36 that led to the discovery of the
Ewald summation has become one of the most important techniques in computer
simulations of charge-containing systems.

In concrete terms, by means of a Jacobi Theta transform, the slowly, conditionally
convergent Coulomb sum was converted into two sums that converge rapidly and
absolutely, with the conditionally convergent nature of the series hidden in a surface term.39

This last term depends on the dipole moment of the unit cell U, the dielectric constant of the
surrounding medium, and the order of summation –that is, on the asymptotic shape of the
array of copies of U– and vanishes when the surrounding medium has an infinite dielectric
constant (“tin-foil” boundary conditions). Although the surface term is only rarely
implemented, its use has been recommended when calculating the dielectric constant of the
sample.40
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Ewald-based methods use the error function erf and the complementary error function erfc
to re-write the Coulomb interaction as 1/r = erfc(βr)/r + erf(βr)/r, with

. The first term is short-ranged and gives rise to the so-called direct
sum, which is an explicit sum over all pairs of charges within a distance cutoff. The second
term is long-ranged, varies slowly, and is typically handled in reciprocal space via Fourier
transforms. Such a splitting of the Coulombic interactions involves a smooth function of r
and therefore avoids any discontinuities in the forces, or higher-order derivatives of 1/r.
Ewald-based methods include the original Ewald summation,36 the particle-particle particle-
mesh method first introduced by Hockney and Eastwood,41,42 the particle-mesh Ewald
algorithm developed by Darden and co-workers,43,44 and the Fast Fourier-Poisson method,
introduced by York and Yang.45 Although the multigrid method solves the “reciprocal” part
of the Ewald summation in real space instead of employing Fourier Transforms,46 we still
consider this to be an Ewald-based method, since it uses a similar formalism to deal with the
electrostatic interactions.

2.1 Ewald summations

The molecular solute and its solvent are placed in a unit simulation cell U, defined by the
unit lattice vectors a1, a2 and a3 (not necessarily orthogonal), and whose volume is given by
V = a1 · a2 × a3. Any other lattice vector is defined as n = n1a1 + n2a2 + n3a3 for all integer
triplets (n1, n2, n3), with n1, n2, n3 not all zero. Under PBC these lattice vectors generate
successive copies of the unit cell that fill space. A standard way39,47,48 of treating
Coulombic interactions under PBC is to model the system as a large but finite collection of
copies of the unit cell U, which is then immersed in a dielectric medium. Each particle at
position ri within the cell interacts with all the other particles in U, with their and its own
periodic images, as well as with the reaction field induced in the surrounding dielectric
medium. Infinite lattice sums are obtained in the limit of an infinite collection. The
traditional Coulomb (monopolar) potential φ0(ri) acting on charge i is the same as in Eq. (2),
except that one must take into account all the periodic images, i.e.,

(4)

where the prime indicates that terms with i = j and n = 0 are omitted and Σn ≡ Σn1 Σ n2 Σ n3.

The infinite Coulomb series conditionally converges slowly to a finite limit only if U is
electrically neutral. When it is not, the standard practice is to add a uniform background
charge density (the “neutralizing plasma”), that fixes the problem with the monopole term,
without disturbing the higher-order terms. The Ewald method has also been extended to
higher-order multipoles.49–54 To motivate the formalism, first note that the electrostatic
potential φ(r1) at position r1 due to a set of point multipoles at position r2 is given by the
Taylor’s expansion53

(5)

where the subscript 1 or 2 on ∇ denotes differentiation at the point r1 or r2, and the symbols
p, Q, O, and H denote dipole, quadrupole, octupole and hexadecapole respectively. The
different “dot” products stand for the usual tensor contraction, i.e., H::∇∇∇∇= Σi, j,k,l Hi jkl
(d/dxi)(d/dxj)(d/dxk)(d/dxl). For simplicity of notation, we introduce the multipolar operator
L ̂i by:
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(6)

Of course, since ∇j = −∇i when applied to any function that depends on |ri − rj|, the
corresponding operator L̂j becomes L̂j = (qj − pj · ∇i + Qj∶∇i∇i − Oj⋮ ∇i∇i∇i + Hj∷
∇i∇i∇i∇i).

Here we illustrate an extension of the Ewald method to a system of N point charges and
multipoles at positions r1, r2,…, rN within the unit cell, with q1 + q2 + ··· + qN = 0. As
mentioned above, the edges of the unit cell are denoted by vectors aα, α = 1,2,3, which need
not be orthogonal. The conjugate reciprocal vectors  are defined by the relations

 (the Kronecker delta), for α, β = 1,2,3. The point charge and multipoles at
position ri have fractional coordinates sαi, α = 1,2,3 defined by . The charges and
multipoles interact with each other, and with their periodic images. Thus each and every
component of a multipole set {qi, pi, Qi, Oi, Hi} at position ri interacts with each and every
component of another multipole set {qj, pj, Qj, Oj, Hj} at positions rj, j ≠ i, as well as with
their periodic images at positions rj + n1a1 + n2a2 + n3a3 for all integer triplets (n1, n2, n3).
It also interacts with its own periodic images at ri + n1a1 + n2a2 + n3a3 for all such triplets
with n1, n2, n3 not all zero. The electrostatic energy of the unit cell is then written as:

(7)

where the outer sum is over the vectors n = n1a1 + n2a2 + n3a3, the prime indicating that
terms with i = j and n = 0 are omitted.

As in the usual Ewald or particle-mesh treatments of Coulombic interactions under PBC,
this sum is split into a short-range term which is handled in the direct sum, plus a long-
range, smoothly varying term, handled in the reciprocal sum by means of Fourier methods.
In molecular systems, corrections are introduced to account for the “masked pairs”, which
are atom pairs (i, j) ∈ , where  is the masked list, whose nonbonded interactions should
not be calculated, since they are accounted for by other terms in the potential. These masked
pairs are easily omitted from the direct sum. However, since all pair interactions are
unavoidably included in the Fourier treatment of the reciprocal sum, the reciprocal part of
the masked pair contributions must be separately subtracted. Similarly the self-energy,
which is the reciprocal part of the interactions of multipole components with themselves,
must be removed. The electrostatic energy can then be written as a sum of four terms, the
direct, the reciprocal, the adjusted and the self energy terms: U = Udir + Urec + Uadj + Uself.
The reciprocal energy Urec requires a generalization of the structure factor S(m) to include
the multipolar interactions. The generalized structure factor S(m) can be written as a
function of the reciprocal lattice vectors , with m1, m2, m3 integers
not all zero, as:

(8)

where exp(2πim ·rj) = exp(2πi(m1s1j + m2s2j + m3s3j)), sαj, α = 1,2,3 are the fractional
coordinates of site j, defined above, and L̃j(m) is the Fourier transform of the multipolar
operator L ̂j, given by L ̃j(m) = qj + 2πipj · m −(2π)2Qj ∶m m − (2π)3iOj⋮ m m m + (2π)4Hj∷
m m m m. The reciprocal energy simply becomes
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(9)

The direct sum energy is given by

(10)

where the asterisk over the sum denotes that the terms with n = 0 and either j = i or (i, j) ∈
 are omitted. The adjusted part contributions are given by

(11)

Finally, one has to compute the self-energy term. For instance, up to quadrupoles, this term
is given by:52

(12)

The self-energy is not physical; it is a consequence of the Ewald summation and goes to
zero as β → 0. The electrostatic field and force on atom i at position ri are computed as the
negative gradient of the electrostatic potential φ(ri) and electrostatic energy U(ri),
respectively:

(13)

(14)

An important difference with the monopolar case is that, for non-zero multipoles, the force
is no longer parallel to the field, and a torque τ(ri) needs to be calculated. With the use of
local reference frames,50,53 these point torques can be converted into atomic forces,
necessary to carry out atomistic MD. Other quantities one needs to compute are the
electrostatic “self field” and the new contributions to the stress tensor Π, necessary for
constant pressure simulations.55–57 While the direct and adjusted parts are computed in the

standard way, , where (Fjin)β is the β component of the
direct force between particles i and j, whose relative position is given by rjin = rj − ri + n (a
similar expression, with (i, j) ∈ M and n = 0 is obtained for the adjusted part). The
computation of the reciprocal tensor, on the other hand, gives new terms compared to the
monopolar contribution. The energy of the unit cell can be written as E = E(s11, …, s3N ; a),
where sαi, α = 1,2,3, denote the fractional coordinates of atom i,i = 1, …,N, and a is the 3 ×
3 matrix having the lattice vectors aα, α = 1,2,3 as columns (the volume V of the unit cell is
given by the determinant of a, and a−1 is the 3 × 3 matrix having the reciprocal lattice
vectors  as rows). Following Nosé and Klein,57 the 3 × 3 stress tensor π satisfies
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(15)

for α = 1,2,3. The application of this equation to the direct and adjusted components of the
energy recovers the previous expression. The reciprocal contribution includes a term already
present in the monopolar case, that originates on the a-dependence of the volume V and of
the kernel exp(−π2m2/β2)/m2. In the monopolar case the structure factor S(m) is independent
of the vectors aα, α = 1,2,3. The multipolar interactions, as shown by Eq. (8) and Eq. (9),
introduce a dependence of S(m) on a and these additional contributions need to be explicitly
computed.53

Finally, these equations are valid for total multipoles, i.e., for the general case where each
multipolar degree of freedom may have a permanent and/or an induced component. If there
are induced multipoles, the polarization energy must also be added to the total electrostatic
energy. Such polarization effects are further discussed in Section 3.4.

All these equations recover the traditional Ewald expression when the multipoles are set to
zero. The erfc function in the Ewald direct sum originates in Gaussian screening functions
centered at each point particle. The reciprocal sum is given by the Fourier series
representation of the solution to Poisson’s equation in PBC, using the sum of the
compensating Gaussians, again centered at each point particle, as a source distribution. The
relative contributions and computational cost of the direct and reciprocal sum can be tuned
by varying the width (the β parameter in the previous expressions) of the Gaussian
distributions. Narrow Gaussians (large βs) make the erfc in the direct sum decay faster, and
so a shorter cutoff is needed for the direct sum while more terms are needed in the reciprocal
space. Wide Gaussians have the opposite effect: the exponential in the reciprocal sum
decays fast and fewer terms are needed, while the direct sum needs more terms. In
particular, if the Gaussians are chosen to vanish (within a prescribed tolerance) at a standard
cutoff distance independent of system size N, conventionally taken to coincide with the
cutoff of the Lennard-Jones interactions, the direct sum is (N) but the reciprocal sum
becomes (N2). This convention has become standard in the particle mesh methods
described below, where the computation of the reciprocal sum is made to scale as (N
log(N)) with the use of Fast Fourier Transforms. For higher order multipoles, it is far more
convenient to use a short cutoff for the direct sum, and to carry most of the calculation in
reciprocal space.53

2.2 Particle-Mesh methods that use Fourier Transforms

The particle-mesh (PM) methods are based on the Ewald approach of splitting the
electrostatic potential and energy into a direct and a reciprocal part, but compute the
reciprocal part on a mesh. The direct part is made to scale as (N) via the use of a fixed
cutoff (generally, 8 or 9 Å), so that the overall scaling of the method is determined by the
reciprocal part. PM methods compute the reciprocal potential by solving Poisson’s equation
of a smooth charge distribution on a grid. This can be done via Fast Fourier Transform
(FFT) under PBC or via a discrete Poisson solver in real space under a wide variety of
boundary conditions. FFT PM methods include the particle-particle particle-mesh
method41,42 (P3M), the particle-mesh Ewald algorithm43,44 (PME), and the Fast Fourier-
Poisson45 (FFP) method.

All the FFT PM methods transform the reciprocal sum into a sum over coefficients of the
discrete Fourier transform of a gridded charge distribution, whose calculation is accelerated
to (N log N) via three dimensional FFTs. Although the methods can be used with different

Cisneros et al. Page 9

Chem Rev. Author manuscript; available in PMC 2015 January 08.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



switching functions41 (that give the relative weight of direct and reciprocal parts), the use of
Gaussian screening functions as in the original Ewald method and an optimal Green’s
function58 greatly improves the accuracy of PM methods. The methods differ in how they
transform the continuous charge density due to the sum of compensating Gaussians onto a
regular three-dimensional grid, and how they compensate for the loss of accuracy introduced
in this process. These methods have been carefully studied and compared in the
literature.3,42,59–65 Of these, the PME algorithm of Darden at al.43,44 is perhaps the most
broadly used. The method approximates the complex exponentials in the reciprocal sum by
an Euler spline interpolation, based on cardinal B-splines in the smooth PME.44 B-splines
are factored into three one-dimensional B-splines which can be differentiated analytically
via recursion relations. The forces are obtained analytically from the gradient of the energy
in the smooth PME method at very low cost, requiring only two FFTs (as opposed to four
FFTs for equivalent accuracy in the P3M method). The actual steps in the algorithms for
either P3M or PME are well-known and described in the literature, and so are the
differences and similarities between the two methods.3,42,60,61,63–65 The PME method for
molecular simulations with explicit solvent has been implemented in most of the major
biomolecular codes, such as AMBER,66 CHARMM,67,68 NAMD,69 GROMACS,70

DESMOND,71 DL_POLY,72,73 and others.

Another variant of the Particle Mesh approach is the Fast Fourier Poisson (FFP) method.45

This method directly samples the compensating Gaussians onto the grid, and avoids the loss
of accuracy from interpolation by the use of a clever identity, later used in multigrid
methods. Due to the cost of sampling the Gaussians, this method is not competitive for the
modest accuracies appropriate for present force fields. It appears, however, to be more
efficient than the above methods for simulations with high accuracy requirements.

Recent methodological advances include the use of non-uniform FFTs,74 and the Staggered
Mesh Ewald (StME) algorithm by Cerutti et al.,75 that uses an old technique named
“interlacing”41,76 to improve the accuracy of the smooth PME method by averaging the
results of two separate reciprocal space calculations. Here, the original mesh in the PME
method is replaced by two separate coarser meshes, each less than one-third of the original
size. The resulting StME improves the accuracy of the computed forces, and exceeds the
efficiency of the smooth PME with similarly optimized parameters. In addition, the method
also offers advantages for parallel implementations because it permits the use of coarser
meshes without requiring higher orders of charge interpolation and because the two
reciprocal space calculations can be run independently. The interlacing technique has also
been recently applied to the P3M algorithm77 with analytical and ik-differentiation. The
resulting algorithms compare favorably against the non-interlaced versions and against the
interlaced smooth particle-mesh Ewald algorithm. The success of interlacing is due to the
fact that it suppresses the aliasing effects introduced by the FFTs when calculating the
forces.

A promising combination of the PME and multigrid ideas has been recently introduced in
the form of the “Multi-Level Ewald” (MLE) method,78 that splits the convolution required
by standard P3M algorithms into a series of convolutions over slab-shaped subregions of the
original simulation cell. A convolution over the entire cell is performed using a much
coarser mesh. The MLE approximation does not seem to introduce significant errors
compared to the PME method. It is anticipated that the division of the single convolution
into many independent subproblems will be useful for extending the parallel scaling of
molecular simulations.

Goedecker et al.79–81 developed the particle-particle particle-scaling (P3S) algorithm for
Coulombic interactions in free boundary conditions. This is also an (N log(N)) algorithm
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that uses interpolating scaling functions for the representation of the charge density and FFT
for the Poisson’s equation. The algorithm is ideally suited for computing the potential of a
localized charge distribution.

Although parallel implementations are not within the scope of this review, we add a
comment here. The parallel scaling of the PME methods is usually limited by the scaling of
the three-dimensional FFT that requires an “all-to-all” communication. For typical meshes
on commodity networks, the number of messages to be sent and their associated latency is
the primary determinant of FFT communication time.71 To improve the overall parallel
performance the latency-sensitive FFT computations are typically interleaved with the
latency-tolerant (and dominant) cutoff limited calculations. The division of work can be
either explicit,70,82 in which case a number of processors can be dedicated to the reciprocal
PME computations, or adaptive. The latter approach is used in the NAMD program69 taking
advantage of its message-driven architecture. It allows for great scalability of the resulting
MD code.83

2.3 Particle-Mesh methods in real space

The multigrid method as first applied to biomolecular simulations46 is a PM method where
the equivalent of the reciprocal sum is computed on real space grids via multigrid
techniques.84–86 Multigrid methods scale as (N) with the number of particles, and has good
prospects for parallelization. Parallelization, however, is extremely dependent on the
computer architectures and therefore a constantly moving target. Recent breakthroughs in
the treatment of FFT allow the PME methods in codes such as NAMD and DESMOND to
be highly parallelizable and extremely competitive. At present, it is not possible to predict
how the FFT PM and the multigrid methods (or any other method, for that matter) will
compare in the next parallelization breakthrough. First introduced in the 1970s by
Brandt,84,87,88 multigrid methods can solve linear and non-linear elliptic partial differential
equations and integro-differential equations.86 Their appeal derives from the ease of
handling any sort of boundary conditions; great functionality in implicit solvent methods,
like Poisson-Boltzmann approaches;89–94 possible advantages in the implementation of
highly accurate, continuous electrostatics; possible adaptability in efficient multiple-time
step integrators that separate fast and slow interactions;95 etc. In particular, multigrid or the
related multilevel methods90–94 have been very successful in the static calculation of
electrostatic potentials for large, complex molecules in implicit solvent, specially with the
use of finite elements. In this article, we are interested in classical molecular dynamics (MD)
with explicit solvent and therefore review multigrid methods as applied to this particular
case.

Multigrid algorithms introduce successive auxiliary grids with larger mesh spacings in order
to eliminate all different frequency components of the error in Fourier space.84,87,88 The
resulting accelerated convergence on all length scales allows for the solution of elliptical
partial differential equations on grids with K points in (K) operations.84 For condensed-
matter systems, this translates into a truly (N) linearly scaling method. By comparison,
other well-known relaxation methods such as the Gauss-Seidel, the alternating direction
implicit method and the iterative Successive Over Relaxation (SOR) methods exhibit a
convergence rate that is lower than that of multigrid methods. For instance, it has been
shown that an optimal SOR method scales as (N4/3), because the cost per iteration also
increases as the size of the system increases.96

A first attempt to use multigrid in the context of biomolecular simulations consisted of an
adaptive multigrid technique implemented into the original FMM.97 This technique is
competitive with the FMM only at low accuracy (comparable to FMM with 4th-6th order
multipoles). Molecular dynamics was not implemented, but given what is known about lack
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of energy conservation for FMM with lower-order multipoles, this method was not deemed
to be an acceptable solution for large-scale MD simulations. Later, Sagui and Darden46

introduced a multigrid method appropriate for biomolecular MD simulations with explicit
solvent. Along general lines, the method divides the pair interactions into the short-range or
direct sum and the long-range sum using the partition scheme proposed in the FFP45

method, except that the solution of the long-range sum is carried out via real-space
multigrid. The latter consists of: (i) a charge assignment scheme, which both interpolates
and smoothly assigns the charges onto a grid; (ii) the solution of Poisson’s equation on the
grid via multigrid methods; (iii) the back-interpolation of the “reciprocal” forces from the
grid to the particle space, to be added to the direct and adjusted forces. For classical
calculations, the charge assignment scheme (i.e., the spreading of the charges on the mesh)
was found to be crucial for the performance of the method. To obtain reasonable accuracies,
the charge density on the grid must be as smooth as possible. This means that the charges
must be spread over a fairly large number of grid points, that can quickly become an
important time consuming part of the algorithm. The use of the FFP partition scheme, a
deferred defect correction scheme84,85,98 for the discretization on the grid, and Gaussians as
interpolating functions gives relative force errors of ~10−4, and relative energy errors of
approximately 10−5 with excellent energy conservation (this was denoted as the LGM
method).

Since then, several other variations of multigrid have attempted to speed up the
method.99–102 The challenge has been to obtain a method that is efficient, while preserving
accuracy, since relative force errors for reliable biomolecular MD trajectories need to be of
the order of 10−4. Goedecker and Chauvin100 proposed a modified multigrid V-cycle
scheme that employs wavelets and is more efficient than the standard V-cycle. Instead of
transferring the residue to the coarser grid levels, this scheme works with copies of the
charge density on the different grid levels that were obtained from the underlying charge
density on the finest grid by wavelet transformations. The authors show that halfway V-
cycles with the restriction and prolongation steps based on wavelet theory are the most
efficient approach for the solution of the three-dimensional Poisson’s equation on the grid.
Currently, it is not clear whether wavelets will significantly improve efficiency when
applied to charge and force interpolation.

Two later studies103,104 have applied convolutions to accelerate the charge assignment and
force interpolation steps in the LGM method (which simply used separability of three-
dimensional Gaussians to pre-tabulate one-dimensional Gaussians). Both schemes involve
computing an on-mesh charge distribution ρS(rm) by convolving the point charge
distribution ρ(r) with a charge spreading function S: ρS(rm) = ∫ S(rm − r)ρ(r)d3r. The set of
mesh points at which S(r) is nonzero (the support of S(r)) partially determines the
computational expense of the charge spreading step, with a large support considerably
increasing the cost of the calculation. These schemes effectively reduce the number of mesh
points at which the charge spreading function is nonzero by proceeding in two stages. In the
first stage, charges are spread onto the mesh, and in the next stage a convolution with a
Gaussian is performed to further spread the charges. Shan et al.104 used another Gaussian
(with a smaller support) for the first stage of charge spreading, and this same Gaussian was
used for the final interpolation to calculate the forces. Banerjee and Board,103 on the other
hand, used a set of weights on the grid, which then were further convolved with the second
Gaussian. These same weights are used for the back interpolation to compute the forces, but
in a different manner. On a single-processor, both convolution-based methods reduce the
computational burden by a factor of about two when compared to the earlier LGM
implementation. Parallelization studies were not reported in Ref.104 The convolutions
implemented in Ref.103 perform well in parallel environment, although the multigrid
implementation itself performed poorly in terms of communication in constrained parallel
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environments. A parallel multigrid implementation that appears more successful and is
available as an open source code has been released by Izaguirre et al.102

Among other novel applications of the multigrid method we find the Multi-Level Ewald
(MLE) method78 that combines PME and multigrid ideas and was briefly described before;
the implementation of multigrid in dissipative particle dynamics (DPD) by Groot;105 and its
application to higher-order multipoles by Sagui et al.53 Groot incorporated electrostatics into
DPD by solving for the electrostatic field locally on a grid with a multigrid method. The
method captures the essential features of electrostatic interactions and satisfies screening of
the potential near a charged surface and the Stillinger-Lovett moment conditions.106 The
method is specially applicable to (coarse-grained) simulations of mixed surfactants near oil-
water interfaces, or to simulations of Coulombic polymer-surfactant interactions. We discuss
the inclusion of electrostatic interactions in DPD in more detail in Section 4.3. Some recent
applications of the real-space multigrid method to quantum MD can be found in Ref.107

2.4 Fast Multipole Methods

Fast Multipole Methods (FMMs) are real-space methods that divide the simulation cell in a
hierarchy of subcells. Coulombic interactions are treated exactly for particles within the
same or neighboring subcells (unlike in the lattice sums), and the potential for the more
distant particles is evaluated through multipolar expansions. This splitting of the Coulombic
interactions is not a smooth function of r and thus, these methods need high multipolar order
for good energy conservation.108 Since historically the first hierarchical N-body algorithms
were developed for calculating gravitational forces in astrophysical simulations,109 the
original FMM110,111 also used NPBC. The method was soon extended to PBC in three
dimensions by Schmidt and Lee112 and Lambert et al.,113 who realized that the periodic
images have the same multipole expansion about their centers as the main box and they can
easily be shifted to the center of the main box. The PBC actually simplify the algorithm and
help to the load balancing in parallel implementations.114

Here, we review the original Fast Multipole Method of Greengard and Rokhlin110,115–119

only very briefly, as the method has been reviewed several times.3,120 The main elements of
the method are: (i) multipole expansions in terms of spherical coordinates; (ii) octal tree
constructions, which consist of successive subdivisions of the initial cell into self-similar
subcells in order to calculate the expansion of the far field created by the particles inside the
cell; (iii) translation operators for transformations of multipole expansions. The key of the
tree methods is to compute interactions between well separated clusters through multipole
expansions with rigorous bounds on the error. For a given precision ε, it is necessary to use

 terms in the expansion,117 where p is the multipolar order. The major hurdle
in the original FMM scheme is the conversion of multi-pole to local translations in the
“downward pass”, a transformation which requires approximately 189N p4 operations. Later
developments include the combination of multipole expansions with exponential or plane
wave expansions, which diagonalize the translation operators.117 A still later version of the
adaptive FMM for the Laplace equation uses compression techniques and diagonal forms for
the translation operators to accelerate the convergence of the method.121 For relatively

uniform charge distributions, the method scales as , where s
is the number of charges per box at the finest level.

The relative efficiency of FMM versus PM based approaches for biomolecular simulations
in explicit solvent is still an open question. In an older study by Pollock & Glosli,42 it was
concluded that the P3M approach is significantly more efficient than FMM for any
conceivable system size, despite the superior asymptotic scaling of the latter (O(N) versus
O(N log N)). They also discussed other advantages of the P3M method, the most obvious
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one being the ease of coding. Also, non-cubic periodic cells can be more easily implemented
with the particle mesh methods. Although parallel implementations of FMM are supposed to
scale better than P3M or PME with the number of processors, we are not aware of any
recent comparisons involving state-of-the-art codes. Skeel et al.99 carried out a comparison
between multigrid and FMM methods. Their results suggest that the multigrid methods are
superior to FMMs. The FMM approach, on the other hand, has found a niche in solid state
physics and scattering problems. The method, that has both non-adaptive and adaptive
versions, may be better suited to problems involving highly non-uniform particle densities,
since the tree approach lends itself well to an adaptive approach,122 whereas the grid size in
non-uniform distributions in the PM methods will grow faster than linearly with the number
of particles. However, local finer subgrids, especially in multigrid methods, can circumvent
this problem, as can the use of non-uniform FFTs.74 The truncation of the multipole
expansion in FMM results in a potential energy that is discontinuous as a function of the
positions of the charged particles. Specifically, there is a small leap in energy when a
particle moves from one FMM cell to another. Thus, FMM suffers from a lack of energy
conservation unless very high accuracy is employed,46,108,123 whereas the PM methods have
very good energy conservation properties. Efficient parallel implementations are discussed
in Refs.114,124 A comprehensive and insightful review of the method is given by Kurzak and
Pettitt.120 One of the most recent enhancements of the FMM method is given by the
automatic generation of highly optimized FFTs (that incorporate knowledge of symmetries
in the input arrays) for translations of multipole expansions in spherical harmonics.125 Also,
a very interesting recent development is the extension of an adaptive tree code and the FMM
to charge densities with high angular momentum.126 This is an ( ) method aimed at
classical molecular simulations with stochastic boundaries that may include polarizable
force fields and/or QM/MM potentials, and shows a lot of promise for the more
sophisticated force fields under present development. We also note that the FMM is the
method of choice in some electronic structure calculations, which are not reviewed here.

2.5 Local Methods

A different approach was followed by Maggs and Rossetto,127 who showed that the
Coulomb interaction is recovered in the thermodynamic limit of Maxwell electrodynamics,
where the magnetic field B and the current J produced by moving charges have vanished.
Since the electric field E obeys Gauss’ law, div E = 4πρ, in the static limit the electric field
satisfies E = −∇ φ and the electrostatic potential is the solution of Poisson’s equation ∇2φ =
−4πρ. This elliptic partial differential equation demands a global solution in space, which is
the origin of the high computational cost of electrostatics. In full electrodynamics, however,
electromagnetic waves propagate with finite speed of light c as Ḃ = −c curl E and Ė = c curl
B −4πJ. In contrast to the Poisson equation, solutions to these hyperbolic differential
equations require only local operations. Since Mawxell’s equations conserve Gauss’ law if it
is obeyed as an initial condition, Coulomb interactions can be generated by coupling charges
directly to the time varying electromagnetic fields, and then solving for their dynamics.

In the original Monte Carlo (MC) algorithm, the “electromagnetic field” is propagated via
diffusive dynamics through the lattice. Rather than quenching the curl E degrees of freedom
in the electric field to zero, one can perform an integration over them and obtain the
Coulomb interaction even though the electrostatic energy is greater than its minimum at
equilibrium. Performing this integration while maintaining Gauss’ law in each MC step
requires only local operations and obviates the need for computing long-range interactions at
every timestep.

This insight can be applied to MD by propagating Maxwell equations with a tunable speed
of light c and by coupling the resulting fields to the motions of the particles,128 with
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Langevin thermostats on both particle and magnetic field degrees of freedom. It is sufficient
to make c small enough for the quasi-static approximation to be valid (the static properties
of the system were shown to be independent of the value of c). The resulting equations are
integrated on a grid,128,129 and the integration verifies the presence of an effective
Coulombic 1/r interaction. The principal technical challenge lies in the efficient coupling of
charges and fields. As in all mesh based methods, the charges need to be interpolated from
the continuum onto the electrostatic grid to generate the current J, and the electric field must
be extrapolated to compute the electrostatic force. Similarly to the multigrid method, high
accuracy requires smooth interpolation over a large volume, which becomes the dominant
computational part of the algorithm. The current implementation130 uses truncated
Gaussians for the interpolation of the point charges to the electric grid with relative force
errors greater than 1 × 10−3 which are considered too large for atomistic biomolecular
simulations. The method is particularly suited to Poisson-Boltzmann models of solutions131

and has similar advantages to multigrid methods: (N) scaling, ease of parallelization,
flexibility for all types of boundary conditions, and the ability to handle inhomogeneous
dielectric environments.

2.6 Truncation Methods

Initially, long-range forces in macromolecular simulations were often dealt with by means of
truncation schemes in which the electrostatic interactions are computed up to some cutoff
distance.132,133 Such approaches were mandated by the lack of sufficient computer power to
carry out the simulations using an “infinite” cutoff or an Ewald method – at the time, the
difference between (N) vs (N2) or (N3/2) scaling was considered prohibitive. The idea
of truncating the electrostatic interactions is based on the facts that the Coulomb potential
decreases monotonically with atomic distance and that water provides high dielectric
screening. Truncation is also appealing because of its intrinsic simplicity, its ability to
handle all sort of boundary conditions, and the belief that the calculation of the interactions
has lower computational costs.

Unfortunately, simulations with electrostatics cutoffs soon revealed that they can lead to
incorrect results that depend on the truncation scheme and give rise to severe artifacts in the
structure, dynamics or thermodynamics of the system.133–136 Such artifacts have been
reported in simulations of water,137–143 peptides,144,145 DNA,134,135,146,147 proteins,148–154

and lipids.136,140,155–160 Truncation works better in homogeneous bulk systems, but the
presence of interfaces, especially when the dielectric constant changes rapidly across an
interface, can cause severe problems. For instance, truncation schemes in lipid membrane
simulations induce artificial structure at the scale of the truncation distance, and this results
in a change of large-scale properties such as the elasticity and phase behavior of the
membrane, which may lose its fluid characteristics and acquire an artificial gel-like
ordering.155,156,160 With an exact treatment of electrostatics. the correct structure and phase
behavior of the membrane are recovered. In bulk systems, the electrostatic screening length
has also been used in structural coarse-graining based on the potential of mean force to
justify the use of a system-specific cutoff.161

To alleviate many of the artifacts, various switching and shifting functions have been
introduced. Even then, artifacts may still be expected, unless the cutoff is large. Indeed, most
cutoffs methods seem to perform satisfactorily in the 20–30 Å range, but such large cutoffs
can put these schemes at a disadvantage with respect to state-of-the-art full electrostatics
implementations in major biomolecular simulation packages, where focused efforts have
been invested in parallelizing the FFTs subroutines. Independently of the cutoff method
(including most of the switched and shifted schemes currently in use), simulations with
cutoffs smaller than 15 Å are generally not recommended.
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As more artifacts of the cutoff schemes became known, newer, more sophisticated schemes
were introduced; along with other insights, such as the artificial layering of water induced by
group-based cutoffs.162 Most of the new truncation schemes are based on the work of Wolf
et al.163 Since in the straightforward truncation and shifting schemes, the truncation sphere
inside the cutoff radius was found to be not electro-neutral, charge neutrality through a
neutralizing term has been imposed in the new schemes. Although scaling remains (N), the
new functions contain an erfc-function and a damping parameter that has to be adjusted
together with the cutoff radius. Methods based on the Wolf et al. functions include
corrections for energy conservation by Zahn et al.,164 and various versions of the damped
shifted force scheme165,166 and charge-neutral condition.167

The performance of truncation schemes has been compared to Ewald summation and Ewald
summation based methods in several works.166,168–171 In the case of bulk systems, the new
truncation methods showed encouraging behavior. However, when the systems were made
more inhomogeneous, the simulation behavior deviated more from the correct
solution.166,171 In addition, the performance depends strongly on the choice of
parameters.171 One study that addressed a system with interfaces168 concluded that these
new truncation methods are suitable for simulations of lipid bilayers. We would like to point
out, however, that this particular study remains inconclusive: the bilayer simulations were
performed for only a single nanosecond. This is such a short time that the lipids do not have
time to move around and mix. At the very minimum, simulations of tens of
nanoseconds155,156,160 are required for that, since typical diffusion coefficients for lipids are
~ 10−8 cm2/sec.

Other studies have looked at protein folding.170,172 For a 23-residue protein, a reaction-field
method with a cutoff of 14 Å gave similar results to PME for the “committer probability”
that a protein conformation will commit to the native state before it commits to the unfolded
state.172 Another study looked at the folding of the villin headpiece.170 The authors found
that force-shifted truncation schemes tend to subtly shift the balance between hydrophobic
and hydrophilic interactions, favoring the more compact structures. The effects do not seem
too dramatic in the folded state but increase for the unfolded state, where the force-shifted
truncation scheme increases the helicity and compactness of the structure. Unfortunately the
effects of truncating both the Lennard-Jones and the electrostatic interactions at the same
time are rather entangled, since truncating the Lennard-Jones potential is a well-known
source of additional errors. Also, not all biomolecules are equally sensitive to the treatment
of electrostatics. In particular, the first fully solvated simulations of the folding of the villin
headpiece were carried out with a crude 8 Å residue-based cutoff applied to the long-range
nonbonded protein-water and water-water interactions (both electrostatic and van der
Waals).173

Among the most recent truncation schemes are the linear-combination-based isotropic
periodic sums (LIPS)174 and the zero-dipole summation method.175,176 The LIPS method is
a variation of the isotropic periodic sum (IPS) of Wu and Brooks,177,178 where the effects of
the approximated long-range interactions are included in the potential function through
“imaginary” images.177,178 The IPS method comes in two flavors: the IPSn method for point
charges, and the IPSp method for polar molecules. The IPSp method was created to correct
failures of the IPSn method when applied to polar molecules. However, unless extremely
long cutoff radii are used, the IPSn method does not properly describe water-vapor in
interfacial systems and its convergence is poor. The LIPS method in principle addresses
some of these difficulties by estimating both homogeneous and heterogeneous systems for
nonpolar and polar molecules.174 The method is much more accurate but it still needs 22–30
Å cutoff radii for convergence. The zero-dipole (ZD) summation method by Fukuda et
al.175,176 represents another truncation scheme that seems to perform relatively well.
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Building on previous shift truncation schemes, the authors obtain an energy formula that
employs a pairwise function inspired by the Ewald direct sum, such that the neutrality of the
charges and the dipoles is enforced in a subdomain inside the cutoff sphere. The method
shows good convergence in the energy and the dielectric constant of bulk TIP3P waters for
several values of the damping parameter. The radial distribution function also shows good
agreement, with the typical oscillations at the cutoff (which seem of considerably smaller
magnitude than in other schemes). The distance-dependent Kirkwood factor, that was
previously known to show a hole at the cutoff radius, increases properly with radial distance
as expected. This force, however, is exactly the same direct force as given by the Ewald
method, which clearly would require relatively large cutoffs, since the reciprocal component
is missing. It is not clear how the method will apply to cases where charge or dipole
neutrality cannot be achieved (such as one single ion in a water bath).

At present it looks as if many of the artifacts associated with the more elemental cutoff
methods of the past have been corrected, but it is clear that there are several important issues
that need to be addressed. Here, we list the main ones:

1. Damping parameter: As discussed, the better performing truncation
methods163–167 use a damping parameter (the potential is a variation of the Ewald
direct sum, and the force is the Ewald direct force plus a constant), and the results
do depend strongly on it. In many cases, the ideal value of the damping parameter
appears to be system-dependent.166,171 In addition, the accuracy obtained for a
given parameter could vary as the conformation of the system varies, which is not a
desirable feature.

2. Cutoff radii. To avoid serious artifacts, large cutoff radii are needed; most methods
seem to perform well with cutoffs in the 20–30 Å range, but results with cutoffs
shorter than 15 Å should be closely scrutinized. Obviously, the size of the cutoff
has to increase with the size of the solute, as no one wants the solute to experience
the artifacts at the boundary, even if they are small. Also, there may be “internal
awareness” of fixed charges across the solute, especially since biomolecular solutes
tend to have rather low dielectric constants. (The cutoff radius will increase with
the size of the solute up to a certain value beyond which it will not make a
difference).

3. Definition of “quantitative”. Another issue which we identified in several papers
that claim quantitative results, is the lack of a proper “exact” model against which
to measure such results. Ideally, one would like for example an Ewald summation
with an enormous number of terms, or an infinite cutoff. Since this is often not
practical, most researchers fall back into some Ewald-based lattice method, such as
the PME. However, these lattice methods are not exact; their accuracy depends on
the parameters chosen and this has to be carefully considered. For instance, it is not
unusual to confuse the tolerance in implementations such as AMBER or TINKER,
as the accuracy of the PME calculation. It is not: given a tolerance ε and a cutoff
radius Rc, the algorithm will determine a damping parameter β such that erfc(βRc)/
Rc < ε. The total error will be determined by this, by the order of the spline
interpolation for the reciprocal space, and by the size of the mesh of reciprocal
space, which are not always reported, resulting in pseudo-exact reference
calculations whose accuracies can vary greatly from one paper to another.

4. Cost of the calculations. Meaningful comparisons between truncation methods and
a full treatment of electrostatics have become inextricably linked with issues of
computer performance and parallelization. At present, advancements in computer
architectures coupled with algorithmic developments have made possible the
inclusion in most MD packages of full long-range interactions, which can now be
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computed at a cost that is smaller than that of a typical cutoff calculation. This
situation, however, may change as parallelization paradigms shift along new
technologies. In particular, Graphic Processing Units (GPUs) have the ability to
switch the balance, such that even very large cutoffs are feasible (of course,
increasing the cutoff also increases the communication costs, though not as badly
as those for FFTs).

5. System properties, presence of interfaces and inhomogeneities. Most of the tests
have been performed using liquid systems that are homogeneous or close to being
homogeneous. Inhomogeneities and interfaces can (and often do) render cutoff
methods a questionable choice. A common example of such systems in the
biomolecular context is the lipid bilayer:155,156 the water phase has a dielectric
constant close to 80, but inside the bilayer interior the value is only about 5. Carbon
nanotubes and the interiors of membrane proteins are examples of other such
systems.179,180

6. Domain of validity. The domain of validity of the truncation methods needs to be
clearly determined, as it is human nature to use a tool developed for a particular
application for a completely different set of problems. Here we give three
examples, where truncation methods may need some extra work, or the newer
versions may need to be evaluated very carefully. First, consider the case where the
interactions are not spherically symmetric, such as when dipoles and higher order
multipoles are included. This case is further discussed in Section 3.1. Second, in
QM/MM methods. For instance, it has been shown that while the association of
oppositely charged ions is well-described by an Ewald-based method under PBC or
by full electrostatics evaluation under spherical boundary conditions, an
electrostatic cutoff with either boundary condition causes an artificial and sharp
decrease in the potential of mean force at large ion separations (where it should be
zero).181 This would result in artificial overstabilization of oppositely charged ions
in QM/MM calculations. Similar problems are seen in the association of ions.181

Third, in non-equilibrium phenomena, such as heat transfer in water. For instance,
the thermal conductivities of common water models were recently compared using
equilibrium Green-Kubo (GK) measurements and non-equilibrium MD
(NEMD).182 Before this study, there were conflicting reports on the thermal
conductivity of various water models, between groups that used NEMD and a
group that used the GK formula. This recent study showed that the source of
disagreement was the use of a cutoff for the electrostatic interactions in the GK
formalism.182 The authors also showed that various correlation functions, such as
the heat flux potential energy self-correlation, show strong dependence on the
cutoff radius (with 20 Å still not converging to the infinite radius limit182). Indeed,
the need to include the full long-range electrostatics contributions to the heat flux
has been discussed in several studies of liquids.183–185

To finish this section, we will review reaction field methods, as they represent a popular
option offered in most biomolecular simulation packages. Reaction field methods can be
considered as a special case of truncations schemes: the pair-wise interactions are computed
only up to a cutoff, but the effect of the neglected electrostatic interactions are included in a
mean-field manner.

2.6.1 Reaction Field Methods—Even with the speed-up provided by the state-of-the-art,
full electrostatics methods, more efficient algorithms for the computation of electrostatics
are always in great demand. One particular popular choice that represents a compromise
between the full evaluation of pair interactions and implicit methods is the reaction field
method.
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There are several variants of the reaction field method,186–190 but the basis for all of them is
Onsager’s original idea from 1936191 based on a molecule in a cavity. Molecules are
polarizable and cause the surrounding dielectric to become polarized. This polarization then
creates a reaction field that acts on the molecules in the cavity. The Onsager form is not used
directly in simulations, but most implementations are based on the formulation of Barker
and Watts from 1973.186 In brief, the cavity has a size given by a cutoff radius rcut for each
atom. Outside this, the medium is described by a dielectric constant εRF. The electrostatic
potential within the cavity is then given by

(16)

Here, the first term is the direct electrostatic interaction between the atoms that are inside the
cavity (rcut), the second term is the actual reaction field term, and the third term shifts the
potential to zero at rcut. The last term is usually added to remedy problems that arise from
particles entering and leaving the cavity which leads to problems with the conservation of
energy. The reaction field method, in the above form, has been implemented in virtually all
of the classical MD packages, and generally performs well enough for many properties, but
not always. For example, the structural properties of membranes are reasonably well
preserved but the dynamical aspects may present artifacts.156 We note that there are several
variants of the reaction field approach.187–189,192

A recent assessment of simulation protocols based on membrane proteins has shown that the
reaction field method has serious problems in non-homogeneous systems and at worst can
lead to artifacts such a strong continuous flow of water through nanoscale protein
channels.180 Only using an Ewald-based method together with an appropriate combination
of other parameters and thermostat restores the physically correct situation. The failure of
the reaction field method, as implemented in most software, is easy to understand in
qualitative terms. Beyond a cutoff (typically 1.4–2.0 nm), the electrostatic interactions are
computed through a mean-field approximation with the dielectric constant as the main input.
When a system is very inhomogeneous such as in the case of membrane proteins or carbon
nanotubes, such an approximation is not valid. In systems with carbon nanotubes or
membrane proteins connecting two water reservoirs, the result is typically an unphysical,
continuing flow of water.179,180 Another assessment of reaction-field electrostatics showed
that group based cutoffs for reaction-field electrostatics in simulations of DNA performed
badly whereas atom-based cutoffs provided reliable results.193 These results show that more
studies on these issues are needed.

The latest development in reaction field methods is the so-called “image-based reaction
field” method of Lin et al.190 We are not aware of independent tests of this method but the
idea is very interesting: the use of FMM together with the multiple image charge-method for
direct electrostatic interactions. Their approach uses Gauss-Radau quadratures and the
Neumann image charges and hence differs from the Barker-Watts method.

2.7 Charge-group methods

In addition to the summation method for the electrostatic problem, many software packages
contain additional methods to speed up the simulation. One such method is the so-called
charge-group or group-based cutoff method. The idea of charge-groups is simple:
Neighboring atoms belonging to a molecule are assigned to a group such that the net charge
of the group is zero. Net zero charge is typically needed to avoid artificial multipole
interactions. Then, instead of computing distances between all charges separately, the
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geometric centers of the groups are used for distance calculation. If this distance is less than
the cutoff, electrostatic interactions between all the charges belonging to the groups are
computed; if it is larger, no interactions are computed. It is easy to see that this procedure
can give a large speedup since the number of pair calculations is significantly reduced: If the
charges of a TIP4P water molecule are grouped together, there is no need to compute 16 pair
distances – only one is sufficient. Since the partial charges within each TIP4P molecule are
close to each other, grouping is well justified. In addition, since virtually all atoms have
partial charges, charge-groups are a very appealing method to increase efficiency. A
possible problem is that when the groups are too large, unphysical artifacts may arise.
Hence, the spatial size of charge-groups is of primary concern and a bad choice of charge-
groups may lead to unphysical behavior.

Charge-groups can be used with cutoff, reaction field and Ewald-based methods. The net
charge of the groups can have quite an impact in lipid bilayers when using the cutoff
methods (for which neutral groups are recommended), but not when using the PME
method.159 If the groups are not carefully chosen, problems still arise even when PME and
reaction field electrostatics are used.179,180 Identification of possible artifacts is difficult
because a bad charge-group choice does not render the simulation algorithm unstable: One
must use basic physical properties and reference simulations to validate the choice, and in
general it is not enough to use only one physical property. There are three major
determinants for the validity of the simulations when using the charge-group approach: the
spatial size of the group, the net charge of the group and the update frequency for the
reciprocal sum.

In addition to the speedup, one of the possible advantages of the group-based cutoffs over
atom-based cutoffs was that it might be possible to avoid artifacts arising from unaccounted
multipolar interactions. While the idea is attractive, potential problems were pointed out
already by Steinbach and Brooks133 almost two decades ago. In particular, based on their
NVE simulations, they pointed out that a charge-group based cutoff leads to significant
unphysical heating. Such heating is masked by thermostats in NVT simulations.

The GROMACS70 software package together with the GROMOS force-field194 is able to
exploit charge-groups to speed up the simulations. Other software and force-fields, such as
CHARMM68 and AMBER66 also use charge-groups. In the following, we discuss
GROMACS/GROMOS since we have recently tested it in detail.179,180 Similar issues may
occur with other software and force-field combinations but we are not aware of detailed
tests. GROMACS implements charge-groups in an elegant way and can give a speed-up of
about an order of magnitude.70 It also has the option of choosing the frequency for updating
the reciprocal sum in the PME method. This can also provide an additional significant speed
when combined with charge-groups. Updating the long-range part every 10 time steps is
generally a safe choice in simulations of membrane bilayers, but the situation can be
drastically different for studies of transport of molecules through nanotubes and proteins.180

The only way to avoid artifacts is to examine the physical validity of the results and,
preferably, to compare them with simulations using conservative or no updates. In addition
to these issues, it has also been shown that the reaction field is not stable for DNA
simulations when group-based cutoffs are used.193

2.8 Treatments and artifacts of boundary conditions

The effect of the boundary conditions on the simulation results has been a contentious
subject for about four decades. Even with current computer capabilities, one can only
simulate an extremely small sample of a given bulk system and, in order to reproduce bulk
behavior, a careful treatment of the boundary conditions needs to be implemented. If a
liquid-vacuum or liquid-continuous solvent interface is used (for instance, a solute immersed
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in a spherical water cluster that is surrounded by vacuum or implicit solvent), then many
issues arise195–202 with respect to the proper potentials or reaction fields needed to prevent
solvent evaporation of the cluster, artificial ordering of the solvent molecules at the
interface, and spurious surface tension effects and pressure increase. These fields must
restore the long-range nature of the electrostatic interactions and avoid the electrostatics
discontinuities at the interface. Ewald-based methods under PBC, on the other hand, avoid
all these issues at the cost of introducing an artificial periodicity in the system. Although
other methods have been proposed to diminish the artificial long-range periodicity of the
system, such as hyperspherical boundary conditions,203–206 these methods have not been
used in mainstream applications.

Since eliminating surface effects in solvent clusters has proven rather elusive, a considerable
amount of work has been dedicated to the nature and the magnitude of the “periodic
artifacts” in biomolecular simulations using Ewald-based methods and PBC. In order to
minimize these problems, it is crucial to account for finite-size effects and self-
interactions.207 These days,such analytical corrections are standard in most codes, but in the
past, reported periodic “artifacts” were later traced down to the lack of these correction
terms. In addition, the conditionally convergent nature of the Ewald series results in a
surface term39 that depends on the dipole moment of the unit cell and the dielectric constant
of the surrounding medium, and that vanishes when the surrounding medium has an infinite
dielectric constant (“tin-foil” boundary conditions). The use of the surface term has been
recommended for calculating the dielectric permittivity, dipole time correlation functions
and the Kirkwood g factor.40 Once all these correction terms are in place, the remaining
possible artifacts are expected to diminish with increasing solvent around the solute, as the
interaction of the solute with its periodic images vanishes. Systems with a small amount of
solvent and/or a solvent with low dielectric constant are more susceptible to periodicity-
induced artifacts, as the interactions of the solute with its images will not be screened
enough. It is hard to come up with a prescription on how much water to add around a solute,
since this will be rather system-dependent. Thus a globular protein that is not charged (and
stays folded) will generally require less water than an equally sized protein that has net
charge and/or unfolds/changes shape. Accordingly, the width of the layer of water around
the solute can vary from 8 Å to a safe 12–15Å thickness. Unless there is plenty of solvent,
the shape of the cell is also important. For example, a tetragonal lattice with a high aspect
ratio (unequal side over one of the equal sides) might initially accommodate well a long
segment of DNA, but it might hinder its rotation along axes perpendicular to the long side.
In cases like this, it is better to choose a more “spherically symmetric” cell such as a
truncated octahedron.

Under the previous conditions, the use of Ewald techniques provides accurate, mainly finite-
size independent calculations of thermodynamics solution properties. For instance, many
investigators believed that the long-range periodic artifacts act to stabilize the system, i.e.,
that the Ewald summation suppresses conformational fluctuations. However, crystal
simulations comparing the use of PME versus truncation schemes with short (9 Å) and long
(18 Å) cutoffs showed that even though the Root-Mean-Square (RMS) from the crystal
structure is slightly smaller, the RMS fluctuations obtained with the PME method are larger
and in better agreement with experimental B-factors than those obtained with the long cutoff
(the short cutoff is unstable).148 The Ewald potential has clear anisotropies; for instance a
single ideal dipole will behave very differently when it is totally isolated from a dipole that
is placed in a unit cell and then repeated periodically. Smith and Pettitt208 studied the
rotational potential energy surface for a linear dipole, a quadrupole and the BPTI protein.
They showed that the transition between hindered rotation (due to periodic anisotropy) and
free rotation involves an energy change below kBT for solvents with a reasonably high
relative permittivity.
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In addition to the entirely electrostatic corrections, other thermodynamic corrections that
depend on the temperature, salt concentration, dielectric constant, and other thermodynamic
properties of the system may be required,209,210 as their absence may result in apparent
“periodic” artifacts. For instance, probably a few of the reported artifacts in the literature can
be attributed to the absence of complete sampling in systems with explicit solvent under
PBC (which are far more expensive to sample exhaustively than implicit solvent systems). A
recent example involves an octo-alanine peptide with charged termini in explicit solvent, for
which severe effects due to the use of Ewald sums were reported in the past.211 Later, more
extensive simulations of the system212 have shown that there are no periodicity-induced
artifacts. The study indicates that incomplete sampling is likely to affect the results to a
much larger extent than any artifacts induced by the use of Ewald sums. These conclusions
seem to be supported by other long-time simulations.213–215 Another example is provided
by the free energy maps of an extremely simple system such as zwitterionic tri-alanine,
which illustrates how careful, extensive sampling of the system with explicit solvent is
needed in order to reproduce the correct free energy map within a given force-field
model.216

Free energy maps have been used as a test for the different electrostatic treatments. Free
energy studies are rather tricky and challenging for all but the simplest systems. However,
the effect of boundary conditions on calculated free energies has also been studied for
various complex systems.217 In particular, ion hydration free energies provide simple
systems to study these effects, and have been shown to exhibit remarkably system size
consistency207 in Ewald calculations in high dielectric solvents. For instance, with
electrostatics and thermodynamic corrections included, free energies of solvation of small
molecular ions have been computed accurately even when only relatively few waters
surround the ion,207 For low dielectric solvents, analytical, finite-size corrections, that also
include the size of the ion, have been derived209,218–220 for ionic charging free energies,
(however, these corrections have not been extended to more complex systems). The general
conclusion of these studies is that Ewald-based treatments combined with PBC can get
correct ion hydration free energies from molecular calculations that lead to well-
characterized results appropriate to the thermodynamic limit.209 Notice that size-consistency
is a necessary but not a sufficient condition for correct ionic charging free energies. For
instance, these energies were computed with both Ewald in PBC and spherical boundary
conditions.221,222 Size consistent results were obtained in both cases, but the results differed
substantially. The difference between the two boundary conditions was traced to the electric
potential drop across the vacuum-water interface in the spherical cluster. Using Gauss’ law
together with the spherical symmetry, a rigorous treatment of the charging process in cluster
interiors is possible. The results for a variety of simple ions using this treatment are in
quantitative agreement with those using Ewald summation, even when low dielectric
solvents (with system size corrections) were used.

On the other hand, for truly non-periodic systems with a strictly localized charge distribution
such as isolated molecules or polymer chains, or partially periodic systems such as crystal or
liquid slabs, periodic boundary conditions are no longer applicable and the application of
plane wave methods for the solution of Poisson’s equation under free boundary conditions is
not accurate. One of the best approaches to deal with these systems is given by the particle-
particle particle-scaling (P3S) algorithm of Goedecker et al.79–81 The algorithm uses
interpolating scaling functions based on wavelet theory for the representation of the charge
density and FFT for the Poisson’s equation, resulting in an (N log(N)) scaling. The forces
of the P3S method are analytical derivatives of the energy which guarantees energy
conservation. The method competes well with the FMM for systems with up to 105

particles; for larger systems, the FMM method may become more efficient.
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3 Accurate representation of the electronic charge

3.1 Charge assignment schemes

Accurate representations of the interactions of the molecular electronic clouds can be
achieved through the inclusion of higher-order multipoles, polarizability, and continuous
electrostatic functions. Of course, the gain in accuracy has to be balanced with the increased
simulation cost, and new algorithms are needed in order to propagate the more physical
representations of the electronic density in a classical simulation in a cost-effective fashion.

Electrostatic interactions have traditionally been modeled using an atom-centered point
charge (‘partial charge’) representation of the molecular charge density. The most popular
methods for extracting charges from molecular wavefunctions are based on fitting atomic
charges to the molecular electrostatic potential (MEP), computed with ab initio, density
functional theory or semiempirical wavefunctions. The charge fitting procedure consists of
minimizing the squared deviation between the Coulombic potential produced by the atomic
charges and the MEP.7 These non-bond potentials are then expressed as a sum of spherically
isotropic atom-atom potentials. Such representations are believed to be an important source
of error in current force fields:6 mathematically this charge assignment is an under-
determined problem since innumerable charge distributions can reproduce the MEP outside
a surface that encloses all the charges, which is particularly problematic for the “buried
charges” in atoms well inside the molecule.

Improvements in the MEP fitting procedure include applying restraints to the MEP.223

Another possibility is the enhancement of the numerical stability via a weighting function
based on atomic densities to filter points that are too close or too far to the nuclei.224 This
function is employed to avoid the discontinuity encountered in earlier methods. Other
methods that have been developed or employed to calculate partial point charges include the
wavefunction mapping Class IV and Class V models,225–229 natural bond orbital
analysis,230 topological analysis based on quantum theory of atoms in molecules,231,232 the
electrostatic potential expansion and analysis,233–235 maximally localized Wannier
functions,236–240 and the full density screening (FDS) method.241

The fit to the MEP can be improved either by adding more charge sites8 or by including
higher order multipoles at the atomic sites or bonds. The use of off-center charges and/or
higher order atomic point multipoles can significantly improve the treatment of
electrostatics6,231,232,236,242–246 and numerous schemes have been developed to enable the
partitioning of the electronic cloud into multipoles.5,231,236,242,247–253 Figure 1 illustrates
the improvement in the classical MEP for a ethylene molecule using classical multipoles
computed through maximally localized Wannier functions254 (WFs). WFs are obtained from
a localization procedure and provide a chemically intuitive way of partitioning the electronic
charge. They are distributed in space, which allows for a good physical representation of the
charge density in terms of the different multipole moments.236 In addition, the Wannier
Centers are intimately related to the polarization255–257 of a molecule. The different
multipole moments are efficiently calculated within the WF formalism. In particular, the
ethylene molecule shown in this figure is characterized by six WFs: two associated with the
C–C bond, and four associated with the C–H bonds. Figure 1 shows the MEP as obtained
from a quantum based calculation (left); from a representation that only has charges
(middle), and from a representation that has charges and quadrupoles (right). Notice that the
dipoles for a Wannier function representation are zero, because the Wannier centers sit on
the center of charge. Recently, it has been shown that the fit to the MEP can be further
improved when a comprehensive set of local reference axis systems that exploit all the
molecular symmetries is introduced, and when the atomic multipole moments are fitted to
the quantum mechanically derived electrostatic potential.258
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Even with these improvements the fit to the MEP remains poor in regions near the atomic
nuclei. These include regions where the charge densities of interacting fragments overlap,
e.g. hydrogen bonding regions. As a consequence, the electrostatic interaction energy must
be corrected for “penetration” effects at close range9 The penetration error can be
ameliorated to some extent by the use of damping functions that model the “de-screening”
effect resulting from the charge density overlap, and several empirical or Gaussian–based
models have been proposed.259–264

In addition to fixed distributed multipoles, an enhanced accuracy requires the inclusion of
polarization and, when possible, of the effect of charge density overlap. Polarization is the
result of the change in the molecular charge density due to the presence of other molecules
or to changes in the geometry of the molecule. These effects are known as inter- and intra-
molecular polarization respectively,6 and may be modeled by the implementation of an
explicit polarization energy contribution. Several methods have been developed including
the Drude oscillator,265,266 fluctuating charge267,268 and induced dipole model.269–271 This
has given rise to several polarizable force fields272–276 that use “point” objects (point
charges, point dipoles) to represent polarization effects. A review of polarization is given in
Section 3.4.

3.2 Point Multipoles

The distributed multipole analysis first introduced by Stone6 assigns distributed multipole
moments to several sites in the molecule (i.e., atoms and bond midpoints), and gives a more
accurate representation of the electrostatic potential than one-center, molecular multipole
expansion. The generalization of Ewald summation to atomic multipoles up to quadrupoles
was given by Smith.49 Since then, a few groups50–53,270 have extended the Ewald method or
reaction field methods277 to take into account multipoles at the atomic and other point sites.
However, the multipoles greatly increase the cost of calculations within the Ewald
framework. For instance, the Ewald formalism generalized to charges, dipoles and
quadrupoles costs approximately 100 times more than a representation with only charges,
thus rendering multipolar representations in biomolecular simulations prohibitively
expensive. In order to surmount this difficulty, PME-based methods have been introduced.
A first approach for large-scale biomolecular simulations was introduced in 2000 by
Toukmaji et al.,50 who developed –in addition to the classical Ewald treatment – a PME
based treatment of fixed and induced point dipoles. Both methods have been implemented in
AMBER vs. 6–12. The PME based implementation is quite efficient, being less than a factor
of two more expensive than a calculation including only charges. Since then, a polarizable
empirical force field based on the classical Drude oscillator model278 was implemented in
CHARMM in 2005, and further dipolar implementations have been carried out for the
PME279 and the P3M280 methods. Even these very simple representations of polarizability
make a big difference for improving the modeling of various biomolecular
systems.266,281–295

A systematic and efficient implementation of higher order multipoles in a Cartesian tensor
formalism was introduced by Sagui et al.53,54 There, the long-range electrostatic interactions
are divided in two sums according to the usual Ewald scheme: the direct sum, which
evaluates the fast-varying, particle-particle interactions, considered up to a given cutoff in
real space; and the “reciprocal” sum, which evaluates the smoothly varying, long-range part
of the interaction. When implementing multipoles, one has to take care of additional physics
that is not present in the usual treatment of charges. First, the higher-order multipoles
produce additional contributions to the reciprocal virial, which arise from the dependence of
the structure factor on the reciprocal lattice vector. Second, all the multipolar components
that appear in the expressions of energy, forces, etc. are given in a global coordinate system.
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It is therefore necessary to transform the local multipole moments –defined in reference to a
molecular framework– to a global framework before the calculation of the electrostatic
potential starts. This is achieved by defining “frames” (local orthogonal coordinate systems).
Third, to carry out MD, the torques produced by every multipole need to be converted into
atomic forces.53 In the PME-based Cartesian multipole method, the direct part was greatly
accelerated using special techniques,296 while the reciprocal part was implemented in three
different ways: using an Ewald scheme, a PME-based approach and a multigrid-based
approach. The standard matrix implementation of multipole interactions up to hexadecapole-
hexadecapole costs three orders of magnitude more than charge-charge interactions. Instead,
due to the use of the PME and the factorizability of B-splines, the multipolar PME is very
efficient. By transferring more of the computation of the interactions to reciprocal space and
using a small cutoff for the direct sum, it is possible to preserve the accuracy of the
calculations at a moderate cost. In fact, a calculation of interactions up to hexadecapole-
hexadecapole costs less than a factor of 9 than a regular AMBER implementation with only
charge-charge interactions for standard accuracies. This code has been adapted to achieve a
fast implementation of the AMOEBA (Atomic Multipole Optimized Energetics for
Biomolecular Applications) force field of Ren and Ponder.270,297–299 The force field
includes fixed atomic multipoles up to quadrupole level as well as inducible atomic dipoles
using a Thole damping model. A PME-based implementation of the multipolar code for
AMOEBA has been released in AMBER vs. 9–12.

It is generally believed that because higher-order multipolar interactions decay faster than
the monopolar case, it is equally accurate and more efficient to use a cutoff for these
interactions. In our experience, this is rarely the case. First of all, the use of cutoffs may be
accurate for highly screened systems and definitely faster than the use of Ewald
summations, but it is not faster than PME-based implementations. For instance, a
comparison53 between the two approaches was performed for a water bath of over 4,000
water molecules whose electrostatic interactions included all terms up to hexadecapole-
hexadecapole. A PME-based calculation for which most of the interaction is computed in
reciprocal space was carried out to obtain a relative RMS force error of ε = 5 ×10−4. Then,
the calculation was repeated using a standard cutoff of 8 Å for the Coulomb summation,
which turned out to be 6 times more expensive and with a force error two orders of
magnitude larger than the complete PME-based calculation. It is fair to argue that the cutoff
should only be used for quadrupoles and higher order multipoles. A similar calculation
where the charges and dipoles of the model were set to zero (so that all the interactions were
quadrupole-quadrupole or higher order and converged absolutely) resulted in a relative RMS
force error greater than 0.01 at a 7 Å cutoff and about 8 ×10−3 at an 8 Å cutoff. The run with
the 7 Å cutoff costs approximately three times more than the optimized PME which uses a
3.6 Å cutoff for the direct sum and moves most of the calculation to reciprocal space.

Artifacts associated with the use of cutoffs for dipolar interactions are well-documented in
the literature. Just as an example, MD simulations of polarizable water show that an
ordinary spherical cutoff overestimates the induced polarization, resulting in an
overestimation of the interaction energy, a sharper liquid structure and slower dynamics, as
compared to the Ewald summation and reaction field methods277 (with the latter showing
more size effects than the Ewald summation). The arguments presented in our discussion,
however, do not preclude situations in which a cutoff approach may find a proper niche. It is
well-known that neighboring molecules in the condensed phase interact cooperatively
thereby enhancing the long-ranged nature of the dipolar effects and their correlation
functions. A different situation is presented by molecules in the gas phase. A recent MC
study of various dipolar and hydrogen-bonding small molecules in the saturated,
superheated and supersaturated vapor phases compared the Ewald summation (the method
of choice for MC simulations) with a spherical truncation scheme based on neutral
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groups.300 It was found that for densities not too close to the critical density, the results
using the group-based spherical cutoff were statistically identical to those obtained with the
Ewald summation, albeit at a considerably lower cost. A review of simple dipolar fluids
bearing an electric or magnetic dipole moment under various boundary conditions and with
different rheological properties is given in Ref.301

3.3 Continuous representations of molecular charge density

The use of distributed point charges or point multipoles for the description of the molecular
charge density fails at medium to short range due to the so-called penetration error.6,302 The
penetration error can be avoided by an explicit representation of the charge density by
means of continuous functions. Continuous functions provide a natural description of the
charge density overlap at close distances, as well as increased accuracy for the calculation of
electrostatic properties and interactions.

Several methods have been proposed to improve the calculations required by a continuous
description of the molecular charge. One of these methods involves Gaussian multipole
functions,303 which models the charge density of each fragment by means of distributed
atom-centered spherical Gaussian multipoles. These multipoles are obtained by expanding
the ab initio density of a fragment using the Distributed Multipole Analysis6 (DMA),
modified so that the expansion basis corresponds to Gaussian multipoles. Due to the
correspondence of the Gaussian multipoles to distributed point multipoles obtained with
DMA these two approaches may be combined to increase the computational efficiency.9 For
example, the electrostatic interaction of a formamide-formaldehyde hydrogen bonded dimer
was computed with varying multipole orders and compared against the Hayes-Stone
intermolecular perturbation theory304 (IMPT). A calculation with full Gaussian multipoles
of 4th order (i.e., up to hexadecapoles) for each fragment gave errors of 0.28 kJ/mol and of
0.3 to 0.36 kJ/mol for hybrid Gaussian/point multipoles, depending on the switching cutoff.
When the multipole order was reduced to two (quadrupoles) for each fragment the error
increased to 1.59 kJ/mol for the full Gaussian multipole interaction.9

Another example is provided by the “pixel by pixel” Semi-Classical Density Sum (SCDS)
method.305 This method relies on the use of molecular densities obtained from ab initio gas
phase molecular orbital calculations of isolated fragments. These densities are gridded on a
rectangular mesh to yield “e-pixels” of density. These pixels are post-processed to screen
out points near the cores and condense pixels that are further away from the cores into
“super pixels”. The resulting gridded densities, along with point nuclear charges are used to
calculate the intermolecular electrostatic and polarization interactions by means of
numerical integration. The use of the gridded densities yield electrostatic energies which are
in good agreement with intermolecular decomposition results. For example, for the di-
formaldehyde hydrogen-bonded dimer the error in electrostatic energy interaction was found
to be between 2.2 and 2.6 kJ/mol.305 The SCDS method has been applied to the simulation
of a series of crystalline energetic organic materials.306 The calculated lattice energies are in
good agreement with experimental sublimation enthalpies. Pulitzer and Ma have used a
modification of this procedure to investigate non-covalent interactions in RDX
(hexahydro-1,3,5-trinitro-s-triazine) and compared this to a point charge representation.307

Their results show that point charges are inadequate to model electrostatic interactions in
these molecular crystals.

Volkov and Coppens308–310 have introduced a method based on the Hansen-Coppens
formalism,311 which describes the static density of a molecular fragment by superposing
aspherical pseudo-atoms composed of nucleus-centered density units. A database of these
pseudo-atoms has been developed using theoretically calculated densities.308 The
deformation density bond peaks obtained for molecules formed from pseudo-atoms from the
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database are reproduced to within 0.1–0.2 e/Å. These densities were then used to calculate
intermolecular electrostatic interactions for a range of dimers and compared to reference
data obtained from the Morokuma-Ziegler decomposition.312,313 The results obtained with
the initial version of the database were on average smaller by about 25 kJ/mol. This was
attributed to the limitations of the method used for the evaluation of the interactions. In this
case the monomer densities obtained from the pseudo-atoms were used to obtain point
multipoles via a Buckingham type expansion, which resulted in the loss of accuracy.308,309

This loss of accuracy is due to the approximation of the electrostatic interaction by
distributed multipoles, which resulted in significant penetration errors.

Subsequently, the exact potential and multipole method (EP/MM) was developed.314 This
method calculates the intermolecular electrostatic interaction from the pseudoatom fragment
by combining the evaluation of the exact potential at short range and the use of multipoles at
long range. For the short-range calculation the 6-D integral is separated into two terms that
comprise the multiplication of the density on fragment A with the electrostatic potential of B
and vice versa. The resulting 3-D integrals are then evaluated by numerical quadrature.
Intermolecular electrostatic energies obtained by the hybrid method give average errors of
10 kJ/mol with respect to the reference Morokuma-Ziegler intermolecular electrostatics. The
use of a continuous representation for the short-range interactions recovered the charge
density overlap effect resulting in an increase in accuracy.

Sundholm has developed the “direct approach to gravitation and electrostatics” (DAGE)
method.315 In this procedure, the electrostatic interaction is obtained by numerical
integration after expanding the potential using finite-element based functions. The
electrostatic interaction between molecules has also been calculated by using promolecular
charge densities.316 This method has been recently implemented into the AMOEBA force
field for poly-aromatic hydrocarbons PAHs.317 This AMOEBA modification has been fitted
to reproduce SAPT reference calculations. This method also allows for the radial change of
atomic densities.

A classical polarizable force field parametrized from ab initio data using force matching has
been developed and applied to study lithium iodide (Li–I).318 In this model, each fragment is
represented by a core charge density and an electronic density distribution. The total
electronic density of the system is thus defined as the sum of a reference density δ0 and a
density response δρ. The formulation is based on a second-order expansion of the energy
density, and δρis modeled by means of Gaussian basis functions up to l = 1 (p-orbitals)
obtained from density functional linear response theory. Results for the Li–I test system with
this force field have comparable accuracy to results obtained from ab initio Car-Parrinello
MD calculations (CPMD).318,319

This method has been extended by combining it with a frozen-density model described by
the Kim-Gordon theory.320,321 The density change is determined by density functional
linear response theory. This extension does not rely on empirical pair potentials. Cartesian
Gaussian functions are used to model both the frozen and response densities. In this case, the
Thomas-Fermi kinetic energy functional and the local-density approximation exchange
functionals are used. This model has been shown to reproduce experimental structural and
thermodynamic properties of a series of alkali halides in different phases.321

The Gaussian charge polarizable model (GCPM) has been developed for simulations of
water.322 This method relies on the use of three spherical Gaussian functions to describe the
charge density; an induced point dipole at the center of mass of the molecule; and a
Buckingham-type exponential term for dispersion. Results with this model yield accurate
intermolecular dimer interactions as well as condensed phase properties such as vapor
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pressures, densities, dielectric constants and self-diffusion coefficients.322 GPCM
simulations on liquid water compare well to CPMD ab initio simulations.323 This model has
also been employed to simulate water in extreme environments (773 ≤ T ≤ 1373).324

More recently, the Gaussian electrostatic model (GEM) has been introduced.253,325,326 In
this method, the molecular charge density obtained from quantum mechanical (QM)
calculations is fitted to a linear combination of Gaussian functions centered at specific sites.
Auxiliary basis sets (ABS) for Coulomb fitting are generally employed.327 The fitted
densities of the fragments are employed to calculate each of the components of the
intermolecular interaction separately, The GEM fragments are fitted to reproduce gas phase
ab initio QM intermolecular interaction results from the constrained space orbital variation
(CSOV) energy decomposition scheme.328,329 The use of continuous functions also provides
a more accurate description of molecular properties compared to conventional point charges
as shown in Figure 2.

The initial implementation of the full force field involved the analytical fitting of QM
densities to s-type functions (GEM-0).326 This allowed the calculation of intermolecular
interactions with average errors below 0.84 kJ/mol for each component as well as for the
total intermolecular energy. Subsequent extension to higher angular momentum functions
provided the added advantage of distributed multipoles and a decrease in the overall number
of Gaussian primitives. These distributed multipoles have recently been shown to be
applicable in the AMOEBA force field.330 Results for Coulomb and Exchange
intermolecular interactions for homo-dimers of water, formamide and benzene, as well as a
water-benzene heterodimer showed errors below 0.84 kJ/mol for the larger auxiliary basis
sets.253 Electrostatic interactions are obtained by directly calculating the Coulomb integrals
between the interacting densities. Exchange interactions are calculated by the Wheatley-
Price overlap model.331,332

The calculation of intermolecular interactions with GEM requires the computation of a large
number of two-center electron integrals. The analytical calculation of these integrals is
computationally costly, and thus a number of methods have been explored in order to speed
up the computations. Significant improvements were achieved by using reciprocal space
methods based on Ewald sums.253,333 In this way the integrals are calculated in direct and
reciprocal space, depending on the exponent of the Gaussian. The use of PME and FFP
allowed the calculation of the interaction energy and force for several water boxes in PBC
with a five site model with 110 Hermite primitive functions. These calculations could be
further sped up by reducing the size of the mesh for the sampling of the Gaussians by using
the Gaussian split Ewald approach.104

Alternative fitting methods have been also explored. This has enabled the reduction of
numerical instabilities in the fitting procedure and the number of fitting sites.334 Overall, the
use of numerical fits produces results similar to the analytical fits with errors around 0.84 kJ/
mol. The reduction of fitting sites allowed the energy/force calculation of a 4096 water box
with a three-site model with 46 Hermite primitive functions using PME was performed in
2.29 s. By contrast, the same system using TIP3P charges was done in 0.2 s using SANDER
on the same computer.334 More recently the numerical fitting has been improved by
introducing spherical grids coupled to a Gaussian type weighting function for discarding
points near the core.335

Continuous functions have also been employed for the calculation of second-order
interactions. Among these, damping functions based on spherical Gaussian distributions
(among others) have been proposed.336,337 Induced Gaussian dipoles have been
implemented for an induced polarization model.271 Giese and York have used atom-centered
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dipolar Gaussian functions to simulate the polarizability change for semiempirical quantum
models in combined QM/MM simulations.338 This method was extended to describe
exchange and dispersion interactions where the exchange interactions were modeled by the
overlap method using simple Slater overlap monopole functions.339

3.4 Polarization

Polarization refers to the redistribution of the electron density of a molecule in the presence
of an external electric field. In biomolecules, this arises naturally from the charge
distribution of other molecules or atoms. Polarization generates non-additive, attractive
inter- or intra- molecular interactions, which can result in significant many-body
polarization energy. In principle, polarization may be described entirely in terms of classical
electrostatics and, as such, it should be distinguished from the dispersion interaction that
arises from instantaneous fluctuations of molecular charge distributions, which is entirely
quantum in origin. In classical MD simulations, polarization effects are included either
implicitly or explicitly. The traditional, implicit representation completely avoids the many-
body calculation by including a mean polarization effect in the functional form of the
interaction potential. As a consequence, the magnitude of the (permanent) dipole moment of
dipolar molecules is overestimated with respect to its gas phase value, and the dynamic
dipolar fluctuations that take place during the evolution of the system are ignored. Classical
electrostatic models that take into account the polarization explicitly appeared as early as
1950s. For instance, Barker discussed the electrostatic energy of molecules with “permanent
and induced dipoles” and presented an iterative procedure to solve for the total electric
field.340 Two years later, Buckingham and Pople reported studies on imperfect gases, using
a similar induced-dipole approach.341,342 Since then, there has been a number of studies that
consider polarization many-body effects343–350 Nonetheless, it is mostly fixed atomic
charges that are found in the classical force fields commonly in use today. Only in the past
decade or so, there has been a systematic effort to develop general polarizable force fields
for molecular modeling.

To illustrate quantum effects of polarization that are not captured by a point-charge
description, Figure 3 shows the MEP around a water molecule with and without a positive
point charge (+1) placed 2 Å away from the molecule on the molecular plane, along one of
the OH bonds. The MEP is calculated for both classical unpolarizable point charges (TIP3P)
and full QM (B3LYP/6-31G*). The differences previously pointed out for the isolated water
molecule (Figure 2) increase even further when the water molecule interacts with the point
positive charge, whose presence distorts the MEP in the classical calculation far more than it
does in the QM calculation. The response of the water molecule in the QM calculation is
mediated by the polarization of the electronic charge, a phenomenon that is not captured in
the point-charge water model.

The development of polarizable electrostatic models has been largely driven by the interest
in modeling solvent effects, mainly those of water. According to Guillot,351 more than half
of the fifty or so classical water potentials published over the three decades by the early
2000s are “polarizable”, led by the polarizable and dissociable water model of Stillinger and
David344 and the polarizable electropole model by Barnes and coworkers.345 Both models
employed molecule-based, point induced dipoles to account for the polarization many-body
effect in condensed-phase water. An iterative procedure was used to obtain the self-
consistent induced dipole

(17)
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and the polarization energy

(18)

where  is induced dipole i, Tij the interaction matrix between  and , αi the

polarizability of site i, and  the electric field due to the permanent charge distribution.
Stillinger and David introduced a polynomial “damping” term to modify the Coulombic
electric field at distances comparable to the oxygen electron radius, which effectively
accounts for the spatial effect that is missing in the point dipole representation. The damping
effect takes place at short distances, less than or comparable to the atomic radius, and
vanishes at longer distances. It turns out that this short-range damping has become a critical
feature in many of the recent polarizable force fields.

The SPCP model,352 published in 1989 in an MD study of water, continued with the
induced-dipole approach using a predictive rather than an iterative solution. A few
subsequent polarizable water models, such as PTIP4P,353 CKL,354 NEMO,355 NCC,356

RPOL,357 Dang-Chang,358 have all adopted the induced dipole framework to treat
polarization, mostly with a single isotropic polarizable site on each molecule.

Several other models approached the polarization effect with variable point charges instead
of inducible dipoles. For example, in the SPC-FQ and TIP4P-FQ267 water models, the
partial charges would flow intramolecularly from one atom to another according to the
electronegativity equalization theory, similarly to the charge equilibration method reported
earlier.359 Note that the electronegativity equalization method (EEM) was previously
introduced and applied to molecular systems including alanine dipeptide and
deoxyribose.360 The PPC model employed an empirical formula for charge variation as a
function of the local field.361 Stern et al. combined the fluctuating charge with the induced
point dipole representations in the POL5 water model.362 Another family of models has
utilized the Drude Oscillator to account for polarization effects.363,364 The Drude model
makes use of two point charges joined by a spring that provides the dipole induction, and
historically has been used to model the dispersion interactions365 as well as ion
polarization.366 Yu et al. developed a Charge-On-Spring (COS) model for liquid water.265

In an improved COS model, a virtual site was added to better reproduce the molecular
quadrupole moments and host the molecular polarizability.367 In the SWM4 models, an
either negatively or positively charged Drude particle is attached to the oxygen atom.266,294

While the former seems to be a more physical representation of mobile electrons, in practice
both COS and SWM4 perform similarly well in liquid water simulations.

Some recent water models have become even more sophisticated in treating polarization
effects. The polarizable SPC model by Bernardo et al.,368 ab initio TTM series
models369–373 and AMOEBA water model270,299,374 all utilize an interactive, distributed
atomic polarizability with a Thole’s damping scheme.375 The most serious drawback of the
point dipole models is the so-called “polarization catastrophe”. This phenomenon occurs
when two mutually interacting induced dipoles with atomic polarizabilities αi and αj diverge
at a finite distance R = (4αiαj)1/6. In an MD simulation, this situation leads to non-physical
forces and velocities. The advantages of the Thole model are that anisotropic molecular
polarizabilities can be achieved via isotropic and transferable atomic polarizabilities, and the
polarization catastrophe is effectively avoided by smearing out the point representation of
charge distribution. The TTM2-F model also incorporates geometry-dependent atomic
charges via lookup tables, which allows capturing the dipole derivative with respect to the
O-H bond stretch.372 The AMOEBA model uses permanent atomic charge, dipole and
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quadrupole moments for the accurate representation of permanent charge
distributions.270,297 The electrostatics in QMPFF is represented by a combination of positive
atomic point charges and diffuse electron clouds that change shapes (locations in earlier
versions) when polarized.376,377 The use of a continuous charge distribution instead of point
charges or multipoles is more physical and faces fewer problems associated with penetration
and the polarization catastrophe. Elking and coworkers271 compared a Gaussian charge
density approach with the Thole model, and suggested that the Gaussian model performed
slightly better in reproducing molecular polarizability tensors. Recently, the charge
penetration and transfer effects have been incorporated into the DPP2 water model.378,379

Voth and coworkers took a very different approach to model polarization in water. Their
POLARFLEX model is based on the multistate empirical valence bond (MS-EVB) method,
which describes the water electronic structure with three basis states.380 In a later
improvement of POLARFLEX, Gaussian charge distributions replaced point charges, and
the bond angle was modified381

The individual contribution of atoms in a molecule to the polarizability is not a physical
observable; it is only the molecular polarizability that can be measured. The atomic dipole
induction, Drude oscillator, and fluctuating charge models mentioned above are different
empirical schemes that describe molecular responses. Detailed comparison among these
models has been provided by Rick and Stuart,382 along with the underlying mathematics,
and a discussion of the advantages and disadvantages of each approach. The induced-dipole
and Drude oscillator approaches both have a great deal in common, with subtle differences
in the detailed physics and model implementation. Both models can benefit from a Thole-
like damping in order to avoid the polarization catastrophe and to produce an anisotropic
molecular polarization response with scalar atomic polarizabilities. Note that the original
Applequist interactive atomic polarizability model,383 where the induced atomic dipoles
polarized other atoms in the same molecule, used no such damping and resulted in a
molecular anisotropy that is too low. As a result, the atom polarizabilities are all smaller
than those used by the Thole model. The distributed polarizability model by Dykstra and
coworkers is additive,384,385 without intramolecular mutual induction. Atomic polarizability
tensors are thus required to produce the anisotropic molecular response. The fluctuating
charge model is based on a different physical principle. The intramolecular charge-flow is
limited by the chemical connectivity, and thus it cannot capture certain out-of-plane
polarizations or treat single ions. It has, however, the potential to naturally handle geometry-
dependent charge flow missing in point induced dipole or Drude models. Olson and
Sundberg386 and subsequently Applequist387 proposed a model consisting of both
polarizable atomic charges and dipoles, which would allow intramolecular charge-flow upon
polarization. Stern et al. developed a force field that made use of both the fluctuating charge
and the induced dipoles.388 Alternatively, formulae for ab initio atomic polarizabilities for
charge, dipole and high order moments have been given by Stone250 and Karlström.389 Even
though the overall molecular polarizabilities are recovered exactly in the ab initio approach,
determining such atomic polarizabilities from quantum mechanics is not trivial.

3.5 Charge transfer

Charge transfer (CT) refers to the interaction energy arising when electrons of one molecule
delocalize into the orbitals of other molecules. Stone suggested that CT is part of the
induction energy, and should not be confused with basis set superposition error (BSSE)
when separating out the CT contribution.6 The BSSE is an artifact caused by using dimer
basis sets on the individual molecules in a supramolecular calculation, effectively mixing
orbitals of different molecules. In the limit of an infinitely large basis set, the BSSE
disappears, and the CT becomes part of induction. In practice, when finite basis sets are
used, the separation of CT from polarization is basis-set dependent and somewhat
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arbitrary.390 In an ab initio calculation of a water dimer, Stone showed that the CT
contribution was about −4 kJ/mol,390 about 20% of the total interaction energy. Mo et al.
developed an energy decomposition analysis (EDA) based on a block-localized
wavefunction (BLW-ED) approach, which allows separating out the polarization and BSSE-
free CT energy.391 The CT here refers to the energy related to relaxing the occupied
molecular orbitals of one molecule into the virtual molecular orbitals of the other, after
correcting for the BSSE. They suggest that the CT between two water molecules in a trimer
is −4.1 to −4.7 kJ/mol,392 consistent with Stone’s findings. Moreover, while the CT

contribution in benzene-ion (e.g. Li+, Na+, K+ and ) complexes is a fraction of the
polarization energy, it becomes much more significant in the complexes of carbon monoxide
and transition metals (e.g. Ni, Pd, Pt and their monovalent ions). A grand canonical
treatment was incorporated into the X-pol method393 to describe charge transfer.
Application of the GC-X-Pol to ten molecular complexes showed that the CT energy from
this approach follows the trend of the BLW results.394 Khaliullin et al. reported a study on
water dimer and other complexes using the absolutely localized molecular orbitals energy
decomposition (ALMO-ED) scheme.395 It was found that, unlike the polarization energy,
the CT energy was sensitive to the water dimer orientation (flap angle). In some
orientations, the CT was comparable to the polarization contribution (−6 kJ/mol), while in
others the CT contribution was slightly less (−4 kJ/mol). The CT and polarization energy
became noticeable only at short-range (near the minimum-energy separation of a dimer), and
exhibited similar distance dependence, which indicates that an “over-polarized” classical
model might be able to capture both effects. Recently, Wu et al. employed the constrained
space orbital variations (CSOV)396 and reduced variational space (RVS)397 decomposition
methods to examine the Zn2+-water complexes.398 According to RVS, the CT energy was
~20% of the polarization energy at the HF/CEP-41G(2d) level, which reduced to 5% when a
large basis set, aug-cc-pVTZ (water)/6-31G* (Zn), was used. Furthermore, as the Zn2+-
water cluster size increases, the percentage of CT in the total induction energy (CT and
polarization) decreases. The anti-cooperativity suggests that in bulk water the CT between
Zn2+ and solvent may become much less significant relative to the polarization many-body
effect. Thus, in the parameterization of AMOEBA force field for Zn2+, the CT contribution
was effectively absorbed into the other interaction by matching AMOEBA with the QM
polarization as well as the total QM binding energy. By contrast, cooperative many-body CT
effect was reported for Cl− anion solvation in water.399

There has been very limited effort in modeling the CT with classical mechanics. A pairwise
empirical exponential function was proposed by Clavaguera-Sarrio et al. for modeling

uranyl ( ) in water.400 The parameters were derived empirically by fitting the
distance-dependent QM CT energy profile. Hagberg et al. followed up with a similar study
using the same functional form and obtained rather reasonable bulk properties from MD
simulations.401 In the absence of an explicit CT term, the modeled uranyl-water dimer
interaction energy in the medium separation (2.5–4 Å) was not “attractive” enough, similar
to what was observed for Zn2+-water.398 In the recent DPP2 water model, the CT was
accounted for also by using this pairwise function.379 It is however unclear if this pairwise
approach would be applicable in general, given the cooperative and anti-cooperative many-
body effects discussed above.

Korchowiec and Uchimaru402 devised a self-consistent charge and configuration method
based on electronegativity equalization. The system energy is expanded with respect to the
charge reorganization and truncation after the second order led to the so-called CT energy

, where dq is the change in partial charge, and μ and η are the chemical
potential and hardness parameters. However, it has been pointed out that, at the dissociation
limit, the exact energy should be linear in charges, and thus a quadratic model gives rise to
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incorrect charge transfer.403,404 Lee and Rick recently integrated this method into the fixed-
charge based TIP4P,405 TIP4P/2005406 and polarizable TIP4P-FQ267 water models to treat
the charge transfer. While this formalism is in principle equivalent to that underlying the
original fluctuating charge model, the specific treatment offers a way to avoid arbitrary
charge flow among molecules. In their study, the CT effect was shown to be anti-
cooperative going from the water dimer (0.020 e) to liquid water (0.008 e).407

3.6 Polarizable Force fields

Most current force fields for biological or synthetic molecules represent the charge
distributions with fixed point charges at the atomic centers.408–411 A major hurdle
preventing the widespread use of polarizable force fields is the concern over computational
expense. Many-body polarization requires a computationally expensive procedure such as
self-consistent iterations in order to compute the induced dipoles. Even though polarization
is recognized as an important physical phenomenon, the “need” for explicit consideration of
polarization is perhaps not yet fully established. Many of the polarizable water models
discussed above provide notable improvement in properties such as the liquid dielectric
constants and self-diffusion coefficients over simple models such as TIP3P, SPC or SPC/E.
However, more sophisticated and carefully parameterized fixed-charge models such as
TIP4P-EW,412 TIP4P/2005,406 and TIP5P413 also perform rather well, at least for pure
water. An important lesson drawn from the development of water models is that improving
the representation of the permanent charge distribution (for the atomic charge model) is
perhaps as important as the inclusion of polarization effects.

Nonetheless, an increasing number of studies shows that the lack of polarization can be a
serious limitation, particularly for ionic systems and chemical processes that involve a
change of environment. Ions have long been investigated with polarizable force fields in
solution and water-vapor interface.281,285,414–423 Perera and Berkowitz414–419 were the first
to predict that halide ions (Cl−, Br− and I−, but not F−) in water clusters favor surface
solvation, as opposed to bulk solvation. They correctly attributed this to polarization effects.
These predictions were confirmed by photelectron spectroscopy424,425 and quantum
studies.420,426 After a few years of debate in which the polarization explanation was cast
into doubt, it is understood that surface solvation of an ion in a spherical water cluster is due
mainly to both ion and water polarization, coupled to the charge and size of the ion.285 As
an example, Figure 4 shows the total free energy and total potential energy at 300K for a Cl−

ion in a spherical water cluster as a function of the distance r of the ion from the center of
the cluster.285 The top panel shows results for the SPC/E model427 that assigns fixed point
charges to the O and H atoms, while the bottom panel shows results for the RPOL357 water
model, that assigns both (smaller) fixed point charges and atomic polarizabilities to the O
and H atoms. Clearly, the fixed-charge model predicts bulk solvation, while the polarizable
model predicts surface solvation with a minimum in the free energy at the surface of the
cluster. The polarization effect is coupled to the size of the ion: F− remains inside the cluster
but the remaining three halide ions are on the surface. Since RPOL has a larger moment than
SPC/E it has been argued that it is not polarization but a large dipole moment the one
responsible for surface solvation. But that is not necessarily the case: by (artificially)
reducing the fixed charges of RPOL such that its total dipole moment is smaller than that of
SPC/E, one can still see surface solvation for I− for RPOL (but not for SPC/E). Finally, the
charge is also important, with large positive ions still able to show surface solvation in the
polarizable water model.285

Unfortunately, due to the use of the extra-thermodynamic assumption and the surface
potential, interpreting single-ion hydration free energies from experimental data on
electrolytes can be rather convoluted. The hydration free energy of some monovalent ions
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such as Na+ and K+ from different sources can differ by as much as 10 kcal/mol or 10%. For
fixed charge models, the parameterization of ion parameters (van der Waals radius and
minimum-energy well depth) depends on the choice of “experimental” targets. On the other
hand, the polarizable models, which can be parameterized from gas-phase ab initio data,
have shown encouraging predictive power for hydration properties, as demonstrated on a
series of halide, alkali and alkaline earth metal ions.294,428–430 Previous studies have pointed
out that a fixed-charge force field will underestimate the Mg2+-guanine interaction energy
by as much as 30% due to the absence of the many-body polarization energy.431 Attempts
have been made to model transition metal Zn2+,398,432 lanthanides (Gd3+,433) and actinides
(Th2+,434) with polarizable force fields. Accurate modeling of such high-valence ions with
classical mechanics will likely need additional physics beyond polarization, such as charge
transfer and ligand-field effects.

Molecular association such as protein-ligand binding requires the ligand to leave the high
dielectric water environment before forming a complex with the protein target. Free energy
simulations of ligand binding to trypsin and matrix metalloproteinase suggested that
neglecting polarization can lead to an overestimation of the protein-ligand attraction, relative
to the solvation strength of the ligands.432,435 An earlier study of benzamidinium chloride
inhibitors binding to trypsin using fixed charge force fields showed that the binding
affinities from the thermodynamic integration calculations were indeed mostly
overestimated. The authors attributed this to the underestimation of ligand hydration free
energy.436 However, in other work on hydrophobic ligands binding to lysozyme, simulations
using fixed-charged force fields underestimate the binding free energy substantially, perhaps
due to sampling issues.437 As expected, the lack of polarizability causes the imbalance
between the bulk solvation and protein environment, and it seems the errors will unlikely
“cancel” systematically even when comparing affinities between ligands. The recent
development of fixed-charge GROMACS biomolecular force field resorted to
parameterizing different charges for proteins to account for the differences in water and
cyclohexane environments.438

A number of reviews on polarizable force fields has been published over the last
decade.291,298,382,439–441 Nonetheless, it is fair to say that the development of general
polarizable force fields remains in its early stages. The use of polarizable electrostatics in
protein simulations dates back to 1976.442 The SIBFA (Sum of Interactions Between
Fragments Ab initio computed) force field by Gresh and coworkers is one of the most
sophisticated ab initio force fields with rigorous electrostatic terms including polarization,
charge transfer and ligand field contribution for open shell metals.276,443–445 Its primary
focus has been on biological systems including complex metalloproteins.446–453 Improving
SIBFA’s computational efficiency and implementing SIBFA in MD simulations are goals
being pursued by the researchers. Karlström and coworkers have been developing the Non-
Empirical Molecular Orbital (NEMO) force field, based on atomic charges, dipoles and
dipole polarizabilities, for various organic compounds.355,401,454–457 The AMBER
community has long been interested in polarizable force fields,50,354,458 and a new
generation of polarizable force fields is actively being developed.459–463 The electrostatic
component of the force field consists of permanent point charges and inducible atomic
dipoles. Kaminski et al. reported an ab initio polarizable protein force field (PFF) based on
inducible dipoles and point charges.464 The dispersion parameters were later refined through
condensed-phase simulations.465 To cut the computational cost, the mutual induction was
subsequently modified to a limited iteration scheme (POSSIM).466,467 One challenge is that
the analytical derivative is unavailable for such a potential energy surface, which prevents
the use of MD. Ren and Ponder have been developing an atomic multipole-based polarizable
force field, Atomic Multipole Optimized Energetics for Biomolecular Applications
(AMOEBA). After the initial the water model,298,299,374 this force field has been extended
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to ions,398,428–430,434 organic molecules,297,468–471 and proteins.272 AMOEBA has been
applied in a few studies on the thermodynamics of protein-ligands bindings.432,435,472–475

Several independent studies using AMOEBA have also been reported.476–485 The
AMOEBA force field is available through the TINKER,486 AMBER273 and OpenMM487

software packages. Particle-mesh Ewald for multipole interactions,53 parallelization and
multi-time step MD have all been implemented. CHARMM now also incorporates a
classical Drude oscillator polarizable force field.294,488 This force field now covers
alcohols,489 aromatics,440 amides,287 ions,295,488 and polypeptides.490 To overcome the
deficiency in the Lennard-Jones mixing rule for unlike atom pairs, it was found necessary to
use pair-specific van der Waals parameters in order to obtain accurate hydration free
energies.491 Instead of using a self-consistent iteration scheme, an extended Lagrangian
approach was used to propagate the induction, which led to improved computational
efficiency and scalability.492 The Drude force field was shown to give an excellent dipole
potential for a lipid monolayer.289 Patel and Brooks have also developed a CHARMM based
polarizable force field, but with the fluctuating charge scheme.493,494 With this force field,
Patel and coworkers have investigated ions solvation, water-vapor interface, ion channels
and membranes.495–498 This force field also employs the extended Lagrangian method for
charge fluctuations. Gao et al. developed the polarizable intermolecular potential for fluids
(PIPF), which has been applied to alkanes, alcohols and amides.499,500 Later Gao and
coworkers presented the X-Pol framework combing fragment-based electronic structure
theory with molecular mechanical force fields.393,501,502 This model was successful in a MD
simulation of a solvated protein.393,501,503 For non-biological systems, polarizable force
fields are also emerging. Smith and coworkers applied a many-body polarizable force field
in the simulations of ion-conducting polyethylene oxide (PEO).504–506 Chen et al.
developed polarizable force fields to examine the phase equilibrium.507,508 Cummings and
coworkers also formulated a novel Gaussian charge polarizable force field to model water,
ions and and PEO.322,509,510 A polarizable force field for ionic liquids was reported to
provide accurate thermodynamics and transport properties for a wide range of molecules.511

Most fixed-charge force fields share common potential energy functions and simulation
algorithms, and differ mostly in the parameterization procedures. Most polarizable force
fields rely on both gas-phase ab initio data and experimental properties for parameterization,
although to a differing extent. While fixed charge force field simulation technology has
become rather mature over the years, one expects to see the growth of polarizable force
fields along with their increasing application to unconventional molecular systems, where
traditional force fields have been challenged.

Finally, we briefly refer to models that deal with polarization within a continuum solvent
environment. Intermolecular polarization is greatly affected by the presence of a solvent. For
implicit treatments of solvent as a continuum dielectric, Maple et al.512 proposed a self-
consistent method to combine classical polarizable models with the Poisson-Boltzmann (PB)
based solvation reaction field. In their approach, after the solute charge distribution in gas-
phase is determined, the PB equation is solved to obtain the reaction field, which is then fed
back to the polarizable solute. The interactions are iterated until self-consistency is reached.
This scheme is in principle applicable to any polarizable model, induced dipole or charged
based. Note that in this classical treatment of “polarizable continuum”, the polarization
includes both solvent and intra-solute contributions. The former is also treated in typical
self-consistent reaction-field methods. Schnieders and coworkers reported a similar PB
based approach for solute with polarizable atomic multipoles.513 The authors further
developed a Generalized-Kirkwood (GK) method to describe the reaction field of a
polarizable solute.514 The GK method is analogous to the well-known Generalized Born
(GB) approach515 for solute with point charges, but extended to treat point dipole and
quadrupole moments. The GB and GK aim to approximate the PB solution in a
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computationally efficient way. Truchon et al. also reported a PB based implicit solvent
approach to polarizable solutes.516,517 In their model, however, the solute polarization is not
described by classical models of induced dipoles or charges. The molecular polarization is
treated via an effective “inner” dielectric constant and the charge distortion is solved
numerically from the Poisson equation. While this is an interesting approach to polarization,
it is unclear how to mix different “inner” dielectrics together in an inhomogeneous
biochemical environment.

4 Electrostatics in multiscale modeling

4.1 Long-range electrostatics in QM/MM

Classical simulations have been extremely useful to study many biosystems. However, a key
drawback of most classical methods is the inability to properly describe chemical reactions.
Warshel and Levitt therefore introduced the QM/MM concept442 in 1976. This hybrid
approach uses quantum methods in a small region (the QM subsystem) where a high level of
electronic description is needed, and it simulates the remaining atoms (including solvent) via
molecular mechanics. QM/MM methods have been applied to study a myriad of systems,
including reactions in solution, reactions in zeolites and enzymatic reactions, along with an
enormous number of solid state systems that describe electronic processes. The QM/MM
approximation has often been the method of choice for modeling reactions in biomolecular
systems.518,519

The treatment of long-range electrostatics in QM/MM simulations presents special
challenges due to the presence of the quantum mechanical subsystem. A crucial issue that
needs to be considered is the representation of the continuous QM charge density, which
affects the calculation of the long-range interactions as well as the treatment of the boundary
between the QM and MM subsystems. Several methods have been developed to account for
long-range electrostatics in QM/MM calculations. These can be broadly separated into two
approaches based on the use of boundary potentials and periodic boundary conditions.

In boundary potential models, a number of molecules are represented explicitly. These
include all QM atoms and part of the MM subsystem. The remaining infinite bulk, which
may include part of the protein, is represented by an effective boundary potential. One of the
first examples of these type of methods is the local reaction field method for empirical
valence bond/molecular mechanics (EVB/MM).520,521 This method is based on the local
reaction field, which separates the system into groups of atoms and calculates the short- and
long-range contributions of each group. The short-range part is evaluated explicitly. The
long-range part is approximated by a multipole expansion to fourth order.187 This method
has also been extended for ab initio QM/MM and employed for simulations of cations in
solution.522

The generalized solvent boundary potential (GSBP)202 has also been extended for QM/
MM.523 The GSBP method enables the hybrid explicit/implicit representation of irregularly
shaped solute/solvent systems. In this method, an inner region including the QM subsystem,
a portion of the protein, and maybe solvent, are explicitly represented. The remaining atoms
of the protein are explicitly represented with fixed positions and the rest of the solvent is
replaced by a dielectric continuum. The contributions from all the atoms in the outer region
are included in the QM/MM calculation. A crucial issue with this (and other) methods is the
representation of the continuous QM charge density. In this particular implementation, the
density is approximated by Mulliken point charges.523

The initial extension of GSBP for QM/MM was implemented for a semi-empirical quantum
method and tested by simulating the reaction of human carbonic anhydrase II. The results
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from the QM/MM-GSBP method were compared to stochastic boundary condition
simulations with various treatments for the electrostatics. Structural and energetic results
from GSBP were shown to be in better agreement with experimental data than the cutoff or
extended electrostatic (stochastic boundary) methods.523

The QM/MM-GSBP method involves solving the Poison-Boltzmann equation many times
over. This is not efficient for some QM/MM applications, such as geometry optimizations.
To this end, the solvated macromolecule boundary potential (SMBP) has been developed.
SMBP is largely based on GSBP, with the main difference that a different ansatz is used and
the PB equation to update the individual contributions to the PMF is solved when needed.524

SMBP has also been developed to enable efficient sampling of phase-space MD simulations.
Another difference with GSBP is that the interaction of the QM charge density with the
boundary potential is modeled by projecting the boundary potential onto a set of virtual
surface charges. This allows the introduction of these virtual charges in the calculation of the
Fock matrix.524

SMBP has been validated by simulating the reactions of two different enzymes: chorismate
mutase and p-hydrozybenzoate hydroxylase.525 The use of SMBP allows the separation of
the electrostatic effects due to the solvent and the outer macromolecule. The results show
that the inclusion of long-range electrostatic effects is especially important for reactions
where significant charge is transferred.

A similar method based on the spherical solvent boundary potential (SSBP) has recently
been proposed.526 This method is similar to GSBP, however in its current implementation it
is only valid for an arbitrary charge distribution inside a spherical cavity. Therefore, this
implementation requires the use of a large spherical cutoff to include the solute and only the
solvent outside the sphere is represented by the boundary potential.

The second family of methods relies on periodic boundary and lattice summation methods
for the inclusion of long-range electrostatic effects in QM/MM simulations. The initial
implementation of Ewald sums for QM/MM was developed for semiempirical
Hamiltonians.527 Here, only the QM/MM long-range interactions are calculated while the
QM/QM long-range contribution is omitted. Thus, in the direct sum the QM/QM
interactions are calculated at the QM level. For the QM/MM interactions the QM charge
density is approximated by point charges. This method was tested by determination of
solvation free energy of a chloride ion in water by FEP calculation with MC simulations.
Subsequently, studies of acetic acid in water via MC simulations gave results in good
agreement with OPLS simulations.528

Nam et al. have developed the QM/MM-Ewald method where all long–range contributions
are explicitly taken into account.181 This method takes advantage of a re-writing of the
energy expression for a QM/MM system under periodic boundary conditions. Briefly, the
total energy for a system of this type can be decomposed into three terms (QM, QM/MM
and MM) each subject to periodic boundary conditions. The QM and QM/MM periodic
boundary terms can be re-expressed as a sum of the non-periodic (real space) contribution
and a periodic boundary correction term. In this implementation the terms involving the
periodic boundary correction with QM charge densities are calculated with conventional
Ewald sums and the QM charge for reciprocal space calculations is approximated by
Mulliken charges. The MM reciprocal term is calculated with PME.181

The QM/MM-Ewald method was tested with simulations of ion association and dissociative
phosphoryl transfer reactions. The results were compared with periodic boundary and
spherical boundary MD simulations both with medium (11.5 Å) and without electrostatic
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cutoffs. The results show long-range electrostatic effects influence the reactions and
significant artifacts are observed when cutoffs are used.181

This method was subsequently modified to perform not only the MM reciprocal space part
with PME but also the QM/MM reciprocal space contribution and implemented in the
AMBER suite of programs.529 The use of PME for the QM/MM reciprocal space
calculations results (depending on the QM subsystem size) in a time reduction of slightly
more than twice with respect to the initial implementation. Recently, this method has been
applied to include long–range electrostatic effects in the explicit polarization (X–pol)
potential.530

A similar approach has been developed using Ladd sums531 in the framework of
semiempirical QM models combined with classical methods. In this method, the lattice sum
is done in direct space only. Similar to the boundary potential methods, the lattice methods
require the representation of the QM charge density for the long-range interactions. Here,
two representation were studied, Mulliken charges and the exact charge distribution. It was
shown that both schemes give similar results. This method was tested by a simulation of
chloride and lithium ions in SPC/E water.531

A linear-scaling method based on a multigrid approach has been implemented for DFT
based QM/MM simulations.532 This method is based on the Gaussian expansion of the
electrostatic potential (GEEP)533 and a modified Ewald lattice summation for the long-range
QM/MM potential. GEEP allows the decomposition of the MM electrostatic potential in
terms of Gaussian functions which are efficiently mapped on different grids. Results for an
analytically solvable system show errors in energy below 0.03 % with respect to the
reference. Tests on two α-quartz crystals and solvated Gly-Ala dipeptide show that proper
treatment of the long-range interactions are required for the simulation of these systems.

4.2 Continuous functions in QM/MM

As mentioned in Section 3.3, the use of continuous functions can improve significantly the
description of electrostatic interactions. The accurate treatment of electrostatics is especially
important when quantum and classical methods are combined. When conventional point
charges or multi-poles are employed, care must be taken to avoid over–polarization of the
continuous charge density of the QM subsystem, which is an undesirable effect that can be
rather dramatic when the QM and MM subsystems are in close proximity. The most extreme
example involves the cutting of covalent bonds across the QM/MM boundary. For example
large dipole moments arise along the bond that was cut in partitioning schemes where point
charges close to the QM subsystem are explicitly included. This results in large errors in
calculated barriers, proton affinities and deprotonation errors.534,535 A common
approximation in these cases involves the neglect of the interaction between all QM atoms
and the MM charges of the MM group where the bond was cut. Another possibility involves
the re–distribution of the charges (and in some cases bond dipoles) of the MM boundary
atom (or atoms).529,536

This redistribution procedure has been extended in the tuned and balanced redistributed
charge algorithm (TBRC).535,537 Here, in addition to the charge re-distribution, the QM
boundary atom is a tuned fluorine link atom that reproduces the partial charge of the
uncapped region of the QM subsystem. The re-distributed charges (or dipoles) can be further
improved by including the polarization effects of the QM subsystem on these charges.538

The TBRC method has also been extended to blur the charges near the QM/MM
boundary537 via a Slater function (expressed by six Gaussian functions, STO-6G). Results
for deprotonation energies for a range of reactions give mean unsigned errors of 1.6 kcal/
mol.537
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Das et al. developed the delocalized Gaussian MM charge (DGMM) method where a
spherical Gaussian function is used to blur the MM charges that are close to the QM
subsystem.534 The use of the Gaussian function ensures that the Coulomb interaction
between any QM atom and the blurred charge will always be finite. This method was tested
on a series of systems including rotational barriers of butane, proton affinities and
deprotonation energies. Their results show that the use of DGMM gave results in agreement
with full QM calculations compared to conventional QM/MM calculations where the
charges of MM groups with a dangling bond are neglected.534

A similar method has been recently proposed to include charge penetration effects in
molecular modeling.263 In this case the MM charge is represented by a point charge that
represents the nuclear charge, core and inner valence electrons. The outer valence electrons
are modeled by a smeared charge via a Slater-type orbital. Results for a test set of complexes
showed a reduction in the error of electrostatic and induction interactions between the QM
and MM subsystems from 8.1 to 2.8 kcal/mol and 1.9 to 1.4 kcal/mol, respectively.

An alternative algorithm employs an angular momentum-based expansion scheme of the
point charges into partial wave orbitals to blur and polarize the MM charges.539 Here, a
combination of Laguerre and spherical harmonics with maximum angular momentum of 1
(p-orbitals) are used for the blurring. Results for geometry optimizations of the canonical
water dimer and a hydrogen sulfide dimer show good agreement with full QM reference
calculations. In addition the interaction energy of BH4 with the heme group of inducible
nitric oxide synthase show that the inclusion of polarization on the blurred charges has a
significant effect on the electronic energy and the QM/MM interaction energy.539

The use of frozen densities as described by GEM has been shown to provide a more accurate
environment in hybrid QM/MM calculations.540 The QM/GEM implementation was used to
investigate the polarization response of the QM wavefunction on ten water dimers and two
dimers involving a cation and a water molecule. The results showed that the use of frozen
densities gives the correct polarization environment for the QM wavefunction as opposed to
point charges when neutral fragments are considered. In the case of a charged fragment in
the MM subsystem, it is possible to use damping functions to recover the penetration
effects.540

The density fragment interaction method (DFI) employs multiple QM fragments field
approximation.541 In this case the total one-electron density and Hamiltonian matrices are
block-diagonal and the interaction between the different QM fragments is approximated by a
mean field method via a self consistent calculation. This provides not only a continuous
description of the charge density for multiple fragments but also includes explicit
polarization of the QM fragments. In practice only a small subset of the full system is
separated into the various QM subsystems. DFI was tested by calculating excitation energies
for a magnesium sensitive dye. The total system was separated into two fragments, one
comprises the dye, Mg2+ and four water molecules for the first fragment and the solvent
around a sphere of 3 or 8 Å around the dye for the second. The remaining atoms were
treated by a classical force field. The results show that DFI can accurately predict the
spectral shift of the dye caused by the binding of the cation.541 DFI has recently been
reformulated and applied to the simulation of liquid water.542

Wesolowski and Warshel have developed the frozen density embedding theory
(FDET).543–546 In this method the QM subsystem is embedded in a microscopic
environment represented by fragments with frozen densities, which are expressed as a
function of two density dependent variables. This method has been recently extended to
consider multi-level simulations.547,548
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4.3 Electrostatics in coarse-grained models

In the past ten years, multiscale modeling and systematic coarse-graining have emerged as
real alternatives to reach longer simulation times and larger systems. According to the Web
of Science, in 2000 there were 481 articles published with multiscale simulation as the topic.
In 2005 that number had jumped to 2,112, and in 2011 to 10,175. This rapid increase is a
consequence of the facts that there has been a clear need for such methods and that there
have been significant leaps in developing more rigorous methods and algorithms. Several
recent reviews about multiscale modeling are available.549–554

The aim in multiscale modeling is to construct mappings that can be used to obtain
physically important information and parameters from smaller scales and to use such
information to construct larger scale, or coarse-grained, models. The opposite, when
information from a large scale model is used in a more microscopic model, is called fine-
graining. The main research emphasis has been on coarse-graining, but lately, some
mapping schemes for fine-graining have emerged as well.552,555–560 While fine-graining has
several appealing aspects, e.g., equilibration and better sampling of configurational space,
the re-mapping of the system back to a more microscopic one is non-trivial and may need to
involve structural relaxation procedures.557 In addition, free energy properties between the
models may differ due to reduction of degrees of freedom in the coarse-grained models.
Despite such difficulties, multiscale modeling has emerged as a promising approach. In
more microscopic scales, QM/MM modeling represents a multiscale approach when
quantum accuracy is needed.

Electrostatics poses several challenges to multiscale modeling: First, the 1/r potential is
long-ranged and cannot be simply integrated away. This is also well-known from the
standard virial expansion (or Mayer expansion): if Coulombic interactions are included, the
expansion does not converge. These issues have led to different approaches, including the
implicit inclusion of charges via iterative coarse-graining procedures, and the explicit
inclusion of charges and attempts to try to include some aspects of Coulomb interactions.
We discuss some of the issues next, together with some of the most common coarse-grained
methods.

Perhaps the most intuitive way of coarse-graining is based on structural information. In
particular, the potential of mean force (PMF) and the pair correlation function are related
through

(19)

Since g(r) is a standard measurement in any particle system, and since it is an equilibrium
quantity, the relation above can be inverted to determine first the PMF and also the
underlying pairwise interactions. This is sometimes called the Henderson theorem561–563

and it is the molecular level analog to the Hohenberg-Kohn theorem for an electron
system.564 See, for example, Ref.553 for a detailed discussion, a prescription to apply it in
practice and its relation to other coarse-graining methods. How does Eq. (19) help to the
coarse-graining procedure? The basic idea is simple: Assume that we have a given g(r) for
an atomistic system, then any coarse-grained representation of the same system must
produce the same g(r). Using an atomistic system as a reference, we can define new coarse-
grained units, see for instance Figure 5. When new coarse-grained particles are defined, one
then tries to find a coarse-grained potential that reproduces the pair correlation
function.553,565,566 Since g(r) represents a free energy, direct inversion does not
immediately yield the interaction potential. Instead, Eq. (19) is typically used as a starting
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point to determine the pair interactions through an iterative process. The most common
inversion methods are the Boltzmann inversion and Inverse Monte Carlo.

Such an iterative inversion procedure can, at best, be a flexible, consistent and quick method
to provide interaction potentials for a particular system, since the level of coarse-graining
can be chosen at will. The resulting potentials do not, in general, have a functional form but
need to be tabularized. The reason why a simple functional form, such as the Lennard-Jones,
does not emerge is that the iterative procedure includes higher order correlations and long-
range interactions, that are implicitly present in the pair correlation function. It is difficult to
separate the electrostatic contribution out of the pair correlation function – Coulomb
interactions are implicitly included in the correlations. One possible way to study the
importance of Coulomb interactions is through the decay of ion-ion correlations. For
example, Lyubartsev et al.161 studied the decay of the effective potential of aqueous NaCl
solutions between 0.55 M and 4.1 M and found that in those cases the potential was
screened after about 1 nm. Interestingly, they found that the coarse-grained potentials
obtained at 0.87 M were transferable to other concentrations. It is not clear, however, how
general that result is, and if it holds at different temperatures and in the presence of more
complex molecules or different ions. It might also be useful to evaluate the goodness of this
approach under the Stillinger-Lovett second-moment condition.

Inversion methods are not limited to potentials. Izvekov and Voth567 have developed a
multiscale approach based on force matching. In their approach, instead of deriving the
interaction potentials from structural data, they use the atomistic potentials for obtaining
coarse-grained interactions. In particular, they investigated the effect of Coulomb
interactions in a system containing methanol and water. They considered the case where
long-range electrostatic interactions were explicitly included and compared these results to
the case in which only the short-ranged coarse-grained interactions were present. The
differences between the two cases were found to be relatively minor. They did not, however,
test a case in which ions were present. Izvekov et al.568 have also developed a separate
method to replace long-range Coulomb interactions by short-ranged potentials through force
matching. Like Lyubartsev et al.,161 they found very good agreement with the underlying
systems of pure water and NaCl in aqueous solution. The advantages and issues concerning
this method are similar to those of the inversion methods.

The recent MARTINI model of Marrink et al.569 represents a different approach. Rather
than using structural data from microscopic simulations, it is based on re-parameterization of
the interactions. The model uses a four-to-one mapping for particles and has been
systematically parameterized using partitioned free energies. The model takes the same
approach as traditional force-fields and, unlike the PMF based methods, its force-field
includes explicit charges (for the new coarse-grained particles) with the exception of water.
The original MARTINI water model does not have charges and, hence, a relative dielectric
constant is included in the Coulomb interactions. This creates problems, whose solution has
been attempted with more recent water models, as discussed below. The model has been
successfully used in a variety of problems including properties of membranes and membrane
proteins,570 charged monolayers571 and lipoprotein complexes.572

Dissipative Particle Dynamics (DPD)573,574 also represents a very popular coarse-grained
approach. In its traditional formulation, DPD uses soft non-bonded conservative interactions
(linear forces) amended with a momentum conserving Langevin thermostat that can be used
together with any conservative potential.553 The conservative force due to j on particle i is
given in DPD as
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(20)

where αi j defines the strength of the interaction and the cutoff rc is typically chosen to be
unity in dimensionless units. This force has a finite value at zero particle separation. The
DPD particles may be interpreted as a kind of density. It was shown by Forrest and Suter575

that averaging Lennard-Jones interactions over a long time leads to this form. DPD particles
are described by their size – or range of interactions – and amplitude of interactions. For the
case of polymers, the latter can be derived from solubilities. This soft form of the potential
means that particles can overlap and slide through each other, which creates a problem for
the inclusion of electrostatic interactions, since the 1/r form can lead to oppositely charged
particles substantially overlapping and collapsing onto each other.

There have been several attempts to include electrostatics in the DPD approach. The first
one is due to Groot105 whose approach follows the same idea as in self-gravitating systems:
the potential has to be somehow regularized at short distances. This can be done by
smearing out the charges. When the separation of oppositely charged particles is large, the
potential has the usual 1/r form but there must be a penalty at distances shorter than some
cutoff Rele. There are several possible ways to choose that cutoff function, and Groot’s
choice was a linear function

(21)

Here, the parameter Rele defines the radius over which the charge is smeared out. It has to be
chosen in such a way that the potential of ion pair formation is of order kBT. Then, the
electrostatic field is solved on a grid as in the PME o multigrid methods. Importantly, this
approach fulfills the Stillinger-Lovett second moment condition.

Another method is that of González-Melchor et al.,576 who proposed a closely related
method that utilizes the standard Ewald summation instead of a grid solution. Instead of Eq.
(21), they used

(22)

for smearing out the charge. As in Eq. (21), the above equation has only one length scale (λ)
that defines the screening length. The two methods are very similar, and the use of Ewald
sums makes the implementation of González-Melchor et al. particularly easy.

Praprotnik et al.552 have developed a very different multiscale method from the above. In
their approach, termed Adaptive Resolution, the spatial resolution of the system is tuned
adaptively. Unlike the previously described methods that apply to the whole system at once,
the Adaptive Resolution method allows for a more microscopic treatment of the system in
the regions of interest, while other regions, such as bulk water, may be treated at the
continuum level, thereby speeding up the simulation times. This approach is very appealing
since it represents a true multiscale method. However, it also poses several challenges. First,
momentum conservation (as well as other conservation laws) must hold independently of the
scales throughout the system, including the transition zones or interfaces between different
scales. Evaluating the free energy is also challenging due to changes in the entropic
contribution at different scales. What perhaps is even more demanding – but has been
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accounted for in simpler systems – is electrostatics: When water and ions move between
continuum and particle descriptions, charge must be conserved as must be the range of
interactions. The current treatment is based on reaction field electrostatics.552 It will be
interesting to see how this method applies to more complex systems.

Finally, let us briefly discuss the issue of water – and the importance of charges – in coarse-
grained models. As already mentioned, the MARTINI water carries no charges and is a re-
parameterization of Lennard-Jones interactions to match the compressibility and density of
water. The lack of charges creates artifacts, such as water freezing. These problems have not
been reported with the inversion methods, potential or force, as the self-consistency
guarantees the reproduction of the original radial distribution functions. Thus, other coarse-
grained water models have been introduced. These include the polarizable MARTINI
water,577 and the so-called Mercedes Benz578 and BMW (Big Multipole Water)579 models.
The polarizable MARTINI water has two equal and opposite charges to capture the most
important features of dielectric response. Electrostatic interactions are then computed either
through reaction field or PME. The Mercedes Benz model does not include explicit
electrostatic interactions, but uses a Tersoff type penalty function to enforce tetrahedral
coordination to model hydrogen bonding. However, due to the lack of charges, it is totally
transparent to external and local electric fields. The model is conceptually simple, although
computationally somewhat demanding, and reproduces many of water’s anomalies and the
qualitative phase diagram correctly. The BMW model contains three explicit charges and its
surface tension and dielectric properties are in good agreement with experiments, thus
making it a good candidate for simulations of interfacial systems. Reproduction of
interfacial properties, in particular dipole orientation (or total lack of it), is one of the
challenges of coarse-grained models. In general, interfaces at different scales pose a
challenge to multiscale modeling: For example, close to a protein, water and ions may have
preferential orientation and locations and switching between representations does not
necessarily preserve the dielectric properties even if restraints are applied. This, together
with response to external fields, are some of the areas where more work is expected to
emerge in the future.

5 Other developments

In this section we review some interesting developments covering other aspects of
electrostatics in the context of classical biomolecular simulations. One of the recent
developments has been the extension of the charge equilibration model to obtain the split
charge formalism of Nistor et al.580 The charge equilibration model is based on the concept
of electronegativity equalization, where the polarization is obtained by the migration of
charge density (condensed to partial charges) among sites within a given
molecule.267,581–587 The idea of the split charge method of Nistor et al. is that charge is
allowed to move along covalent bonds: the bonds are parameterized in terms of charge
subject to conservation of charge and the neutrality condition for isolated molecules. The
term split charge refers to the charge that flows between neighboring atoms along the bond
that joins them in a molecule. It is important to notice that it is not the same as the
polarizable bond approach of, e.g., Chelli et al.588 The split charge model of Nistor et al.
introduces physically well-motivated bond-hardness and atomic hardness terms. It also
allows extension for bond breaking, thus allowing simulations of chemical reactions. One
should notice that this model is parameterized in terms of bonds only. It does not include
parameterization of atoms which can provide yet another improvement. It is also easily
treated by the fast multipole and Ewald based methods. Such a model is potentially very
interesting as the split charge would take changes in the (dielectric) environment of a
molecule properly into account in a natural way. This includes surfaces, changes in pKas
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and so on. Verstraelen et al.589 have performed independent testing of the split charge
model.

An area where exciting developments are expected to take place is in the calculation of
protein ionization constants or pKas 590–594 (which generally is carried out with implicit
solvent models, although occasionally explicit solvents are also employed). In the traditional
approaches that we consider in this review, it is assumed that the ionic charges on the amino
acid residues are invariant to conformational changes. For a given pH, the residues are either
charged or neutral at the beginning of a simulation, and this charge distribution is kept
constant throughout the entire simulation (except, possibly, for polarization effects).
However, 30% of the residues are ionizable and their pKas depend on the pH of the
surrounding environment (and thus on salt concentration, temperature, and interactions with
neighboring residues). The pKa of a residue at a given pH determines the protonation state
of the residue, and the protonation equilibria of a polypeptide are tightly coupled to its
conformation and folding pathways. Any change in the protonation states of a polypeptide
considerably alters the charge distribution, at least around the ionizable residue, and results
in an important change in the protein electrostatics. Unfortunately, the dynamic protonation
equilibria are not considered in regular MD due to the high cost associated with these
calculations: if there are i ionizable groups in a protein of R residues, then there are 2i ~ 2R/3

possible ionization states to consider, whose relative free energies have to be evaluated in
order to determine the protonation equilibria. Obviously, this can quickly become
prohibitively expensive in all but the smallest proteins, and the electrostatic problem
becomes intrinsically coupled to the sampling problem. Thus, many approximations are
needed. In turn, this results in loss of accuracy and dependency on the parameters of the
model. A more accurate method to compute the total solvation free energies of proteins as
function of pH was introduced by Vorobjev et al.593 The method uses a fast adaptive
multigrid boundary element (FAMBE) to solve the Poisson equation. The electrostatic free
energies of the ionizable sites are calculated in atomic detail for neutral and charged states
and a precise dielectric surface interface is defined, which is then adaptively tsellated. The
ionization partition function is computed directly for proteins with less than 20–25 ionizable
groups, or via the Tanford-Schellman integral for larger number of ionizable groups. The
FAMBE-pH method was tested on three proteins to compute the pH-dependent solvation
free energies and the results indicate accurate predictions. Clearly, this is an exciting area of
active research,21,591 where further important developments are expected.

Other interesting development has been the application of accurate electrostatics to the
refinement of X-ray structure factors. X-ray crystal structures with subatomic resolution
have been rapidly increasing in the Protein Data Bank, and they represent an ideal
opportunity for studying valence electron distributions and the ensuing electrostatic
properties of macromolecules. Recently, Schnieders, Fenn et al. used polarizable, Cartesian
Gaussian atomic multipoles for X-ray crystal structure refinement.595–598 Usual calculations
of structure factors are based on the isolated atom model (IAM) that assumes a spherical
symmetric electron density around each atom, thus neglecting the anisotropies that result
from bonding and the chemical environment. Another problem of the use of traditional force
fields for restraining X-ray refinement is the absence of a proper treatment of electrostatics.
The Cartesian Gaussian multipoles offer an efficient alternative to the Hansen-Coppens
formulation based on Slater-type orbitals.311 The Gaussian multipoles allow for the
calculation of structures factors via direct summation in reciprocal space using FFTs, which
can lead to a speed-up relative to direct summation of over an order of magnitude for
aspherical refinement of ultra-high resolution sets.595 The authors originally used four
peptide crystals to compare this approach and the AMOEBA force field, and found that an
atomic multipole expansion up to hexadecapoles (or addition of interatomic scattering sites)
occasionally may be necessary to explain bond electron density.595 The authors also applied
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the AMOEBA force field to “re-refine” high-resolution lysozyme and trypsin data sets,
which yielded an improvement in the crystallographic refinement statistics and overall
potential energy, as well as additional information about pKa values at enzymatic active
sites, hydrogen-bonding structure, and molecular stabilization.596 Re-refinement of a DNA
duplex resulted in a complete hydrogen-bond network that agrees precisely with the
Dickerson hydration model.599

6 Summary and Perspective

Electrostatic interactions are crucial for biomolecular simulations, as their calculation is the
most time consuming when computing the total classical forces, and their representation has
profound consequences for the accuracy of classical force fields. At present, classical codes
for biomolecular simulations, where electrostatics is represented by point charges, can carry
out full evaluation of electrostatics at comparable cost than cutoff methods. They represent
mature software whose evolution is largely driven by parallelization issues springing from
the successive generations of computer architectures. At the cutting edge of the technology,
very large systems and millisecond time scales are now feasible.83,600 As simulations on
such and longer scales grow more widespread with improvements in supercomputer power,
commodity networks, and GPU hardware,601 the validity of the point-charge representation
will become under scrutiny. We expect a sizeable amount of work devoted to characterize
the effect of point-charge electrostatics in extremely long MD simulations, since undesirable
artifacts have already been spotted.

Hints to these problems have been gleaned by Raval et al.602 This group has performed a
comprehensive study involving at least 100μs MD simulations for 24 proteins used in recent
CASP competitions. These long-time simulations were applied to both the experimental
structures and homology models. For most systems, the structures drift away from the native
state, even when starting from the experimental structure. Even though the authors only used
two force fields, they concluded that this is most likely a limitation of the available point-
charge force fields.

As computing power increases, it becomes clear that other components of molecular
mechanics representations, including permanent electrostatics, penetration effects, charge-
transfer, exchange-repulsion, dispersion, and polarization also need to be addressed or
improved in order to truly achieve chemical accuracy. Present models explore the ability to
perform simulations using more sophisticated methods, such as those that employ multipoles
or continuous functions. The use of continuous functions for simulations enables the
accurate representation of the simulated systems by avoiding problems such as penetration
errors. In addition, continuous functions provide very accurate results for intermolecular
Coulomb interactions. In spite of the presence of various models for treating polarization
effects, the progress toward the development and applications of general-purpose polarizable
force fields is still limited. The concern with computational speed and the lack of
understanding of the importance of polarization effects are likely the major obstacles. In
terms of hybrid QM/MM methods, many issues remain partially or completely unaddressed.
Further developments in this area include the more wide-spread use of methods to include
long-range electrostatic interactions, general ways to address the critical QM/MM boundary
and QM/MM implementations where the MM environment is able to respond to changes in
the QM subsystem (polarizable MM). Systematic investigations and the consequent
understanding of the various intermolecular forces in a wide range of biological systems and
different nano-bio applications would help us elucidate the gains in accuracy brought about
by these elaborate force fields, especially with respect to the non-bonded interactions. This,
in turn, will require the development of new parallel implementations to allow for the
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efficient evaluation of long-range electrostatic interactions with more accurate
representations of the molecular charge density.

Finally, we would like to note that advancements in MD in general require efficient
algorithms not only for computing the different components of the molecular interaction
potentials but also for sampling the molecular configurations. Two different approaches
tackle the issue of sampling. Coarse-grained modeling allows for both larger systems and
longer time scales. The challenge here concerns issue of transferability and accuracy,
especially in a multiscale framework linking it to atomistic molecular mechanics
simulations, and common trends are moving away from “phenomenological” models to
models that have a rigorous statistical mechanics foundation. This is particularly challenging
when coupling continuum and particle representations as, for example, in adaptive
resolution schemes:552 charge neutrality must be conserved and interfaces between different
representations should not generate artificial polarization or multipole moments. In the
purely atomistic realm, conformational space sampling relies on enhanced sampling
techniques that allow the system to visit different regions of phase space, even if these
regions are separated by high free energy barriers. This also represents an active area of
research and numerous new methods have been introduced in the last decade, such as non-
equilibrium methods,216,603–610 combined with various versions of Replica Exchange
Molecular Dynamics,609,611–615 adiabatic molecular dynamics,616,617 and others.
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Figure 1.
MEP of the ethylene molecule C2H4 outside the van der Waals surface. Three planes of the
molecule are shown. Left colummn: DFT calculation with standard norm-conserving
pseudopotentials with a plane wave cutoff of at least 70 Ry and the BLYP density
functional. Middle colummn: classical MEP as computed from the Wannier charges
(monopoles) alone. Right column: classical MEP as computed from the Wannier charges
and quadrupoles.236
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Figure 2.
Electrostatic potential (ESP) isosurfaces for a water molecule in two orientations. The ESPs
were calculated from Merz-Kollman (MK) fitted charges, GEM using the P1 auxiliary basis
set, and from B3LYP/6–31G(d) calculated density (ab initio). MK and P1 were both fitted
from the same B3LYP/6–31G(d) calculated density.
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Figure 3.
Electrostatic potential (ESP) isosurfaces for a water molecule in two orientations without
(1st and 3rd columns) and with (2nd and 4th columns) a positive unit point charge. The
black dot in the top panel of 2nd and 4th columns shows the position of the point charge.
The ESPs were calculated from TIP3P point charges (1st and 2nd columns), and from
B3LYP/6–31G(d) calculated density (3rd and 4th columns).
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Figure 4.
Total free energy (r) (smooth dark line) and total potential energy Utot (r) (noisy dark line)
for a Cl− ion in a spherical cluster of 238 waters as a function of the distance r of the ion
from the center of the cluster. Top panel: SPC/E water model. Bottom panel: RPOL water
model. The entropic T S(r) contribution (obtained simply as the difference between Utot (r)
and (r)) is plotted just to show that this contribution is not negligible. Reprinted with
permission from Ref. 285 Copyright 2005 American Institute of Physics.
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Figure 5.
Example of coarse-graining. Instead of computing the interactions between all hydrogens
and oxygens of water molecules, one can construct a higher level representation as shown by
the yellow circles. For the coarse-grained representation to be a meaningful one, both
systems must produce the same g(r) as described in the text. In the coarse-grained
representation, the electrostatic interactions are included in the new effective coarse-grained
potential (see text) that is obtained first by inverting Eq. (19) and then iterating
it.161,553,565,566
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