CLASSICAL EXPANSIONS AND THEIR RELATION
TO CONJUGATE HARMONIC FUNCTIONS

BY
B. MUCKENHOUPT AND E. M. STEIN

1. Introduction.

a. Background. The purpose of this paper is to study a variety of ‘‘classical”
expansions in analogy to ordinary Fourier series and integrals. As our starting
point we take those expansions which arise in harmonic analysis of functions
on Euclidean spaces, spheres, etc., having appropriate rotational invariance. By
analogy we then pass to more extensive classes of expansions and consider, among
others, the ultraspherical expansions and their continuous analogues, the Fourier-
Bessel (i.e., Hankel) transforms.

The common idea which unifies most of the techniques and results obtained
here centers about the study of harmonic functions and their conjugatesin several
variables, and their variants. Ordinary Fourier series and integrals have an in-
timate connection with analytic functions, and this relation which they enjoy
has long provided a fundamental tool in their study. Thus one of our main ob-
jectives is the development of an analogous tool for the other expansions in
question.

The connection that is used between various expansions and generalized har-
monic and conjugate harmonic functions seems to be of basic importance. In
its formal aspects this connection has its roots in the classical literature. More
recently, however, some of the ideas have been taken up in the theory of axially
symmetric potential theory (see Weinstein [24]) and in the study of pseudo-
analytic functions of Bers [2], [3], and Vekua [20]. We now describe in more
detail the background and statements of our results(?).

We begin by recalling some of the basic properties of the ultraspherical ex-
pansions and Fourier-Bessel transforms. Fix 4 > 0, and consider the ultraspherical
polynomials of degree n, PA(t), defined by the generating relation:

0
(1-2tw +0?) ™= X o*Pt) .
k=0

Then the set {P*(cosf)} is orthogonal and complete over (0,7) with respect to
the measure (sing)**d6. It leads to the expansion f(6) ~ X*a,Pi(cos 6) for an

Received by the editors October 2, 1963.
(*) Some of the results obtained in this paper are also described in the note [16].
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18 B. MUCK ENHOUPT AND E. M. STEIN [June

““arbitrary’” function f on (0,7). In the limiting case A = 0 we recover the usual
cosine expansion because lim,_, oA ™' PA(cos§)=(2/k)cos k0. This, of course, leads
to the Fourier expansion for the circle, for even functions (a trivial rotational
invariance, in this case). When 1=1/2, the P}(cosf) are the usual Legendre
polynomials of cosf@. As is well known, these functions arise by considering
expansionson the sphere (in Euclidean 3-space) invariant under rotations of a fixed
axis. The case A = 1 should also be noted because then Pj(cos ) = sin(k +1)0/sin 0.
In general, when 24 is integral, 24 = n—2, the P arise in the Fourier analysis
of functions of the surface of the sphere in Euclidean n-space, E,, which are
invariant under the rotations leaving a given axis fixed.

The Fourier-Bessel transforms have certain close analogies with the above.
Let J,(¢) denote the usual Bessel function of order «, and set V,(t)=1 "7, (1).
Consider the (Hankel) transformation

F) - 7@ = f Ve 12 ENFG)Y dy.

(Again 4 20.) Then, as is well known, this leads to a unitary transformation
of the L2-space over (0,c0) with measure y**dy. The connection with the usual
Fourier transform (which occurs when 24 is integral) is as follows. Suppose
we consider functions in E, which are radial (i.e., invariant under all rotations
about the origin). Then the standard (n-dimensional) Fourier transform of such
a function is again radial; and when so restricted this transform becomes the
above Hankel transform (with 24 = n—2).

To relate the above expansions with generalized harmonic and conjugate
harmonic functions we shall be guided by the case when 211is integral. In the trig-
onometric case (1=0), we can associate to a general function f(8) ~ X 4a, cos k
its Poisson integral u(x,y) = X2 ,a,r*coskf, (x,y) = (rcosb, rsinf) which is
harmonic in the unit disc and takes on the boundary values f(8), as r » 1. From
thefunction u we passto the conjugate harmonicfunction v(x,y)= 2>, a,rsinkf;
and the properties of the analytic function F(z)=u+iv are closely related to
the original boundary function f(6). In the case of E,, when n > 2, there is an
analogous notion of conjugacy, which while not as decisive as in the classical
case still has some significant properties (see [16] for a general discussion of this
point). For this one makes the definition that an n-tuple of functions on
E,, uy,u,,,u,, are conjugate if they satisfy the equations

(1.1) ¥ ou; 0 Ou; _ Ou;

oy ox; 0 0x;  ox;

This system implies, in particular, that each u; is harmonic, and, moreover,
that the u; are related in a way which generalizes the usual Cauchy-Riemann
equations. Now suppose we have chosen a fixed axis, say along the x; direction
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1965] CLASSICAL EXPANSIONS 19

and we consider functions u, which are invariant under rotations leaving this
axis fixed, i.e., functions u, which are radial in the variables x,,x3,+-,x,. If we
set x=x;, y=(x3 +x% + -+ +x2)"%, and U(x,y) = uy(x;,+,x,), then U sat-
isfies the singular ‘“Laplace equation’’

0*U 9*U 210U

Moreover, the n—1 conjugates u,,us,--,u, are not essentially different, and
in fact can be taken so that u, = (—x,/y)V(x,¥), k =2,---,n; the relation be-
tween U and V, resulting from (1.1) becomes
0y 0y 4 1. = 0

u,—-Vv, - n V=0.

Thus if ®@ satisfies (1.2), and is otherwise ‘‘arbitrary,”” we may take U = @,,
and V= —®, to be typical solutions of (1.3). If we set u(x,y)= U(x,y), and
v(x,y) = y** V(x,y) we get the more symmetric system

_ 22 .24
Uy = —)Y Uy, V,=)y Uy.

u of course satisfies (1.2)and v satisfies the same equation with A replaced by — 4.

We have just described what holds when 21 is integral, but we take this as
our modelfor the case of general A = 0. Let us revert to ultraspherical expansions
and consider an arbitrary function

[ve]
f(0) ~ X a,Pl(cos 0)
k=0
and its ‘‘Poisson integral’’
(1.4) U(x,y) =f(r,0) = X a,*Pl(cosb).
k=0

Then U satisfies the equation (1.2) and we are, therefore, led to its conjugate
related to U by (1.3). This gives

S ar*sin 6
(15) V(x,y)=f(r,0)= 22 kz_l—-’f-k—:él—Ptj:(COSB)
and leads to the generalized Hilbert transform, f(6)— f(6), where
S a
f®~212 X -E—:l_—"ﬂsin 0 P}*1(cos0).
k=1

A similar notion of conjugacy is defined for the Hankel transformsin §16
(see (16.7) and (16.8)), and for Fourier-Bessel series in §18.
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20 B. MUCKENHOUPT AND E. M. STEIN [June

b. Summary of Chapter 1. We are now in a position to state our results.
These are carried out below in detail for the ultraspherical case; their analogies
for the Fourier-Bessel case are then sketched in §16.

The results of Chapter 1 deal mainly with the passage to the ‘‘Poisson integral”’
(1.4), its conjugate (1.5), and the properties of A-harmonic functions (i.e., solu-
tions of (1.2)). In §2 we set down various preliminaries, mostly of a formal nature.
In §3 we prove a maximum principle appropriate to A-harmonic functions. The
novelty here arises because we deal with regions that contain the x-axis (the line
of singularity of (1.2)) in their interior. Thus the usual Hopf maximum principle
is not directly applicable. However, this is circumvented because the A-harmonic
functions that arise by (1.4) are even in y. (Similarly, the functions (1.5) have a
natural extension for y <0 as odd functions of y.) This evenness (or oddness)
is a feature that recurs repeatedly.

§4 contains the basic estimates for the kernel of the Poisson integral. It turns
out that this kernel P, defined by

10.0) = [ P0,0,8)/@)sin)* a9,

behaves when 0 is “‘near’” ¢ in a way which is similar to the Poisson kernelin
the trigonometric case. The same kind of similarity holds for the conjugate
kernel Q, and the differentiated Poisson kernel, P, (see §§7 and 12). Obtaining
these estimates and applying them is a complicated matter. As such this repre-
sents one of the main technical difficulties in this paper. The estimates for P are
used in §5 to relate the boundary behavior of (1.4) to an appropriate ‘“maximal
function’” of the boundary values. This leads to a description of Poisson integrals
(1.4) and an analogue of the Fatou theorem which are strikingly similar to the
case of usual harmonic functions. These results are in §6. The purpose of §§7
and 8 is to prove the basic fact that the conjugacy mapping f— f is a bounded
operator on I, 1 <p< 0.

§8§9 and 10 deal with the analogue of the H’-spaces for ultraspherical expan-
sions and the results center about the boundary behavior of such functions. The
critical case p =1 leads to an extension of the classical theorem of F. and M.
Rieszand statesthatif Xa,P}(cosf)andits conjugate,

22 T(ay/(k +22))sin 6 P}*1 (cos

both represent finite measures, then both these measures are absolutely con-
tinuous. Two tools are used in obtaining the results for H-spaces. The first
leads to a global majorization, and follows from the fact that [F |” is a
sub-solution of (1.2), where F = U + iV, U and V satisfy the ‘‘Cauchy-Riemann
equations’’ (1.3) and p = 24/(24 + 1). The second tool is the known *‘similarity
principle’” for systems like (1.3) (see [2]); but since this principle is applicable
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1965] CLASSICAL EXPANSIONS 21

only in the case of regular coefficients, it can be used only locally (away from
the line of singularity).

c. Summary of Chapter II. Ttis of interest to ask whether the above notions
can be used as tools only in the study of ultraspherical and other expansions
without reference being made to them in the final statements of results. This
will be szen to be the case in the extension of the Littlewood-Paley theory which
is given in Chapter II. The main result obtained—and we we discuss only it—
is an extension of the Marcinkiewicz multiplier theorem of ordinary Fourier

series. It arises from the following problem. Consider a transformation T de-
fined by

Tf ~ Xau,Ph(cos0),
where

f~ Xa,Pkcosh).

We may ask, what are the condition on the multiplier sequence {y;} so that
Tis a continuous transformation of L’ to itself, for appropriate p? An obvious
necessary condition is that,(i) the sequence be uniformly bounded, i.e., ] uk| =M,
for some M. An additional condition, that of the Marcinkiewicz theorem, which
is sufficient in the case of ordinary Fourier series is that, (i) 2y- k luk - ﬂk—1|
< Mn,for some M and all n.

It is to be noted that the sequences for which g, =1, for 1<k <m, and
=0, for k = m, satisfy these conditions, with a uniform M for all m. These
particular multiplier sequences correspond to the operators of partial sums,
and for these Pollard [14] has proved the required L?boundedness, whenever
QA+ 1)/(A+1)< p<(2A+1)/4; incidentally this range of p cannot be ex-
tended. In view of this, it might be expected that in general the conditions (i)
and (ii) are sufficient for the multiplier transformation T to be bounded on
L? for the above range of p. This is indeed the case, as Theorem 10 of §14
shows.

The proof of this theorem is lengthy and follows preliminary considerations
in §§11, 12, and 13. We discuss these sections briefly, so as to indicate how the
notions of A-harmonic functions and their conjugates enter into the proofs. §11
is devoted in part,to a variant of Pollard’s result on partial sums, and this variant
and Pollard’s theorem have this in common: The formulas for partial sums
involve the functions Pj; but to study the partial sums effectively these formulas
must be transformed so as to involve both the P} and their conjugates the
Pitt

In §12 we deal with the ‘‘g-function’’ analogue for ultraspherical series. This
basictoolinvolves in its very definition the Poisson integral (in the sense of A-har-
monic functions) of a given boundary function f. The result of this section, is
that the LP-norm of g is comparable with the L*-norm of ffor 1<p< o0, as
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in the case of Fourier series. §13 may be viewed as giving a further refinement
of this, leading ultimately to the desired results in §14.

d. Summary of Chapter I11. This chapter deals with several additional results
related to the above.In §15 our main concern istheconvolution structure which is
naturally associated to ultraspherical expansions. In the case when 241 is integral
this convolution structure is, of course, the one induced from the group of rota-
tions in n + 1 variables. By the aid of this structure we study the L? properties
of potential operators (‘‘fractional integration’’) analogous to those obtained
for Fourier series by Hardy and Littlewood. We prove that if

I(f) ~ }gl k™*a,P;(cos 6)

then the mapping f— I(f) is continuous from If to L?, where 1 < p<g < o0,
1/g=1/p—a/(24 +1). This result, and others like it, are consequences of the
general Theorem 13; this theorem holds for any convolution structure, and seems
to have some interest in its own right.

In §16 we point out how results similar to those of ultraspherical expansions
can be derived for Hankel transforms. §17 deals with variants of some of the
above results, where certain weight factors are introduced in the L%norms.
Finally, in §18, the basic definitions are given for a possible extension of our
results to include the case of Fourier-Besse! (or Dini) series. From our point of
view this arises by considering functions harmonic in circular cylinders (of E, )
which are invariant under rotations about the axis of the cylinder; and then
passing by analogy from this case (which corresponds to 24 being integral), to
the case of general positive 4.

e. Further problems. We wish to discuss briefly several further problems
suggested by the above.

(i) When 22 is integral the Bessel functions and ultraspherical polynomials
can be interpreted as ‘‘spherical functions’” associated to symmetric spaces; in
the case of Bessel functions these spaces are the Euclidean spaces, and in the case
of ultraspherical expansions, these are the spheres. It would be of interest to
extend the above results to other symmetric spaces; the ones for which such
an extension would seem most probable are the symmetric spaces of rank one.
Two illustrations should be given in this regard. First, the spherical functions
for the complex projective spaces of dimension n have been determined by Elie
Cartan. Inthe notation of Szegé [ 18, Chapter IV] they are the Jacobi polynomials
P{*%, where a =n—1. Thus it is strongly suggested that much of what has
beendoneabovehasanappropriate variantfor the more general Jacobi expansions
in terms of the P{*?, where now « is any positive number. A similar situation
probably exists for the noncompact symmetric spaces of rank one. This is in-
dicated, at least on the formal level, by the known duality which allows one to
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1965] CLASSICAL EXPANSIONS 23

pass from compact to noncompact symmetric spaces; and more particularly by
the spherical functions of the Poincaré half-plane, which have been determined
explicitly(?).

(ii) As has been stressed repeatedly, the ultraspherical expansions, Hankel
transforms, and Fourier-Bessel series may be considered as arising by taking
harmonic functions in respectively Euclidean half-spaces, interior of spheres
or interior of cylinders, which are properly invariant under rotaticns. However,
the expansions associated with a variety of other regions would seem to be amen-
able to similar treatment. In this connection we should mention the ‘‘conical
harmonics’’ associated to regions bounded by circular cones—which regions
have an obvious rotational invariance. It is of interest to point out there is an
intimate connection between conical harmonics and spherical functions for the
Poincaré half-plane(3).

CHAPTER [
2. Basic formulae. We consider the ultraspherical polynomials of type X,Pﬁ(t),
defined by
o
(2.1) X 0PIt =1 - 2tw + 0®)7*.
n=0

See Szegd [18, p. 82].
For any ultraspherical expansion of the type f(0) ~ Xa,Pi(cos6), we shall
associate the ‘“harmonic’” function

(2.2) f(r,0) = X a,"Pi(cosf), O0=r<l,

and we shall also write it in the form u(x, y) = f(r, 6), where x = rcos 0, y=rsin 6.
It can then be verified that u(x, y) satisfies the differential equation

u  d*u 2 ou

for (x,y) in the upper semi-disc; x> +y?><1 and 0<y.
The formal verification of (2.3) follows easily from the differential equation:

£7(6) + 24cot0f'(0) + n(n + 24)f(6) =0

satisfied by f(0) = Pi(cos6).
To the series f(0) ~ Xa,PX(cosf) we shall also associate its ‘‘conjugate”’

series

(2) See the book of S. Helgason, Differential geometry and symmetric spaces, Academic
Press, New York, 1962; Chapter X. The determination of the spherical functions of the complex
projective spaces, and of the spheres, is in Cartan’s paper, Rend. Circ. Mat. Palermo 53
29), (19217-252.

(3) This connection was brought to the authors’ attention by L. Ehrenpreis. For information
about conical harmonics see H. Bateman, Partial differential equations of mathematical physics,
Dover, New York, 194«; Chapter VI.
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[+ o]
(2.4) 7(6) ~ 24 _21 - +"5 —+sin6 P} } (cos 0)
and its “‘conjugate harmonic’’ series
o a
(2.5) f(r,0) =24 g - +"2l r"sin @ P2t 1(cos0).

If we now set
(2.6) o(x,y) = y*(r,6)
then u and v satisfy the ‘‘Cauchy-Riemann equations"’:
2.7) ve=—y*u,, v, =y*u,.

v is harmonic in the sense conjugate to u, i.e.,

2 2 21
(2.8) A_,l(v)=%—;+ v Mo _,

We now pass from formal considerations to precise statements. The functions
of 6, such as PXcos6) and f(f) will always be considered on the interval
0 < 0 < =, unless stated to the contrary.

As is known the functions P2(cos8) are orthogonal with respect to a measure
dm; = dm,(0). More precisely we have

JuP:(cos 0)P2(cos6) dm,(6)
0

2.9 - T 24

@9 = 8,2 afr )] L2 o,
where

(2.10) dmy(6) = (sin6)**d0.

See Szego, [18, p. 81].

Thus we shall define the spaces L”= I?(dm,) as those whose norm |f||, is
given by ||f[, = (5] £(6)|” dmy(6))'”?if 1< p< o0, and | f] . = esssup|f(6)].
Also B will denote the Borel measures du on [0,7] which satisfy:

| dp] = J:(sin 0)**|du(6)| < oo.

If f(6) is a given function (0,n) integrable with respect to dm;,(0), we form

its ultraspherical expansion
o0

f(6) ~ X a,Pi(cosh),
where n=0

a, = Y» fonf(G)Pf,(cos 6) dm,(6).
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On account of (2.1) it follows easily that
| Pi(cosB)| < An**"1.

Remembering the definition of y, given in (2.4) it is then clear that the series
f(r,0)= X a,r"Pi(cosb)
n=0

converges absolutely when 0 < r<1.

The function f(r,6) will be referred to as the ‘‘Poisson integral’’ of f(6). There
is an explicit formula for it which follows from a theorem of Watson [22]. In
fact, define the ‘‘Poisson kernel’’ P(r,0,¢) by

o0

(2.11) P(r,0,¢) = X r"y,PXcos 0) Pi(cos¢).

0

Then we have

sin?*~ 1t

2r(cosfcos ¢ + sinfsin g cost)+ r2i+!

P00 = 2= T
2.12)

ML= j”' sin?* "¢ dt
T o [(x— &P +(y —n)? +2yn(1 —cost)]A+1 "’

where (x,y) = (rcosf, rsinf), (£,1) = (cos¢,sing). See also Huber [11].
We thus have

@.13) £(r0) = fo " P(r,0,0) 1($) dmy(d).

It should be noted that a similar formalism holds for Borel measures du which
have finite norm, in place of integrable functions f.

If we now write u(x,y) = f(r,0), it is apparent from an examination of the
Poisson kernel (2.12), that u(x,y) can be naturally defined in the entire unit
disc x*> + y* <1 in such a manner that u(x,y) is even in y and is indefinitely
differentiable (in fact real-analytic) there. It is of interest to observe that it fol-
lows from this that the function r"PX(cos6) is real-analytic in x and y. (This also
follows from the fact that PX(¢) = (— )'PA(—t).) We can now verify that
u(x, y) satisfies the differential equation (2.3) not just when y > 0, but also when
y < 0. Thusin the study of ultraspherical expansions we are led to study solutions
of the singular ‘‘Laplace equation’’ (2.3), but only those solutions which have
a natural continuation past the singular line y =0, are even, and real-analytic
in the unit disc.

3. Maximum principle. For second-order elliptic operators like those appearing
in (2.3) above there is a well-known maximum principle due to E. Hopf [9].

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



26 B. MUCKENHOUPT AND E. M. STEIN [June

However, this principle is applicable only when matters are restricted to the
region of regularity of the coefficients. Thus regions containing the singular
line y =0 would be excluded from consideration. But it is exactly regions of
this kind that are needed in what follows below. It is possible to bypass this dif-
ficulty by considering only even functions, as is suggested by the facts observed
in the preceding section. Our result is as follows.

THEOREM 1. Let u(x,y) be of class C2 in an open region R. If R contains
segments of the line y =0, we shall assume that u(x,y) = u(x, —y) near such
segments. Assume that u satisfies 0*u[0x* + 6%u[0y* + (24 /y)(0u[0y) =0, for
(x,y)eR, y+#0, and 1 is a fixed non-negative number. Then u cannot attain
a local maximum in R, unless u is a constant.

Proof. Suppose, on the contrary, that (xg,y,) € R is a local maximum. We
can first assert that y,=0. For otherwise u would attain a local maximum
at a point of regularity of the coefficients. This would contradict Hopf’s maximum
principle. We therefore can assume that y, = 0. To treat this case we shall show
that since 0%u/0x? + 0*u[dy* + (24/y)(0u/dy) = 0, then u satisfies the follow-
ing property akin to sub-harmonicity: For all p sufficiently small

@3.1) u(xO,O)f sin**9 do éf u(xo + pcosf, psin0)sin?*6 do.
o 0

In fact, we have by Green’s theorem, for u,ve C? of a region D with smooth
boundary curve B

ff [vdiv(]y [**gradu) — udiv(| y|**gradv)] dxdy
D

_ 22, O _ ‘?_‘i
_L|y[ (D% uan)ds.

(0/0n denotes the direction of the outward normal.) We set A,(u) =u,, +u,,
+(21/y)u,, and note that if r~2* = ((x — x,)* + y*) ™% the A,(r ~**)=0 (except
when (x,y) = (x0,0)). Take for D the annulus centered at (x,,0), whose outer
circle has radius p and inner circle radius ¢; set v = r2*— ¢, where ¢ = p'z’1
(thus » = 0 on the outer circle). Then (3.2) gives:

— 22 v — 24 Ou 22 ov
fcp |y us ds fce]yl va-ds + J.C8|y| Uz ds 2 0.

Here C, and C, denote respectively the circles of radius p and ¢ taken in the
positive direction. If we let ¢ - 0 in the above, then the second integral tends
to zero, and the resulting inequality is (3.1). Hence if (x,,0) is a local maxi-
mum of u then by (3.1) there is a local maximum near (x,,0) but lying

(3.2)
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strictly in the upper half-plane. Here again we obtain a contradiction with Hopf’s
maximum principle and the theorem is proved.

4. Estimate for the Poisson kernel. The results dealing with the behavior of
Poisson integrals near the boundary discussed below in §6 depend in part on the
basic estimates for the Poisson kernel given below. Recall the definition and
formulae (2.11) and (2.12).

LEMMA 1. Let us write d=1~r,1/2=<r<1. Then

) 521“6 sin"*¢
(4 1) (a) P(r:6:¢)§.c 5 52 +(6_¢)2’
) é

(b) P(r,0,9)<C - BT+ @ = p)yri

Proof. Write A =1— 2rcos(f — ¢) + r%, ¢ = rsinfsin ¢ . By examination in
(2.12) it follows that
P(r,09¢) = Il +123
where

t2).—1

n/2
11§C(1—r2)f —'—-——-—t'za—lﬁ dt,
0 [A + T]

and a similar estimate for I, as an integral taken overn/2 <t £ n.If we makethe

change of variablesu = (o /A)'/%1, we get

a_—l r(a/A)112/2 u2i.—1
II§C(1—r2)—A—f ——W‘I du.
0 (1 ¥ T)

Using the fact that

L+

© u22.—1
fo (_—_u—z—)ﬂ—l du < o0,
we get

) (sin Osin p)~* . (sin Osin ¢) ~*
h=C o o costi—gyar)y SC % = gp

Using the fact that

gives
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d
<C: 56 g*AA <
I, £C-6:67"0d"A =C @7 + (8= g)Epri’

(We have used the easily verified estimate

1o ¢
AT 82+(0—4¢)?
if0S0=Zn,05¢Ln,0=1-r,125r<1))
Similar estimates hold for I,. This proves Lemma 1.

5. A maximal function. Another basic fact we shall use is the analogue of
Hardy-Littlewood ‘‘max’’ function, but in the form appropriate for ultra-
spherical expansions.

For any fe L'(dm,(8)) we set
8+h
[ @) ame)
fX0) = sup 0 .

o+h
h#0;0<0+h<n
f dm;
8

We then have

LEMMA 2. f*(0) is finite for almost every 0. For any o >0, let E, ={f|
f*(0)>a}. Then myE,)=2/a) [ |f|dm,. If in addition feL(dm,),
1<p=Z o, then f*elL®and

71, = 4,171,

Proof. Itis possible to imitate the classical argument or to deduce the present
lemma from its known special case. We choose the latter approach. Introduce
a new variable x = x(0) = [odm,(¢), dx/df = sin®*0. We then have 0 < x < C,,
where C;= [, dmy(¢). Let now F(x)=f(6), then

my(E,) = mq {x

x+k
k'lf IF(x)]dx>oz, 0Sx+k=< Cl} ,

where my denotes the standard Lebesgue measure. We then have by Riesz’slemma

C n
mE) S = [ C1F@) ax =2 [ @) dmy).

Similarly the inequality || f*||, < 4, f], is proved.
In view of the lemma we have just proved, the basic lemma for the behavior
of Poisson integrals near the boundary can now be stated:

LemMa 3. Let fe L'(dm,). If f(r,6) denotes the Poisson integral (2.13),
and f*(6) is the maximal function defined above, then

supllf(r,O)] < Cf*(9).

0sr<
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Proof. To simplify matters we divide the square 0 <0< 7, 0< ¢ <=, into
four parts: (1) 0S6=n/2, 0Z¢p=n/2, (2) 050 =< n/2, n)2Z ¢ ==,
B n2 05n,05¢=n/2,(4) n/250Z 7, and 25 = 7.

Thus we have f(r,0) = f1(r,0) + f2(r,0) + f3(r,0) + f*(r,6) where say f*(r, 0)
is the Poisson integral of the function which equals f(¢) for 0 < ¢ < /2 and
vanishes outside this interval; also in f!(r,0) we restrict 6 by 0 <0 <= /2. Sim-
ilarly for the other f/(r,6). We assume also, without loss of generality that
f=0. It turns out that consideration of f 1(r,0) and f Y, 0) are essentially identi-
cal(*), while consideration of f2(r,6) and f°(r,6) are somewhat simpler. We
shall therefore discuss in detail the estimates for f(r,6).

Nowintherange0<0=<7/2,0=¢ <7/2,c0 <sinf < 0,and c¢p <sing < ¢,
where ¢ > 0. In the estimates that follow, therefore, we shall systematically re-
place sin by 6 and sin¢ by ¢. We now break up matters into further cases:

Case I. 26=2(1-r)<0.

Let E be the set of ¢’s so that [0— ¢ [ 5,0 < ¢<n/2, then

f . P(r,0,$)f(¢)sin?*¢ dp < ¢ f 51 f(¢)(sing)** "

g (sinfsing)*

es™t

<o | 1000 as

by estimate (a) of Lemma 1 for the Poisson kernel. However, |¢ /6| <c¢ accord-
ing to the restrictions made on 6 and ¢. Thus we have

[ P oy@psinnoasse o [ o as.
E E

However, [gsin**p dp=c[pp ** dp=c50%* 2 cé(sin 0)** because |6 —¢| < 5 and
26 £ 0. Thus finally:

f f(@)sin®*$ dp
lo-dl<s

sin?’¢ d¢
|6-¢| <o
Next let F be the set where 5§[6—¢!§0l2, and F, the set where
75 < |6 ¢S 2",
Then

24
fF P(r,0,$)f(¢)sin**¢ d¢ < C5 f (%‘W @

5 f(9)p*
< cngoa N m de.

f P(r,0,0)f($)sin?p dp < C < crv0).
E

(4)_T—his is due to the fact that P(r, 0,¢) = P(r, n—0, a—@).
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This follows by again applying estimate (a) of (4.1) on P(r,0,¢). Now

f sin®*pd¢ = ¢ f d*rdg = 2",
Fr 2m5510- | S 2m+ 15

since 0 = 24.
Thus we obtain

f@)(¢)** d¢

f P(r,0,8)f($)sin*$ dp < C T 27"k
F f sin®*¢ d¢
F,

C X 27°f%(6) = Cf*(6).

1A

Similarly, let G be the set where 6/2 < ]6 -9 | , and let G, be the set where
2"0 < |0 - (;b] <oty
Then

. 5(9)6 >
[Pe0.0@xinte as < ¢ | LG a0

é C § 0—(2).+1) f(d’)d)z}' d¢,

G, 220+ 1

n=-1
by estimate (b) of (4.1), and since 6 = 25.
However,
j sin*¢ dp = ¢ f ¢ dpzc(2)** .
G., 2n9<|9—gp|S2n+10
Thus the sum is dominated by
f(@)¢** do
PNy LA E—— D M A ()R
sin?* ¢do

Combination of the estimates for sets E, F, and G shows that
f1(r,0) < of*(6) if 26 0.

The remaining case for f(r,0), that is the case 26 > 0, is treated similarly.
Case II. 26>10.

We sketch the argument:

Let E be the set where |6 — ¢ | < 5.Then

fE P08 @sin dp 5 877 S8 dg 5 o0),
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because of estimate (b) of (4.1) and the fact that
sin®’p dp = ¢6***! if 26 2 0.
10-¢]<s

Finally, let F be the set where 6 < |0 — ¢|, and let F, be the set where
2§ <|0—¢| <2""'5. Then

f($)e**
e (0—)22+2

f P(r,0,0)f(¢)sin** ¢pdp < b d¢

<o ¥ [ su1f@9He_ 5 f*sz)gcf*(o)

n=0JF, 22n(A+1) =

as in the previous arguments.
This completes the estimate f(r,0) < ¢f*(6) for all r,6. As mentioned before,
f2,f3, and f4 are treated similarly. This concludes the proof of the lemma.

6. Poisson integrals and the analogue of Fatou’s theorem. The following theorem
contains the basic results of Poisson integrals for L?.

THEOREM 2. Let fe LF(dm;), 1< p=< o, and let f(r,0) denote its Poisson
integral, (2.13). Then

@ [£D), < O], 1595 oo,

(o) | f(,0) — £(6)]|,—0 as r—>1,if ISp< o,

(¢) lim,,,f(,0) = f(6) almost everywhere, 1 <p= o0,

@) [[sup,<1 |7 O], < 45| f]5, f L <p< 0.

Proof. (a) We note that P(r, 0, ¢) = 0, P(r, 0, ¢) = P(r, ¢, 0) and

[3P(r,0,¢)sin**¢ dp=1. Set f(r,0) = [¢P(r,0,¢)f(¢)sin’*¢dp.If 1 < p < oo,
we have by Holder’s inequality:

OIS f P(r,0,6)|f($)sin?p do.

Integrating with respect to 0 and interchanging the order of integration gives
|.£(r,6) I, | flss1£p<co. The case p = o is trivial.

(b) Let S be the linear space of all finite polynomials X _oa,PA(cos6).
Then S is dense in every L?(dm;), 1< p <oo. (In fact S is dense in the space of
continuous functions on [0,7] in the “‘sup’’ topology.) Since clearly f(r,0)— f(6)
uniformly and hence in L?for every fe S, part (b) then follows from part (a).
Notice also that if f(6) is continuous on [0,n] then | f(r,0)—f(8) ] »—0.

(c) If f(6)is given and in L'(dm,) it suffices to show that given any ¢ > 0,
there exists a set E,, so that m,(E,) < ¢ and limsup, | f(r,0) — f(6)| > ¢ only
for 0€E,.
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Thus write f(6) = f,(0) + f »(8) where f,(0) € S and | f, ], <8, & to be chosen
later.

Then f(r,0) — f(6) = f1(r,0) — £1(6) + f5(r,0) — f2(6) and hence If("a 0) — f(B)l
< |f1(r,0) — £1(0)| + cf3(0), since |f,(r,0)| = C/%(6), by Lemma 3, and [£,(0)]
< f5(0) trivially.

Since lim sup, . |fi(r,0) — f1(0)] =0 for every 0, we must show that

f3(6) £ /c except in a set of measure < ¢. However by Lemma 2,

m {022 sZ15) 5 22

€

Thus we need choose 6 only by 6 < &¢/2¢, which proves (c). (d) is an immediate
consequence of the comparison supg <, <y |f(r,0)| < ¢f*(0) (Lemma 3) and the
fact that ||f*|, < 4,[f|,» 1 <p = o (Lemma 2). This concludes the proof
of Theorem 2.

We now come to the converse problem, that of characterizing among all ‘‘har-
monic’’ functions those which arise as Poisson integrals of L? functions. For
this purpose it is important to recall the space B of Borel measures dy on [0,7]
whose norm

Jdul = [ Gin0)*|aus)|
is finite.
We define f oP(r,0,9) sin®* du(¢) as the Poisson integral of the measure dp.
Let u(x,y) be a function defined in the upper semi-disc x? + y2 <1, y > 0.
We shall say u(x,y) is A-harmonic there (or sometimes ‘‘harmonic”’) if it is of
class C? there and satisfies

0*u  0*u  2A du
A,'(u)=é-;5+a—);7+y—5;=

Weshallsay that u is regular and even if there exists a C2 function in the entire
disc x? + y* < 1 which extends u(x,y) (we denote the extension by u(x,y) also)
so that u(x, y) = u(x, — y). We notice if u is A-harmonic, regular and even, then
A;(u)=0 also if y<0.

We are now in a position to state our characterization of Poisson integrals.

THEOREM 3. Let u(x,y) be A-harmonic in the upper semi-disc. Then
u(x,y) = f(r,0)is the Poisson integral of a function f(0)e L?(dm,),1 < p< o0,
if and only if u(x,y) is regular and even in the disc x*> + y* <1 and

sup [f(r,0)|, < .
0=sr<1

For the case p =1 we have the following not-unexpected variant.
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THEOREM 3'. Let u(x,y) be A-harmonic in the upper semi-disc. Then
u(x,y) = f(r,0)isthe Poisson integral of a measuredusothat [gsin®*6|du(6)| < oo
if and only if u(x,y) is regular and even and

sulz [f(,0)], < .

As a corollary we obtain:

CoOROLLARY 1. A A-harmonic function u(x,y)which is regular, even,and non-
negative is the Poisson integral of a non-negative measure du so that
fgsinuﬁ du(6)< oo, and conversely.

As a further consequence, taking into consideration Theorem 2, we have:
COROLLARY 2. If u(x,y) is A-harmonic, regular, even and satisfies

sup | u(rcosf,rsin0)||, <o for some p, 1<p< oo,
0=r<1
then
lim u(rcos0, rsinf) exists for almost every 0.
r—1

There are two further conclusions for Poisson integrals that need be mentioned.
First,that lim,_, , u(rcos 8, rsin 6) will exist almost everywhere even for Poisson
integrals of measures in B.(Theorem 2-(c) covers only absolutely continuous
measures.)Second, all limits at the boundary can be taken in the nontangential
sense—instead of just the radial sense.

While these facts could be proved by techniques similar to thoseused above,
we prefer postponing consideration of these matters to a later section where they
shallfollow in the course of the development of H-spaces.

Proof of Theorem 3. We have aiready observed that if f(r,0) is a Poisson,
integral it is A-harmonic, regular and even. If f(0)e L? then by Theorem 2,
|£(r,60)]|, < [ f(6) ], and thus the necessity is proved. We come therefore to
the converse.

For any ry, 0 <ro <1, write

¢(r,0) = JP( 6, 8)f(ror #) dmy().

Thus g(r,0) is the Poisson integral of the continuous function f(r,,0). Consider
now h(r,0) = g(r,0) — f(rry,0). It is easy to verify directly that f(rry,0)is A-har-
monic (in (r,0)), regular and even in the disc x* + y*> <1, because f(r,0) is.
Thus h(r, 6) has the same properties. Moreover, h(r, 0) is continuous in the closure
x2 + y? £ 1 since f(rro,0) is, and g(r,0) - f(ro,0) uniformly as r— 1. There-
fore, in addition, h(1,0) =0. We claim that h(r,0) = 0. Assume the contrary,
then h(r,8) would have a local maximum (or minimum) at an interior point of
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the disc. This contradicts the maximum principle (Theorem 1) and hence
h(r, 0)=0. Thus

(6.1) Sf(rry,0) = J;"P(r, 0,)f(ro,¢) dmy(¢), O0=ry, r<l.

Since | f(r,¢)|, =M < 0, we can select a sequence ry,ra,-:+,r,, =+, so that
r,— 1 and f(r,,0) — f(0) weakly as r,—> 1.

It therefore follows from (6.1) that f(r,0) is the Poisson integral of f(6), and
the theorem is proved.

Theorem 3’ is proved in the same way, except because |, 3‘[ f(r,O)lsin“B do
< M < oo, we now have a sequence f(r,,0) which converges weakly to a measure
du(8) so that [gsin®*6|du(6)] < 0.

The proof of Corollary 1 is based on the following fact: If u(x,y) =f(r,0) is
A-harmonic, regular, and even, then

(6'2) u(O, 0) f (Sin 6)21 de =f u(r cos 6’ r Sine)(sin 0) 21d0 .
Y 0

This is the mean value property, which in thiscontext is due to Weinstein [23].
(6.2) also follows immediately from a more general inequality (3.1) for “‘sub-
harmonic”’ functions. In any case, if u(x,y)=0, then (6.2) implies that
u(x,y) = f(r,0) satisfies sup,, [5|/f(r, 0)|sin“0 df < oo.Theorem 3’ is there-
fore applicable.

Corollary 2 is an immediate consequence of Theorems 2 and 3.

7. The conjugate kernel. Let us recall briefly the definitions of conjugacy
introduced above.

If
f(6)~ X a,PXcosb)
and
f(r,0) = X a,r"Picost), r<1,
then
7.1 fr,0) = 2/1 E r"sin6Pt*i(cosf), 0=<0=<m.

21

If we set u(x,y)=f(r,0) and v(x, y) = y **f(r,6) then u and v satisfy the Cauchy-
Riemann equations v, = —y**u,, and v, = y**u, and their analogues in polar
coordinates: v, = —((rsin 0)** /r)uy, vy = r(rsin8)**u,. That these equations are
verified follows easily from the relation (d/dt)Pi(t) =2APA*1(1), see Szego [18,

p. 83].
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Let us now notice that
70.0) = [ 00,6,)(@)in6 ds,
where

(7.2) Q(r,0,0) = °° 3_12 Py "y,sin 8 P2*}(cos 0)PX(cos ¢)

n=1

and where y, are the normalizing factors (2.9). Q will be called the conjugate

Poisson kernel.
In view of the equations v, = — ((rsin 6)**/r)u,, v = y**f(r,6),2and 0(0,6, $)
=0, we obtain

(13) Qr.0,4) = —r~2 fo 1471p,(1,0,4) dt,

where P is the Poisson kernel(2.11). Equation (7.3)allows us to reduce the prob-
lem of analyzing the kernel Q in terms of the kernel P, for which we have an
explicit formula. The result of this analysis is as follows.

LemMMA 4. If 050=<n,05¢<n/2,0<A, then
0(r,6,¢) = O(sing) ") if20< ¢,
O((sin6)2*~1) if%0>¢,

O(r,0,¢) = c;r*(sinfsin p) 1= ;i::ffs@%) +7r2

+ o[ (sin 0)‘”-‘1(1 + log+(r_fii;%——m))] if % <¢=<20.

REMARKS. It follows from (7.2) that Q(r,0,¢)=0Q(r,0',¢"), where 68'= n—0,
¢'=n—¢ (because P,(—t)=(—1)"P,(t)). Thus very similar estimates hold
for Q in the range n/2 £ ¢ < n. The lemma shows that except for the factor
c,lr‘(sin fsin )%, the kernel @ behaves like the conjugate kernel in the trigo-
nometric case for 0 near ¢.

Proof. Let us define D by

D =1—2r(cosfcos¢ +sinfsingcost) +r

We then have 2ams
P(r,0,¢) = (A/=)(1 - rz)j T dt.

Differentiation of both sides establishes the elementary identity

J\r t21(1_t2) _ r2}.+1

= - dt
o (1—=2at+12)4+2 dt A+ —2ar+r2p+2 A + 1 Jo (1—-2at+12)+1
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As we saw before
o@r,0,) = —r~2 J >4 1Py(t,0,) dt.
0
But

A+DL

T

b(sint)**~!

Po(t,6,¢) == o (1 —2at +t2)}.+1 d,

1— )t

where
a = cosficos¢ +sinfsin¢gcost,
b = 2sinfcos¢p — 2cosfsinpcost.

Substituting in the above identity gives

0(r,0,8) = —r~#1R(r,0,) + Ar~? f R(,0,) dt,
[¢]
with
(7.4) R(r,0,¢) = %r““ J. D,-D™* 1sin®*~1¢ dt.
0

Thus it suffices to obtain similar estimates for the kernel R(r,0,¢).
Consider first the case, ¢ >20. Now

D** 13 (1—r)?+ 2r(1—cos(0— )+ = c(1—cos(6— )+

= c|sin(6—¢)[***? 2 c(sinp)***2,
since ¢ > 20.
However, |D,| = 2r|sinfcos$ — cosfsindpcost| < csin¢ (since ¢ > 20), we
therefore have by substituting these estimates in (7.4)

(7.5) | R(r,6,¢)| < c(sing) **™!  for ¢ >20, 050 m.
By an almost identical argument
(71.6) | R(r,6,)] < c(sinf) 2", —;e>¢, 0<0<n.

We now consider the more critical range, 6/2 < ¢ < 20.
Write,

_qp2A-l e
R(r,6,¢) = — f DyD~*Ysin?* "1 4t
0

(1.7)

_ArZ).—l n/2 _erA—l n
A f DoD ~*~Xin 2" Ydt + — f DeD™*"1sin®* "1 gt
T 0 n %2

Rl(r’ 09 ¢) + RZ(ra 03 ¢) .
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In R, the behavior near =0 will be decisive and in R, the behavior neart =z
will be critical. Thus in R, we shall systematically use the fact that
cost =1—12/2 + O(t*), and sin**~'t = t2*71 4 0(1***1), as t—0; similar facts
are used when dealing with R,, whose contribution is solely to the error term.

Now

D**' = [1—2r(cosOcos¢ +sinBsinpcost) + r’P*!
= [1—=2rcos(6—@) + r? + rt’sinOsind + O(t*)rsin OsinpT* .

Since 1 —2rcos(6 — ¢) +r* =0, and rsinfsing =0, we get by the mean
value theorem

(7.8) D™*! = [1—2rcos(0—@) + r? + t*rsin Osin ] *~*
+ O(t*)rsinfsing-D™*72.
Also
(1.9 D, = 2rsin(6 — @) + O(t*)sin ¢

since 0/2 < ¢ <20, 0<0<n. Inserting the estimates (7.8) and (7.9) in (7.7),
simplifying, and using the fact that t?rsinfsin@ < cD, we get

l 2}’ . 2}.+lsln(6 ¢) dt
Ry(r.0.) = —~ f [1 — 2rcos(8 — @) + rz + re>sin 0 sin ¢A+1

(7.10)
zf2
+ O(Sinq’))f £24*1[1 —2rcos(6— ¢)tr? +rt? sinBsing] ™' dt.
]

We handle these integrals by making the substitution

( rsin Osin ¢ 1/2 (a 1/2
u = t = |— t,
\1 — 2rcos(f — ¢+r2) A

as in the proof of Lemma 1 of §4. (Here, o = rsinfsin ¢, and
A = 1—2rcos(6 — ¢) + 1)
Thus the first integral in (7.10) becomes

i A)t12(nf2 24-1
:fq'—r”'1 sin(6 — ¢) P @Iy
T A 0 (1 + u2)r+t

du.

However

¢ L 2a-1 o 22-1
‘f v du:f  __du + 01/ E- 0.
0

o (L+u?yrs (C+urpss
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Therefore the first integral in (7.10) becomes

c;r* " (sin Osin ¢)~* =3 :z)ns((g_—:;))+ — +0(|sin(6—¢)| e 27 1),

and this equals

(7.11) C;,TA- 1(Sirl Osin (]5)—"1 = 287‘12(()03(; j’zp) o + O(sin 6)~ 2-1

since 0/2 < ¢ <26.
The second integral in (7.10) is dealt withsimilarly, and leadsto the estimate

) (sinqs-a"“‘[l +1og+(-A‘1)]).

Since sing = csinf and A= ¢[1—cos(6—¢)], in this range the above O termis
sin fsin ¢ )
1 — cos(6 — ¢) )

Hence (7.11) and (7.12) combined give us the required estimates for R, and
thus for R, and finally for Q in the range 6/2 < ¢ < 26. This concludes the proof
of the lemma.

(7.12) O(sin )~ 247! ( 1 +log" (

8. L? theorems for conjugate functions. Let us recall the definition (7.1) of the
conjugate harmonic function f{(r,0):

r"sin@ P} i(cosf), O=Zr<l,

i a
fr,0) = 2/151 n+ 22
where

f(6) ~ Y a,Plcosb).

We shall need also the L?classes with norm |f|, = (J5|f(¢) " dmy(¢))'"",
where dm,(¢) = (sin $)**d¢.

We come now to one of our main results—an extension of the M. Riesz theorem
for conjugate functions for the L? norm, and of Kolmogoroff’s inequality for L.

THEOREM 4. (a) If f(8)eL?(dm;), 1 <p < oo, then | f(r,0)|, < A,|f].-
(b) If fe L'(dmy), s >0, and E;= {8] |f(r,6)| > s}. Then

mA(Es) S (A)s) "f”l .

Proof. We consider, for fixed r, 0 < r <1, simultaneously two operators,
T, and T? defined by

®.1) (T.1)(6) = fo "0(r, 0, 8)(¢) dmy($)

and
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8.2) @00 = [ ¢.6001) dmy(9).
Thus T,(f)(6) = f(r,0), and T* is the adjoint of T,. We prove first
(8.3) | Tl < 7]
In fact,

= (24)° 2 Laafr e,
where 1 (n 2/1)2

+ - _, T 24 +1
)" f [P} 1(cos ) dmy, ,(6)=2"1" (T2 + 1)) Zmﬂffﬁf—!.

However,

1715 = X la. "
where

n _ 24
= f [Pacos 0)) dm,(0) = 2' (T ())~? (r(—fi)—)

(see equation (2.9)).

Thus (8.3) is equivalent with sup,(24)*(n +24)~%(y,/y¥) < 1, which after re-
duction becomes sup,(n/(n +21)) £ 1, and this proves (8.3).

By a standard duality argument we then obtain

(8.4) KA PR VALY

We have therefore proved part (a) of the theorem in the special case p =2.
In order to make further progress we must now prove the ‘‘weak-type’’ estimate,
that is part (b) of the theorem. We shall prove this for both T, and T,*. In so
doing we shall systematically use the following remark: If finitely many functions
satisfy the weak-type estimates arising in (b) for all s > 0, then so do their linear
combinations with constant coefficients, with possibly larger constant.

We now make a few simplifying assumptions. First we take f=0; next we
assume that f(¢) =0, if #/2 < ¢ < n. The case when the support of f lies in
(m /2,7) is dealt with similarly.

Then

n/2
(T.F)(0) = f 0(r,0,6)/($) dmy(@)

0/2

nj2
= J, Qr, 6, $)f(d) dmy($) + y O(r,6,9)f(d) dmy($)

20
+ | 00.0,8)/@) dmy(@).
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Let us set

w2
(8.5) M(f)(0) = (sinf)2*1 f £(6) dmy(),

(8.6) N(f)(6) = (sin6) ! f log* _Sm%f(¢) dmy(®)

/2 ]. - 005(0 -
and

, sin"*@sin "*psin(0 — @)

3.7) Q00.9) = o' T 5 = v

Then by virtue of Lemma 4 we have, after a simple reduction,

20
T.(f)(6) — on(r, 0, )/ (¢) dm,l((b)‘ < [M(£)(6) + N(f)(6)].
It is easily seen that
¢ /2
8.9) mOM©)>5) s £ [ famge).
Next we claim that
¢ /2
(8.9) m(0| Nf(B) >s) < — f fdm,.
S Jo
This will follow if we show that [INf(8)dm,(6)<c [if(¢)dm,(¢). In fact

n T 20 + in Osi
[ 3@ am@ = [ainoyt ([ roos s am)ao

n/2
- [ s amio),

where

26 .
. +f sinfsing do
k@)= L/z log (1 — cos(f — ¢)) smgr  0=é=nl2

However, a simple reduction shows, that in this range

5[t (g ) o - [t L) e

Thus K(¢) is bounded and therefore we obtain (8.9).
We now come to the main contribution—that given by the kernel Q(r,0,¢)—
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which is the principal term of Q(r,0,¢). For this purpose consider the sets
E,=(27" 'n,27"n) and the sets E, = (27" %z, 27" 'z). In the integral

28
(8.10) o2 Qo(": 0’ ¢)f(¢) dml(¢)

if 0 lies in the set E,, the integration in ¢ ranges only over part of E,. Thus if
Xg; is the characteristic function of E,, the integral of (8.10) is identical with the
sum

0 20
(8.11) 20 26(6) 2 Qo(r, 0, ) f(d) dmy(4) ,
where

Ji(@) = 1(®) xpd)-

We would like, however, to compare the sum (8.11) with the sum

(8.12) Y 260 | 0or.0,9)/(8) dmy(9).
n=0 En

The difference of the nth terms of these two sums is dominated by

15.0) f | 0u(r,0.8) |£(8) dmy(h),

where
F,=Q " ?n,02)u(20,27""'7), 0¢cE,.

However, in this range it is casily verified that |Qu(r,0,¢)| <c(sin6)™**"".
Thus it follows that the difference of the sums (8.11) and (8.12) is dominated by

[« o] T
¢(sin0) 2471 Y . f(¢)dm, < ¢'(sin ) 241 f f(@)dm ().
n=0 n V]
This is of the form Mf (see (8.5)),and leads to the desired estimates. We have
therefore finally reduced the problem to that of the sum (8.12).

Let then E°denote the set of 0°s for which the absolute value of the sum (8.12)
exceeds s. Then

® 0
E* =nL=J0 (E°NE,), and my(E*) = ¥ my(E°NE,).

=0

We deal with the set E*N E; separately. Therefore we take n = 1. It is clear
that on E,, (sinf)”* is of the order 2*"*; thus

E*NE,c {0‘ ! L' (sin 9)"*sin(®— ¢) f(¢)dm,1(¢)‘>c2'”’ls}.

1—2rcos(6 — ¢) +r2

Thus by the classical theorem on conjugate functions for trigionometric series
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2+ni.
f a0 s f 7($)sin’ do
£
E*nE, "
'2"’"1 +ni i 24
=< C——s—'2 E'f(qb)sm ¢ do.
However,
myE*NE,) = f sin?do < 27 f do.
ESnE, E*nE,
Thus,

X m(EnE)SCls B [ @) dmsCls [16) dms).
1 n=1 n 0

n=

It remains to consider E°NE,.Now Ey = (n/2,7) = (n/2,(3/4)n) u [(3/4)n,7)
=E(” UES?. The measure my(E* N EYY) < (C/s) [2f(¢)dm, by the same argu-
ments used to consider m,(E*N\ E,), n> 1. Finally, when 0 € [(3 /4)r, 7], ¢ €[0,7/2]
we use the trivial estimate | Qy(r, 6, $)| < C(sin6)">*”!, which reduces the esti-
mate of the measure my(E* NEJ’) to the integral M(f)(f) considered earlier.

Combining these estimates, and taking into consideration the remarks made
earlier, we obtain

(8.13) my(B|(T.f(6)] > s)< AJs|f],.

This proves part (b) of the theorem.
Since we have essentially identical estimates for the kernels Q(r,¢,0) and
0O(r,0,¢) we also obtain

(8.14) my 0] | T ©O)] > s) < Afs- | f], -

A combination of (8.13) and (8.3) via the Marcinkiewicz interpolation theo-
rem (°) proves

(8.15) I TN s 470, 1<ps2.
Similarly, (8.14) and (8.4) lead to

(5.16) 1T, s 4l 1<ps2.

However, by a standard duality argument (8.16) gives

(8.17) ITND S 4lfl,, 259<o.

Therefore the theorem is completely proved.

(°) See Zygmund [26, Vol. II, p. 111].
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COROLLARY 1. Let fe LP(dm,), 1 < p < oo; then f(r,0) converges in L? = norm
to f(6), as r—1, and

171> = 45071,

Moreover,

F(6) ~ 24 Z l(sm 0)P *1(cos6).

COROLLARY 2. If dyu is a measure belonging to B, du ~ X a,PX(cos 6) and

fr,0) =22 Z

r sin@ P (cos6),

then

® 1/p
(fo lf(r,o)ll’dml(e)) < 4,]|du|, 0<p<1.

Corollary 1 is proved in a familiar way from part (a) of the theorem. To prove
Corollary 2, let 0 <r, <1, and let g(6) = f(ro,0), where f(rq,0) is the Poisson
integral of the measure dp. Then | f(ro,0)|; S | du|. Now apply part (b) of
the theorem to g and let ro— 1.

We see from the theorem and its corollary that the conjugate mapping, f— f
is boundedon L% 1 < p < o, and satisfies an appropriate substitute relation
for L*. This brings us naturally to the problem of the inverse mapping. Let us
consider, for the moment, certain facts about the conjugate mapping, f— £, in
the classical trigonometric case. The adjoint of the mapping f — fis the mapping
f— — f; while the inverse of the mapping f — f (defined on those f without con-
stant term) is again the mapping f— — f. However, in the general case we con-
sider, this is no longer true. Thus we had to consider side-by-side with the mapping
T, the mapping T, in our proof of Theorem 4.

To study the inverse mapping, define the operator S, by

(8.18) SO =A)! E a,(n +22)r"Pi(cos 6)

n=

whenever

f() ~ E a,(sin B)P:* [(cos 0).
It follows that

S,(/)(6) = f o 0_(r,0,)/($) dmy($),

where

Q_(r,6,0)=(21)"! E (n + 2A)y¥r"PX(cos ) sin ¢ PA* 1(cos ¢).
n=1
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(For the definition of the constants y see the formulae following (8.3).)
If we recall the formula for Q(r, 8, ¢) (see (7.2)) and the fact that

*
QN %n + 2,1)2’)'% 2
we get
0-(r0,8)= 0. 6,0) + 22 [ 110(1,,0) dr.
Thus, 0
(8.19) S,=T¥+24 f tTiTX dr.
0

However, we have seen that ||T.f|,<4,]|f],, 1<p<o, and thus
1 T¥f|l, < 4,]fl,>» 1 <p<oo. From (8.19) it then follows that

(8.20) IS, =4,|f],, 1<p<owo, 0=5r<l.
Incidentally, we have used the semitrivial estimate |T}f|,< 4r|f|, if
0<r=1p2.

When f is, say, a polynomial,
N R
f(0) = X a,PXcosh), f f(6) dm,(6)=0,
n=1 [}

then it follows immediately from the definitions of fand S, that lim,_,S,(f)(6)
= f(0) in L?-norm.
Combining this with (8.20) gives the following further corollary.

CoROLLARY 3. If f(8)€LP(dm;), 1<p< o, and

[ r@am® - o,
then
B\ fl, = 71, = 4.l f],-
9. Theory of H’-spaces: Harmonic majorization. Let # and v be a pair of
conjugate harmonic functions on the upper semi-disc, that is
V= — y“uy and v, = y*u,
there.

We have studied in §6 the conditions under which u(x, y) can be represented
as a Poisson integral of boundary values taken on the perimeter of the upper
semi-disc. Whenever this is possible we have

9.1) u(x,y) =f(r,0 = % a,r"PX(cosf), (x,y) = (rcosf,rsinf).
n=0
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u(x,y) then has the additional property that it can be extended past the singular
line y =0 to the whole disc so that it is even in y and regular there. For u’s rep-
reserted asin (9.1) we can write down a similar series representing the conjugate v,

0 n
9.2) o(x,y) = y2f(r,0) = y** 24 T -2 __sin 0P+ !(cos0).
w=1 B+ 24

It is to be noted that f(r,6) can also be extended past the line y =0, so that
as a function of x and y it is odd in y, and regular in the entire disc.

In view of the L? boundedness results obtained in §8 it is natural to consider
f(r,0) and f(r,0) on the same footing—as opposed to u and v. For this reason
it is convenient to use adjusted functions U and V defined by

Ulx,y) = u(x,y)=f(r,0),
9.2)’
Vi,y) = y ?ulx,y) =f(r,0).

We shall write also in complex notation
F(z) =F(x,y)=U +iV, z=x+iy.
It is to be noted that U and V satisfy the equations

V.+ U, =0,

(9.3) %VJ,Vy_Ux:o, 0< A

Recall also that if f(r,0) is the Poisson integral of a function, say in L?(dm,),
1 < p < oo, then by Theorems 2 and 4 it follows that

9.4 sup f | F(reé®) [P dm,(0) < co.
r<i 4]

We are now in a position to make our basic definition. Let F = U + iV be a
function regular in the unit disc. U is even in y and V is odd in y. Suppose that
F satisfies the system (9.3) in the upper semi-disc, and for some p, p>0, F satisfies
the boundedness condition (9.4). Then we say that F belongs to the class H”,

By the remarks made above it can be shown that the HP theory, when
1 < p < oo, is essentially equivalent with the I? theory already studied. Our main
interest, therefore, will be with p < 1. Here matters stand in close analogy with
the H” theory of harmonic functions in several variables, developed earlier;
see [17]. Thus it will be possible to develop an H? theory for a range of p’s less
than 1, but not all p’s, 0 < p < 1. More precisely we shall deal with those p’s
which satisfy p = 21/(21 + 1); for only those we have the following basic lemma
concerning ‘‘sub-harmonicity.’’

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



46 B. MUCKENHOUPT AND E. M. STEIN [June

LeMMA 5. Let F = U + iV satisfy (9.3) in a region in the upper half-plane.
Suppose |F|>0 there. Then if p=22/(2A+1), and A;=d*/ox* + 2*[0y®
+(2A/y)d[dy (where A =0), then

(9.5) AFPP 2 0.
Proof. Write F=(U,V), F,=(U,U,) and F-F,=UU,+ VV,--, etc.
Then

% |F|P = p|F|°™FyF,
0 4 p=2
5 P = plFPF, F,

82 - -
Sl FIP = pl(p=2)[FP"*(Fx FY + [F[7"2 {| F,|* + F-F,i}].
Similarly with (8%/0y?)|F|°.
Adding we obtain
A|FIP
P|F|P *[(p—2)(F<-F)* + (F,*F)®) + | F|*{| Fx|* + | F,|* + F-A;F}].

Notice, however, that A,F = A,U + iA;V. From (9.3) it follows that A,U=0,
while

(9.6)

Ve + ¥, +(2}“V) = 0;
Yy

thus A,V = (24/y*)V, and hence F-A,F = 2A(V?*[y*). Substituting in (9.6) we
then see that A;|F|?2 0if p = 2, since everything is positive in this case. Having
disposed of this simpler case, let us now suppose that p<2. Then (9.5)is equiv-
alent with

9.7) (Fy-F)* +(F, F) <———-|F| [IF > +|F,|* +

U, v,
_U _.I/y °

y

2/1V ]

Let M denote the matrix

Notice that the equations (9.3) can be translated into the two statements (i) M
is symmetric and (ii) trace of M = 2AV/y . The inequality (9.7) can be translated to

©.9) IM[F:HZ < 2 - |F| ["Mllz + (tr(2];"f)) ],

where | M ||* denotes the square of the ‘Hilbert-Schmidt’ norm of the matrix,
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If we consider F to be an arbitrary two-component vector, then (9.8) becomes

(9.9) |MJ? < (2_1-) [“an + (tr(M))z]’

—p 24

where |M ] denotes the usual norm of the matrix M—considered as an operator.
We shall show that the inequality holds for any symmetric 2 x 2 matrix M, as
long as p=24/(22 + 1).

In fact, |[M|, | M|, and tr(M) are invariant under orthogonal changes of co-
ordinates; so we may assume that M is already in diagonal form,

m 0
v (t )
0 u
Then (9.9) becomes
1 -
(9.10) max 1 < _"__—[ﬂf + 7+ (20) 7wy + 12)?].
k (2-p)
We have
o= — P+ (g + 1),

Therefore, u? < ap? + p(u, + U2)?, whenever >0, B>0, 1/a +1/8=1. Add
ap? to both sides; this gives

o

2 <
=174

([ﬂf + 3] + é[ﬂl + uzlz)-

Choose B =(2A+1)/22, « =2A+1; then Bja =1/24, and «/(1 + «)
= (24 + 1) /(24 + 2). Thus (9.10) is valid as long as 1/(2—p) = (24 + 1)/(2A + 2),
which is 2> p = 24/(24 + 1). This proves (9.10) and, therefore, the lemma.

ReMARK. The lower bound 24 /(24 + 1) which occurs for p in Lemma 5 can-
not be improved. One only need consider U =x(x>+ yH)~*1 and
V=—y(*+y*)*"" Then |[F[P=(@"**"") =r"". But A;yr™ < O unless p
=24.

We now come to the majorization theorem which is the key result in the devel-
opment of the H? results.

THEOREM 5. Let A>0, and v=2A[(2A +1). Suppose that FeH®?, v< p.
(@) If p=v, there exists finite positive measure du (dueB), so that if
h(r,0) is its Poisson integral, then

9.11) |F(ré®)|"<S h(r,0), O0Zr<1, forall0,

and

9.12) sup f an(re“’)|"dm1(0) = f sin®*0 du(6) (= | du|)-
r<i 1] 1]
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(b) If p>v, then there exists a function g(0)eL? where q = p|v, so that
if h(r,0) is the Poisson integral of g, then (9.11) still holds. (9.12) is then to be
replaced by

(9.13) sup || F(re?) | = | & -

Proof. Let us consider first part (a). Fix p, 0<p <1, and set
g,(0) = | F(pe”)|". Let h,(r,0) be the Poisson integral of g,(0). The main step
in the proof consists in proving the inequality

(9.13) |F(pre®)| < hy(r,0), O0=r=1.

For this purpose consider the difference (r,0) = IF(pre"’)l — h,(r,0). We ob-
serve that h,(r,0) is regular, and even in the unit disc and satisfies Ay(h,) =0
there, since h, is a Poisson integral. Moreover, recalling the properties of U,V
and F, we see that | F(pre”®)| is even and regular near any point where | F| > 0,
and satisfies A;|F| = 0, there, by Lemma 5. Notice also that 6(1,0) = 0, by the
definition of h,. Suppose now, that contrary to (9.13) we had d(r,0) > 0 for
some point (v,0). Since § is continuous in the closed disc and vanishes on the
boundary, its maximum would be attained at some point (r¢,8,) and &(ry,0,) > 0.
However h(r,0) = 0, since it is a Poisson integral of a non-negative function.
Therefore | F(proe”®)| > 0, and hence Ay(8) =0 near the point (ro,0,). This
would violate the maximum principle (Theorem 1 of §3), and hence (9.13) is
proved.
Now let p, be a sequence tending to 1 from below. Let g,(6) = | F(p,e”)|

and let h,(r,0) be the Poisson integral of g,(0). Then by (9.13) we have

9.14) [F(p,re®)|” < h(r,0).

Moreover,

(9.15) f 2,(0)sin**0 db < supf | F(pe®)|"sin®*0 d0 < 0.
(1] p<1 (0]

Thus, as is well known, we can find a subsequence {g,(6)} and a measure
du, so that, g, — dpu weakly. Let h(r,0) be the Poisson integral of du. From
(9.14) it follows that

(9.16) |F(re®)| £ b(r,0), 0=r<1,

and from (9.15) that

f sin?*(6) du(f) < supf | F(re™)|"sin**0 d6.

(9.17) 0 r<1l JO
f h(r, 8)sin®*0 d6= f sin?(0) du(h).
(V] 0
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Combining this with (9.16) and (9.17) gives the identity (9.12). Thus part (a)
of the theorem is completely proved. Part (b) is proved in a very similar way
and needs no further comment.

10. Theory of H’-space: Basic results. We are now in a position to state the
basic results regarding the theory of HP-spaces for ultraspherical expansions.
The proofs given below depend on two ideas: the theory of majorization devel-
oped in the preceding section, which gives certain global results, and the *‘sim-
ilarity principle’’ for pseudo-analytic functions, which will lead to certain local
(i.e., almost everywhere) conclusions.

Let us recall the definition of the HP-spaces given at the beginning of §9.
We then have

THEOREM 6. (a) Let F eH?, 2A[(2A +1)< p. Then lim,, F(re®) = F(¢")
exists for almost every 0. More generally, for almost every 6, lim F(pe”)
exists as pe'® approaches the point e® nontangentially.

(b) If F(®)=0 in a set of 0 of positive measure, then F=0.

(€) If 24/(2A +1) < p, then [I|F(re®)— F(e®)|?dmy(6) -0, as r—1.

As a simple consequence of part (c) of the theorem, when p = 1, we obtain
the following analogue of the theorem of F. and M. Riesz.

COROLLARY 1. Let du, and dp, be two finite measures (that is,
[5(sin0)**|dp;| < ). Suppose that
dﬂl ~ E a,,Pﬁ(cos())
and
An . pi+i
dp, ~21 2 n+2As1nP,,-,(cosG).

Then both du, and du, are absolutely continuous.

We also can complete the generalization of Fatou’s theorem given Corollary 2
of Theorem 3, §6.

COROLLARY 2. Let u(x,y) be A-harmonic, regular and even and satisfy
sup f | u(rcos, rsinf)| dm,(6) < co.
0<r<it o

Then lim,_,, u(r cos, rsin0) exists for a.e. 6, and in fact nontangentially.

We come now to the proof of the theorem and its corollaries. Let du be a pos-
itive measure which is finite, i.e., fgsin2‘6 du(f) < . Let h(r,0) denote its
Poisson integral

h(r,0) = j:P(r, 6, ¢)sin**p du(e).
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We denote by p*(0) the maximal function associated to du, that is
0+h

[ s auco)

p*(0) = sup2—
b f sin%¢ do
]

The well-known theorem of differentiation of measures tells us that u*(0) < oo

for a.e. 6.
Let us observe that
(10.1) sup  h(r,0) < cu*(0).

0=r<t

In fact, in the case when dpu is absolutely continuous (10.1) is merely a restate-
ment of Lemma 3 of §5. The proof for a not-necessarily absolutely continuous
measure is exactly the same.

(10.1) gives us an appropriate estimate for the radial approach to the boundary.
In what follows we shall need ‘“‘a nontangential’’ analogue of (10.1) This may
be formulated as follows. Let Q be a fixed triangle, lying strictly inside the unit
disc, except that one of its vertices is at the point =1, 6 = 0. For any 6,, de-
fine Q(0,) to be the triangle rotated (about the origin) so that this
vertex is the point r=1, 8 = 6,. The chosen triangle Q = Q(0) is kept fixed
in the rest of our discussion. Its particular shape is irrelevant.

We can then state

LEMMA 6.

sup h(r,e") < cu*(0).
reiVe Q)

Proof. In view of the definition of the Poisson kernel quoted above, it suf-
fices to show that

(10.2) P(r,y,$) S cP(r,0,¢),  reeQ(0).

Let us recall, however, that

23, 1
P(r,6,¢) = ( )(1_r2) f DAL U
where
D = 1 —2r(cosfcos¢ +sinfsindcost) + r?

= (x— &%+ (y—n)* +2yn[1 —cost],

where (¢,1) = (cos ¢, sin¢) and (x,y) = (rcos0, rsinf), (see (2.12)).
Now the expression D has an interpretation in terms of a distance measured
in three-dimensional Euclidean space. Thus consider the (xy)-plane embedded
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in three-dimensional Euclidean space, and let A denote the disc perpendicular

to the (xy)-plane and be determined by the fact that (¢,#,0) and (¢, —#,0) are a pair

of diametrically opposite points on its perimeter. Then if P =(x,y,0) and Q is

an appropriate point in the perimeter of this disc, then D is the square of the

distance from P to Q. The point Q may be fixed on the perimeter of A as follows:

t is the angle made by the ray joining (£,0,0) and Q with the y direction.
From this it can be seen that

D(r,0,¢,t) < cD(r, ¥, 9,1), ré’ e Q(6),

and therefore (10.2) follows. This proves the lemma.

We revert now to the proof of Theorem 6 and consider first part (a). Let 6 > 0,
and let R, be the open region consisting of that part of the open unit disc where
y >3, and let R; denote its closure. Restrict F(z) = U(x,y) + iV(x,y) to R,.
Then F satisfies the system of ‘‘Cauchy-Riemann” equation (9.3) where the
coefficients are regular in R;. Therefore by the similarity principle for pseudo-
analytic functions (see, e.g., Bers [2]) there exists a function S(z) continuous
in R;, and an analytic function G(z) in R;, so that

(10.3) F(z) = ¥*9YG(z), zeR;.

However, by the majorization theorem (Theorem 5), | F(z)|" < h(r,60), where
h(r,0) is the Poisson integral of a finite positive measure du(f). Thus in view of
Lemma 6, F(re”) is bounded for re® € Q(8,) and for almost every 6,. By (10.3)
G(re") is bounded in the same triangles, for almost all 6, so that sinf, = 6.
Then by the theorem of Privalov-Plessener (see [26, Vol. II, p. 200]), it follows
that G(z) has nontangential limits on the perimeter of unit disc for a.e. 6,, so
that sinf, = 6 > 0. By (10.3) (since S(z) is continuous in R;), the same is true
for F(z). Finally, since § > 0, but is otherwise arbitrary, part (a) of the theorem
is completely proved. Part (b) is proved similarly, using the fact that G can vanish
only on a set of zero measure on the perimeter of the disc unless it vanishes iden-
tically.

We come now to the proof of part (c).

Let p>v=21/(A +1), and g = p/v. Then by part (b) of Theorem 5, there
exists a ge L, so that if h(r,0) is its Poisson integral

|F(re®)]" < h(r,6).
However, by Lemmas 2 and 3,
sup h(r,0) < cg*(0)e L’
Therefore !

| F(re®) — F(&°) | < cg*(6),
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and part (c) of the theorem is proved by the use of the Lebesgue dominated con-
vergence theorem, in conjunction with part (a), which is already known.

We now come to the proof of Corollary 1. Suppose that du, ~ Xa,P(cos8)
and dp, ~ 24 X(a,/(n +22)) PA*1(cosb).

Let

U(x,y) = X ar"Picosb), r<1, (x,y)=/(rcosf,rsind),

an

Vey) = 2L =t

"sin 6 P2t (cos 6).

Then, as we know, F = U + iV satisfies the system (9.3), and because U and V
are Poisson integrals, then

[ 1Feny | ami@) s Laus | + 1dus .

Thus F is in H!, and therefore there exists F(e?) =f(6) + if(6) e L'(dm,),
so that

J: | F(re®®) — F(e®)| dmy(6)—0.

Then it is easily verified that f(6)d6 = du,(6) and f(6)d6 = du,(0), since both
f(6)d6 and dp, have the same ultraspherical expansions of index 4, and f(8)d6,
du, have the same expansions of index 1 + 1.

To prove Corollary 2 recall that the assumptions on u imply that it is the Poisson
integral of a finite measure. (See Theorem 3’ in §6.) If we now define
F(z) = U(x,y) + i¥(x,y) as above it then follows by Theorem 4, Corollary 2
that Fe H®, for all p < 1. The result then follows from part (a) of the present
theorem.

We should point out conclusion (a) and (b) of the theorem could be proved
for all p, 0 < p, without the extra restriction 24/(24 + 1) £ p. This could be
done as follows. Define, as in the proof of the theorem, the function G(z), analytic
in R,, so that (10.3) holds. Then sup,.q f§| F(re”)|" dmy(6) < oo implies easily
SUP,<1 sing2s ” G(re") lp df <.

Then a modification of the classical arguments shows that G has nontangential
limits for almost all points on the boundary of the disc. The same then follows
for F(z). Similar arguments hold for the nonvanishing on the boundary.

CHAPTER II

11. Partial sums of ultraspherical expansions. The purpose of the next few
sections is to develop an analogue of the Littlewood-Paley theory for ultraspherical
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expansions, culminating in the ‘“‘multiplier theorem’’ of §14.

In the trigonometric case there are two basic tools used in the development
of the Littlewood-Paley theory. The first are certain inequalities for partial sums,
and the second deals with the auxiliary ‘‘g-function.’” In this section we shall

extend the partial sum inequalities to the ultraspherical case.
Thus let

J®) ~ X a,Pi(cos),
and define S, by

&m=mmﬁ=£ﬁmmw

A basic result for the partial sums is the inequality

241 _2+1
ixi °F 7

(11.1) 18, < 4,171,

The case corresponding to A =0 is of course the classical inequality of M.
Riesz, and the case for positive 4 is due to Pollard [14].

We shall need an extension of (11.1) which can be stated as follows:

Let fi,f,,---,fx be a given k-tuple of functions (k arbitrary) and write
F=(f1,~-f1), IFI = (,fl Iz + lfz IZ"' R lfk|2)1/2~

Similarly let n,,---,n, be an arbitrary k-tuple of positive integers, and write
S(F) for the k-tuple

S(F) = (Sp,(f1)> Su(f2)s 5 Snfi))-
Using this notation our result can then be stated as

THEOREM 7.

24 + 1 22 +1

Hs®l, = 4,11F[ls F57 <p<=5

with A, independent of k.

The proof of the theorem makes use of the basic reduction of Pollard which

occurs in the proof of (11.1) together with the following known lemma, see
[26, Vol. II, p. 224].

LEMMA 7. Let T be a linear transformation which satisfies
(11.2) | 7|, < 4| f)|, for some p.

Write | TCE) = ( T/, + T2 + -+ | TR with [F| = (o] + - + A
Then || T(F)|||, £ A||F||,- 4 is the same constant as in (11.2).
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One should observe the difference between this lemma and Theorem 7. In the
lemma we have one fixed operator, T, acting simultaneously on a k-tuple of
functions. In the theorem we deal with k different partial sums, acting on the
k-tuple of functions.

We now come to the proof of the theorem, which we have indicated is based
on Pollard’s work. Thus to avoid duplication we shall repeat only the main steps
of his reduction omitting details. Following his notation, x and y are variables
in the interval (—1,1), which are related by our variables by the change
x=cosf, y=cos¢.

We have w(x)dx = (sin6)**d0 as the basic measure with w(x)=(1—x
We write p,(x) = y2/>PX(cos6), which are the normalized polynomials for the
weight w(x). (y, are the factors given in (2.9).) We also have the conjugate poly-
nomials g,(x), defined by (1 — x?)"'q,(x) = (¥)"/*P;* (cos6), which are the
orthonormal polynomials with respect to (1—x?)w(x). (See Pollard [14, p. 3561.)

Two basic estimates satisfied by the p, and g, are

[(1 = x*)"o(x)"*px)| £ 4,
[(1 = x*) ™ o(x)!2q,(x)| = 4.

(See Pollard [14, p. 362]; also Szegd [18, 7.33.6, p. 167].)
Now consider the Dirichlet kernel k,(x,y) given by

2)).-—1/%

(11.3)

ka(%,3) = X pix)pi)-
=
According to Christoffel’s formula (see Szegd [18, p. 42]),

P+ l(x)pn(y) - pn(x)pn+1(y)
xX—Yy

kn(x,y) = c’l

for appropriate constants c,.
However, the g,’s can be expressed in terms of the p,’s (see Pollard [ 14, p. 357]).
Making the substitution and combining terms gives

(114) Kry)=o, 2eriL0) | p GOPtiO) 45 o, 00),

y y

where {a,}, {8,}, and {5,} are bounded sequences. (See [14, p. 358].)
We quote also the following lemma of Pollard:

Lemma 8. Let (Tf)(x) = [L, K(x,y)f(y) dy, where

1___y2 c
K(x9y) = (1 _x2) -1 )
xX—y
with —1<c<land c<l/p<c+1,1<p. Then
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f_ll | Tf(x)|? dx < 47 f_ll [f)f? dx.
Now
Sa.(f) =f_i k%, () 0(y) dy= Su(f) + S;(f) + S:(f)-

Here S! is the transformation whose kernel is a,p, 1(X)q.(y) /(x—y); S? has the

kernel B,q,(x)p,+1(»)/(x—y) and S; has the kernel y,p,+1(X)Pas1(¥).
Let fi,-:-,fi be k given functions and ny,---,n, be given positive integers. For

1£j<3, set

SYF) = (S{.(f),,SL(f))

and
|SIF)| = (SLUD) ] + - +(SifIP2.

It will then suffice to show
1 . 1
(11.5) f_l | SAF)(x)[Por(x) dx < AP f—x |F(x)|Pox(x) dx, j=1,2,3.

Consider S'(F) first.
In view of the inequalities (11.3) and the boundedness of «, we can write

@'?(x) S, (f) (x)
(11.6)

1 1/p, 1
= B,,(x) f 2 (y)f;(i) An () dy +C, (%) f K(x, y)o "(y)fiy)Any) 4y,
-1 y -1

where A4,(x), B,(x), and C,(x) are uniformly bounded and K(x,y) is the kernel
of Lemma 8, with c=1/4 +(1—1/2)(1/2—1/p).
Apply now Lemmas 7 and 8, and the well-known fact that

fl f_lm lpdx =4 fi |£(x)|? dx.

1 Xy
This gives (11.5) for j=1,

20+ 1 24 + 1
it1 <P <75

A very similar argument holds for S2.
To consider S* we recall that | p,44(x)| < A(1 — x®)™"* (see (11.3)). Hence

|Sn ()] £ AQ=x*) "2 [ 1, fO)(1 =y 2a(y) dy (0(p)=(1-y*)'"").

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



56 B. MUCKENHOUPT AND E. M. STEIN [June

But the transformation T

T: f(x) - (1—x2)"*? [11 FOYL=y?) 1=y 172 gy

v -

satisfies
L 1
j |Tf(x) lp(l_xz);.—llz dx < Al’f lf(x) lp(l_xz)l—uz dx
-1 -1

(by Holder’s inequality) when (24 + 1) /(4 + 1) < p < (24 + 1) /A. Therefore, an-
other application of Lemma 7 shows (11.5) when j = 3, and concludes the proof
of the theorem.

REMARK. It should be noted that a basic step in the proof is the passage from
the Christoffel formula, which involves only the p,’s, to the formula (11.4), which
involves in addition the conjugate polynomials q,. Here we have another instance
of the significance of the notion of conjugacy studied in Chapter I of this paper.

We shall now prove a rather technical corollary to the theorem, which, how-
ever, is important for its applications in §12.

Besides the k-tuple fy,f5,*,fx, considered above, we shall also deal with the
respective Poisson integrals fi(r,0), fy(r,0),---,fi(r,0). We select an arbitrary
k-tuple of r’s, ry,ry,---,r, with 0 <r; <1, and we let §; denote an arbitrary
sub-interval of (r;,1), with I(S ,-| standing for the length of §;.

COROLLARY.

(2 1s.0s0.00p) "
arn ’

22+ 1 20 + 1
<p< .

< ’
s 4 p A+l A

(21007 o)

Note. The constant A, may be taken to be (4,)?, where A4, is the constant
arising in the theorem.

Let us set F = (fi,/), [F]=(fi[* + - + [Al*)"/* and F(r,0) = (fi(r1, 0),
f2(r29 0): o 'sfk(rk, 0)), with

|F(r,0)| = (fu(r1, 0) | + - + |fu(ris O) )2
We prove first that if 24 +1)/(A +1)<p<(2i+1)/4
(11.8) | [FG.0)| |, = 4,] |FO)| ],
In fact

(r,0) = f ar'Pcosb) = (1 —r) X S,(0,f)r".
1=0
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Therefore,
k k 0
|F(r,0))> = Z [fi(rp0)P £ X (1=r) X |S(0.5)|*r5s
j=1 j=1 1=0
by Schwarz’s inequality. Thus if we apply the theorem, we obtain

lreoll, s 4] (2 a-n £ nor) |

HA

AP

a (2, 10F) | = a11FO)l,.

Next consider r; restricted by r; > r;, j = 1,---,k. Define
F(r,s 0) = (fl(rll, 6) s fl(r;s 0)’ "'sfk(rllc’ 0)) .
An immediate consequence of (11.8) is the the generalization

(11.9) |10 1, s 4,0 1F0)] |, r<r,

where r < r’standsforr; <rj, j=1,-+,k.(Again(2A+1) /(A +1)<p < (2A+1)/A.)
(11.9) can then be given the following variant. Let §; denote a subinterval of
(r;,1); we have

1110) || |F(r,0)] [,< 4,

[,él(l /1; D) fa, lfj(p’o)lzdp] 1/2

p

In fact (11.10) may be proved by breaking the &; up into sufficiently small inter-
vals, applying (11.9), and then by passing to the limit.

We now come to the proof of (11.7).

The left side of (11.7) is, by the theorem, bounded by

AP

k 1/2 '
(2 1r0s0l) | = 40 7¢I,

Apply now (11.10) and we get (11.7) with 4, = (4,)%.

12. The g-function. We come now to the second auxilliary tool used in the
development of the analogue of the Littlewood-Paley theory. The results that we
shall obtain are L? inequalities for the g-function, which is defined as follows.

Let f(0) ~ X a,PXcos6), and let f(r, 6) be its Poisson integral,

f(r,0) = X a,r"PX(cosb).

Then we define

1 1/2
(12.1) s =¢0: /)= [ =0l 0P ar) .
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The usefulness of this function will become clearer in the subsequent section.
Suffice it to say that we may regard g as an Abelian analogue of another func-
tion which has more immediate application. Our theorem then is

THEOREM 8.

(12.2) I 26: ], = 4,0/

s l1<p< .

(12.3) If J(;wf(ﬂ)sinuﬂ d0=0, then |f|,2 4,]20; N, 1<p<wx.

Before we come to the proof of the theorem we shall give an outline of its
ideas.

One proves first the direct inequality (12.2), and then the ‘converse (12.3)
follows from this by a rather standard duality argument. The main difficulty,
therefore, lies in the proof of (12.2). Now

Fur6) = [ Pr.0.8)/(8)(sin ) d.
Q

It is clear that what is needed, among other things, are estimates on the be-
havior of the differentiated Poisson kernel, P(r,0,¢). These are given in Lem-
ma 9 below and are in the same spirit as the estimates for the Poisson kernel in
Lemma 1 of §4, and the conjugate kernel in Lemma 4 of §7.

Let us recall the abbreviations used earlier

A=1-2rcos(f—¢)+r> and o =rsinfsing.
Then our estimates for P(r,8,¢) become, if 12<r<1,

IP,(r,0,¢)| é C/AA+1 s

(124) Pr(r, 6’ ¢) = P,+(r, 0, ¢) + P:(T, Ga _¢),
w here

- _ 2 i1 —
(12.5) PY(r,0,¢) = = :—, (1 ~ )* 0(0 (Al r))

+ 0[c™*/(c + A1 +1og*(a/A))].

It is to be noted that the main term of the asymptotic estimate (12.5),

ot 0 ( 1-r?

n Or A )’
is, except for the factor 6%, essentially the P,(r,0,¢) in the trigonometric case
(4 =0). The asymptotic formula (12.5) will be used when 6 is near ¢; and its

main contribution, due to the first theorem, will then be handled by using the
classical result for the g-function.
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When 6 is not near ¢, the simpler estimate (12.4) will be sufficient.

LemMMma 9. The estimates (12.4) and (12.5) hold for P/r,0,¢) when
12<r<1(6).

Proof of lemma. Recall that

San). l

P(r,0,¢) = (A/n)(1 — rz)J~ DT dt,

where
D = 1—2r(cosfcosd + sinfsinpcost) + r?

We notice two useful facts about D

(12.6) DzA (A=1-2rcos(6 —¢)+1r?).
and
(12.7) (1-r)|D,| = %D.

In fact rD,—r*+1=D, and D=(1—r)?, as can be seen by rewriting
D =(1-r)*+2r[1 —cos(8 — ¢)] + 2rsinOsin [ 1 — cos ¢]. Combining these two
gives (12.7).

Differentiating in the integral formula for P(r,0,¢) then gives

A2r n?*1 Mi+1
|P(r6<1.'>)l<—0 DA+1 dt+(n )(1 Z)J Dl+2 n**7 't dt.

When we substitute the estimates (12.6) and (12.7) (taking into account
1/2<r<1), we obtain the first conclusion of the lemma, i.e., (12.4).

We write
r? sin®*~ 1 11—2 M —r
R )f ( )Lﬂ.
Call
+ 2) 2). lt
P7(r,0,¢) = Dl+1
Then

P(ra0’¢) = P+(I‘,0,¢) + P+(7‘,0, _¢)
We shall now prove the estimate (12.5) for P} (r,0,¢). In fact

=2r ("*sin®*7't MA+1
(12.8) P/ (r,0,¢) = fo mradt— ¢ )(1 z)f n**” 1D1+2 dt.

(6) When 0 < r < 1/2 the trivial estimate | P.(r, 0,¢)| £ A will suffice.
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To study the situation further we shall concentrate on the main singularity,
which occurs when 8 is near ¢ (and ¢ is near zero) in the integrals in (12.8).

Thus we write A* = A + t?rsinfsin¢ = A + t?¢. Since D = A + 2a(1 — cost),
it follows that D = A* + O(at*). Notice that D, — A, = O(at*).

In this way, we are led to replace systematically D by A*, sin**7't
by t>*7%, and D, by A,. We therefore define P}(r, 0, ) by

(12.9) PH(r,0,4) = == dt

A%yt - dt

o (A¥)+2 77

—2r J"’Z 21 A+ DA —rHA, f"/zt“_l

Let us try to determine by how much PX(r, 6, ) actually differs from P/(r,0, $)
(see (12.8)). Now by the mean value theorem

[A +20(1 —cost)]*™! — [A + 6t*]7*"! = O[A + 0t*] * %61*,
since A=0, 620 and ¢t = 0. In other words
DAL —(A%)™*t = o(A%) A 2ar*,
Similarly
D772 —(A¥)™*"2 = O(A%)* et

Also we should point out that since A =(1 —r)? +2r(1 —cos(f — ¢)) and
12Zr<1, then I(l — r)A,l <4A.
Let us now define

v nf2 tv
(12.10) Iu = J;) @# dt.

Considering what has been said above, and after some simple reductions, we
obtain that the difference P;(r,0,$)— P}(r,0,¢) is bounded by a constant
multiple of

(1 = DAL + (1 = PelZit + (1 — P I

(12.11)

+ AIZAE 4 AGIZAE3 + 124 4 oI 2253.
By a change of variables
¢y n o \'?
II = g7 T2\ Y2mRE2 ——— dt, where & = —(— .
# o (1 +t2) ¢ 2\A

However,

& tv é v+1 5 1
—_— < _— 1 p— —_ .
J;(1+t2)" dt=A(1+§) g ifv>-—-1,v U< ;

also

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



1965] CLASSICAL EXPANSIONS 61

4 t" é v+l . f
—_— < s . _ _ _
j; a+ o) dt=A(1 +€) [1+1log™&] if v> L,y=2u=—1.

From this we get by straightforward calculation the following estimates:
1731 = 0(6™*A™%) (4> 0)(a more precise formis given below),
4 = 0@ Ao + A)Y) = 067 ATY),
1333 = 06" *A e + A M) = 0(67*72A7Y),
25 = 0@™a™,

121" = 0@ +A)'(1 +log* (o /A)).

Therefore we see the total contribution in (12.11) is bounded by a constant
multiple of

(12.12) e 1-PA! +

o
TIA (1 +log* (o /A)).

To analyze P}(r,0,$) we need to look at the integrals Ifﬁ]‘ and 7, fi‘zl more
closely (see (12.9)).
Recall that

& t 1/2
v —v=1/2pv/2-p+1)2 _r({o
IL=o¢ A J:) (——————I_HZ)” dt, where & > (A) .
But

¢ tv ® tv d o0 tv .
J‘0(1‘“2)“ dt:jo (1 + ) - J.: 1+ 2y ify=2u<-1.

From this, and a well-known formula in the theory of the gamma function,
it follows that

-
24-1 _ —1_~2p -1 g
1470 = ) oA +O((—0+A))
and 1

IV = (A +1) A2 + o(a“‘ (JTA)) .

Combining all the above via the estimate in (12.12) gives us (12.5) and the
lemma is proved.

We come now to the proof of Theorem 8.

Proof of (12.2). Recall that

g@n=(£a—ﬂmmmw0m,

where
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50,0 = [" 00,8 @)sin®p ds.
Thus we have g(o’f) é g1(0,f) + gz(eaf) + g3(6’f) + g4(6,f) . gk(69f) iS de'
fined like g(0,f), where P,(r,0,¢) is replaced by P¥X(r,0,¢), and

PU(r,0,4) = P(r,6,¢) if 0<r<1/2,
=0 otherwise;

Pr,0,4) = P(r,0,¢) if 1/2<r<0and0<¢=(3/4),
=0 otherwise;

PEX(r,0,9) P(r,0,¢) if12<r<Oand 430=¢p=<n,
0

otherwise;
P¥(r,0,0) = P(r,0,¢) if 12<r<0 and (3/4)0 <d<(4/3)0.

We need to prove, therefore, that || g(6,1) |, < 4,|f]|,, k=1,2,3,4.

The inequality | g,(6,f)|, < 4| f|, is trivial since P;(r,0,¢) is uniformly
bounded.

To prove the other three inequalities, we notice that it suffices to assume that
f(¢)=0 when ¢pe[n/2, n], because P(r,0,¢) = P(r,n — 6, n — ¢) makes the
consideration of the intervals [0,7/2] and [n/2,7n] completely symmetric.

Now by estimate (12.4) of P/(r,0,¢), we see that

[Pf(r,0,0)|< C[(1 — r)*+ 2r(1 — (cosO—@))]* ' < C((1 — 1?) + 0)/7*7*,
since 0 < ¢ <£(3/4)0. Hence

1 (3/4)8 2
g0 =[ a-n|[ " PP @) as| ar

! (3/4)0 2/2
s cf,,, a=nta=t+ o] [Tyt [ ot
1/2 °

by Hoélder’s inequality. If we carry out the integration with respect to r we obtain

(3/4)6
gx0.f) = 062/4-2‘2“”[ f |f(¢)[” sin***¢ d¢]
0

p/2

Thus
" x (3/4)6
f (82(0./)"sin™0d0 < € f 10120+ 2240 f |£(8)[Psin*?¢ do
() o o

n

n/2
c J; If(¢) |pSin2’1"¢d¢ ¢ 1-2ip+24 o

(4/3)0

IIA

IIA

¢ @ Psins as,
since f(¢) =0 on [#/2, n].
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By very similar arguments one can also prove that

| &5®, N> = 4[],

We now come to the case of g,(0, f). For its study we shall use the asymptotic
estimate (12.5) for P(r, 0, $). We notice that this leads to two terms, one for P
and the other for P;(r,6, —¢). Again considerations of symmetry reduce the
problem to that of P (r,0,¢).

So we are led to consider the three functions, I(0), m(0), and n(f) defined re-
spectively by

por =[[ a-n[" "o L5 rowine as | an,

1 (4/3)6 2
[m(©)]? = f /2<1—r)[ f( (1= )0~ £($) |sin* d¢] dr

3/4)0
and

o 0 . -of ) e ) oo

We need to prove that
In®) |, < 4,11,

with similar inequalities for m and [I. Consider n(f) first. When
(B/4)B < <(4/3)0,0< ¢ <m/2, we have the simple estimates 6™* < CH™?%
c+AZC[0%+(1—r)*], A= C(O — ¢)*, and ¢ = COHP. Substitute these esti-
mates, integrate with respect to » and use the fact that

! 1-r e
fl/Z 0* + (1 —r)?)? dr = 0(07).-
Then we get
. (4/3)0 . b 2 9
(12.13) n(0) < Co f(mw [1+log (m) _|f(¢)| dé.

But then by Holder’s inequality

‘[:(n(e))"Sin“@d@ gfo”-v f: ” Tf () d¢U(:Z:o 1 +log* (0¢ ¢)2]qd¢}p/qd0,

where 1/p +1/g = 1. However,

Joral v g Tooo- [ vrn(25) T
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Thus
k] n (4/3)8 n
[[o@ysnoansc [ [ @) apsc [ lr@lsing dg,
0 0 (3/4)0 0
since

f(¢)=0 when ¢pe[n/2,n].
We now consider m(0), and therefore we define F,(0) by
(4/3)6
F.(6)=(1-7) f AL |f(@)|sin?p dop.
(3/4)8
Since ¢ =rsinfsing, and f(¢) =0 if ¢ > /2, we get
4/3)0

FOGn0™ < ca-r) :3, A7 |1()|Ging) " do

4)
< c-r) [ AT @) |sing™” do.

Thus, by a well-known property of the ordinary Poisson kernel, (1 —r?)/A
we have

L "[F,(G)]”sin“(e) doscC f: |f(@)] sin**¢ do,

with C independent of r, 0 r<1.
But

m() = ( fl /12(1 — D[F.O)] dr)llz.

Therefore Minkowski’s inequality for integrals and the above shows that

foﬂ(m(e))"sin“() d0§CJ;n |f()|%sin*p d¢.

Finally we come to I(0), and here the argument is somewhat intricate.

Since in our case we always have (3/4)0 < ¢ <(4/3)0, and 0 < ¢ < n/2 (i.e.
f(9)=0if n/2<¢ =), then we may limit ourselves to 0&[0,(4/3)-n /2]. Thus we
define the intervals E,=[(4/3)- /2"~ %,(4/3)- n/2"]; hence U;,’L,E,,: [0,(4/3)-n/2].
The E,’s are the appropriate intervals for the 0 variable. The corresponding
intervals for the ¢ variable are gotten by multiplying the right-hand end point
by 4/3 and the left-hand end point by 3/4. In this way we define
E*={[n/2""",(4/3)* n/2"]. Notice that while the sets E, are essentially non-
overlapping, the sets E¥ overlap at most twice.
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Now we have

1
aoy = | LA=n]Gofar,

where
(4/3)8

_ @30 —zi 1-r? . 22 _
6= [ ot 2 (T rpintg ap= 1) a.

(3/4)0

In view of the above we may write this as
4/3)8

®© (4/3)
Gr(o) = §1 XE,,(G) ( 0 XE‘,. (d)) I(d)) d¢ s

3/4

where xp denotes the characteristic function of the set E. We should like, how-
ever, to replace the above sum by

(12.14) G}0) = T 5(6) f 1(9) db.
n=1 Eq,

But the difference between G,(6) and G;f(6) is bounded by

5,0) L," 116)| d¢,

38

where
E,=[=/2""", (3/4)6]u [(4/3)0,(4/3)% - /2"].
From the definitions of the sets E,,EF and their overlapping character, it

follows that

1G.6) - GX0) | <2 f

(3/4)8 " !m&ﬁﬁ?j(g/”g
3/ (

[1(¢)] do +2 |1(¢)| d¢.
8)0 4/3)0

For the range of ¢’s appearing in the above it is easy to see that

2 )) = 00 + (1 - P)™Y).

In effect we are led back to the argument used to estimate n(0) above. By that

argument, we get
(8/3)8 ]

1 1/2 (3/4)8
([ a-nleo-aopar) sco| [ r@nag« [ ir)as
1/2 (3/8)6 (4/3)8

(See the argument leading to (12.13).)
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Following through as before, we obtain

1/2,

([ a-niso-cor «) | <4,

Hence we have reduced everything to proving that

pS A/,

(12.15) “( fl /12(1——r)|G:"(0)|2 dr)”z

However, by definition (12.14),
([ a-ozorar ]
-k [ 1:2 - UE o air ((1 Zrz))f(fi’)Sin% dé ‘2dr]p/2sin“e do

n=1 E,
2 p/2
dr] do

c Ly | fol(l—r)! | s@pinpres) %<(1Z'2))d¢

n=1

ItA

since ¢ = rsinfsing.
Let us now use the classical inequality for the g-function(7), which states in
particular

T a-n] [ sinpre@)2(C22) as
oL 1 )

f(@)[%sin* ¢ do.

2 pl2
dr] do

< ¢ [Ir@)singfrum@as = c|

*
"

Combining this with the above gives us

" (J:z(l - r)lG:‘(@)IZdr)llz ”: £C § 9=n(23-p2) fE: |£(9)|Psin*?¢ do

n=1

1A

c f ' |£(¢) [Psin**¢ d¢p.
0

This proves (12.5), and therefore the proof of the direct part of the theorem

(12.2) is complete.
Proof of (12.3). The whole matter here is rather simple and is based on the

following “‘duality””: if [5f,(6)sin’*6d6 =0,

(12.16) l fo £(0)£(B)sin0 df)i <4 fo " 2(0.£,) 2(6,,)sin®0 do.

U] Se—e [26, Chapter 14].
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This holds whenever f,(0) and f,(0) are regular enough, and in particular when

J1 and f, have finite expansions.
In fact, let f,(6) ~ X, a,P,(cosf), and f,(0) ~ X,_ob,P,(cosH).
Set {f1.f2) = _fg f1(0)f2(0)sin“6d0.

We then have {fi,f,)> = 22,a,b,7, ", where y, are the normalizing con-
stants, However,

1
E aby ! =4f i{f(z a,by tn*r?” l)dr’dp
o PUJo\n=1

This means that

ofs =4 f {f

We have set f;(r,0) = Xa,r"Pi(cosf), and df, /or = Xna,r"” 'Pi(cos8), with
a similar notation for f,.
We therefore obtain that

l(fhf2>|§4 f (1-r )<5f1’ %]_;E> ar.

Applying Fubini’s theorem and Schwarz’s inequality gives (12.16).

Next, (12.16) extends to the case when f; e L, 1< p < o0, {5 f1(0)sin**6d6 =0,
and f,eL?, 1/p+1/g=1.

In fact, we already know that the sub-linear mapping f— g(f) is bounded in
L? (and L*); moreover its sub-linearity implies that

|g(f) — g(f{™)] S e(f1-1D).

Thus if {f{} is a convergent sequence in the L” norm, so is {g(f{)}. Hence a
passage to the limit shows that (12.16) holds whenever f, €L’ and

feLlq, 1jp+1jq — 1, [5fi(0)sin**0d6=0.
Finally

I:l,= sup | [ r@nopiods] < 4] 5001, ls0.) 544 g0y

5f1 Ay
or

ol

by (12.2). This proves (12.3) and the proof of our theorem is complete.

13. Partial sums analogue of the g-function. The g-function which was studied
in the previous section is intimately connected with the Poisson integral

f(@r,0) = f ar*Pi(cos0),
(13.1) k;o
f(®) ~ X a,Pi(cosb).
k=0
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It is, therefore, closely related to the Abel-summability of the expansion in
question. What we need, however, are the analogous facts for ordinary conver-
gence instead of Abel-summability. This is the result obtained in the theorem
of this section; thus what follows below may be considered as an argument of
Tauberian character. Let us look at the situation more closely. Instead of the
Abel means (13.1), we consider the ordinary partial sums

(13.2) S.(6) = S,(0,f) = X a,Picosb).
k=0
Similarly in place of f,(r,0) = Zka,*"*P}(cosf), we consider
(13.3) S/(6) = Si(6,f) = X kayP}(cosb).
k=1

Moreover, as is familiar, n and r are to be connected by 1/n=1~—r.
Therefore, instead of

«0) = ([[a-nlreopa)”

we are led to consider its analogue

1/2

o0 4 2
(13.4) 2*(0) = 2*(0.f) = ( a IS,.((Z;Z")I )

If we recall the argument of the classical Abelian theorem, we are led to expect
an inequality of the form

(13.5) g(0) < cg%(0).

Indeed, we shall see that this is the case. In the converse direction, we cannot
hope for anything as simple as (13.5). However, it will turn out that (13.5) may
be reversed not for individual 0°s, but as a whole, in the sense of an L inequality.
We must add one further reservation to this, which arises because the partial
sums inequalities of §10 are limited to the case when the exponent p

satisfies (24 +1)/(4 + 1) < p <(24 + 1)/ A. For this reason we may expect the
result

20 +1 24 +1
(13-6) " g*(e) “p = Ap" g(0) ”p’ 7:'1— <p< 2 .

We formulate the above as a theorem.
THEOREM 9. The inequalities (13.5) and (13.6) hold.
We prove (13.5) first.
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Since f(r,0) = Xkayg* 'P}cos6) and S,60)= XF_, ka,P}(cosb), it follows
that

fir8)=(1 = 1) éls,:(e)r"" .

By Schwarz’s inequality

15O < @ —r)z(

T Mg

o
[ Sk(6) Izr"_l) >
k=1

1

8

= (1-7r) X [Suo)|** "
k=1

Hence

) A=Dlieo)farse 3 1SOF
0 k=1 k3

because

1
f 1 —-rr*tdr = 1)K,
(V]

This proves (13.5).

The inequality (13.6) lies deeper, because unlike (13.5) it makes use of Theorem 7
on partial sums, more particularly its corollary. In proving (13.6) we follow the
argument in [26, Chapter 15] closely.

We have

S)0) = X kaPl(cosO) = X kay* 'P}(cosO)r' ~.
k=1 k=1
Sum the last expression by parts, set r=r,=1—1/n, and use Schwarz’s in-
equality. This gives

n=1
|SOF < 4{nE |5 +[S0F,

where f, =f(r,,0), r,=1—1/n.
But

w) = ¥ SO
g0) = L =5

] n-1 o0 Sl 0’ 2
s a(E n - Tlsionp + 2 '—(-nf—)‘—}= G,(6) + G1(6)
n=1 k=1 n=1
If we apply the corollary to Theorem 7 (see §11) we obtain
o n—1 1/2
{2 nt Y |5;1|f 1, 6) |2 dr}
n=1 k=1 dn

where 8, = (Fp7us1), and 24 +1)/(A +1) < p < (24 + 1)/A.

” Gl(a) "p s Ap

>
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But |8,|=res1—r,=1/(n + 1) —1/n=1/n(n + 1) 2 1/(n + 1)>. Hence,

£, weora]”]

(ﬁ“‘*ﬂﬁn@ﬁwyn

16:@ 1, = 4,

=4, p=Ap”g”p'

Similarly for G,(6).
This proves (13.6) and hence the theorem.
The following corollary is an immediate consequence of the above theorem

and Theorem 8 in the previous section.

COROLLARY 1. If (24 + 1)/(A + 1) < p < (24 + 1)/A, then | f(6) |, and
|.8*(6.1)||, are equivalent norms for the class of functions normalized by

Jof(B)sin**0d6 =0.

Another corollary that can be deduced is in effect a generalization of the theorem.
Let v;,v,,--+,v,,-- be a series of positive constants satisfying

(13.7) z v, < Mn for all n and some constant M.
k=1

Instead of (g*(6))?, as defined by (13.4), form the series

> | S(0)
(13.8) El s Ve
COROLLARY 2.

[S.0)]> 2 24+ 1 26+ 1
"{E ““ns—""} | = aMisl,, S <r<=—

The constant A, does not depend on the sequence {v,} or f.

The proof is sufficiently similar to that of the theorem so that we shall omit

it. See also [26, Chapter 15].
As a special case we can take
3

=0 otherwise.

Then since (n + 1)[S,(6) — 6,(0)] = S,(6), where 0,(0) are the Cesaro means
(13.8) becomes

T [556) - SO .

k=0
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14. Multiplier theorem and behavior of lacurary partial sums. We come now
to the main results of this part, which we formulate as two separate theorems.
The first is an extension of the Marcinkiewicz multiplier theorem and includes
the Littlewood-Paley theorem of decomposition into dyadic blocks. It may be

formulated as follows:
Let ptg, 1,5 Uy, -+ b€ @ sequence of constants (multipliers) and consider the
linear transformation T, defined at least formally by

[s0] o8]
(14.1) Tf ~ X a,pu,Picosf) whenever f ~ X a,Pi(cosb).
n=1 n=1

What is required are conditions on the sequence {y,} which will guarantee that
the transformation T is well defined and is continuous on L° that is

1 7f]» = 4l

It is easy to see that when p=2, a necessary and sufficient condition of the
sequence is the existence of a constant M, so that

() || £ M for all n.

We consider, in addition to this, the condition

(ii) X k|lm— esr| £ M, for all n.
k=1

The result is then

THEOREM 10. Suppose the sequence {u,} satisfies the conditions (i) and (ii)
above. Then the transformation T, defined by (14.1) on all polynomials satisfies

2,l+1< <2,1+1
i+1 0P 7

(14.2) 711> < 4M 1],

Thus T has a unique extension to all of L?, which again satisfies (14.1) and

(14.2).
REMARK. It should be noticed that the condition (ii) is equivalent with the
condition
2n+1
(i) Y |ug— e | £ M for all n.
k=2n

This second form is the way such conditions are usually stated.

Proof. The main difficulty is the proof of inequality (14.2) for polynomials.
The rest follows with easily managed technicalities. We begin by making the
trivial simplifying assumption that a, =0,
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Let us set F = Tf. Then in view of Corollary 1 of Theorem 9, it is enough

to prove
, 2+ 1 2L+ 1
(14.3) le*@.0), < apls],, ZFXl<p<Prl
Now

n

n—1
S{O.F) = T akuPlcos) = T S0/l = tsr] + S{6.

Therefore by Schwarz’s inequality, and conditions (i) and (ii)
n—1 _
[S.0,F)|* < 2Mn T |546./)|? l—”-"—kﬁ'i‘—' +2M | S6.1)|2.
k=1
Finally then,

x _ 5 |86, F)f? 2 SU0NPv . D ISk6.NI
(g (B’F))Z _n——-zl T—éAM(Zl ——nT—'l' E —7—‘),

\n = n=1

where A is an absolute constant and v, = 1|, — fps |-
Thus {v,} satisfies the condition (13.7) and Theorem 9 and its second corollary
then show that

|g*0.F)|, = 4,M|f],-

The extension to the case where f is an arbitrary L? function follows by straight-
forward limiting arguments,

That the usual decomposition theorem into dyadic blocks is contained in
Theorem 10 can be seen as follows. For this we apply standard arguments re-
lated to the Rademacher functions ¢o(t), @(t),-+,9,(t), -+ defined on (0,1).
These functions are orthonormal and independent, and take on only the values
+ 1. For each te(0,1) define the linear operator T, by

2n+t

Tf ~ 260 & aPicost).
n=0 k=2n

Then the sequence of multipliers p,, so obtained, satisfy the conditions (i)
and (ii) with M =1.

Hence we have | T.f|, £ 4,|f]|,. If we assume that a, =0, and notice that
T? =1, we then have

24+ 1 <p< 22 +1
i+l P 7

A = | Tl 2 4,151

If we integrate this with respect to ¢, we get (see [26, Chapter 15], for similar
arguments)

s
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A7 = 1D, = 4 )71,

where
w 2ntl-—g 2
AFP=X| X akpg@ose). .
n=0 | g=2n

We come now to the second result which deals with lacunary partial sums,
In fact let n,,n,,---,n,,-- be a lacunary sequence of positive integers, corres-
ponding to Hadamard gaps, and described by the following condition: There
exists a ¢ > 1, so that n,,,/n, = ¢ > 1. The extension of the Littlewood-Paley
theorem for the trigonometric case is then as follows.

THeorReM 11. Let f(6)eL?, 22 + 1)/(A + 1)< p < (24 + 1)/ A. Then

(@) [ supi] S, 0.0)] [, = 4,1/,
(i) limy.o,S,.(0,1)) =f(8), almost everywhere and in the L’ -norm.

Proof. The key conclusion is (i); (ii) follows from it by straightforward argu-
ments. In proving (i) we first deduce a maximal inequality for Cesiro means.

Thus let 6,(0) = 6,(0,f) = (n + 1) '(So(0,f) + --- + S,(6,f)). We shall prove
that

sy |swlo@n] | <4l

2,1+1< <2,1+1
i+1 7F PR

In fact, we shall deduce (14.4) from its Abelian analogue, Theorem 2(d), in §6;
the Tauberian condition will turn out to be, in effect, (13.6).

Let us temporarily use the following notation: X%, u, will be a numerical
series, and we shall set

Sn = E Uy, 0n=(n+1)_lz Ska f(r)= 2 ukrk'
k=0 k=0 k=0
Ultimately we shall make u, = a,Pi(cos6), and therefore S, will be S,(0,f),
f(r) =f(r’ 0), R etc.
We shall also have need of the expression
(] 1/2
(14.5) T= { X (k +1)|ak—0'k_1[2} , 0_,=0.
k=0
By summation by parts we have
fO)=X uF=0-r) T Sr*=(1—-r? T gk +1)r"

If we apply differences to the o, and sum by parts again we get

f(")=(1 -7 E (ox — ox+1)(k + l)rk + i (0x— Uk—l)"Hl-
k=0 k=0
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Therefore

f()—e,=(1-r) § (ox — o= 1) (K + I)r" + an (o — a'k_l)(rk+1 -1
k=0 k=0

o0
+ Z (O'k—a'k_l)rk+l.
n—1
By Schwarz’s inequality, the fact that 1 —r**' <(k +2)(1 —r) 0= r=1),
it follows that

T T ey e

k=0 k+1 k=nt1 K+1

If we set r =1 — 1/n, the terms within the brackets are all bounded. Hence

sup|o,| < Oiugl [f(r)] + Az.
If we particularize to u; = a,Pj(cos0), we get
swplos0.N] s sup U0)|+A[E (4 D]o@N - 0i®NF]
where f(r,0) is the Poisson integral of f(0),
f(r,0) = ki—O:o a,r*Pl(cos6).
Next we notice that 6,(0,f) — 6,_(0,f) = (n(n + 1)) 'S(0.f). Therefore
k}; (k + 1)|0(8,1) = 611 (8.1) > = él k(™1 +1)-1[S0(0.0) |2 < (8*(0, )’

Since we have taken g, =0, then ¢, =0, and therefore

sup|o,(0.f)| £ sup [f(r,0)| + Ag*(0.f).
n 0gr<1
A combination of Theorem 2(d) of( §6) and Corollary 1 to Theorem 9 (in §13

then gives (14.4).
Next

sup|S,.(0,f)| < sup| o, (0,1)| + sup|S,, (6.f) — 0,(6.)]-
Thus

1/2
(14.6) sup |S,.(0.f)| < sup|o,,(6.1)] +( X |s,,k<0,f)—a,.k(e,f)l’) :
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However once the fixed lacunary sequence {n,} has been chosen then we have

1/2
(147) [(15u0.0)-000p) 7| .

In fact the special case of (14.7) is then n, = 2¥, obtained in the remarks fol-
lowing Corollary 2 to Theorem 9. The general case of {n,} considered is then
treated in exactly the same way.

(14.4), (14.5) and (14.7) immediately imply conclusion (i) of the theorem. As
we have stated before, (ii) then follows from (i) by well-known arguments.

CHaprteR III

15. Convolution structure and fractional integration. Up to the present our
main emphasis has been to associate to each development its appropriate ‘‘har-
monic’” (and ‘‘conjugate harmonic’) functions. This is seen most explicitly in
Chapter I (§§2-9); to a large degree this is also the case for Chapter II, in view
of the definition of the g-function which plays a key role there.

We now shift our point of view and study a convolution structure naturally
associated with ultraspherical (and many other) expansions. Such convolution
structures have been studied for some time by several authors, but the more
precise knowledge in the case of ultraspherical developments appears first in
Bochner [4].

We begin first by giving a definition of a convolution structure, and then prov-
ing a general theorem of ‘‘fractional integration’’ for such a structure, and
finally we shall apply this in the case of ultraspherical expansions.

The resulting theorem can be stated as follows:

THEOREM 12. Define the operator I,,0 < «, as follows: If

0
f ~ E a,,P,'}(cosU),

n=0
then
I(f)~ X n"%a,PXcos0).
n=1

Then

1N = 4,011,
whenever 1 <p< o, 1<r<oco, and 1/r=1[/p—al(2A +1).

We must study first, however, some general properties of convolution structures.
Let M be a measure space with measure dm. We define the LP-spaces and
their norms, | - |, in the usual fashion. We say we have a convolution structure
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on M if we have a bilinear mapping of L! x L' to I! given by (f,g) = f*g,
which satisfies the following properties:

M If+gls = I/l lelss
) I7+¢llw = /111 8], if gL' NL7,
©) If+gle < fl=lels, if feLlNL™

It should be noted that we have not assumed that f*g = gxf—that is, we shall
not need commutativity of the convolution product. An example of the above
structure is the usual convolution on any locally compact (unimodular) group—
and more generally on various homogeneous spaces of such groups.

We observe first Young’s inequality for convolution structures, which we state

as a lemma.

LEmMMA 10. Let 1<p,q,r< oo, with1/r=1/q +1/p—1. Then
(15.1) If+gl = 1700 2 o
if

feL*NIP and geL'NILA

Proof. It suffices to prove (15.1) when both f and g are simple functions
(that is, finite linear combinations of characteristic functions of sets of finite
measure). From this special case the more general cone stated then follows by
a simple limiting argument. In fact, once (15.1) has been proved a similar argu-
ment shows that the convolution has a natural (unique) extension to a bilinear
mapping on all of L?x L?to L', satisfying (15.1), whenever p, ¢, and r sat-
isfy the conditions of the lemma.

However (15.1), for simple functions, follows in a straightforward fashion
from a two-fold application of the bilinear Riesz-Thorin convexity theorem
in conjunction with conditions (1), (2) and (3) above. (See Zygmund [26, Vol. 1I,
p. 106].)

We come now to fractional integration. It was observed by R. O’Neil that
the classical (Euclidean n-space) fractional integration theorem can be restated
as an inequality like (15.1), but where the L%norm of g is replaced by a weaker
norm—the so-called “‘weak-type’” norm.

For our purposes, the weak-type norm of exponent g, | - |, can be defined
as follows
, flglxs dm
(15.2) gil, = sup
” “q E ” XE ”q’

The sup is taken over all sets E of finite positive measure, y; denoting the
characteristic function of the set E, and g’ denoting the conjugate exponent
tog,1/g’ +1/g=1.
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We observe that

lela =l

and | - |5 has the properties of a norm: | cigy + 28 ¥ S | ¢ | & %
+|ca| || &2 |, for constants ¢; and ¢,; and | g5 =0, only if g =0. It should
also be noted that || g||¥ =/ g|,, when ¢ =1 or co; and for all ¢,1<q < o,
when g is the characteristic function of a set. In general, however, | g|} is
smaller than | g|,.

With those definitions we can now state the theorem of fractional integration
for convolution structures(8).

THEOREM 13(°).

(15.3) If*el. = 404l /1ol 8 12
ifl<p,g,r<o and 1/fr=1/g+1/p—1.

q°

Proof. Let us fix g with | g5 =1, and consider the linear transformation
T:f—f*g. We remark first that T(f) is a well-defined function (in the space
I? + [*). In fact write g=g" + g;, where g' =g if |g|>1 and g' =0 other-
wise; g, =g if |g| =<1, g, =0 otherwise. Notice first that g'eL!; also the
conditions on p,q,r imply that g < p’, (1/p + 1/p’ =1). From this it is easily
follows that g,€I?. Now Tf=fxg will be defined Tf=T,f + T'f where
T.f*g, =f*g1, T'f=f+g'. Then T, fe °, and T'feL P(by Lemma 10). It is
to be noted that the definition of Tf actually does not depend on the particular
splitting used of g into a function of L' and L .

In proving (15.3) we shall prove first the weaker statement

(15.4) |71 = 4plllfls (TF=1x8)

with 1<p,q, r<owand 1/r=1/p+1/qg—1.

To do this we shall repeat in a more precise way the argument which showed
that Tf was well defined, paying attention to the all-important details.

Thus we write Tf = T°f + T,f =f*g" + f*g,, where g* =g if |g| > «, while
g, = g if |g| £ «. ais positive and will be fixed momentarily.

We beginby computing || g*||; and | g.|,. However, |gl|= [r |g|dx
< (m(E%)' ™14, where E* = {x||g(x)| > a}, since | g||} £1. But « < |g(x)| on
E*; and thus

am(E®) < f |g|dx < m(E®)' e,
E

(8) In the case of ordinary convolution on a group the theorem was first proved by O’Neil.
See his paper [12].
(%) The precise meaning of f*g is discussed in the proof of the theorem.
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Combining the extreme terms given m(E®) £ ¢~ 7, and therefore
(15.5) g s ™" if |gf7=1.
Next, if A(8) = m(E®), then
el == [ 87 axp=r 1~ 1up) ap.

We have already seen that m(E®) <o ? for all «>0; hence A(B)<p™¢

This gives
le.lo <P Laﬂ""""dﬁ= p,”—_'qav'-« :
Finally
(15.6) laly = (52) et~ = 2o
Now

[ 1m1x s 1oy = vy

AL lumE) e 5], o om(e =,

by (15.5) and Lemma 10 again.
Now choose o by setting

" M m(E) TP = o' TP m(E).

lIA

This determines « as ¢~ ? = m(E) and gives
a—q+1m(E)1—1/p — al—q/plm(E) — m(E)l—l/r’
where 1/r=1/p+1/g—1.

Hence we have

f|Tf| dx < f | T | dx + f | T.f| dx
E E E

< (c+ Dm(E) | 1|,
If we take the sup over the sets E we obtain

17717 = (e + DA,

and this is (15.3).
Let us now interpret the condition || g|[¥< A4, for a general function g. In
order to do this consider the distribution function A of |g|. That is,

(o) = m(E) = m{x: | g(x)| > o} .
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Now

ad(e) < f |g|dm < Am(E)' ™" = A(Mw))* ™"
E,
Therefore, M) S A", 0<a< .

This shows that the inequality (15.3) implies

(15.7) m{x:|Tf|> o} < (@ﬂ—fi’)r, 1<p,q,r<o0,1/r=1[p+1[/qg—1.

For fixed p,q,r, (15.4) is exactly the statement that the mapping f— Tf is of
weak type (p,r), in the sense of the Marcinkiewicz interpolation theorem; see
[26, Vol. II, p. 111]. Applying this theorem then gives

175], = 52l < Apalfl,r 1<prasr <o, 1jr=1/p +1jg—1.

Finally, if we drop the normalization | g |¥ = 1, we get (15.2) and the theorem.

We now come to the convolution structure associated with ultraspherical
expansions.

It will be convenient to change our notation slightly by renormalizing the
ultraspherical polynomials and the underlying measure of our space. We fix
A >0, throughout the discussion.

Thus set P¥(cos6) = Pi(cos6)/Pi(1), and hence P¥(1) = 1. We shall also set
I£] o= (ex* [5£(0) | sin®*~ 10 d6)'/?, where c, = [§sin**~'0 df. The normalizing
constants p, are defined by

Pt = | Pi,.
Thus
_A+nT(n+24)
Pn = T ThT(R)

(see [4, p. 25]). If £(8) ~ Xa,Pl(cosf) we also set
f(0) ~ Xayp,Pr(cosb).

We now define f*g by

158 (DO=6* [ [ 1@®)sw) sin®*gsin® e agat,
where T
cosy = cosBcos¢ +sinfsindcost.
The crucial properties of this convolution product are two-fold.
(15.9) [f+gl<|f]*]el.
(15.10) PYx PY = p;'6, .PF.
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The first is obvious, and the second is in [4, p. 29].
From (15.10) it follows that if

(15.11) f ~Z alp,Pf and g~ X bfpP}
then
fxg ~ X arblp,Pt

which is the multiplicative property of convolutions. From (15.9), (15.10), and
(15.11) it follows easily that fxg = g=f, and since fx1= | f|; £ |f]o we get
15+ 2l = g2/ = |1 ] 2] -

Also if f and g are non-negative
gl =t [[Gen@sin-t0a0 = |1 gl
Thus, in general,

I+l < I/l lels-

We have therefore verified the basic properties of the convolution structure.
We now come to the proof of Theorem 12 stated earlier in this section. It can
be restated as follows:

If
©
f~ X afp,Pi(cost)
and "
1.(f) ~ X atpn~*Pi(cost)
then "
[RACH) " P P
whenever
l<p<ow,l<r<o and 1/r=1[p—af21+1).
However,
L(f)=f*K,,
where

K 0) ~ X n™%,P¥Xcosb).
n=1
Therefore, in view of Theorem 13, it suffices to prove that
" K, ”: S4,,<00 forllg—1= —af(24+1),

where| - [ }is the weak-type norm.
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Let us set x =cosf, and K,(6) = k,(x). Then as is known, (see [4, p. 25]),

1-r
(1 —2rx 4+ r2)+1

o0
= X pos"PXx), 0Zr<l1.
n=0

Thus

1 ! 1-r .y ar
k"(x)_l“(a) fo[(l—2rx+r2)*+1—1](10g1/r) — a>0,

We break up this integral into two parts: from 0 to 1/2 and 1/2to 1. We notice
without difficulty that the first integral is uniformly bounded in x. We now con-
sider the second integral, dropping first the factor I'(«)~*, and then the constant
fi,2(log1/r)* ' r~'dr. What remains is bounded by a constant multiple of

(15.12) fl 1-r (-t dr
‘ 12 (1 —2rx + r2)p+1 r ’

We remark that here we may assume that say 3/4 < x < 1, since in the inter-
val —1 < x £ 3/4 this integral is uniformly bounded. We now decompose the
integral in (15.12) as a sum of an integral where (1 — r)> 21 — x, and another
where (1 —r)* <1 —x.

Now,
1=2rx +r*=(1 —r)® +2r(1 — x).
Thus
A=2rx + PP 21 = r)***2 when (1 —r)*=(1—x)
and

(1 —2rx + P2 2 (1 = x)**! when (1 — /) <(1-x) (r=1/2).
Combining the above we see that (15.12) is majorized by twice

1-(1-x)1/2 1
J A=r) "2 dra(1 —x) ! f 1 —r)dr.
1/2

1-(1-x)1/2

Altogether, this is bounded by A(1 — x)“/ 2-4-1/2 Thus
|ko(x)| =| Ku(cos)| S A(1 —x) > #7124+ 4 < A" (1 —x)*> 74712 = A(sin)2)*~ 2471,

since o0 <21 + 1, x =cosf.

Finally it suffices to show that

. o—2am o
[ (sin6/2) Wl* <o, 1-1/g= T’

or what is the same
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(sin 9/2)“—“_ 1sin®*9 do
sup £

E ( f sin?% de)l_”q
E

Since @ — 24 —1 <0, the function (sin6/2)*"?*"! is decreasing on (0,7).
Thus the above supremum is equal to

< 0.

t
f (sin 0/2)*"**"5in%*9 d0O
sup 22

l 1-1/4
osiE (f sin“ode)
0

But the last quotient is bounded by constant x sup [*/[Z** -t
However, a/(24 +1)=1-~1/q, which proves the assertion, and hence the
theorem.

16. Fourier-Bessel transforms (Hankel transforms). We shall now discuss the
analogue of our study of ultraspherical expansions which leads to Bessel function
and the Fourier-Bessel (or Hankel) transforms.

The wide-ranging analogy between (discrete) ultraspherical expansions and
(continuous) Fourier-Bessel expansions will be used in what follows below. The
analogy holds not only for the statements of the theorems but carries over also
to the details of their proofs. Two slight qualifications must be added to this
assertion. First, various formulae and estimates take a somewhat simpler form
in the Fourier-Bessel case than the ultraspherical case. Second, the ultraspherical
case, as opposed to the Fourier-Bessel transform case, deals with a compact domain
as contrasted to a noncompact domain. Thus certain additional arguments are
needed in problems of ‘‘harmonic majorization’’ (see Lemma 11 below).

However, in the main, the analogy between these two cases is so close that
it is not necessary to duplicate most of the proofs in the second case. For this
reason, and to save space, our discussion will be brief, omitting proofs in every
case (except for Lemma 11).

Our starting point is, as indicated in the Introduction, functions in Euclidean
n-space which are radial. Thus let j = (yy, -+, y,) € E,, and let f(7) =f(y1,**»Yn)
be a radial function, i.e., fF)=/(y), where y = |5|= (] + - + y2)"/%.

Consider the Fourier transform of such a function

7@ = @ay ™ f A3t dz.
E"
Then

f(f) =jo V(n—2)/2(5.}’)f()’)}’"_1 dy,
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with & = |€| and
Vi(t) = 70,1

(See [5, Chapter II].)
If #(x, 7) is the harmonic function in x > 0, with boundary values f(7) (when
x = 0), then this Poisson integral is given by

7(x,7) = u(x,y) = f X Vo 2 ENFEEY dE

= fﬁoP(x,y,z)f(z)z""l dz,
0
with

P(x,y,z) = (yz)—(n—z)/zfo e_ch(n—2)/2(53’)]("—2)/2(52)5 dé.

Also u(x,y) satisfies the radial ‘‘Laplace equation”’

Fu Pu n=1ou_
ox2  9y? y oy

Incidentally, the Plancherel formula in this case becomes

f |f@) e ae = f POt dy.
0 0

We now set n — 1 = 24, and we pass by analogy from half-integral A to general
positive 1. In general, we have

(16.1) u(x,y) = fowP(x, ¥,2)f(2)z** dz,

where

(16-1') P(x,y, Z) = (}’Z)_'i_l/2 fo e-xc-fl—1/2(}’5)-’4—1/2(25)5 dé.

u(x,y) now satisfies the equation

Pu %u 2 du

(16.2) 5;51.—672-4-75—

All our LP-spaces will be taken with respect to the measure y**dy, so that

= vors=a)”
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In this way the mapping

(16.3) =3O = [ Visa@)o* dy

becomes a unitary transformation on L2 (See [19, Chapter 8].)
u(x,y) can be re-expressed in terms of this transformation:

“(x,}’) =J;) e_gi;__l/z({y)f(f)f 2 dé.

We return to the Poisson kernel P(x,y,z), and its conjugate Q(x,y,z) (to be
defined later), and find explicit expressions for these.
For this purpose we consider the formula of Weinstein [23]

¢u(x,¥) = S,-, ‘f (b? + x* + y? — 2by cos a) " "*(sina)’"" da
[}]

o0
= Cb ™y ? fo e U (yt)J (bt) dt

with

-1
st =aPren(r(55)) L €= 2+ naes + )

and p = 2q + 1. ¢,(x, ) also satisfies the ‘“Laplace equation’’ (16.2) with p=2A.
By differentiating with respect to x we get

(16.4) P(x,y,b) = %E J (b* + x* + y*> —2by cos a) * " (sina)** ! da.
0

Since we have P(x,y,b)= — C;' d(¢y(x,y))/0x, and ¢ satisfies (16.2), its
conjugate should be given by C;' 8(¢,(x,y))/dy.
We thus define Q(x,y,b) by Q(x,»,b) =C; " 8(¢,)/dy, and we get

(16.5) Q(x,y,b):—(by)l—”z fo e_x’JHl/z(yt)Jz-l/z(bt)t dt

and

24 [ (y—bcosa) - (sing)**~?

7w Jo (B% + x2 + y2 —2by cos a)i+1 da.

(16.5") Q(x,y,b) = —

For an arbitrary f (say fe LP(y**dy)), we have defined its Poisson integral
u(x,y) by (16.1) and u satisfies (16.2). Define the conjugate v(x, y) to u(x, y) by

o(x,y)=y"V(x,y) = y** jo 0(x,y,2)f(2)2* dz.
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Then it follows that u and v satisfy the ‘‘Cauchy-Riemann’’ equations:
24 22
(16.6) v, =y u,, v,=-—y"u,,

or if U(x,y)=u(x,y), V(x,y) =y *u(x,y),

(16.6") V,+U,=0, Ux—Vy—%V=0.

We therefore see that the notion of conjugacy given by (16.6) and naturally
associated to the Fourier-Bessel transform (16.3) is the same as the notion of con-
jugacy studied earlier and associated to ultraspherical expansions.

What distinguishes these cases are the domains of the (xy)-plane under con-
sideration. In the ultraspherical case we had the upper semi-disc x* + y2 <1,y >0
and since U(x,y) was even in y and V(x,y) was odd in y, we ultimately con-
sidered the whole disc.

In the present case the domain is initially the quarter-plane x>0, y > 0;
again because the U(x,y) and V(x,y) which arise are respectively even and odd
in y we extend consideration to the whole half-plane x > 0. In the case of Fourier-
Bessel series considered briefly in §18 below the domain becomes the half-strip
0 < x,0<y<1; and then because of evenness the doubled strip0 £ x, -1y 1.

We shall now briefly indicate how the results of §§3 to 15 can be reformulated
and proved in variants appropriate for this setting(!°).

(a) Coming first to the maximum principle (Theorem 1 in §3), we see that
in view of (16.2) and what has been said above, this theorem is equally applicable
to the present case. However, in the present case the domains in question are
not bounded. It will be necessary, therefore, to supplement Theorem 1 with an
additional lemma and its corollary.

LemMa 11. Suppose (1) u(x,y) is continuous in 0 £ x < o0, —0 <y < 0,
and even in y.

(2) In the region where u(x,y)>0, u is of class C? and satisfies
0%u [0x? + 8%u [0y? + 24y '0u [0y = 0, there.

3) u(,y) =0.

(4) For some p, 1 Sp< o0,

[o0]
sup J‘lu(x,y)[”y“dyéM<oo.
0

O0<x<o0
Conclusion: u(x,y)<0.

COROLLARY. If in addition 8%y [0x* + 0%y [0y? +21y '0u [0y = O everywhere
then u(x,y)=0.

(19) Recallthat we always have 1 = 0.
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Proof. Fix 0<p < oo, and define f,(6) by f,(0)= |u(pcosd, psin 6)| for
[6]<n/2, and f,(8) = — f,(n—6), for (n/2) < 6<3n/2. Then f,(6) is
continuous, since f (4 n/2) = 0. Now

R z . 1
J; j(; |£(6)|"(sin 6)** dOp?***dp =3 ff |u(x, y)|Py** dydx < MR,

x2+y2<R?

because of condition (4).

Thus if J(p) = (5] £(0)[(sin8)** d6, then [§(p)p***' dp < MR,and hence
liminf, , ,J(p)p**** <M. In particular, there exists a subsequence pj,p;,
s yPns *»Ps = © , so that J(p,) = [§|f,.(0)|(sin6)** d6—0.

Let now hy(x.y) be the Poisson integral (for the disc x* + y? £ p?) of £,(6)
in the sense of §§2-4. That is,

h(x,y) = L ) P(r/p,0,9)f,(¢)(sing)**dp  (x = rcosf,y = rsinb).

Then we observe that h,(x,y) is continuous in x> + y* < p?, even in y, and
odd in x, the latter because of the ““oddness’’ of f. Thus h,(0,y) = 0. Moreover
h(x,y) satisfies the equation (16.2) and majorizes u(x,y) on the half-circle
x2 4+ y?=p?%, x20, and also when x =0. Thus by the maximum principle
(Theorem 1)

u(x,y) S h(x,y) whenever x* +y*<p?, x20.

We now restrict the p’s to our sequence p,— o. Since [3|f,.(6) |“(sin6) >*d6—0,
it follows easily that for each fixed (x,y), h, (x,y)— 0. This proves the lemma.
The corollary is an immediate consequence.

(b) The analogue of Lemma 1 are the estimates

_exyn)™

< Nt
P(x’t’z) = x2+(y_z)za

cx
P =
(x,y,2) < GZ+(y = 2)P)rt

where P is given by (16.1') (or (16.4)).
(c) For feL”(y**dy), the maximal function f* is defined by

Jy+h|f(z)| z** dz

f*(y) = sup .
) O<y+h f””’zu dz
y

The obvious form of Lemma 2 holds for this variant of f*, and we also have
sup, | u(x, y)| £ ¢f*(y), where u is given by (16.1).
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(d) Theorems 2, 3, 3’, and Corollary 2 (in §6) have their obvious analogues
in this context. As an example of this we state

ANALOGUE OF THEOREM 3. Let u(x,y) satisfy (16.2) in the quarter-plane
x>0,y >0; then u(x,y) is the Poisson integral (16.1) of an feL"(y**dy),
1< p< oo, if and only if u(x,y) is regular and even in y in the half-plane
x>0, and sup.<o [¢ |u(x,y)[?y** dy<oo.

The proof of this theorem is almost identical with that of Theorem 3, except
that we need to appeal to the corollary of Lemma 11 of this section.

(e) For the conjugate kernel Q(x, y,z) (given by (16.5)) we have the following
estimates:

Qlx,y,2) = Oy **71), if y<z/2,
= 0(z"*™Y, if z=y)2,

o(x,y,2) = ca(yz)_z‘ —y—_—z—_——z)~2+ O(y"“—l(l + log (

x2 +(y

)

=y

if y/2

(f) The analogue of Theorem 4 (part (a)) is the statement

0<x

® 1/p ©
oox (fo IVeenly™ dy) = A,,f [fY] y** dy'’?, 1< p< oo,
0

with V defined by V(x,y) = [&Q(x,y,2)f(z)z** dz.

(g) Going back to formula (16.5) for Q and letting x—0, we can reinterpret
(f) above as follows:

Suppose F is the Fourier-Bessel transform of f, i.e.,

Then
(16.8) lim V(x,y)=f()) = — x fw Vo) FQ .
x-0 0

The mapping f—f defined thus (initially only for I*(y**dy)) is the analogue
of the Hilbert transform in this case. It is clear from the above that

o0
INCEEINISIFRL
The result in (¢) shows that the mapping f — fextends to L°(y**dy), 1 < p < o,

and is boundded there.
(h) The results for H?-spaces (as in §§9 and 10) can be developed in this
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case also. The analogue of the harmonic majorization lemma (Theorem 5) re-
quires now the additional Lemma 11 of this section for its proof. Otherwise the
arguments are essentially identical. Theorem 6 has its analogue which may be
stated as follows.

ANALOGUE OF THEOREM 6. Suppose F(z) = U(x, y) + iV(x, y) satisfies
(16.6") with U even and V odd in y. Suppose also that for p =2A|(2A+1),
SUPso fo | F(x +iy)|?y** dy < 0. Then (a) lim,.oF(x + iy) = F(iy) exists
for almost every y, even in the nontangential sense. (b) If 1F(iy) =0
on a set of positive measure, then F(z)=0. (c) If p>2A/2A+1), then
lim,.o | F(x +iy) — F(iy)|"y** dy =0.

This theorem (in particular (c) when p = 1) has then the following

COROLLARY. Suppose we have a pair of measures du,, du,, so that

[y dp)| < o If [& Va1 n(xp)y™ dpy(0)= =[5 Vi 12Gp)y** ™ dia(v),
then both du; are absolutely continuous with respect to Lebesgue measure.

This, of course, is another extension of the classical F. and M. Riesz theorem
on absolute continuity cf analytic measures.

(i) Coming now to the results of Chapter II,and in particular those of §14,
we shall limit ourselves to the two main statements in the present version.

(1) Suppose we consider the multiplier transformation T, intially defined on
L¥(y**dy) by

(TF)(y) J; F(t)ﬂ(t)VA—uz(yt)tu dt,

where
F(i) = f Vs 1) ()2 dy

with the multiplier u(t) of bounded variation in every finite closed subinterval
of (0,0) and satisfying |u(s)] < M and [gt|du(t)] £ Ms, 0 <s < oo. Then the
transformation f— Tf has a unique bounded extension from L"(y“dy) to it-
self, with 24 +1)/(A + 1) < p < (24 + 1)/2 (11).

(2) Suppose we define the partial integrals S,(f), by

S.f) = J;aF(t)Vz—x/z(yt)t“ dt.

If fe L?(y**dy), then S, (f)— f almost everywhere and dominately (in L?),
for 24 + 1) /(A +1) < p<(24 + 1)/A, whenever a, is lacunary in the sense that
liminf, , o (ay 4y Ja,) > 1.

(11) The result is extendable to other LP-spaces involving weight functions (see the remarks
in §17). In this way one obtains anew the “Main Theorem” of [6].
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(j) Finally we come to the topic of (fractional) potentials dealt with in §15.
Let us define the operators I, by

I(f)

[oe]
f F(8)Va 1 (ty)t ™% dt
0
with

F(t) = j V2O dy,

at least when f is continuous with compact support and 0 <« <21 + 1. Now it
is known that lim,.o [§e™ "V, _, ,(ty)t™t** dt=c, ,y ~**7**° (See[21,p.391].)

Then if terms of the known convolution structure for the Fourier-Bessel trans-
forms (see Bochner [4]) we can write

I(f)=f*K,, where K (y)= c,y **"1**.

The general Theorem 13 of §15 then applies and shows that
I 1)]. £ A, f],» with I<p<r<oo and 1/r=1/p—a/2A+1).

17. Remarks on weighted inequalities. In some problems it is of interest to
extend the usual statements of I* boundedness by modifying the measures with

suitable weight factors(!2).
Thus in the ultraspherical case one would look for inequalities of the form

A1) | 7)) sin )], < 4,.]7@)6in0)],
with |[f] = ( [5]/(0) |"(sin 6)** ag)'/».

Similarly in the Fourier-Bessel transform case one would have
(17.2) 1T (o= Al F )y |

with |[f]l, =[] [Py** dy)'’.
The validity of such inequalities falls in two ranges. The broader range
——(21+1)<a<21-|:1, i+L’=1
p p

(R,)

and the narrower range

(R,) L;l)+/1< 24+1

o< 7 -2 (recall 4 = 0).

Thus in the case of ultraspherical expansions Theorems 2((b)-(d)), 3, 4(a),
Corollaries 1 and 3 and Theorem 8 are all extensible in this sense, with the I[’-norm
taken in the broader sense (R,). This extension can be carried out without any
difficulty, and goes back to the fact that those theorems in question are based

(12) See in particular [1], [6], and [8], where further references can be found.
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on estimates for the Poisson and conjugate kernels which allow such variants.
This situation is also typified by similar inequalities in Euclidean n-space, (where
n =22 + 1), treated in [15].

However, results which essentially go back to partial sums, Thecrems 7, 9,
10 and 11, are valid only in the narrower range (R,). This situation is already
typified, to some extent, by some of the results in [13] and [6].

A similar situation in terms of the inequalities (17.2) holds throughout for the
Fourier-Bessel transforms considered in §16.

18. Concluding remarks: Fourier-Bessel series. The general setting which we
used above seems applicable to a variety of other classical expansions. We shall
illustrate this by describing the formal setting in the case of Fourier-Bessel series.
While we have not pursued this matter any further, it seems highly likely that
the analogy with the above can be pushed quite far.

From our point of view the Fourier-Bessel series (also referred to as Dini series)
arise by studying functions u(x,y,,--,y,) harmonic in the cylinder
x>0, vi + y2 + - +y2 <1, of the (n + 1)-dimensional Euclidean space; these
functions are given by their boundary values at x=0, (0, y,, ¥2,***» Vo) =f (V1. sV n)s
and have vanishing normal derivative along the rest of the boundary(!3). By
restricting consideration to radial functions f, we obtain Fourier-Bessel series
expansions of order (n—2)/2; and then by analogy we pass to Fourier-Bessel
series of real order greater than —1/2.

Thus if u(x,y;, -,y =u(x,y), (y=©+- +yH)Y?), is harmonic in
x>0, 0= y<1, and satisfies u(0,y) = f(y), with u(x,1) =0, then

(181) u(x’y) = E ame_ymeA—I/Z())my) (2)' =n- 1)’
m=0

where V,(t) =t *Ty(t), and y, =0, 7,,75,""»7m+-- are the successive zeros of
T,_1,2(t). We may now drop the assumption that 24 is integral, and assume only
A20.

The natural LP-norms in this case are taken (as before) with the measure
y*dy; thus |f], = (J§|fO)|" y**dy)'/". For p =2 we know that the collection
{Va—1/2(ymy)} is mutually orthogonal and as a matter of fact complete. (See Watson
[21, Chapter 18].)

We should observe that from (18.1) we obtain the expansion

(182) f(J’) ~ EO amV).—l/Z(me)'

u(x,y) given by (18.1) satisfies the singular Laplace equation (16.2) and thus
we should expect its conjugate ¥ to be given by (16.6). From this it follows that

(13) This boundary condition is typical of a more general class that can be treated similarly,
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0

(18.3) V(x,y)=—y pX € " Y Vas12(0m¥)-

m=1

If we now let x = 0, we obtain the function f(y) conjugate to f(y), given by

(18'4) f(y) ~ =y ;l amymV).-Fl/Z(‘me)'

(Compare this notion of conjugacy with (2.4) for ultraspherical series and
(16.7)—(16.8) for Fourier-Bessel transforms.)

We state now two results which can be expected to hold in view of the close
analogy with the above, and which would be typical. The first would be another
extension of the M. Riesz conjugate function inequality, and would take the
form that the mapping f(y)— f(y) (given by (18.4) is bounded inthe L’-norm
(as defined above) with 1 <p< .

Secondly, one could reasonably expect an analogue of the multiplier theorem
of §14. It would state:

Let the transformation f— Tf be given by

Tf ~ ;o am#mV;.—l/z(Ym.V)
with f given by (18.2) and p,, satisfying: (i) | | S M, (ii) X M| = ey | S MK,
all k. Then the transformation is bounded in the LP-norm, with (24 + 1)[(A +1)
<p<Qi+1/A
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