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We show that for classical Liouville field theory, diffeomorphism invariance, Weyl invari-
ance and locality cannot hold together. This is due to a genuine Virasoro center, present in
the theory, that leads to an energy-momentum tensor with non-tensorial conformal trans-
formations, in flat space, and with a non-vanishing trace, in curved space. Our focus is on
a field-independent term, proportional to the square of the Weyl gauge field, WµW µ, that
makes the action Weyl-invariant and was disregarded in previous investigations of Weyl and
conformal symmetry. We show this term to be related to the classical center of the Virasoro.
Keywords: Gravitational anomalies; diffeomorphic invariance; conformal symmetry; classical Vira-
soro algebra; Liouville field theory.

Liouville field theory, with flat space action1

AL[Φ] =
∫︂

d2x

(︄
1
2∂µΦ∂µΦ − m2

β2 eβΦ
)︄

, (1)

is an exactly solvable two-dimensional model that enjoys a prominent role in many fields of the
theoretical and mathematical investigations. Among those, the geometry of surfaces [1], two-
dimensional (quantum) gravity, see, e.g., [2] and [3], string theory, see, e.g., [4], conformal field
theories, such as the Wess-Zumino-Witten and the Toda models, see e.g., [5], and therefore the
AdS/CFT correspondence [6]. It is then of great importance to know its symmetries in all details,
already at the classical level.

In particular, Liouville theory is known to enjoy both scale and full (global) conformal sym-
metries in flat space, hence it belongs to the cases studied in [7]. There it is assumed that Weyl
and diffemorphism invariances hold together. Even though full (global) conformal symmetry is
known to be in place, in a more recent work [8] it is conjectured that Liouville theory might not be
made both diffeomorphic and Weyl invariant, evoking a generic “classical anomaly” as the reason
for that. In this letter we prove that conjecture and provide explicit formulae for such classical
gravitational anomalies. We leave to a longer forthcoming paper [9] the more detailed discussion
on how such classical anomalies arise, in general and for Liouville.

Let us start by considering the Liouville action on curved background

AL[Φ] =
∫︂

d2x
√

−g

(︄
1
2gµν∇µΦ∇νΦ − m2

β2 eβΦ + 1
β

RΦ
)︄

, (2)

routinely employed to obtain the energy-momentum tensor (EMT)

T µν
L = − 2√

−g

δAL

δgµν
= ∇µΦ∇νΦ − gµν

(︄
1
2gαβ∇αΦ∇βΦ − m2

β2 eβΦ
)︄

+ 2
β

(gµν∇ρ∇ρ − ∇µ∇ν)Φ , (3)

that on-shell gives

TL
µ

µ = 2
β2 R , (4)

∗ pavel.haman@mff.cuni.cz
† alfredo.iorio@mff.cuni.cz
1 Here we use ηµν = diag(+1, −1).

ar
X

iv
:2

30
6.

09
82

5v
1 

 [
he

p-
th

] 
 1

6 
Ju

n 
20

23

mailto:pavel.haman@mff.cuni.cz
mailto:alfredo.iorio@mff.cuni.cz


2

ensuring a zero trace in the flat limit, but not Weyl invariance, for the curved background. To
remedy it, this ad hoc procedure could be traded for the one of [7], based on the Weyl-gauging of
the curvilinear expression for the action (1)

AW [Φ, Wµ] =
∫︂

d2x
√

−g

(︄
1
2gµν∇µΦ∇νΦ − m2

β2 eβΦ + 2
β

Φ∇µW µ + 2
β2 gµνWµWν

)︄
. (5)

Since under Weyl transformations, gµν → e2ωgµν and Φ → Φ − 2
β ω, one has 2∇µW µ Weyl−−−→

e−2ω(2∇µW µ − 2∇µ∇µω), this should be compared to R[gµν ] Weyl−−−→ e−2ω(R[gµν ] − 2∇µ∇µω) and
the (Ricci gauged, in the language of [7]) action

AR[Φ] =
∫︂

d2x
√

−g

(︄
1
2gµν∇µΦ∇νΦ − m2

β2 eβΦ + 1
β

ΦR + 2
β2 gµνWµWν

)︄
, (6)

enjoys Weyl invariance, TR
µ

µ = 0, provided

2∇µW µ = R , (7)

holds. Notice that, contrary to [7], we keep here the last, Φ-independent term, that is precisely the
one that ensures Weyl invariance.

A solution of (7) can be found [8] using the Green’s function K(x, y), such that ∇2
xK(x, y) =

1√
−g(x)

δ(2)(x − y). Assuming that Wµ = ∂µw, with w transforming as w
Weyl−−−→ w − ω, the solution

is w(x) = 1/2
∫︁

d2y
√︁

−g(y) K(x, y) R(y). It follows that the extra term in the action proportional
to W µWµ is ∫︂

d2x W µ(x)Wµ(x) = 1
4

∫︂
d2x d2y

√︂
−g(x)R(x)K(x, y)

√︂
−g(y)R(y) , (8)

which is the well-known Polyakov string effective action [4]. The EMT associated to the action (6)
with (8), is traceless and covariantly conserved [4]. The price we pay is the evident nonlocality.

A local solution to (7) was found by Deser and Jackiw in [10]

W µ
DJ = εµν

2
√

−g

[︄
εαβ

√
−g

Γβαν + (cosh σ − 1)∂νγ + ∂νr

]︄
, (9)

where ε01 = +1 is the Levi-Civita symbol and a “conformal” parametrization of the metric
gives g++/

√
−g = eγ sinh σ, g+−/

√
−g = cosh σ, g−−/

√
−g = e−γ sinh σ, and, from there, γ =

ln
√︁

g++/g−− (see Supplemental Material). The expression (9) includes the derivative of a generic
Weyl scalar, r, to take into account the invariance of (7) for W µ

DJ → W µ
DJ + εµν

2
√

−g
∂νr.

W µ
DJ enjoys proper Weyl transformations, gµνW ν

DJ

Weyl−−−→ gµνW ν
DJ − ∂µω , but it does not

transform as a general (contravariant) vector under infinitesimal diffeomorphisms, xµ → x′µ =
xµ − fµ(x),

W ′µ
DJ(x′) = ∂x′µ

∂xν
W ν

DJ(x)+ εµν

2
√

−g
∂ν

[︃(︃
∂− − e−γ tanh σ

2 ∂+

)︃
f− −

(︃
∂+ − eγ tanh σ

2 ∂−

)︃
f+
]︃

. (10)

It follows that the term gµνW µ
DJW ν

DJ in (6), although it keeps Weyl invariance and locality of AR[Φ],
cannot be a world scalar, hence it breaks diffeomorphism invariance.
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To investigate and quantify such breaking, let us start with the contribution to the EMT coming
from the extra term

T µν
extra ≡ − 2√

−g

δ

δgµν

∫︂
d2x

2
β2

√
−gW µWµ . (11)

In the Supplemental Material it is shown that

β2

2 T µν
extra = gµνWρW ρ−2W µW ν−Rgµν+∇µW ν+∇νW µ+2 εαβ

√
−g

∂βWα[(cosh σ−1)Γµν+rµν ] , (12)

where Wρ ≡ gρλW λ, 2Γµν = (g−−g++)−1/2
(︄

− sinh γ cosh γ
cosh γ − sinh γ

)︄
and rµν ≡ δr/δgµν . One would

like to compute ∇µT µν
extra and compare it with known expressions of the quantum gravitational

anomalies, such as [11] ∇µT µ
ν = 1

48π
εσρ

2
√

−g
∂ρ∂λΓλ

νσ or [12] ∇µT µ
ν = 1

48π ∂νR.
Rather than attempting a direct computation, we take a simpler road. First, we move to

isothermal light-cone coordinates, that we know to always exist in two dimensions. There one has

ĝ±±(x) = e2ρ(x)
(︄

0 1
1 0

)︄
, and we indicate with a hat all quantities evaluated there2. If we set r = 0

for a moment, we have

β2

4 T̂ µν
extra = (ĝµα∂αρ)(ĝνβ∂βρ) − 1

2 ĝµν(ĝαβ∂αρ∂βρ) +
[︂
ĝµν(ĝαβ∂α∂β) − ĝµαĝνβ∂α∂β

]︂
ρ , (13)

and the computation becomes trivial, ∇̂µT̂ µν
extra = 0. Of course, this would not guarantee general

covariance, until we have a frame-independent result (see later).
On the other hand, including r in the computation gives

β2∇̂µT̂ µν
extra = ενµ

√
−ĝ

∂µ

(︂
ĝαβ∂α∂β r̂

)︂
− 2ĝαβ∂µ(r̂µν∂α∂β r̂) + 2∂µĝαβ r̂µν∂α∂β r̂ , (14)

and this expression, although it differs from the recalled anomalous quantum expressions [11, 12], it
is clearly nonzero, in general. In this coordinate frame, T̂ µν

extra not only guarantees Weyl invariance,
through a traceless EMT, but for harmonic rs, □̂r̂ = 0

∇̂µT̂ µν
extra

⃓⃓⃓⃓
□̂r̂=0

= 0 . (15)

As for the previous case, for r = 0, this is not enough to have general covariance. We have no
guarantee that (15) holds in all frames. We have to look for how much such divergence differs
from a tensor, when we move away from the isothermal frame, ∆∇̂µT̂ µν

extra(x) ≡ ∇′
µT ′µν

extra(x′) −
(∂x′ν/∂xρ)∇̂σT̂ σρ

extra(x). This has to be, at least partially, expressible in terms of ∆Ŵ µ(x) ≡
W ′µ(x′) − (∂x′µ/∂xν)Ŵ ν(x). For infinitesimal diffeomorphisms, W µ transforms as (10) and, defin-
ing ∆r(x) ≡ r′(x′) − r(x),

∆Ŵ
µ = εµν

2
√

−ĝ
∂ν

[︃
εαβ∂β

(︃
fα√
−ĝ

)︃
+ ∆r̂

]︃
≡ εµν

2
√

−ĝ
∂νξ(r, f) . (16)

With these

β2∆∇̂µT̂ µν
extra = ενµ

√
−ĝ

∂µ

[︂
ĝαβ∂α∂βξ(r, f)

]︂
− 2ĝαβ∂µ(r̂µν∂α∂βξ(r, f)) + 2r̂µν∂µĝαβ∂α∂βξ(r, f) , (17)

2 For this choice, εαβ∂βŴ α = 0.
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that, for the choice (9), and for r = 0, eventually gives a compact expression

∆∇̂µT̂ µν
extra = 1

β2
ενµ

√
−ĝ

∂µ

[︂
ĝαβ∂α∂β

(︂
∂−f− − ∂+f+

)︂]︂
. (18)

This expression does not vanish for a general fµ. This proves the loss of diffeomorphism invariance
in the Weyl invariant formulation of Liouville theory (6), with local solution (9).

Quadratic transformations, fµ = aµ
αβxαxβ + bµ

αxα + cµ, which include Poincaré transforma-
tions, fµ = ωµ

νxν + cµ, preserve the tensorial nature of ∇̂µT̂ µν
extra and so do conformal transfor-

mations, obeying □fµ = 0. Therefore, for infinitesimal conformal and Poincaré transformations in
flat space, the extra term, T µν

extra, is covariantly conserved, regardless of the choice of r. In other
words, T µν

extra does not violate the symmetries of T µν in the flat limit, that is the same conclusion
of [7].

To complete the proof that this lack of diffeomorphic invariance is indeed the classical version
of the quantum anomaly, we need to relate it to a nontrivial center of the Virasoro algebra. To do
so, let us first consider the flat limit of the EMT (3)

Θµν = ∂µΦ∂νΦ − ηµν

(︄
1
2∂αΦ∂αΦ − m2

β2 eβΦ
)︄

+ 2
β

(ηµν□ − ∂µ∂ν)Φ , (19)

that is traceless on-shell. The associated Noether charges, written in the light-cone frame3

Q±[f ] =
∫︂

dx± Θ±±f± =
∫︂

dx±
(︃

(∂±Φ)2 − 2
β

∂2
±Φ
)︃

f± , (20)

through the Poisson brackets {Φ(x), Φ(y)}|x+=y+ = −1
4 sgn(x− − y−) and {Φ(x), Φ(y)}|x−=y− =

−1
4 sgn(x+ − y+), generate the right transformations

δf Φ ≡
{︂

Φ(x+, x−), Q±[f ]
}︂

= f±(x±)∂±Φ(x+, x−) + 1
β

∂±f±(x±) . (21)

They are made of two terms, both necessary for the invariance of the flat action (1): the usual
Lie derivative of the scalar field, fα∂αΦ, and an affine term. It is easy to verify that these charges
obey an algebra with a genuine central extension{︁

Q±[f ], Q±[g]
}︁

= Q±[k] + 1
β2 ∆±[f, g] , (22)

where kµ = fν∂νgµ − gν∂νfµ and ∆±[f, g] =
∫︁

dx± (g±∂3
±f± − f±∂3

±g±). By restricting to a
periodic manifold, with a periodicity P , x± ∝ x± + P , generators can be decomposed into

Q±
n ≡ P

2π

∫︂
dx± Θ±±ei 2π

P
nx± = P

2π
Q±[ei 2π

P
nx± ] , (23)

and the algebra (22) can be recast into the following form

i
{︁
Q±

n , Q±
m

}︁
= (n − m)Q±

n+m + 4π

β2 n3δn+m,0 (24)

that is just the Virasoro algebra with genuine central charge

c = 48π

β2 . (25)

3 Light-cone coordinates are defined in Supplemental Material. Further details on the expression of these charges in
this frame can be found in [9]
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It is the algebra of the flat Liouville EMT components that inevitably includes the genuine center
(25)

{Θ±±(x), Θ±±(y)}
⃓⃓⃓⃓
x∓=y∓

= Θ′
±±(x)δ(x± − y±) + 2Θ±±(x)δ′(x± − y±) − c

24π
δ′′′(x± − y±) , (26)

and so do its transformations

δf Θ±± = f±∂±Θ±± + 2Θ±±∂±f± − c

24π
∂3

±f± . (27)

This center is not there in the trace of flat EMT (19), but it is proportional to the trace (4) of the
curved space EMT (3).

A deeper study of this, including the general framework for classically anomalous transforma-
tions, we have done it in [9]. Here we want to show that the above is indeed related to the extra
term T µν

extra that, in curved space, preserves Weyl invariance but breaks diffeomorphic invariance.
To do so, let us first rewrite (27) as the difference between the full transformation and its tensorial
part

∆Θ±± ≡ δf Θ±± − f±∂±Θ±± − 2Θ±±∂±f± = − c

24π
∂3

±f± , (28)

as we did earlier in the curved context. We then simply notice that, for the infinitesimal diffeo-
morphism, xµ → xµ − fµ(x), the non-tensorial transformation of T µν

extra is

β2∆T̂ µν
extra(x) = ∂α∂βξ(r, f)

(︄
ĝµα ενβ

√
−ĝ

+ ĝνα εµβ

√
−ĝ

)︄
+ 2ĝµν εαβ

√
−ĝ

∂αρ∂βξ(r, f) , (29)

where the same notation of (16) and (17) has been used. Assuming conformal diffeomorphisms
and taking the flat limit we have

∆T̂ ±±
extra(x)

⃓⃓⃓⃓
ρ→0

= − 2
β2 ∂3

∓f∓ = ∆Θ∓∓ , (30)

which is exactly4 (28) with c given by (25).
This center was removed from the trace (4) but re-emerged in (30). We have then proved that,

also for classical Liouville theory, lack of Weyl invariance or of diffeomorphism invariance is related
to the Virasoro center, like in the quantum case. This gives a precise mathematical meaning to
what we are now entitled to call “classical gravitational anomalies”. Whether this is possible for
more general classical systems, it is an important open question. Another direction for further
research that we are considering is the connection of such anomalous transformation of the EMT
with “classical Unruh and Hawking effects”.
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Supplemental Material

I. LIGHT-CONE COORDINATES

We define the light-cone coordinates in two dimensions as

x± = 1√
2
(︁
x0 ± x1)︁ . (1)

The derivatives in ligh-cone coordinates are

∂+ = 1√
2

(∂0 + ∂1), ∂− = 1√
2

(∂0 − ∂1) . (2)

The coordinate transformation (x0, x1) → (x+, x−) can be obtained by acting with the matrix

S = 1√
2

(︄
1 1
1 −1

)︄
. (3)

Light-cone components of the metric are, thus, obtained as

g++ = 1
2
(︁
g00 + 2g01 + g11

)︁
(4)

g+− = 1
2
(︁
g00 − g11

)︁
(5)

g−− = 1
2
(︁
g00 − 2g01 + g11

)︁
, (6)

and the components of inverse metric gµν are

g++ = g−−
g

, g+− = −g+−
g

, g−− = g++
g

. (7)

The light-cone Minkowski metric, with the signature ηµν = diag(+1, −1), is

ηµν =
(︄

0 1
1 0

)︄
, (8)

with µ, ν ∈ {+, −}. Thus, the scalar product is x2 = −2x+x−. Raising and lowering indices
changes the + to − sign and vice versa, e.g., ∂± = ∂∓, Θ∓∓ = Θ±±, etc..

II. IMPROVEMENT OF THE ENERGY-MOMENTUM TENSOR

Here we compute the extra improvement term of the EMT

T µν
extra ≡ − 2√

−g

δ

δgµν

∫︂
d2x

2
β2

√
−gW µWµ ≡ − 2√

−g

δ∆A

δgµν
.

To facilitate calculations it is easier to introduce the “conformal” metric

γµν ≡ gµν√
−g

, γµν ≡
√

−ggµν ,
√

−g ≡ ρ , (9)
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which, in light-cone coordinates, can be parametrized as

γ++ = eγ sinh σ, γ+− = cosh σ, γ−− = e−γ sinh σ . (10)

In this parametrization a new quantity Rµ can be defined

Rµ ≡ 2
√

−gW µ . (11)

Using the following identity

ϵµνϵαβ = γµβγνα − γµαγνβ , (12)

it can be seen that

Rµ = −γµν∂νρ − ∂νγµν + ϵµν(cosh σ − 1)∂νγ + ϵµν∂νr . (13)

The natural way to compute the EMT for ∆A is by varying the latter with respect to γµν

Tµν = 2√
−g

δ∆A

δgµν
= 2δ∆A

δγµν
− γµνγαβ δ∆A

δγαβ
. (14)

To begin, we see that

δ∆A = 1
2β2

∫︂
d2x δγµνRµRν + 1

β2

∫︂
d2x γµνRνδRµ , (15)

where

δRµ = −δγµν∂νσ − γµν∂νδσ − ∂νδγµν + ∂ν [ϵµν(cosh σ − 1)δγ] − Γ̄µ
αβδγαβ + ϵµν∂νδr . (16)

The last two terms are the result of the following computation [10]

δ[ϵµν(cosh σ − 1)∂νγ] − ∂ν [ϵµν(cosh σ − 1)δγ] = −Γ̄µ
αβδγαβδγαβ , (17)

where

Γ̄µ
αβ = 1

2γµν (∂αγνβ + ∂βγνα − ∂νγαβ) . (18)

Let us now split δ∆A into four terms

δ∆A = δ∆A1 + δ∆A2 + δ∆A3 + δ∆A4 , (19)

where

δ∆A1 = 1
2β2

∫︂
d2x δγµνRνRµ ,

δ∆A2 = 1
β2

∫︂
d2x γµνRν(−δγµλ∂λρ − ∂λδγµλ − Γ̄µ

αβδγαβ)

= 1
2β2

∫︂
d2x δγαβ

[︄
gβλ∇α

(︄
Rλ

√
−g

)︄
+ gαλ∇β

(︄
Rλ

√
−g

)︄]︄
,

δ∆A3 = − 1
β2

∫︂
d2x Rµ∂µδρ = − 1

2β2

∫︂
d2x

√
−gRgαβδgαβ ,

δ∆A4 = 1
β2

∫︂
d2x Rµγµν{∂λ[ϵνλ(cosh ω − 1)δγ] + ϵνλ∂λδr}

= − 1
β2

∫︂
d2x ∂λ(Rµγµν)ϵνλδgαβ[(cosh ω − 1)Γαβ + rαβ] .
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TO derive the second expression for δ∆A2 we used

∂µT α...
β... + ∂µρT α...

β... = 1√
−g

∂µ(
√

−gT α...
β... ) ,

gαλ∇βV λ + gβλ∇αV λ = gαλ∂βV λ + gβλ∂αV λ + V λ∂λgαβ ,

γαβδγαβ = 0 .

To derive δ∆A3 we used the fact that Rµ is a solution of
√

−gR = ∂µRµ .

Finally, rewriting δ∆A4, we defined

δγ = Γµνδgµν ,

δr = rµνδgµν .

By a direct calculations it follows that

Γµν = 1
2√

g−−g++

(︄
− sinh γ cosh γ
cosh γ − sinh γ

)︄
. (20)

With this preliminaries, we are now ready for the computation of the EMT in four steps

T i
µν = 2√

−g

δ∆Ai

δgµν
,

with i = 1, 2, 3, 4, and the results are

T 1
µν = 1

β2

(︃1
2γµνγαβRαRβ − γµαγνβRαRβ

)︃
,

T 2
µν = 1

β2

(︄
gµλ∇ν

(︄
Rλ

√
−g

)︄
+ gνλ∇µ

(︄
Rλ

√
−g

)︄)︄
− 1

β2 Rgµν ,

T 3
µν = − 1

β2 Rgµν ,

T 4
µν = 2

β2√
−g

∂β

(︄
Rλgαλ√

−g

)︄
ϵαβ[(cosh σ − 1)Γµν + rµν ] .

(21)

Adding these together we have

β2T µν
extra = 1

g

(︃
RµRν − 1

2gµνR · R

)︃
− 2Rgµν

+ gµα∇α

(︃
Rν

√
−g

)︃
+ gνα∇α

(︃
Rµ

√
−g

)︃
+ 2√

−g
∂β

(︄
Rλgαλ√

−g

)︄
ϵαβ[(cosh σ − 1)Γµν + rµν ]

= 2gµνW αW βgαβ − 4W µW ν − 2Rgµν

+ 2gµα∇αW ν + 2gνα∇αW µ

+ 4√
−g

∂β

(︂
W λgαλ

)︂
ϵαβ[(cosh σ − 1)Γµν + rµν ] .

(22)
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Since this improvement term should cancel the trace of the EMT, let us compute its trace

β2

2 Textra
µ

µ = −R + 2 ϵαβ

√
−g

∂β

(︂
W λgαλ

)︂
[(cosh σ − 1)Γµν + rµν ]gµν . (23)

Recalling that

Γµν = 2
(g00 + g11)2 − 4g2

01

[︃1
2(δµ

0 δν
1 + δµ

1 δν
0 )(g00 + g11) − g01(δµ

0 δν
0 + δν

1 δµ
1 )
]︃

,

we see that

gµνΓµν = 0 , (24)

therefore

Textra
µ

µ = − 2
β2 R + 4√

−g
∂β

(︂
W λgαλ

)︂
ϵαβrµνgµν . (25)

From here we see another condition for r

gµνrµν = 0 , (26)

with which

Textra
µ

µ = − 2
β2 R . (27)

Hence the trace of the improvement cancels the anomalous trace of the canonical EMT

T µ
µ = 2

β2 R .

This proves the Weyl invariance of the improved Liouville action.
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