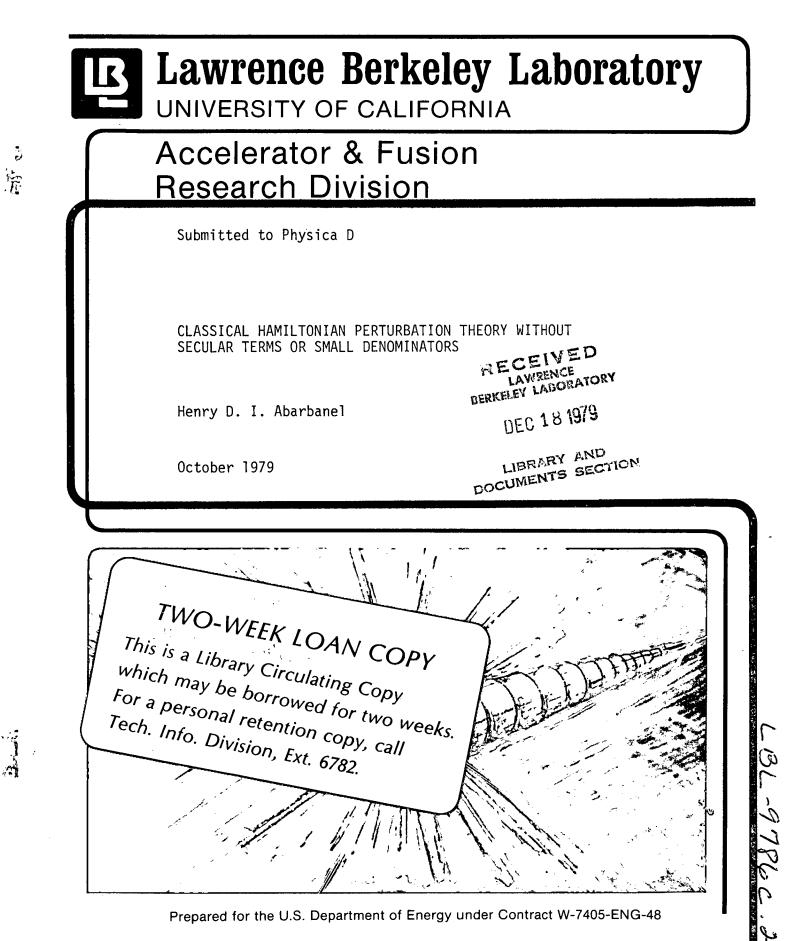
Lawrence Berkeley National Laboratory

Recent Work

Title

CLASSICAL HAMILTONIAN PERTURBATION THEORY WITHOUT SECULAR TERMS OR SMALL DENOMINATORS


Permalink https://escholarship.org/uc/item/96v8h497

Author

Abarbanel, H.D.I.

Publication Date 1979-10-01

LBL-9786c.2 Preprint

DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.

	•
ian Perturbation Theory Without	I. Introduction
ms or Small Denominators*	Perturbation theory in classical Hamiltonian systems has concentrated
	on various methods of effecting canonical transformations which transform
y D. I. Abarbanel	away the perturbation order by order in the perturbation itself. 1 These
e Berkeley Laboratory	conventional and Lie transform methods always suffer from problems with
rsity of California ey, California 94720	(a) secularitywhich are overcome by some form of averaging technique ¹
	and (b) small denominatorswhich are overcome by a clever choice of Lie
ABSTRACT	transform generating function 2 or a form of Kolmogorov's superconvergent
	perturbation theory ³ .
bation theory in ϵ for the classical	In this paper we develop a perturbation theory for classical
$_1$ where ${ m H}_0$ gives rise to a known motion	Hamiltonian mechanics which simultaneously avoids these two problems.
we demonstrate how the usual secular	If the Hamiltonian is written as
ators arise from a straightforward	$H = H_{0} + \varepsilon H_{1}$
e that they are artifacts of the method.	
rnative perturbation theory based on an	with H_{O} , the unperturbed system, then our technique in some sense
r (s-L) ⁻¹ where s is a complex number	consists of writing the evolution of any function on phase space,
operator corresponding to H. This	$A(p_1,q_1)$ i = i,N, as a ratio of power series in ε . The technique
tains neither secular terms nor small	employed is known as Fredholm perturbation theory 4 as it resembles the
ase of almost multiply periodic systems	familiar analysis of Fredholm integral equations. The denominator of
trivial order in ϵ , how our series	the ratio of series in ϵ is the Fredholm determinant so commonly
I results both in the resonant and non-	encountered in problems of quantum mechanical scattering theory. 5
in one analytic formula. As a final	The Fredholm determinant contains the exact eigenvalues of the Liouville
: that energy is conserved at order	operator
of the theory is order $\epsilon^n.$	$L = -\frac{2H}{3q_j} - \frac{3}{3P_j} + \frac{3H}{3P_j} - \frac{3}{3q_j}$
	which determine the time evolution of the system with Hamiltonian H.
artment of Energy, under Contract W-7405-ENG-48.	The eigenvalues of the unperturbed Liouville operator
-	

*Work supported by U. S. Depai

LBL-9786

1

)

2

(*)

7

Classical Hamiltoni

Secular Terms

Henry

Lawrence] Univers: Berkeley,

Then we present an altern analysis of the operator and L is the Liouville of perturbation series conta ε^{n+1} when the accuracy of We consider perturbs Hamiltonian $H = H_0 + \varepsilon H_1$ and E is small. First w terms and small denominat expansion in ϵ and argue denominators. In the cas we show, to lowest non-ti reproduces the standard resonant regions -- all exercise we demonstrate

situation as well.	Hamiltonian, 6 the perturbation theory developed here is useful for that	equations of motion with the dispersion relation playing the role of the	particle mechanics. Since eikonal ray trajectories obey particle like	The language of this paper is couched in the mode of classical	systems.	here will be useful for studying the long time behavior of mechanical	that no secularities will be present, the perturbation theory developed	approximations to the exact eigenfrequencies of the Liouville operator so	time varying electromagnetic waves. Finally, since we are dealing with	points. This may prove quite useful in the study of particle trapping by	struct adiabatic invariants and use them to examine motion through singular	Equally, the method is smooth near separatrices so may be used to con-	regimes, providing, as it were, a smooth analytical interpolating method.	is that the same formulae can be used in both resonant and non-resonant	are $O\left(\varepsilon ight)$. The attractive feature of the present perturbation theory	the frequencies are order unity and the changes in momenta or action	action variables from their resonant values. Off resonance, as usual,	hood of the resonance are $0(\sqrt{\epsilon})$ as are the deviations of momenta or	denominators. We show how the frequencies of the motion in the neighbor-	near a resonance of the unperturbed systemnamely near the usual small	In a third section we address the questions of motion of the system	paper we show how our perturbation theory avoids these problems.	are responsible for the secular terms. In the second section of this	denominators in higher orders of conventional perturbation theory	are responsible for the small denominators, and the repeated small	م وملم ومرد م ملم مرد مرد مرد مرد مرد مرد مرد مرد مرد مر	$\mathbf{L}_{\mathbf{D}} = -\frac{3H_0}{2m} + \frac{3H_0}{2m} +$	· · · · · · · · · · · · · · · · · · ·	
			$\frac{\mathrm{d}\mathbf{T}(t)}{\mathrm{d}t} = \mathrm{LT}(t) \cdot$		T(t) satisfying	$A(p_j,q_j)$ is given by operating on A by the time evolution operator	As is carefully explained in Reference 1, the time development of		= L ₀ + εL ₁ .	مها ومما ومما ومما والم	$\frac{1}{1} \frac{1}{1} \frac{1}$	J=1√.€j . j . j . j . j . j . j . j . j . j	$\mathbf{L} = \sum_{n=1}^{\infty} \left(\frac{\partial \mathbf{H}}{\partial \mathbf{D}} - \frac{\partial \mathbf{H}}{\partial \mathbf{D}} - \frac{\partial \mathbf{H}}{\partial \mathbf{D}} - \frac{\partial \mathbf{H}}{\partial \mathbf{D}} \right)$		operator ⁷	Central to the time development of A (p_j,q_j) is the Liouville	perturbation of the original system.	treating ϵ as a small dimensionless parameter setting the scale of	question then is to make a calculation of the time development of A	canonical transformation to make ${ m H}_{0}$ a function of the p _j only. The	We take the system determined by ${ m H}_{m 0}$ to be soluble and have made a	$H = H_0(p_j) + \varepsilon H_1(p_j, q_j).$		governed by the Hamiltonian	on the phase space p_j , q_j j = 1,,N of particles whose motion is	We want to determine the evolution in time of a function $A(p_{\mathbf{j}},$	II. Fredholm Perturbation Theory		

on in time of a function $A(p_j, q_j)$ of particles whose motion is

Ê

Fbe fde Hθ $\frac{\partial H_1}{\partial q_j} \frac{\partial H_1}{\partial p_j}$ (2) 3

(4)

5

$$\int_{a}^{1} e^{-\frac{1}{2}} e^{-\frac$$

♪ 2•

<u>ن</u> چ

and

(19)

(21)

(20)

()

4

(22)

$ \left((-c_{1} - \frac{1}{a_{2}}) g(a) = 1, $ $ \left((-c_{1} - \frac{1}{a_{2}}) g(a) = 1, $ $ \left((-c_{1} - \frac{1}{a_{2}}) g(a) = 1, $ $ \left((-c_{1} - \frac{1}{a_{2}}) g(a) = 1, $ $ \left((-c_{1} - \frac{1}{a_{2}}) g(a) = 1, $ $ \left((-c_{2} - \frac{1}{a_{2}}) g(a) = 1, $ $ \left($			F
$ \left(-\tau_{01} + \frac{1}{2\tau_{01}} \right) \left(\varepsilon_{01} - 1, \qquad (2) \qquad z_{2} = \frac{1}{2} \left((t \cdot 0)^{2} - t \cdot n^{2} \right), \qquad (2) $ $ \left(-\tau_{01} + \frac{1}{2\tau_{01}} \right) \left(\varepsilon_{01} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} \right) \left(\varepsilon_{01} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} \right), \qquad (2) $ $ \left(\varepsilon_{01} + \frac{1}{2\tau_{01}} + \frac{1}{2} \right) \left(\varepsilon_{01} + \frac{1}{2} + \frac{1}{2} \right) \left(\varepsilon_{01} + \frac{1}{2} + \frac{1}{2} \right), \qquad (2) $ $ \left(\varepsilon_{01} + \frac{1}{2} + \frac{1}{2} \right) \left(\varepsilon_{01} + \frac{1}{2} + \frac{1}{2} \right) \left(\varepsilon_{01} + \frac{1}{2} + \frac{1}{2} \right), \qquad (2) $ $ \left(\varepsilon_{01} + \frac{1}{2} + \frac{1}{2} \right) \left(\varepsilon_{01} + \frac{1}{2} \right) \left(\varepsilon_{01} + \frac{1}{2} + \frac{1}{2} \right) \left(\varepsilon_{01} + \frac{1}{2} \right), \qquad (2) $ $ \left(\varepsilon_{01} + \frac{1}{2} + \frac{1}{2} \right) \left(\varepsilon_{01} + \frac{1}{2} + \frac{1}{2} \right) \left(\varepsilon_{01} + \frac{1}{2} + \frac{1}{2} \right) \left(\varepsilon_{01} + \frac{1}{2} \right) \left$			01
$ \begin{aligned} y_{2} &= \frac{1}{2} \left((r_{2} y_{1})^{2} - 3 \ rr \ H \ rr \ rr \ rr \ H \ rr \ r$		$\frac{1}{2}\{(tr M)^2 - tr M^2\},$	(31)
We seek the operator (23) upon expansion of the right hand side in E. (24) upon expansion of the right hand side in E. (26) upon expansion of the right hand side in E. (26) upon expansion of the right hand side in E. (26) upon expansion of the right hand side in E. (26) upon expansion of the right hand side in E. (26) upon expansion of the right hand side in E. (26) upon expansion of the right hand side in E. (26) upon expansion of the right hand side in E. (26) upon expansion of the right hand side in E. (27) The w _n are operators whose relation to the Z _n are unset choice for $\hat{f}(c)$ is (27) This means we may write (28) upon setble. (28) with h _n = $\prod_{j=1}^{n} z_{n-j} M^{j}$. The low order h _n operators are $p_{1} = M$ (29) $p_{1} = M$ (20) $p_{1} = \frac{M}{p_{1}} = \frac{M}{p_{1}} = \frac{M}{p_{1}} + \frac{M}{p_{1}} \frac{m}{2} = \frac{M}{p_{1}} + \frac{M}{p_{1}} = \frac{M}{p_{1}} + \frac{M}{p_{1}} \frac{m}{2} = \frac{M}{p_{1}} + \frac{M}{p_{1}} \frac{M}{p_{1}$		$z_3 = -\frac{1}{6}((tr M)^3 - 3 tr M tr M^2 + 2 tr M^3).$ course, the same result follows from	(32)
(25) upon expansion of the right hand side in ε . In a similar fashion we expand the numerator of (26) in ε (26) $N(\varepsilon) = f(\varepsilon)/1 - \varepsilon_M = \sum_{n=0}^{\infty} \varepsilon^n w_n$. (1- $\varepsilon_0 0^{-1}$. The w_n are operators whose relation to the z_n are $w_n = z_n + \sum_{k=1}^n z_n - g^{k}$ (22) This means we may write possible. (28) with $h_n = \sum_{k=1}^n z_n - g^{k}$. The low order b_n operators are $b_1 = M$ (29) Yor the operator U(s) we finally have $U(s) = \frac{1}{s^{-1}} O \left\{ 1 + \sum_{n=1}^{\infty} z_n \varepsilon_n \right\}$ (30) $U(s) = \frac{1}{s^{-1}} O \left\{ 1 + \frac{w_n}{1 + \frac$		det(1-EM) = exp tr log (1-EM)	(33)
(26) $N(\varepsilon) = f_{3}(\varepsilon)/1 - \varepsilon_{M} = \sum_{n=0}^{\infty} \varepsilon^{n} u_{n} \cdot C_{2} + C$	$\beta(s) = \frac{1}{1-\varepsilon M}$	expansion of the right hand side in $^{\rm C}.$ In a similar fashion we expand the numerator of (26)	
(1-c, M) ⁻¹ . The w _n are operators whose relation to the z_n are w _n = $z_n + \sum_{\beta=1}^n z_n - y^M$ (27) This means we may write possible. (28) This means we may write $\beta(s) = \left(1 + \frac{n-1}{2}n^{c}n^{c}\right)$ $\beta(s) = \left(1 + \frac{n-1}{2}n^{c}n^{c}\right)$ $p_{1} = \frac{n}{2}z_{n-2}M^{c}$. The low order b_n operators are $b_{1} = M$ $b_{2} = M^{c} - (tr M)M$ (29) For the operator U(s) we finally have $U(s) = \frac{1}{s^{-1}0} \left(1 + \frac{n^{c}}{1 + \frac{n}{2}n^{c}n}\right)$ (30) $U(s) = \frac{1}{s^{-1}0} \left(1 + \frac{n^{c}}{1 + \frac{n}{2}n^{c}n}\right)$	$\frac{1}{1-\varepsilon M} = \frac{[\beta(\varepsilon)/1-\varepsilon M]}{\beta(\varepsilon)},$	» ~ 0=u	(34)
hoice for $\hat{y}(\varepsilon)$ is (27) This means we may write many choices are possible. (28) This means we may write $\beta(s) = \left(1 + \frac{1}{n-1} \frac{n}{z} \frac{n}{z} \frac{n}{n} + \frac{n}{n-1} \frac{1}{z} \frac{n}{z} \frac{n}{n} + \frac{1}{n-1} \frac{n}{z} \frac{n}{z} \frac{n}{n} + \frac{1}{n-1} \frac{n}{n-1} \frac{n}{n} + \frac{1}{n-1} \frac{n}{n-1} \frac{n}{n-1} + \frac{1}{n-1} \frac{n}{n-1} + \frac{1}{n-1} \frac{n}{n-1} + \frac{1}{n-1} \frac{n}{n-1} + \frac{1}{n-1} + 1$	where $f_{(\epsilon)}$ is to be entire in ϵ and have zeroes at the poles of $(1-\epsilon M)^{-1}.$	\textbf{w}_{n} are operators whose	
many choices are possible. This means we may write many choices are possible. This means we may write $\beta(s) = \left(1 + \frac{n}{n-1} x_n^n \frac{n}{n}\right) 1$ $\beta(s) = \left(1 + \frac{n}{n-1} x_n^n \frac{n}{n}\right) 1$ $\beta(s) = \left(1 + \frac{n}{n-1} x_n^n \frac{n}{n}\right) 1$ $p_1 = M$ $p_2 = M^2 - (tr M)M$ $p_2 = M^2 - (tr M)M$ (29) For the operator U(s) we finally have the z_n $U(s) = \frac{1}{s^{-1}0} \left(1 + \frac{\sum_{n=1}^{n} b_n^n}{1 + \sum_{n=1}^{n} x_n^n}\right)$	It is the Fredholm determinant. The standard choice for $f(\epsilon)$ is	$z_{n_i} + \sum_{n=1}^{n}$	(35)
many choices are possible. $ \begin{array}{lllllllllllllllllllllllllllllllllll$		means we may write	• •
(28) with $b_{n} = \sum_{g=1}^{n} z_{n-g} M^{\ell}$. The low order b_{n} operators are $b_{1} = M$ $b_{2} = M^{\ell} - (tr M)M$ (29) For the operator U(s) we finally have $U(s) = \frac{1}{s^{-L}0} \begin{pmatrix} 1 + \frac{n-1}{2} h_{n} \varepsilon^{n} \\ 1 + \frac{1}{2} z_{n} \varepsilon^{n} \end{pmatrix}$	er ⁸ many choices are]	$\left(\sum_{1 + \frac{n=1}{2} b_n \varepsilon^n}^{\infty} \right)$	(36)
(28) with $b_{n} = \sum_{l=1}^{n} z_{n-l} W^{l}$. The low order b_{n} operators are $b_{1} = M$ $b_{2} = M^{2} - (tr M)M$ (29) For the operator U(s) we finally have $U(s) = \frac{1}{s^{-L}0} \begin{cases} 1 + \sum_{n=1}^{\infty} b_{n} \varepsilon^{n} \\ 1 + \sum_{n=1}^{\infty} z_{n} \varepsilon^{n} \end{cases}$		$\begin{pmatrix} 1 + \sum_{n=1}^{n} \end{pmatrix}$	
(29) $b_{1} = M$ $b_{2} = M^{2} - (tr M)M$ $(29) Por the operator U(s) we finally have$ $U(s) = \frac{1}{s^{-1}0} \left\{ 1 + \frac{\sum_{n=1}^{\infty} b_{n} \varepsilon^{n}}{1 + \sum_{n=1}^{\infty} z_{n} \varepsilon^{n}} \right\}$		$b_n = \sum_{k=1}^{n} z_{n-k} M^k$. The low order b_n operators	
(29) Por the operator U(s) we finally have $U(s) = \frac{1}{s^{-L}0} \begin{cases} 1 + \frac{\sum_{n=1}^{\infty} b_n \varepsilon^n}{1 + \sum_{n=1}^{\infty} r_n \varepsilon^n} \end{cases}$ (30)	sanding	$\mathbf{h_1} = \mathbf{M}$	(37)
(30) $U(s) = \frac{1}{s^{-1}0} \left\{ 1 + \frac{\sum_{n=1}^{\infty} b_n \varepsilon^n}{1 + \sum_{n=1}^{\infty} z_n \varepsilon^n} \right\}$	tr $M = \sum_{1-xM}^{\infty} = \sum_{n=0}^{\infty} x^n tr(M^{n+1})$,	b2 = operator U(s) we final	(38)
(30) $U(s) = \frac{1}{s^{-L_0}} \left\{ 1 + \frac{n^{\pm L}}{1 + \sum_{n=1}^{\infty} n^{\epsilon}} \right\}$	we derive the following recursion relation for the z _n		
		$\frac{1}{s^{-L_0}} \left\{ 1 + \frac{n=1}{n} \right\}_{n=1}^{\infty}$	(39)

straightforward, by assumption, since we took H ₀ to be soluble. It is also straightforward in actual practice. In using this result we must be careful when doing the contour integration in the s plane to recover $A(P_j, Q_j) \underline{not}$ to pick up the residue at the apparent pole of $(s-L_0)^{-1}$ since formally it is absent. That is clear from (7) and the appearance of $(s-L_0)^{-1}$ is due to our writing $(s-L_0-EL_1)^{-1}A(\vec{1},\vec{0}) = \sum_{n} A(\vec{n},\vec{1})e^{i\vec{n}\cdot\vec{0}}$ and write (43) as $A(\vec{1},\vec{0}) = \sum_{n} A(\vec{n},\vec{1})e^{i\vec{n}\cdot\vec{0}}$ (43)
ghtforward, by assumption, since we took H_0 to be soluble. It is The quantity of direct interest to us is (see Equation (10)) straightforward in actual practice. In using this result we must be careful when doing the contour $(s-L_0-\varepsilon L_1)^{-1}A(\dot{T},\dot{\theta})$. ration in the s plane to recover $A(P_j, Q_j)$ not to pick up the residue We use the periodicity in θ_4 to expand A in a fourier series

13	14
Let us denote the fourier component of $(s-L_0-\epsilon L_1)^{-1}A(\vec{1}, \vec{\theta})$ by $B(\vec{n}, \vec{1}, s)$	Near ik $\dot{\phi}$ we write s = $i\dot{k}\cdot\dot{\omega}$ + $\epsilon\Delta s_k$ and note that Δs_k is given by
$(s-L_0-EL_1)^{-1}A(\vec{1},\vec{\theta}) = \sum_{\vec{n}} e^{i\vec{n}\cdot\vec{\theta}}B(\vec{n},\vec{1},s). $ (50)	$1 - \frac{1}{2} \sum_{k=1}^{\infty} \left\{ \frac{\left h(\vec{n} - \vec{k}, \vec{1}) \right ^2 \left[(n-k) \frac{k}{a} \frac{k}{b} \frac{3f_{a,b}}{ab} \right] \left((k-n) \frac{1}{n} \frac{g'}{k'} \frac{1}{1k'} \right]}{(\lambda - \lambda -$
The application of Fredholm perturbation theory to lowest non-trivial	AFR ((ask) leask + I(K-H) w(I)
order in ε gives for B (see Equation (39)).	or to lowest order in $\boldsymbol{\epsilon}$
$B(n,\tilde{t},s) = \frac{1}{s-i\tilde{n}\cdot\tilde{u}(\tilde{t})} \sum_{n=1}^{\infty} \delta_{m,n}^{+} + \frac{\varepsilon M + +}{1-\varepsilon} A(\tilde{n},\tilde{t}), \qquad (51)$	$ \left(\Delta \mathbf{s}_{\mathbf{k}} \right)^{2} = \frac{1}{2} \sum_{\substack{\substack{n \neq k \\ n \neq k}}} \left \mathbf{h}(\vec{n} - \vec{k}, \vec{1}) \right ^{2} \left[\left(\mathbf{n} - \mathbf{k} \right)_{\mathbf{a}} \mathbf{f}_{\mathbf{b}} \frac{\mathcal{H}}{\mathbf{ab}} \right] \left[\left(\mathbf{n} - \mathbf{k} \right)_{\mathbf{j}} \mathbf{n}_{\mathbf{b}} \mathcal{H}_{\mathbf{j}} \mathbf{g}_{\mathbf{j}} \right] \left(\left(\vec{k} - \vec{n} \right) \cdot \mathbf{m} \right)^{2} \mathbf{c}_{\mathbf{b}} \right]^{2} \mathbf{c}_{\mathbf{b}} \mathbf{c}_{$
since	In reaching this result we have used $h(0, \overrightarrow{1}) = 0$ to eliminate contri-
tr M = 0 (52)	butions when $\vec{n} = \vec{k}$, since that would lead to Δs_k which is not of
	order unity. There is a potential small denominator in this last
in our case.	formula when $(ec{k}-ec{n})\cdotec{\omega}(ec{1})$ is close to zero. If this occurs, then
Suppose we choose the phase function to be I _a , one of the actions.	neglecting $\epsilon \Delta s_k$ with respect to $(ec{k} - ec{n}) \cdot ec{\omega}$ was inaccurate and we must
Then A($ ilde{n}, ilde{t}$) is $\delta^{ij}_{\hat{n}}, \delta^{j}_{\hat{l}a}$ and	use the previous formula for Δs_{k} .
\downarrow I $_{\downarrow}$ ith $(\vec{n},\vec{t})n_{\downarrow}$	When we have no resonance then, the eigenvalues of the full
$B(\hat{n},\hat{1},s) = \frac{\alpha}{s} \delta_{\hat{n}}^{\hat{n}} \hat{\partial}^{-} \frac{1}{2^{\epsilon} r} M^{2} s(s-\hat{1}\hat{n} \cdot \hat{\omega}^{\dagger}(\hat{1})) $ $(1 - \frac{\epsilon^{2}}{2^{\epsilon} r} M^{2}) s(s-\hat{1}\hat{n} \cdot \hat{\omega}^{\dagger}(\hat{1})) $ (53)	Liouville operator L_0 + ϵL_1 are shifted from their unperturbed values by $\alpha(\epsilon)$
We first consider the case of non-resonant values of $ec{1};$ namely there	by every. In the case of a resonant value of \vec{I} , so $\vec{L} \cdot \vec{w}(\vec{I}) = 0$ for some \vec{L} ,
is no vector of integers $\vec{L} = (x_1, x_2, \dots, x_N)$ for which $\vec{L} \cdot \vec{w}(\vec{I}) = 0$. We	the situation is changed. In evaluating tr M^2 , we encounter terms with
want to find the zeroes of the Fredholm determinant det (1- ε_M). To the	$\stackrel{+}{m}$ = integer $\times \stackrel{1}{L}$ and $\stackrel{+}{n}$ = different integer $\times \stackrel{+}{L}$ {for example $\stackrel{+}{m}$ = L,
order in ε shown in Equation (53) we have written det (1– ε M) = $1-\frac{1}{2}\varepsilon^2$ tr M^2 .	$\vec{n} = 2\vec{L}$). We find then a term behaving as s ⁻⁴ in tr M^2 , and this means
So we need to find values of s for which tr $M^2 \approx \epsilon^{-2}$ to balance the	s is $O(\sqrt{c})$ if $1-rac{c^2}{2}$ tr M^2 is to vanish. More precisely we have
term of order unity. We can see from the form of $M_n^{\uparrow}, \hat{\mathbb{H}}$ given in Equation	$s = [\varepsilon h(\vec{L},\vec{1}) ^2 L_a \mathcal{H}_a b(\vec{1}) L_b]^{1/2}$. From (53) we see that along the \vec{L}
(47) that tr $M^2 = \sum_{\substack{n=1\\ n \in \mathbf{T}}} M_{n} M_{n} \rightarrow has$ denominators of the form	direction, the shift in $ec{1}$ from the resonant value is of order
$[(s-im \cdot \omega)(s-im \cdot \omega)]^2$ as well as denominators of lower order.	$(\epsilon h(\vec{t},\vec{t}) /L_a\mathcal{F}_{ab}(\vec{t})L_b)^{1/2}, \text{ which, for small ϵ, is much larger than}$
We expect that for off resonant values the vanishing of det (1– ϵM)	the $O(\epsilon)$ shift in the non-resonant case.
will occur at s near the unperturbed eigenvalues $\lambda_0^{k} = i \vec{k} \cdot \omega$ of L_0 .	

3

$$B(\overset{\tau}{n},\overset{\tau}{1},s) = \frac{1}{s - \overset{\tau}{in} \overset{\tau}{n} \overset{\tau}{(1)}} \sum_{\substack{n \\ n}} \begin{array}{c} \delta_{+} \overset{\tau}{,} + \frac{\varepsilon M \overset{\tau}{n} \overset{\tau}{,}}{1 - \frac{\varepsilon}{2}} A(\overset{\tau}{m},\overset{\tau}{1}), \\ 1 - \frac{\varepsilon}{2} tr & 2 \end{array}$$

$$B(n,\vec{1},s) = \frac{I}{s} \underbrace{\delta_{n}}_{n} \underbrace{\delta_{-}}_{n} \underbrace{0}_{-} \underbrace{\frac{i\epsilon h(n,\vec{1})n_{a}}{(1-\frac{\epsilon^{2}}{2}tr M^{2})s(s-in+\vec{\omega}(\vec{1}))}}_{(1-\frac{\epsilon^{2}}{2}tr M^{2})s(s-in+\vec{\omega}(\vec{1}))}$$

^)

5

$$\begin{aligned} & \text{for second term in graphical properties is in the term in the resonance set is resonance set is precisely of $(\frac{1}{2}, \frac{1}{2}, \frac{1}{2},$$$

= $H_0 + \varepsilon H_1$. By writing

perturbation theories. Actually

appearance of the notorious

Further, if the system is almost

a complex variable, L_O is the

16

H(pj,qj,t=0)

(60)

(61)

(62)

e.

影

periodic systems by showing how the perturbation series we employ	Ref	References
smoothly contains the behavior of the perturbed system both near, at,	1.	A general review of conventional and Lie transform techniques can
and away from resonances where the unperturbed frequencies are commen-		be found in J. R. Cary "Lie Transforms and Their Use in Hamiltonian
surate- or equivalently where $ extsf{L}_0$ has zero eigenvalues.		Perturbation Theory," LBL-Preprint 6350, June 1978; and in
A "poor person's" version of the KAM theorem ⁹ is lurking in our		R. G. Littlejohn, "A Pedestrian's Guide to Lie Transforms: A
point of view. By focusing on the zeroes of det(s- $L_0^{-\epsilon}L_1$) as containing		New Approach to Perturbation Theory in Classical Mechanics,"
the true frequencies of the perturbed system, we see that for unperturbed		LBL-Preprint 8091, November 1978; and references in these papers.
orbits which correspond to a non-zero (i.e. non-resonant) eigenvalue of	2.	A. N. Kaufman, private communication.
L_{0} the motion is modified only slightly, namely the frequencies are	з.	A. N. Kolmogorov, Dokl. Akad. Nauk. SSSR 98, 527 (1954); and Ref. 1.
shifted by $O(\epsilon)$. Thus most orbits are only slightly perturbed. However,	4.	P. M. Morse and H. Feshbach, Methods of Theoretical Physics, Vol II,
orbits with zero eigenvalue of L_0 are shifted to orbits with non-zero		p. 1018-1026, (McGraw-Hill Book Co., New York, 1953).
eigenvalue of ${ m L}_0$ + ${ m sL}_1$ and therefore their time dependence is funda-	5.	M. L. Goldberger and K. M. Watson, Collision Theory, Chapter 6,
mentally changed in character. Formally the inverse Laplace trans-		(John Wiley, 1964).
form needed to define $A(P_j(P_j,q_j,t),Q_j(P_j,q_j,t))$ no longer has poles at	.9	A. N. Kaufman, "Regular and Stochastic Particle Motion in Plasma
zero frequency and constant or periodic motion in time is destroyed.	•	Dynamics," LBL-report 9407, August 1979. Also B. V. Chirikov,
Clearly in the neighborhood of a resonance some destruction takes place		"A Universal Instability of Many-Dimensional Oscillator Systems,
as well.		Physics Reports 52 (1979).
There are, as yet, numerous avenues unexplored by the work reported	7.	The sign of L is opposite to that of Reference 1 and is convenient
in this note. For example, since the Fredholm determinant contains the		here. It no doubt will add to the confusion previously cleared up
true frequencies of the perturbed situation, it also allows an explora-		by Cary, Ref. 1, Sec. 5.
tion of the regime where the unperturbed motion is singular; this is the	œ́	R. L. Sugar and R. Blankenbecler, Phys. Rev. 136, B472 (1964).
case near a separatrix and the present theory allows one, in an essentially	•6	See the discussion of M. V. Berry in "Regular and Irregular Motion,
analytic way, to explore the variation of adiabatic invariants in these	<u>.</u>	Nonlinear Dynamics, ed. S. Jorna, Am. Inst. of Physics Conference
singular regimes.		Proceedings, Vol. 46, (A.I.P., New York, 1978).
	•	

18

-5

\$

17

19)

•

This report was done with support from the Department of Energy. Any conclusions or opinions expressed in this report represent solely those of the author(s) and not necessarily those of The Regents of the University of California, the Lawrence Berkeley Laboratory or the Department of Energy.

Reference to a company or product name does not imply approval or recommendation of the product by the University of California or the U.S. Department of Energy to the exclusion of others that may be suitable.

d's

TECHNICAL INFORMATION DEPARTMENT LAWRENCE BERKELEY LABORATORY BERKELEY, CALIFORNIA 94720 UNIVERSITY OF CALIFORNIA

â