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Latent variable models are commonly used in medical statistics, although often not referred to under this
name. In this paper we describe classical latent variable models such as factor analysis, item response
theory, latent class models and structural equation models. Their usefulness in medical research is demon-
strated using real data. Examples include measurement of forced expiratory flow, measurement of physical
disability, diagnosis of myocardial infarction and modelling the determinants of clients’ satisfaction with
counsellors’ interviews.

1 Introduction

Latent variable modelling has become increasingly popular in medical research. By latent
variable model we mean any model that includes unobserved random variables which
can alternatively be thought of as random parameters. Examples include factor, item
response, latent class, structural equation, mixed effects and frailty models.

Areas of application include longitudinal analysis1, survival analysis2, meta-analysis3,
disease mapping4, biometrical genetics5, measurement of constructs such as quality
of life6, diagnostic testing7, capture–recapture models8, covariate measurement error
models9 and joint models for longitudinal data and dropout.10

Starting at the beginning of the 20th century, ground breaking work on latent vari-
able modelling took place in psychometrics.11–13 The utility of these models in medical
research has only quite recently been recognized and it is perhaps not surprising that med-
ical statisticians tend to be unaware of the early, and indeed contemporary, psychometric
literature.

In this paper we review classical latent variable models, namely common factor mod-
els and structural equation models (with continuous observed and continuous latent
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variables), item response models (with categorical observed and continuous latent vari-
ables) and latent class models (with categorical observed and categorical latent variables)
and demonstrate their usefulness in medical research using real data. We focus on clas-
sical latent variable models for several reasons: 1) the classical models can be fruitfully
applied in medical research without modifications, 2) familiarity with classical latent
variable models can help standardize terminology and thereby facilitate communica-
tion and perhaps more importantly, prevent misguided applications, 3) familiarity can
reduce the risk of ‘reinventing the wheel’ and wasting resources on developing programs
for problems that can be readily handled by standard software and 4) the classical models
are important because they typically serve as building blocks for more advanced latent
variable models. Although we consider mixed effects models14,15 to be latent variable
models, we do not include them here since they are so well known in medical statistics.

The plan of the paper is as follows. In Sections 2–5, we introduce classical latent
variable models. In each of these sections we present examples using real data, mention
common uses of the models in medical research and recommend further reading. Finally,
we close the paper with some remarks regarding recent developments. A brief overview
of useful software for latent variable modelling is given in an appendix.

2 Common factor models

2.1 Unidimensional factor models
Consider j = 1, . . . , N independent subjects. The classical measurement model from

psychometric test theory,16 also called the parallel measurement model, assumes that
repeated measurements yij of the same true score β + ηj for subject j are conditionally
independent given ηj with conditional expectation β + ηj,

yij = β + ηj + εij, E(ηj) = 0, E(εij) = 0, Cov(ηj, εij) = 0,

where β is the population mean true score, ηj are independently distributed random
deviations of subjects’ true scores from the population mean with variance ψ and
εij are independently distributed measurement errors with constant variance θ . The
corresponding standard deviation

√
θ is called the standard error of measurement.

This model is appropriate if the repeated measurements are exchangeable. However,
if yij are not merely replicates, but measurements using different instruments or raters
i, it is likely that the instruments or raters use different scale origins and units. This
situation is accommodated by the so-called congeneric measurement model17

yij = βi + λiηj + εij, (1)

where the measure-specific mean, scale and measurement error variance are given by
βi, λi and θii, respectively. The reliability ρi, the fraction of true score variance to total

 © 2008 SAGE Publications. All rights reserved. Not for commercial use or unauthorized distribution.
 at UNIV CALIFORNIA BERKELEY LIB on June 5, 2008 http://smm.sagepub.comDownloaded from 

http://smm.sagepub.com
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variance, for a particular instrument i becomes

ρi ≡ (λi)
2ψ

(λi)2ψ + θii

Without any parameter constraints the model is not identified (several sets of param-
eter values can produce the same probability distribution) because multiplying the
standard deviation

√
ψ of the common factor by an arbitrary positive constant can

be counteracted by dividing all factor loadings by the same constant. Identification is
achieved either by anchoring, where the first factor loading is fixed to one, λ1 = 1, or by
factor standardization, where the factor variance is set to one, ψ = 1.

There are several important special cases of the congeneric measurement model. The
essentially tau-equivalent measurement model is obtained if the scales of the instruments
are identical λi = 1, the tau-equivalent measurement model if λi = 1 and the origins
are identical βi = β, and the parallel measurement model if λi = 1, βi = β and the
measurement error variances are identical θii = θ .

It should be noted that the congeneric measurement model is a unidimensional factor
model with factor loading λi, common factor ηj and unique factors εij for indicators
yij. Spearman11 introduced this model, arguing that intelligence is composed of a gen-
eral factor, common to all subdomains such as mathematics, music, etc., and specific
factors for each of the subdomains. The common factor can represent any hypotheti-
cal construct, a concept that cannot even in principle be directly observed, intelligence
and depression18 being prominent examples. In this case the measures i are typically
questions or items of a questionnaire or structured interview.

The expectation of the vector of responses yj = (y1j, . . . , ynj)
′ for subject j is

β = (β1, . . . , βn)
′ and the model-implied covariance matrix, called the factor structure,

becomes
� ≡ Cov(yj) = �ψ�′ + �, (2)

where � = (λ1, . . . , λn)
′ and � is a diagonal matrix with the θii on the diagonal.

2.1.1 Estimation, goodness-of-fit and factor scoring
For maximum likelihood estimation, it is invariably assumed that the common and

unique factors are normally distributed, implying a multivariate normal distribution for
yj. Replacing the β in the likelihood by their maximum likelihood estimates, the sample
means ȳ·, gives a profile likelihood

lM(�, ψ , �) = |2π�|− n
2 exp(−1

2

N∑

j=1

(yj − ȳ·)′�−1(yj − ȳ·)

In the case of complete data, the empirical covariance matrix S of yj is the sufficient
statistic for the parameters. It can be shown19 that instead of maximizing the likelihood
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we can equivalently minimize the fitting function

FML = log |�| + tr(S�−1) − log |S| − n, (3)

with respect to the unknown free parameters. The fitting function is non-negative and
zero only if there is a perfect fit in the sense that the fitted � equals S. When there are
missing data, the ‘case-wise’ likelihood is maximized giving consistent estimates if data
are missing at random (MAR).20

Treating the unstructured covariance matrix as the saturated model, a likelihood ratio
goodness-of-fit test can be used. Under the null hypothesis that the restricted model of
interest is correct (and suitable regularity conditions), the likelihood ratio statistic or
deviance has a chi-square distribution with n(n + 1)/2 − p degrees of freedom, where
p is the number of parameters in the restricted model (after eliminating the intercepts),
equal to 2n in the congeneric measurement model. Since most parsimonious and hence
appealing models are rejected in large samples, more than a hundred goodness-of-fit
indices21 have been proposed that are relatively insensitive to sample size. Some of these
indices (e.g., root mean square error of approximation (RMSEA)22) are based on a
comparison with the saturated model, but most (e.g., comparative fit index (CFI)23,
Tucker-Lewis index (TLI)24) are based on a comparison with the unrealistic null model
of uncorrelated items, and are thus analogous to the coefficient of determination in
linear regression. Arbitrarily, fit is typically considered ‘good’ if the RMSEA is below
0.05 and the CFI and TLI are above 0.90.

Often the purpose of factor modelling is to investigate the measurement properties of
different raters, instruments or items i by comparing the fit of congeneric, tau-equivalent
and parallel models and estimating reliabilities. Another purpose is measurement itself,
that is assigning factor scores to individual subjects j after estimating the model. The
most common approach is the so-called regression method,

η̃j = ψ̂�̂
′
�̂

−1
( yj − β̂).

This can motivated as the expectation of the posterior distribution of the common
factor given the observed responses with parameter estimates plugged in, known as the
empirical Bayes predictor or shrinkage estimator in statistics. An alternative approach
is the Bartlett method,

η̂j = (�̂
′
�̂

−1
�̂)−1�̂

′
�̂

−1
( yj − β̂),

which maximizes the likelihood of the responses given the common factor with
parameter estimates plugged in.

In the classical measurement model, factor scores using either the regression or Bartlett
method are perfectly correlated with the simple sum score

∑
i yij. For this model, Cron-

bach’s α, a commonly used measure of internal consistency of a scale, can be interpreted
as the reliability of the sum score.

2.1.2 Example: Forced expiratory flow
In the Health Survey of England 2004 (National Centre for Social Research and

University College London, Department of Epidemiology and Public Health25), a sam-
ple of children between 7 and 15 years of age had their lung function assessed using a
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Vitalograph Micro Spirometer. Here, we consider forced expiratory flow which was mea-
sured five times for 89 of the children. The nurse also recorded at each occasion whether
or not the technique used was satisfactory. If not satisfactory, we treat the measurement
as missing.

Table 1 shows maximum likelihood estimates for the classical, essentially tau-
equivalent, tau-equivalent and congeneric measurement models. Using likelihood ratio
tests at the 5% level, the essentially tau-equivalent measurement model is selected. This
model also has the best fit indices, but the RMSEA is larger than the desired 0.05. Note
that the estimated mean increases over time are consistent with a practice effect and that
the estimated measurement error variance is very low at the third measurement. The
estimated reliabilities range between 0.82 at the first measurement and 0.96 at the third.

2.2 Multidimensional factor models
Hypothetical constructs are often multidimensional, comprising several related

aspects. An example is fatigue, for which Nisenbaum et al.26 argue that, there are three
correlated aspects or common factors defined as ‘fatigue-mood-cognition’, ‘flu-type’,
and ‘visual-impairment’.

Table 1 Forced expiratory flow–Maximum likelihood estimates for measurement models

Parallel/ Essentially
Classical Tau-equivalent Tau-equivalent Congeneric

Est (SE) Est (SE) Est (SE) Est (SE)

Intercepts
β1 257 (11) 261 (11) 231 (12) 232 (12)
β2 257 (11) 261 (11) 250 (12) 250 (12)
β3 257 (11) 261 (11) 262 (11) 263 (11)
β4 257 (11) 261 (11) 271 (12) 271 (12)
β5 257 (11) 261 (11) 272 (12) 272 (12)

Factor loadings
λ1 1 1 1 1
λ2 1 1 1 1.1 (0.08)
λ3 1 1 1 1.1 (0.07)
λ4 1 1 1 1.2 (0.08)
λ5 1 1 1 1.1 (0.08)

Factor variance
ψ 10500 (1638) 10773 (1660) 10934 (1685) 9024 (1711)

Meas. error
variances

θ11 1772 (143) 3519 (616) 2429 (440) 2372 (423)
θ22 1772 (143) 1743 (325) 1527 (289) 1548 (295)
θ33 1772 (143) 386 (144) 435 (141) 445 (142)
θ44 1772 (143) 1302 (259) 1193 (239) 1125 (237)
θ55 1772 (143) 1958 (364) 1818 (336) 1783 (335)

Goodness-of-fit
statistics

Log-likelihood −2182.7 −2162.8 −2142.7 −2140.4
Deviance (d.f.) 106.97 (17) 67.05 (13) 26.95 (9) 22.35 (5)
CFI 0.85 0.91 0.97 0.97
TLI 0.91 0.93 0.97 0.94
RMSEA 0.24 0.22 0.15 0.20
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Denoting the common factors as ηj = (η1j, η2j, . . . , ηmj)
′, the multidimensional

common factor model can be written as

yj = β + �ηj + εj, (4)

where � is now a n × m matrix of factor loadings with element pertaining to item i and
latent variable l denoted λil and εj a vector of unique factors. We define � ≡ Cov(ηj) and
assume that E(ηj) = 0, E(εj) = 0, and Cov(ηj, εj) = 0. Note that the structure of the
model is similar to a linear mixed model where � is replaced by a covariate matrix Zj.27

The results presented in Section 2.1 from Equation (2) apply also to the multidimensional
factor model after substituting � for ψ .

It is important to distinguish between two approaches to common factor modelling;
exploratory factor analysis and confirmatory factor analysis (CFA).

Exploratory factor analysis
Exploratory factor analysis (EFA)12,13 is an inductive approach for ‘discovering’ the

number of common factors and estimating the model parameters, imposing a mini-
mal number of constraints for identification. The standard identifying constraints are
that � = I, and that � and �′�−1� are both diagonal. Although mathematically
convenient, the one-size-fits-all parameter restrictions imposed in EFA, particularly the
specification of uncorrelated common factors, are often not meaningful from a subject
matter point of view.

Methods of estimation include maximum likelihood using the fitting function in (3)
and principal axis factoring. However, due to confusion between factor analysis and
principal component analysis, the latter is often used. In a second step, the restrictions
imposed for identification are relaxed by rotating the factors to achieve equivalent models
that are more interpretable by different criteria, such as varimax.28

Confirmatory factor analysis
In CFA,17,29 restrictions are imposed based on substantive theory or research design.

This approach was illustrated for the unidimensional factor model in Section 2.1.2. In
the multidimensional case an important example of a restricted model is the indepen-
dent clusters or sets of congeneric measures model where � has many elements set to
zero such that each indicator measures one and only one factor. Such a configuration
makes sense if one set of indicators is designed to measure one factor and another set
of indicators to measure another factor. A path diagram of a two-factor independent
clusters model with three variables measuring each factor is given in Figure 1. Circles
represent latent variables, rectangles represent observed variables, arrows connecting
circles and/or rectangles represent regressions and short arrows pointing at circles or
rectangles represent residuals. Curved double-headed arrows connecting two variables
indicate that they are correlated.

For identification the scales of the common factors are fixed either by factor stan-
dardization or by anchoring. Elements of εj may be correlated, but special care must
be exercised in this case to ensure that the model is identified. It is typically assumed
that the common and unique factors have multivariate normal distributions to allow
maximum likelihood estimation as outlined in Section 2.1.
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Figure 1 Independent clusters factor model.

Although routinely used, the standard likelihood ratio test is invalid for testing dimen-
sionality since the null hypothesis is on the border of parameter space and thus violates
the regularity conditions.30,31 For this reason fit indices become important.

For further reading on classical test theory and common factor models we recommend
Streiner and Norman,32 Dunn33–36 and McDonald.28,37

2.2.1 Example: Brain scans
It has been observed in a number of studies that people suffering of schizophrenia have

enlarged brain ventricular volumes. Computerized Axial Tomography scans of heads
of 50 psychiatric patients were performed to determine the ventricle-brain ratio from
measurements of the perimeter of the ventricle and the perimeter of the inner surface
of skull.36,38 In a method comparison study a standard method involving a hand-held
planimeter on a projection of the X-ray image was compared with a new method using
an automated pixel count based on a digitized image. Both methods were replicated
twice. The log-transformed measurements for the standard method are denoted ‘Plan1’
(y1) and ‘Plan3’ (y2) and the log-transformed measurements for the new method ‘Pix1’
(y3) and ‘Pix3’ (y4).

The analyses presented here are similar to those by Dunn.36 Initially, a one-factor
model (1) was considered giving the first set of estimates in Table 2. The factor loadings
and measurement error variances for the Plan measurements seem to be different from
the loadings and measurement error variances for the Pix measurements. We also note
that the estimated measurement error variances are small for all four measures and
perhaps not surprisingly, smaller for the automated Pix measurements than for the
standard method. The deviance statistic is 29.36 with 2 degrees of freedom leading to
rejection which is reinforced by small and large TLI and RMSEA, respectively.

The Pix measurements are sometimes consistent with each other but very different
from the Plan measurement which suggests that there may be some ‘gross error’. Dunn
and Roberts34 discuss such phenomena in method comparison data and refer to them as
random matrix effects or method by subject interactions. To investigate this, we extend
the one-factor model to include correlated measurement errors for the Pix measurements
(see left panel of Figure 2), giving the second sets of estimates in Table 2. The parameter
θ43, representing the covariance between the measurement errors ε3 and ε4, is estimated
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Table 2 Brain scans – Maximum likelihood estimates (with standard errors) for common factor models

One-factor

One-factor Corr. meas. errors Two-factor

Intercepts

β1 [Plan1] 1.862 (0.056) 1.862 (0.056) 1.862 (0.056)
β2 [Plan3] 1.711 (0.061) 1.711 (0.061) 1.711 (0.061)
β3 [Pix1] 1.402 (0.073) 1.402 (0.073) 1.402 (0.073)
β4 [Pix3] 1.413 (0.074) 1.413 (0.074) 1.413 (0.074)

Factor loadings Factor 1 Factor 2

λ1 [Plan1] 1 – 1 – 0 – 0 –
λ2 [Plan3] 1.349 (0.315) 1.377 (0.208) 1.377 (0.208) 0 –
λ3 [Pix1] 2.186 (0.423) 1.213 (0.208) 1.213 (0.208) 1 –
λ4 [Pix3] 2.197 (0.425) 1.209 (0.210) 1.209 (0.210) 1 –

Factor variances

ψ11 0.056 (0.024) 0.098 (0.031) 0.098 (0.031)
ψ22 0.123 (0.029)
ψ21 0 –

Measurement error variance

θ11 [Plan1] 0.103 (0.021) 0.060 (0.016) 0.060 (0.016)
θ22 [Plan3] 0.086 (0.017) 0.001 (0.019) 0.001 (0.019)
θ33 [Pix1] 0.001 (0.003) 0.122 (0.029) a−0.001 (0.003)
θ44 [Pix3] 0.002 (0.003) 0.127 (0.029) 0.004 (0.003)

Measurement error covariance

θ43 [Pix1], [Pix3] 0.123 (0.029)

Goodness-of-fit statistics

Log-likelihood 11.56 24.95 24.95
Deviance (d.f.) 29.36 (2) 2.57 (1) 2.57 (1)
CFI 0.91 1.00 1.00
TLI 0.73 0.97 0.97
RMSEA 0.52 0.18 0.18

aHeywood case

as 0.123, corresponding to an extremely high measurement error correlation of 0.988.
Interestingly, the measurement error variances are now much larger for the Pix measure-
ments than for the Plan measurements. The deviance statistic for this model is 2.57 with
1 degree of freedom, giving a P-value of 0.10. Although the RMSEA remains somewhat
high, the CFI and TLI are now very satisfactory. Thus, it seems reasonable to retain the
measurement model with correlated measurement errors for the Pix measurements.

Another way of capturing the notion of gross error is to introduce a ‘bias factor’ η2j
which induces extra dependence among the Pix measurements. The bias factor has factor
loadings of one for the two Pix measurements and zero for the two Plan measurements
and is uncorrelated with the original factor (see right panel of Figure 2). Maximum like-
lihood estimates with standard errors for this model are presented in the last columns of
Table 2. Note that the estimated measurement error variance for [Pix1] is inadmissible
since it is negative, a so-called Heywood case, which casts some doubt on the validity of
this specification. Interestingly, the deviance statistic for this model is identical to that
for the measurement model with correlated measurement errors. It can be shown that
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Figure 2 Brain scans – Path diagrams for one-factor model with correlated measurement error for Pix
measurement (left panel) and model with ‘bias factor’ (right panel).

the two models are equivalent39 in the sense that the models are one-to-one reparam-
eterizations of each other, and there is consequently no way to empirically distinguish
between the models.

2.2.2 Some applications of factor analysis in medical research
Classical test theory is used implicitly every time a test-retest or inter-rater reliability

is reported. Classical test theory and factor models have been used for psychiatric rating
scales for a long time.40 Bland and Altman41 popularized these ideas in medicine, but
without referring to the vast measurement literature. It is standard practice to report
Cronbach’s α whenever forming a sum score to assess the ‘internal consistency’ or inter-
correlatedness of the items. This is done regardless of the measurement level of the items
and without being aware of the underlying model assumptions.

EFA and CFA are often used to explore the dimensionality of constructs, particularly
in psychiatry42,43 and related fields. In EFA the factor structure is usually simplified into
an independent clusters model by effectively setting small factor loadings to zero (after
rotation) without considering the deterioration in fit. In contrast, arbitrary but ‘well
established’ thresholds applied to a couple of goodness-of-fit indices usually serve to
purge uncertainty from model selection in CFA.

3 Item response theory (IRT) models

The term item response theory was coined by Lord44 who was instrumental in developing
statistical models for ability testing.44–46 In this setting, the observed variables are exam
questions or items, yij is ‘1’ if examinee j answered item i correctly and ‘0’ otherwise, and
ηj represents the continuous unobserved ability of the examinee. In medical research ηj
would of course be another latent trait such as physical functioning.

3.1 The one-parameter IRT model
In the one-parameter logistic (1-PL) model, the conditional response probability for

item i, given ability ηj, is specified as

Pr(yij = 1 | ηj) = exp(βi + ηj)

1 + exp(βi + ηj)
,
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where the responses are assumed to be conditionally independent given ability ηj, a
property often called local independence. This model is called a one–parameter model
because there is one parameter, the item difficulty −βi, for each item.

Ability ηj can either be treated as a latent random variable or as an unknown fixed
parameter, giving the so-called Rasch model.47 However, estimating the ‘incidental
parameters’ ηj jointly with the ‘structural parameters’ β produces inconsistent estima-
tors for β, known as the incidental parameter problem.48 Inference can instead be based
on the conditional likelihood49,50 constructed by conditioning on the sufficient statistic
for ηj, which is the sum score

∑n
i=1 yij. This conditional logistic regression approach is

also commonly used in matched case control studies.51

Alternatively, if ηj is viewed as a random variable, typically with ηj ∼ N(0, ψ), infer-
ence can be based on the marginal likelihood obtained by integrating out the latent
variable

lM(β, ψ) =
N∏

j=1

Pr(yj; β, ψ) =
N∏

j=1

∫ ∞

−∞

n∏

i=1

Pr(yij | ηj) g(ηj; ψ) dηj

=
N∏

j=1

∫ ∞

−∞

n∏

i=1

exp(βi + ηj)
yij

1 + exp(βi + ηj)
g(ηj; ψ) dηj,

where − β is the vector of item difficulties and g(·; ψ) is the normal density with zero
mean and variance ψ .

An appealing feature of one-parameter models is that items and examinees can be
placed on a common scale (according to the difficulty and ability parameters) so that
the probability of a correct response depends only on the amount ηj − (−βi) by which
the examinee’s position exceeds the item’s position. Differences in difficulty between
items are the same for all examinees, and differences in abilities of two examinees are
the same for all items, a property called specific objectivity by Rasch.

One of the main purposes of item response modelling is to derive scores from the item
responses. The most common approach is to use the expectation of the posterior distri-
bution of ηj given yj with parameter estimates plugged in. This empirical Bayes approach
is analogous to the regression method for common factor models and is referred to as
expected a posterior (EAP) scoring in IRT.

3.1.1 Example: Physical functioning
The 1996 Health Survey for England (Joint Health Surveys Unit of Social and Com-

munity Planning Research and University College London52) administered the Physical
Functioning PF-10 subscale of the SF-36 Health Survey53 to adults aged 16 and above.
The 15592 respondents were asked:

‘The following items are about activities you might do during a typical day. Does your
health now limit you in these activities? If so, how much?’

1) Vigorous activities: Vigorous activities, such as running, lifting heavy objects,
participating in strenuous sports
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2) Moderate activities: Moderate activities, such as moving a table, pushing a
vacuum cleaner, bowling or playing golf

3) Lift/Carry: Lifting or carrying groceries
4) Several stairs: Climbing several flights of stairs
5) One flight stairs: Climbing one flight of stairs
6) Bend/Kneel/Stoop: Bending, kneeling, or stooping
7) Walk more mile: Walking more than a mile
8) Walk several blocks: Walking several blocks
9) Walk one block: Walking one block

10) Bathing/Dressing: Bathing or dressing yourself

The possible responses to these questions are ‘yes, limited a lot’, ‘yes, limited a little’ and
‘no, not limited at all’. Here we analyse the dichotomous indicator for not being limited
at all. Then −βi can be interpreted as the difficulty of activity i and ηj as the physical
functioning of subject j.

The ten most frequent response patterns and their frequencies are shown in the first
two columns of Table 3. Note that about a third of subjects are not limited at all in any
of the activities whereas 6% are limited in all activities. Using conditional maximum
likelihood (CML) estimation with the identifying constraint β1 = 0 gives the difficulty
estimates shown under ‘CML’ in Table 4.

For marginal maximum likelihood estimation it seems unrealistic to assume a normal
distribution for physical functioning since such a large proportion of people is not limited
at all on any of the items. We therefore leave the physical functioning distribution unspec-
ified using so-called nonparametric maximum likelihood (NPML) estimation.54–58 The
NPML estimator of the latent variable distribution is discrete with number of mass-
points determined to maximize the marginal likelihood. Here six points appeared to be
needed but convergence was not achieved, so we present the discrete five-point solution
instead.

Figure 3 shows the item characteristic curves, the probabilities of not being limited
at all as a function of physical functioning, for four of the items. The value of physi-
cal functioning corresponding to a probability of 0.5 is the difficulty of the task. Not

Table 3 Physical functioning – Observed and expected counts for the ten most
frequent response patterns with signed Pearson residuals in parentheses

Observed Discrete 1-PL Normal 1-PL Normal 2-PL

Responses Count Count (Resid) Count (Resid) Count (Resid)

1111111111 5384 5137 (3.4) 5217 (2.3) 5036 (4.9)
0111111111 1884 1670 (5.2) 1632 (6.2) 2091 (−4.5)
0000000000 970 1052 (−2.5) 813 (5.5) 978 (−0.3)
0110111111 646 518 (5.6) 463 (8.5) 529 (5.1)
0111101111 441 275 (10.0) 240 (13.0) 347 (5.0)
0000000001 343 294 (2.9) 298 (2.6) 376 (−1.7)
0110101111 252 205 (3.3) 190 (4.5) 218 (2.3)
0110110111 237 137 (8.5) 126 (9.9) 123 (10.3)
0000000011 220 197 (1.6) 229 (−0.6) 193 (1.9)
1110111111 209 264 (−3.4) 228 (−1.3) 309 (−5.7)
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Table 4 Physical functioning – Estimates of item difficulties for the 1-PL model using condi-
tional maximum likelihood (CML), marginal maximum likelihood with discrete five-point distri-
bution (DMML) and parametric marginal maximum likelihood (PMML) assuming a normal ability
distribution

CML DMML PMML

Est (SE) Est (SE) Est (SE)

Vigorous activities −β1 0 1.23 (0.04) 0.86 (0.05)
Moderate activities −β2 + β1 −3.50 (0.06) −3.50 (0.05) −3.65 (0.05)
Lift/Carry −β3 + β1 −3.06 (0.04) −3.06 (0.04) −3.22 (0.04)
Several stairs −β4 + β1 −1.85 (0.04) −1.84 (0.04) −1.97 (0.04)
One flight stairs −β5 + β1 −4.31 (0.05) −4.30 (0.04) −4.43 (0.05)
Bend/Kneel/Stoop −β6 + β1 −2.48 (0.04) −2.48 (0.04) −2.63 (0.04)
Walk more mile −β7 + β1 −2.88 (0.04) −2.87 (0.04) −3.03 (0.04)
Walk several blocks −β8 + β1 −4.27 (0.05) −4.27 (0.05) −4.40 (0.05)
Walk one block −β9 + β1 −5.68 (0.06) −5.68 (0.06) −5.69 (0.06)
Bathing/Dressing −β10 + β1 −6.34 (0.06) −6.35 (0.06) −6.28 (0.06)

surprisingly, bathing and dressing oneself are easier than vigorous activities. Wilson59

advocates plotting a so-called Wright map, a histogram of the ability scores on the same
vertical scale as positions of the items. Such a graph is given together with the estimated
ability distribution in Figure 4.

Table 3 gives the observed and expected frequencies for the ten most frequent response
patterns for the model with a discrete latent variable discussed here, the 1-PL model
assuming a normal distribution, and the 2-PL model discussed in the next section. The
signed Pearson residuals given in parentheses suggest that none of the models fit well.

Figure 3 Physical functioning – Item characteristic curves for 1-PL with discrete five-point latent variable
distribution.
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Figure 4 Physical functioning – Estimated distribution (1-PL with five masspoints), distribution of empirical
Bayes scores and difficulties of items.

3.2 Two-parameter IRT model
Although the 1-PL model is parsimonious and elegant it often does not fit the data.

A more general model is the two-parameter logistic (2-PL) model

Pr(yij = 1 | ηj) = exp(βi + λiηj)

1 + exp(βi + λiηj)
,

where the factor loading λi is referred to as the discrimination parameter because items
with a large λi are better at discriminating between subjects with different abilities.
The traditional parametrization of the conditional log-odds βi + λiηj is λi(ηj − bi),
where bi = −βi/λi is called the difficulty parameter because the probability of a correct
response is 0.5 if ηj = bi as in the one-parameter model. The model is called a two-
parameter model because there are two parameters for each item, the discrimination
and difficulty parameter.

Importantly, a conditional likelihood can no longer be constructed since there is no
sufficient statistic for ηj and the marginal likelihood assuming that ηj ∼ N(0, 1) is hence
used. Since there is no closed form of the marginal likelihood, Bock and Lieberman60

introduced the use of numerical integration by Gauss–Hermite quadrature. Here, we
use a refinement of this approach called adaptive quadrature.61

For the PF-10 example, item characteristic curves for the 2-PL model, assuming a nor-
mal distribution for physical functioning, are shown in Figure 5 for the same four items
as in Figure 3. For the items shown here, Vigorous Activities is the least discriminating
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Figure 5 Physical functioning – Item characteristic curves for 2–PL.

whereas One Flight Stairs is the most discriminating. Note that the 2-PL model does
not share the specific objectivity property of the 1-PL model. An item can be easier than
another item for low abilities but more difficult than the other item for higher abilities
due to the item-subject interaction λiηj. This property has caused some psychometri-
cians to reject the use of discrimination parameters because they ‘wreak havoc with the
logic and practice of measurement’.62

For dichotomous responses, it is often instructive to formulate models using a latent
continuous response y∗

ij underlying the dichotomous response with

yij =
{

1 if y∗
ij > 0

0 otherwise.

Specifying a unidimensional factor model for y∗
ij

y∗
ij = βi + λiηj + εij, ηj ∼ N(0, ψ), εij ∼ N(0, 1), Cov(ηj, εij) = 0,

leads to the so-called normal-ogive model45,63 for the observed yij,

�−1[Pr(yij = 1 | ηj)] = βi + λiηj

Here �(·) is the cumulative standard normal distribution function and �−1(·) is the
probit link. Replacing the probit link by a logit link yields the 2-PL model which can
also be derived by specifying logistic distributions for the specific factors εij in the latent
response formulation.
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For ordinal responses, proportional odds and adjacent category logit versions of the
IRT models described above have been proposed under the names graded response
model64 and partial credit model,65 respectively.

We recommend the books by Hambleton et al. 66 and Embretson and Reise67 for
further reading on IRT.

3.2.1 Some applications of IRT in medical research
IRT is sometimes used in psychiatry for investigating the measurement properties of

rating scales, for instance for affective disorder68 and depression.69,70 More recently
there has been a surge of interest in IRT for quality of life and related constructs. For
example, the 2004 Conference on Outcome Research organized by the US National
Cancer Institute was dedicated to IRT. In 2003 there was a special issue of Quality of
Life Research on the measurement of headache which was dominated by papers using
the Rasch model.

Papers advocating the use of IRT in health outcome measurement include Revicki and
Cella71 and Hays et al.72 in Quality of Life Research and Medical Care, respectively,
journals that regularly publish papers using IRT. However, the use of IRT for quality
of life has been criticized because items, such as those concerning impairment, may be
better construed as ‘causing’ quality of life than ‘reflecting’ quality of life.6

Item response models have also been used for other purposes than measurement such
as capture–recapture modelling73 for estimation of prevalences, typical examples being
diabetes or drug use.

4 Latent class models

4.1 Exploratory latent class model
In latent class models74,75 both the latent and observed variables are categorical. The

C categories of the latent variable can be thought of as labels c = 1, . . . , C classifying
subjects into distinct sub-populations. For simplicity, we consider binary response vari-
ables yij, i = 1, . . . , n. The conditional response probability for variable i, given latent
class membership c, is given by

Pr(yij = 1 | c) = πi|c, (5)

where πi|c are free parameters and different responses yij and yi′j for the same subject are
conditionally independent given class membership. The probability that subject j belongs
to latent class c is also a free parameter, denoted πc. The model is called exploratory
because no restrictions are imposed on either the πi|c or the πc.

The marginal likelihood becomes

lM(π) =
N∏

j = 1

Pr(yj; π) =
N∏

j = 1

C∑

c = 1

πc

n∏

i = 1

Pr(yij | c) =
N∏

j = 1

C∑

c = 1

πc

n∏

i = 1

π
yij
i|c (1 − πi|c)1−yij ,

where π ′ = (π1, π1|1, . . . , πn|1, . . . , πC, π1|C, . . . , πn|C). It is evident that the latent class
model is a multivariate finite mixture model with C components.
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For further reading on latent class models we recommend the book by McCutcheon76

and the survey papers by Clogg77 and Formann and Kohlmann,78 the latter with special
emphasis on applications in medicine.

4.1.1 Example: Diagnosis of myocardial infarction
Rindskopf and Rindskopf7 analyse data from a coronary care unit in New York City

where patients were admitted to rule out myocardial infarction (MI) or ‘heart attack’.
Each of 94 patients was assessed on four diagnostic criteria rated as 1 = present and
0 = abscent:

• [Q-wave]–Q-wave in the ECG
• [History]–Classical clinical history
• [LDH]–Having a flipped LDH
• [CPK]–CPK-MB

The data are shown in Table 5. For clarity we label the classes c = 1 for MI and c = 0
for no MI. Then π0 is the probability or ‘prevalence’ of not having MI, which can be
parameterized as

logit(π0) = �0,

and π1 = 1 − π0. The conditional response probabilities can be specified as

logit[Pr(yij = 1|c)] = eic

The probabilities Pr(yij = 1|c = 1) represent the sensitivities of the diagnostic tests (the
probabilities of a correct diagnosis for subjects with the illness), whereas 1 − Pr(yij =
1|c = 0) represent the specificities (the probabilities of a correct diagnosis for subjects
without the illness).

Table 5 Diagnosis of myocardial infarction data

[Q-wave] [History] [LDH] [CPK] Observed Expected Probability of MI
(i = 1) (i = 2) (i = 3) (i = 4) count count (c = 1)

1 1 1 1 24 21.62 1.000
0 1 1 1 5 6.63 0.992
1 0 1 1 4 5.70 1.000
0 0 1 1 3 1.95 0.889
1 1 0 1 3 4.50 1.000
0 1 0 1 5 3.26 0.420
1 0 0 1 2 1.19 1.000
0 0 0 1 7 8.16 0.044
1 1 1 0 0 0.00 0.017
0 1 1 0 0 0.22 0.000
1 0 1 0 0 0.00 0.001
0 0 1 0 1 0.89 0.000
1 1 0 0 0 0.00 0.000
0 1 0 0 7 7.78 0.000
1 0 0 0 0 0.00 0.000
0 0 0 0 33 32.11 0.000

Source: Rindskopf and Rindskopf (1986).7
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Maximum likelihood estimates are given in Table 6. The estimates ê10 for Q-wave and
ê41 for [CPK] correspond to conditional response probabilities very close to 0 and 1,
respectively, giving a so-called boundary solution. In these regions, large changes in the
logit correspond to minute changes in the probability, leading to a flat likelihood and
thus large standard errors for these parameters. Comparing the expected counts with
the observed counts in Table 5, the model appears to fit well.

From Table 6, the prevalence of MI is estimated as 0.46. The specificity of [Q-wave] is
estimated as 1, implying that all patients without MI will have a negative result on that
test. [History] has the lowest specificity of 0.70. The estimated sensitivities range from
0.77 for Q-wave to 1.00 for [CPK], so that 77% of MI cases test positively on [Q-wave]
and 100% on [CPK].

We can obtain the posterior probabilities (similar to positive predictive values) of MI
given the four test results using Bayes theorem,

Pr(c = 1|yj) = π1
∏

i Pr(yij|c = 1)

π0
∏

i Pr(yij|c = 0) + π1
∏

i Pr(yij|c = 1)

These probabilities are presented in the last column of Table 5. For almost all patients
the posterior probabilities are close to 0 or 1 making the diagnosis clear cut.

4.1.2 Some applications of latent class analysis in medical research
An important application of latent class models is in medical diagnosis7 as demon-

strated in the example. Latent class models are also often used to investigate rater
agreement78,79 such as agreement among pathologists in their classification of tumors,
and for scaling,80 for instance for investigating the stages and pathways of drug
involvement.81

Extensions of latent class models for longitudinal data include latent transition or
latent Markov models82–84 for discovering latent states and estimating transition prob-
abilities between them. Finite mixtures of regression models or linear mixed models,
known as mixture regression models56,85,86 and growth mixture models,87 respectively,
are used for discovering ‘latent trajectory classes’.

Table 6 Myocardial infarction – Maximum likelihood estimates for latent class model with two classes

Class 0 (‘No MI’) Class 1 (‘MI’)

Parameter Est (SE) Probability Est (SE) Probability

1-Specificity Sensitivity

e1c [Q-wave] −17.58 (953.49) 0.00 1.19 (0.42) 0.77
e2c [History] −1.42 (0.39) 0.30 1.33 (0.39) 0.79
e3c [LDH] −3.59 (1.01) 0.03 1.57 (0.47) 0.83
e4c [CPK] −1.41 (0.41) 0.20 16.86 (706.04) 1.00

1-Prevalence Prevalence

�0 [Cons] 0.17 0.22 0.54 – – 0.46

Source: Skrondal and Rabe-Hesketh (2004).111
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5 Structural equation models (SEM) with latent variables

The geneticist Wright88 introduced path analysis for observed variables and
Jöreskog89–91 combined such models with common factor models to form structural
equation models with latent variables.

There are several ways of parameterizing SEMs with latent variables. The most com-
mon is the LISREL parametrization89–91 but we will use a parametrization suggested by
Muthén92 here because it turns out to be more convenient for the subsequent application.

The measurement part of the model is the confirmatory factor model (4) specified in
Section 2.2. The structural part of the model specifies regressions for the latent variables
on other latent and observed variables

ηj = α + Bηj + �xj + ζ j (6)

Here ηj is a vector of latent variables with corresponding lower-triangular parameter
matrix B governing the relationships among them, α is a vector of intercepts, � a regres-
sion parameter matrix for the regression of the latent variables on the vector of observed
covariates xj, and ζ j is a vector of disturbances. We define � ≡ Cov(ζ j) and assume that
E(ζ j)=0, Cov(xj, ζ j) = 0 and Cov(εj, ζ j) = 0.

Substituting from the structural model into the measurement model, we obtain the
reduced form,

yj = β + �(I − B)−1(α + �xj+ζ j) + εj (7)

The mean structure for yj, conditional on the covariates xj, becomes

μj ≡ E( yj|xj) = β + �(I − B)−1(α + �xj),

and the covariance structure of yj, conditional on the covariates, becomes

� ≡ Cov( yj|xj) = �(I − B)−1�[(I − B)−1]′�′ + � (8)

An important special case is the Multiple-Indicator-MultIple-Cause (MIMIC)
model93 which imposes the restriction B = I in the structural model (6),

ηj = α + �xj + ζ j

As for common factor models, the marginal likelihood of a SEM can be expressed in
closed form if we assume that ζ j and εj and hence yj, are multivariate normal. Instead
of maximizing the marginal likelihood, we can minimize a fitting function similar to (3),
with respect to the unknown free parameters of the SEM.

For further reading on structural equation modelling we recommend the books by
Loehlin,94 Bollen95 and Kaplan.96
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5.1 Example: Clients’ satisfaction with counsellors’ interviews
Alwin and Tessler97 and Tessler98 described and analysed data from an experiment to

investigate the determinants of clients’ satisfaction with counsellors’ initial interviews.
Three experimental factors were manipulated: 1) ‘Experience (E)’ x1j, clients’ infor-

mation regarding the length of time the counsellor has acted in his professional capacity
(no experience versus full-fledged counsellor), 2) ‘Value similarity (VS)’ x2j, the degree
to which the client perceives the counsellor as similar in values and life-style preferences
(sharply different philosophy of life versus high communality), and 3) ‘Formality (F)’ x3j,
the extent to which the counsellor exercises the maximum level of social distance permit-
ted by norms governing a counselling relationship (informal versus formal). Ninety-six
female subjects were randomly assigned to the two levels of each of the experimental
factors in a full factorial design. All subjects were exposed to the same male counsellor.

It was important to assess the degree to which the experimental manipulations had
been accurately perceived by the clients. In the measurement part of model, three latent
variables, each corresponding to an experimental factor, were thus considered as ‘manip-
ulation checks’: ‘Perceived experience (P-E)’ η1j, measured by the items y1j, y2j and y3j;
‘Perceived value similarity (P-VS)’ η2j, measured by the items y4j, y5j and y6j; and ‘Per-
ceived formality (P-F)’ η3j, measured by the items y7j, y8j and y9j. An independent clusters
confirmatory factor model (akin to that shown in Figure 1 but with three latent variables)
was thus specified for the items, only allowing the items to measure the latent variables
they were supposed to measure.

Clients’ satisfaction was construed as a two-dimensional latent variable:

• ‘Relationship-centered satisfaction (RS)’ η4j, representing the client’s sense of
closeness to the counsellor, measured by four items each scored from 0 to 6:
– ‘Personalism’ y10,j: A likert item (from ‘agree strongly’ to ‘disagree strongly’)

with question wording ‘I think that the counsellor is one of the nicest persons
I’ve ever met’

– ‘Warmth’ y11,j: A semantic differential format (from ‘cold’ to ‘warm’)
– ‘Friendliness’ y12,j: A semantic differential format (from ‘friendly’ to

‘unfriendly’)
– ‘Concern’ y13,j: A semantic differential format (from ‘unconcerned’ to ‘con-

cerned’)

• ‘Problem-centered satisfaction (PS)’ η5j, representing the client’s perception of the
counsellor’s ability to help, measured by four items each scored from 0 to 6:
– ‘Thoroughness’ y14,j: A Likert item (from ‘agree strongly’ to ‘disagree strongly’)

with question wording “The counsellor was very thorough. I was left with the
feeling that nothing important had been overlooked”

– ‘Skillfulness’ y15,j: A semantic differential format (from ‘unskilled’ to ‘skilled’)
– ‘Impressiveness’ y16,j: A semantic differential format (from ‘impressive’ to

‘unimpressive’)
– ‘Success in bringing clarity to the problem’ y17,j: A Likert item (from ‘agree

strongly’ to ‘disagree strongly’) with question wording ‘I felt that the nature
of my problem had been clarified, that is that the counsellor had helped me to
understand exactly what was troubling me’
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Assuming an independent clusters confirmatory factor model for client’s satisfaction,
the factor loading matrix for all five common factors becomes

�′ =

⎡

⎢⎢⎣

λ11 λ21 λ31 0 0 0 0 0 0 0 0 0 0
0 0 0 λ42 λ52 λ62 0 0 0 0 0 0 0
0 0 0 0 0 0 λ73 λ83 λ93 0 0 0 0
0 0 0 0 0 0 0 0 0 λ10,4 λ11,4 λ12,4 λ13,4
0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

λ14,5 λ15,5 λ16,5 λ17,5

⎤

⎥⎥⎦

and the covariance matrix � of the unique factors is diagonal.
In the structural part of model, Alwin and Tessler specified the following configuration

for the parameter matrices:

� =

⎡

⎢⎢⎣

γ11 0 0
0 γ22 0
0 0 γ33
0 0 0
0 0 0

⎤

⎥⎥⎦ , B =

⎡

⎢⎢⎣

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

b41 b42 b43 0 0
b51 b52 b53 0 0

⎤

⎥⎥⎦ ,

� =

⎡

⎢⎢⎣

ψ11 0 0 0 0
0 ψ22 0 0 0
0 0 ψ33 0 0
0 0 0 ψ44 ψ45
0 0 0 ψ54 ψ55

⎤

⎥⎥⎦

This specification encodes a number of hypotheses regarding the investigated processes.
The � matrix prescribes that a given experimental factor affects only the corresponding
perception and not the perception of other experimental factors. Moreover, the experi-
mental factors are not permitted to have direct effects on the the satisfaction constructs.
The B matrix prescribes that there are no relations among the perception factors but
that all three perception factors are allowed to affect both satisfaction factors. Finally,
the � matrix prescribes that the disturbances for the perception factors are uncorrelated
but that the disturbances for the satisfaction factors may be correlated. A path diagram
for the structural part of the SEM is shown in Figure 6.

Maximum likelihood estimates for the structural part of the model are presented in
Table 7 (the estimates for the measurement part are omitted). Interestingly, the estimates
suggest that the major determinant of relationship-centered satisfaction (RS) is the
formality of the interview situation, whereas similarity with the counsellor has only a
moderate effect and experience of the counsellor has a negligible effect. In contrast, the
experience of the counsellor appears to be the major determinant of problem-centered
satisfaction (PS) whereas similarity has only a moderate effect and formality a negligible
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Figure 6 Clients’ satisfaction with counsellors’ interviews – Path diagram for structural part of model
(measurement part omitted).

effect. The estimates thus indicate that there are two distinct kinds of client centered
satisfaction in initial interviews and that they depend on the features of the interview
situation.

The maximized log-likelihood is −1674.09 and the deviance is 285.22 with 160 degrees
of freedom, suggesting rejection of the model. However, the CFI is 0.94, the TLI is 0.93
and the RMSEA is 0.09, indicating reasonable fit. The validity of the restrictions imposed
by Alwin and Tessler can be investigated by assessing the improvement in fit obtained
by relaxing them.

5.2 Some applications of SEM in medical research
An important application of SEM is for covariate measurement error.58,99,100 Unfor-

tunately, covariate measurement error models are usually not recognized as SEM and a
restrictive classical measurement model is implicitly assumed.

More complex SEM with paths between several latent variables are commonly used in
areas such as psychiatry,101 addiction102 and social medicine103 and sometimes in public

Table 7 Clients’ satisfaction with counsellors’ interviews – Maximum likeli-
hood estimates for structural part of SEM. Estimated regression parameters
with standard errors in left panel and estimated residual (co)variances with
standard errors in right panel

Path Parameter Est (SE) Parameter Est (SE)

E → P-E γ11 0.98 (0.02) ψ11 0.03 (0.01)
VS → P-VS γ22 0.99 (0.01) ψ22 0.02 (0.01)

F → P-F γ33 0.98 (0.02) ψ33 0.01 (0.00)
P-E → RS b41 0.00 (0.07) ψ44 0.39 (0.11)

P-VS → RS b42 0.11 (0.07) ψ55 0.19 (0.08)
P-F → RS b43 −0.19 (0.07) ψ54 0.13 (0.05)
P-E → PS b51 0.31 (0.08)

P-VS → PS b52 0.06 (0.06)
P-F → PS b53 0.01 (0.06)
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health and epidemiology.104 Structural equation modelling is also a standard tool in
biometrical genetics.5 Here, common factors represent additive and dominant genetic
and shared environment effects on observed characteristics or phenotypes and produce
the covariance structure predicated by Mendelian genetics. The models become more
complex when the phenotypes are latent.105 Latent growth curve models for multivariate
longitudinal data are used in areas such as child development106 and ageing.107

6 Concluding remarks

We have reviewed classical latent variable models and demonstrated how they can used
to address research problems in medicine.

There has recently been considerable work on unifying and extending the classical
models within a general framework.108–112 We have not discussed generalizations such as
SEM for categorical and mixed responses,92,113 multilevel latent variable models,110,114

models with nonlinear functions among latent variables,115 latent class structural equa-
tion models116,117 and models including both continuous and discrete latent variables.109

Such complex models are useful for estimating complier average causal effects in clinical
trials,118 joint modelling of longitudinal data and dropout or survival,10 multiprocess
survival models,119,120 and many other problems. Skrondal and Rabe-Hesketh27 provide
a recent survey of advanced latent variable modelling.
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Appendix

Some software for classical latent variable modelling

The examples in this paper were estimated using gllamm121,122 (Tables 3–6) and Mplus123

(Tables 1,2,7).
Table A1 lists some software packages and indicates whether each can be used to

fit CFA, IRT models, latent class (LC) models and structural equation models (SEM).
WinBUGS124,125 can be used for Markov chain Monte Carlo estimation of all these
models,126 but requires expertise for setting up the models and monitoring convergence.
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Table A1 Some software for classical latent variable modelling

Model types

Software CFA IRT LC SEM

Stata gllamm121 gllamm gllamm gllamm
raschtest127•

R sem128� ltm129 lca130 sem�

SAS CALIS131� NLIMXED132 TRAJ CALIS�

Mplus123 √ √ √ √
LatentGOLD133 	 √ √
LISREL134 √

†
√

EQS135 √
†

√
Mx136 √

†
√

Amos137 √ √
BILOG-MG138 •
WINSTEPS139 •
ConQuest140 •
√

, Model type is accommodated; †, Only normal-ogive (probit link) models; �, No general
missing data patterns; •, Only one-parameter models; 	, Only uncorrelated factors.
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