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Abstract

Despite internal complexity, tumor growth kinetics follow relatively simple laws that can be expressed as mathematical
models. To explore this further, quantitative analysis of the most classical of these were performed. The models were
assessed against data from two in vivo experimental systems: an ectopic syngeneic tumor (Lewis lung carcinoma) and an
orthotopically xenografted human breast carcinoma. The goals were threefold: 1) to determine a statistical model for
description of the measurement error, 2) to establish the descriptive power of each model, using several goodness-of-fit
metrics and a study of parametric identifiability, and 3) to assess the models’ ability to forecast future tumor growth. The
models included in the study comprised the exponential, exponential-linear, power law, Gompertz, logistic, generalized
logistic, von Bertalanffy and a model with dynamic carrying capacity. For the breast data, the dynamics were best captured
by the Gompertz and exponential-linear models. The latter also exhibited the highest predictive power, with excellent
prediction scores ($80%) extending out as far as 12 days in the future. For the lung data, the Gompertz and power law
models provided the most parsimonious and parametrically identifiable description. However, not one of the models was
able to achieve a substantial prediction rate ($70%) beyond the next day data point. In this context, adjunction of a priori
information on the parameter distribution led to considerable improvement. For instance, forecast success rates went from
14.9% to 62.7% when using the power law model to predict the full future tumor growth curves, using just three data
points. These results not only have important implications for biological theories of tumor growth and the use of
mathematical modeling in preclinical anti-cancer drug investigations, but also may assist in defining how mathematical
models could serve as potential prognostic tools in the clinic.
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Introduction

Neoplastic growth involves a large number of complex biological

processes, including regulation of proliferation and control of the

cell cycle, stromal recruitment, angiogenesis and escape from

immune surveillance. In combination, these cooperate to produce a

macroscopic expansion of the tumor volume, raising the prospect of

a possible general law for the global dynamics of neoplasia.

Quantitative and qualitative aspects of the temporal develop-

ment of tumor growth can be studied in a variety of experimental

settings, including in vitro proliferation assays, three-dimensional

in vitro spheroids, in vivo syngeneic or xenograft implants

(injected ectopically or orthotopically), transgenic mouse models

or longitudinal studies of clinical images. Each scale has its own

advantages and drawbacks, with increasing relevance tending to

coincide with decreasing measurement precision. The data used in

the current study are from two different in vivo systems. The first

is a syngeneic Lewis lung carcinoma (LLC) mouse model,

exploiting a well-established tumor model adopted by the National

Cancer Institute in 1972 [1]. The second is an orthotopic human

breast cancer xenografted in severe combined immunodeficient

(SCID) mice [2].

Tumor growth kinetics has been an object of biological study for

more than 60 years (see e.g. [3] as one of the premiere studies) and

has been experimentally investigated extensively (see [4] for a

thorough review and [5–8] for more recent work). One of the most

common findings for animal [9] and human [10–12] tumors alike

is that their relative growth rates decrease with time [13]; or

equivalently, that their doubling times increase.

These observations suggest that principles of tumor growth

might result from general growth laws, often amenable to

expression as ordinary differential equations [14]. The utility of

these models can be twofold: 1) testing growth hypotheses or

theories by assessing their descriptive power against experimental

data and 2) estimating the prior or future course of tumor

progression [9,15] either as a personalized prognostic tool in a

clinical context [16–20], or in order to determine the efficacy of a

therapy in preclinical drug development [21,22].
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Cancer modeling offers a wide range of mathematical

formalisms that can be classified according to their scale, approach

(bottom-up versus top-down) or integration of spatial structure. At

the cellular scale, agent-based models [23,24] are well-suited for

studies of interacting cells and implications on population-scale

development, but computational capabilities often limit such

studies to small maximal volumes (on the order of the mm3). The

tissue scale is better described by continuous partial differential

equations like reaction-diffusion models [19,25] or continuum-

mechanics based models [26,27], when spatial characteristics of

the tumor are of interest. When focusing on scalar data of

longitudinal tumor volume (which is the case here), models based

on ordinary differential equations are more adapted. A plethora of

such models exist, starting from proliferation of a constant fraction

of the tumor volume, an assumption that leads to exponential

growth. This model is challenged by the aforementioned

observations of non-constant tumor doubling time. Consequently,

investigators considered more elaborate models; the most widely

accepted of which is the Gompertz model. It has been used in

numerous studies involving animal [9,28–31] or human

[12,15,30,32] data. Other models include logistic [30,33] or

generalized logistic [11,31] formalisms. Inspired by quantitative

theories of metabolism and its impact on biological growth, von

Bertalanffy [34] derived a growth model based on balance

equations of metabolic processes. These considerations were

recently developed into a general law of biological growth [35]

and brought to the field of tumor growth [36,37]. When the loss

term is neglected, the von Bertalanffy model reduces to a power

law (see [5,38] for applications to tumor growth). An alternative,

purely phenomenological approach led others [39] to simply

consider tumor growth as divided into two phases: an initial

exponential phase then followed by a linear regimen. Recently,

influences of the microenvironment have been incorporated into

the modeling, an example being the inclusion of tumor neo-

angiogenesis by way of a dynamic carrying capacity [40,41].

Although several studies have been conducted using specific

mathematical models for describing tumor growth kinetics,

comprehensive work comparing broad ranges of mathematical

models for their descriptive power against in vivo experimental

data is lacking (with the notable exception of [30] and a few studies

for in vitro tumor spheroids [33,42–44]). Moreover, predictive

power is very rarely considered (see [42] for an exception,

examining growth of tumor spheroids), despite its clear relevance

to clinical utility. The aim of the present study is to provide a

rational, quantitative and extensive study of the descriptive and

predictive power of a broad class of mathematical models, based

on an adapted quantification of the measurement error (uncer-

tainty) in our data. As observed by others [45], specific data sets

should be used rather than average curves, and this is the

approach we adopted here.

In the following sections, we first describe the experimental

procedures that generated the data and define the mathematical

models. Then we introduce our methodology to fit the models to

the data and assess their descriptive and predictive powers. We

conclude by presenting the results of our analysis, consisting of: 1)

analysis of the measurement error and derivation of an appropri-

ate error model, subsequently used in the parameters estimation

procedure, 2) comparison of the descriptive power of the

mathematical models against our two datasets, and 3) determina-

tion of the predictive abilities of the most descriptive models, with

or without adjunction of a priori information in the estimation

procedure.

Materials and Methods

Ethics statement
Animal tumor model studies were performed in strict accor-

dance with the recommendations in the Guide for the Care and

Use of Laboratory Animals of the National Institutes of Health.

Protocols used were approved by the Institutional Animal Care

and Use Committee (IACUC) at Tufts University School of

Medicine for studies using murine Lewis lung carcinoma (LLC)

cells (Protocol: #P11-324) and at Roswell Park Cancer Institute

(RPCI) for studies using human LM2-4LUC+ breast carcinoma cells

(Protocol: 1227M). Institutions are AAALAC accredited and every

effort was made to minimize animal distress.

Mice experiments
Cell culture. Murine Lewis lung carcinoma (LLC) cells,

originally derived from a spontaneous tumor in a C57BL/6 mouse

[46], were obtained from American Type Culture Collection

(Manassas, VA). Human LM2-4LUC+ breast carcinoma cells are a

metastatic variant originally derived from MDA-MD-231 cells and

then transfected with firefly luciferase [47]. All cells were cultured

in high glucose DMEM (obtained from Gibco Invitrogen Cell

Culture, Carlsbad, CA or Mediatech, Manassas, VA) with

10%FBS (Gibco Invitrogen Cell Culture) and 5% CO2.

Tumor injections. For the subcutaneous mouse syngeneic

lung tumor model, C57BL/6 male mice with an average lifespan

of 878 days were used [48]. At time of injection mice were 6 to 8

weeks old (Jackson Laboratory, Bar Harbor, Maine). Subcutane-

ous injections of 106 LLC cells in 0.2 ml phosphate-buffered saline

(PBS) were performed on the caudal half of the back in

anesthetized mice.

For the orthotopic human xenograft breast tumor model, LM2-

4LUC+ cells (16106 cells) were orthotopically implanted into the

right inguinal mammary fat pads of 6- to 8-week-old female severe

combined immunodeficient (SCID) mice obtained from the

Laboratory Animal Resource at RPCI, as previously described [2].

Tumor measurements. Tumor size was measured regularly

with calipers to a maximum of 1.5 cm3 for the lung data set and

2 cm3 for the breast data set. Largest (L) and smallest (w) diameters

were measured subcutaneously using calipers and the formula

Author Summary

Tumor growth curves display relatively simple time curves
that can be quantified using mathematical models. Herein
we exploited two experimental animal systems to assess
the descriptive and predictive power of nine classical
tumor growth models. Several goodness-of-fit metrics and
a dedicated error model were employed to rank the
models for their relative descriptive power. We found that
the model with the highest descriptive power was not
necessarily the most predictive one. The breast growth
curves had a linear profile that allowed good predictability.
Conversely, not one of the models was able to accurately
predict the lung growth curves when using only a few data
points. To overcome this issue, we considered a method
that uses the parameter population distribution, informed
from a priori knowledge, to estimate the individual
parameter vector of an independent growth curve. This
method was found to considerably improve the prediction
success rates. These findings may benefit preclinical cancer
research by identifying models most descriptive of
fundamental growth characteristics. Clinical perspective
is also offered on what can be expected from mathemat-
ical modeling in terms of future growth prediction.
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V~
p
6
w2L was then used to compute the volume (ellipsoid).

Volumes ranged 14–1492 mm3 over time spans from 4 to 22 days

for the lung tumor model (two experiments of 10 animals each)

and 202–1902 mm3 over time spans from 18 to 38 days for the

breast tumor data (five experiments conducted with a total of 34

animals). Plots of individual growth curves for both data sets are

reported in Figure S1.

Mathematical models
For all the models, the descriptive variable is the total tumor

volume, denoted by V, as a function of time t. It is assumed to be

proportional to the total number of cells in the tumor. To reduce

the number of degrees of freedom, all the models (except the

exponential V0) had a fixed initial volume condition. Although the

number of cells that actually remain in the established tumor is

probably lower than the number of injected cells (,60–80%), we

considered 1 mm3 (^106 cells [49], i.e. the number of injected

cells) as a reasonable approximation for V(t=0).

Exponential-linear models. The simplest theory of tumor

growth presumes all cells proliferate with constant cell cycle

duration TC. This leads to exponential growth, which is also valid

in the extended cases where either a constant fraction of the volume

is proliferating or the cell cycle length is a random variable with

exponential distribution (assuming that the individual cell cycle

length distributions are independent and identically distributed). As

one modification, initial exponential phase can be assumed to be

followed by a linear growth phase [39], giving the following Cauchy

problem for the volume rate of change (growth rate):

dV

dt
~a0V , tƒt

dV

dt
~a1, twt

V t~0ð Þ~V0

8

>

>

>

>

<

>

>

>

>

:

ð1Þ

Here, the coefficient a0 is the fraction of proliferative cells times ln

2/TC where TC is either the constant cell cycle length or the mean

cell cycle length (under the assumption of exponentially distributed

cell cycle lengths). The coefficient a1 drives the linear phase.

Assuming that the solution of the problem (1) is continuously

differentiable uniquely determines the value of t as

t~
1

a0
log

a1

a0V0

� �

. The coefficient V0 denotes the initial volume.

From this formula, three models were considered: a) initial volume

fixed to 1 mm3 and no linear phase (a1=+‘), referred to hereafter

as exponential 1, b) free initial volume and no linear phase, referred

to as exponential V0 and c) equation (1) with fixed initial volume of

1 mm3, referred to as the exponential-linear model.
Logistic and Gompertz models. A general class of models

used for quantification of tumor growth kinetics have a sigmoid

shape, i.e. an increasing curve with one inflection point that

asymptotically converges to a maximal volume, the carrying

capacity, denoted here by K. This qualitatively reproduces the

experimentally observed growth slowdown [9–12] and is consis-

tent with general patterns of organ and organismal growth. The

logistic model is defined by a linear decrease of the relative growth

rate
1

V

dV

dt
in proportion to the volume:

dV

dt
~aV 1{

V

K

� �

V t~0ð Þ~1 mm3

8

<

:

ð2Þ

where a is a coefficient related to proliferation kinetics. This model

can be interpreted as mutual competition between the cells (for

nutrients or space, for instance), by noticing that under this model

the instantaneous probability for a cell to proliferate is propor-

tional to 1{
V

K
. The logistic model has been used for description

of tumor growth, for instance, in [30]. Others (such as [11]) have

considered a generalization of the logistic equation, defined by

dV

dt
~aV 1{

V

K

� �n� �

V t~0ð Þ~1 mm3

8

>

<

>

:

ð3Þ

that will be referred to as the generalized logistic model. Equation
(3) has the explicit solution

V tð Þ~
V0K

V n
0z Kn{V n

0

� �

e{ant
� �1

n

which also provides an analytic solution to model (2) when n=1.

When a different parameterization is employed, this model

converges when nR0 to the Gompertz model, defined by

dV

dt
~ae{btV

V t~0ð Þ~1 mm3

8

<

:

ð4Þ

Coefficient a is the initial proliferation rate (at V=1 mm3) and b is

the rate of exponential decay of this proliferation rate. Although

first introduced in [50] for a different purpose – the description of

human mortality for actuarial applications – the Gompertz model

became a widely-accepted representation of growth processes in

general [51] and of tumor growth in particular. It was first

successfully used in this regard [28] before its applicability was

confirmed on large animal data sets [9,29] and for human breast

data [32]. The essential characteristic of the Gompertz model is

that it exhibits exponential decay of the relative growth rate. An

analytic formula can be derived for the solution of (4):

V tð Þ~V0e
a
b

1{e{btð Þ

where we can see that asymptotically, the volume converges to a

carrying capacity given by K~V0e
a
b.

A unified model deriving these three sigmoidal models from

specific biophysical assumptions about different types of cellular

interactions can be found in [52].

Dynamic carrying capacity. Taking the next step up in

complexity brings us to a model that assumes a dynamic (time-

dependent) carrying capacity (CC) [40,41] that can be taken, for

example, to represent the tumor vasculature. If one assumes that

stimulation of the carrying capacity is proportional to the tumor

surface, and neglects angiogenesis inhibition, this model can be

formulated in terms of two coupled equations:

dV

dt
~aV log

K

V

� �

dK

dt
~bV2=3

V t~0ð Þ~1 mm3, K t~0ð Þ~K0

8

>

>

>

>

>

<

>

>

>

>

>

:

ð5Þ
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and will be referred to as the dynamic CC model. It should be noted

that this model was first developed with the intent of modeling the

effect of anti-angiogenic therapies on tumor growth and not

strictly for describing or predicting the behavior of V alone.

However, we integrated it into our analysis in order to investigate

and quantify whether consideration of a dynamic carrying

capacity could benefit these tasks.

Von Bertalanffy and power law. Von Bertalanffy [34],

followed later on by others [35], proposed to derive general laws of

organic growth from basic energetics principles. Stating that the

net growth rate should result from the balance of synthesis and

destruction, observing that metabolic rates very often follow the

law of allometry (i.e. that they scale with a power of the total size)

[34] and assuming that catabolic rates are in proportion to the

total volume, he derived the following model for growth of

biological processes

dV

dt
~aV c

{bV ð6Þ

Employing our usual assumption that V(t=0) = 1 mm3, we will

refer to this model as the von Bertalanffy model (note that others

[14,30] often identify this model as the specific case c=2/3,

termed ‘‘second type growth’’ in [34]). It has already been

successfully applied to describe tumor growth [36,37]. More

elaborate considerations linking tumor growth, metabolic rate and

vascularization leading to equation (6) can be found in [37]. That

work also provides expressions of the coefficients in terms of

measurable energetic quantities. Explicit solution of the model is

given by

V tð Þ~
a

b
z V

1{c
0 {

a

b

� �

e{b 1{cð Þt
� � 1

1{c

From the observation that our data does not exhibit a clear

saturation phase, a qualitative feature of equation (6), we also

considered another model, derived from (6), by neglecting the loss

term, i.e. taking b=0. This model will be termed the power law
model. Pushing further the reasoning of [34] and arguing that the

rate of synthesis of new material, in the context of tumor growth,

should be proportional to the number of proliferative cells (under

the assumption of a constant cell cycle length), this model suggests

that the proliferative tissue is proportional to Vc. This could be

further interpreted as a possible fractional Hausdorff dimension of

the proliferative tissue, when viewed as a metric subspace of the

full tumor volume (viewed itself as a three-dimensional subset of

the three-dimensional Euclidean space). This dimension would be

equal to 3c and could be less than 3 when c,1. In this

interpretation, the case c~
2

3
(i.e. dimension equal to 2) could

correspond to a proliferative rim limited to the surface of the

tumor. This implies that the tumor radius — proportional to V1/3

— grows linearly in time. Such linear growth of the tumor radius

has been experimentally reported for tumor growth, for instance in

the case of gliomas [18]. At the other extreme, a three-dimensional

proliferative tissue (c=1) represents proliferative cells uniformly

distributed within the tumor and leads to exponential growth. Any

power 0,c,1 gives a tumor growth with decreasing growth

fraction (and thus decreasing relative growth rate), for which the

power law model provides a description in terms of a geometrical

feature of the proliferative tissue. This model was first used for

murine tumor growth description in [38] and was applied to

human data in [5].

Fit procedures and goodness of fit criteria
Individual approach. The main method we used to fit the

models is based on individual fits for each animal. The underlying

statistical framework is to consider the volume data y
j
i for animal j

(1#j#J) at time t
j
i (with 1,i,Ij as realizations of a random

variable Y
j
i being generated by a (deterministic) model M (itself

dependent on a parameter vector of length P denoted by

b
j
1, . . . ,b

j
P

� �

), as perturbed by random effects, assumed to be

Gaussian. In mathematical terms:

Y
j
i~M t

j
i ,b

j
� �

zsjE
j
i "

j
i ð7Þ

where the E
j
i are independent reduced centered Gaussian random

variables and sjE
j
i is the standard deviation of the error. Statistical

analysis of the measurement error was performed and resulted in

the following expression (see the Results section)

E
j
i~

Y
j
i

� �a

, Yi§Vm

Va
m, YivVm

(

For a given animal j and parameter set bj, the likelihood L(bj) of
the observations is defined as the probability of observing

y
j
1, . . . ,y

j

I j

� �

under model M, parameter set bj and expression

(7), i.e. L bj
� �

~P y
j
1, . . . ,y

j

I j
Dbj

� �

. Considering that maximizing L

is equivalent to minimizing 2ln L, it leads to a weighted least

squares minimization problem with objective defined by

x2 bj
� �

~

X

Ij

i~1

y
j
i{M t

j
i ,b

j
� �

E
j
i

0

@

1

A

2

ð8Þ

Minimization was performed using the Matlab [53] function

lsqcurvefit (trust-region algorithm), except for the generalized

logistic model, for which the function fminsearch (Nelder-Mead

algorithm) was employed (see supporting text S1 for details on the

numerical procedures). The resulting best-fit parameter vector was

denoted b̂bj . Standard errors (se) of the maximum likelihood

estimator, from which confidence intervals can be derived, were

used to quantify the reliability of the parameters estimated. These

were computed from an a posteriori estimate of s2, denoted by

NMSE, and the weighted jacobian matrix of the model for animal

j, denoted by Jj, both defined by

NMSEj
~

1

I j{P
x2 b̂bj
� �

, J j
~

1

E
j
i

LM

Lbp
t
j
i ,b̂b

j
p

� �

 !

i,p

ð9Þ

From these expressions, normalized standard errors can be

approximated, in the context of nonlinear least squares regression,

by [54]

Covj~NMSEj J jTJ j
� �{1

, sej,2p ~ Covj
� �

p,p
,

nsep~
sep

b̂bp
|100

ð10Þ

Different initializations of the algorithm were systematically tested

to establish the practical identifiability of the models (see

supporting text S2).
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From the obtained b̂bj , we derived various indicators of the

goodness of fit. The Akaike Information Criterion (AIC) [55,56]

was used to compare models with different numbers of parameters

by penalizing those that use a greater number of parameters. It is

defined, up to an additive constant that does not depend on the

model, by

AICj
~I j log

x2 b̂bj
� �

I j

0

@

1

Az2K , ð11Þ

where K=P+1. Due to the limited number of data for a given

individual, we also considered a corrected version of the AIC,

termed AICc [55,56]:

AICcj~AICj
z

2K Kz1ð Þ

I j{K{1
ð12Þ

The Root Mean Squared Error (RMSE) is another classical

goodness of fit criterion that also penalizes the lack of parameter

parsimony in a model:

RMSE j
~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

Ij{P
x2 b̂bj
� �

r

ð13Þ

Yet another criterion is the coefficient of determination:

R2,j
~1{

PIj

i~1 y
j
i{M t

j
i ,b̂b

j
� �� �2

PIj

i~1 y
j
i{�yyj

� �2
ð14Þ

where �yyj is the time average of the data points. This metric

quantifies how much of the variability in the data is described by

the model M and how much the model is better at fitting the data

than the mere mean value.

Finally, we considered as an additional criterion of validity of a

fit the p-value obtained from the Kolmogorov-Smirnov statistical

test for normality of the weighted residuals, these being defined by

Res
j
i~

y
j
i{M t

j
i ,b̂b

j
� �

E
j
i

ð15Þ

Population approach (mixed-effect models). The proce-

dure we explained above considers all the animals within a group

to be independent. On the other hand, the mixed-effect approach

[57] consists of pooling all the animals together and estimating a

global distribution of the model parameters in the population.

More precisely, the individual parameter vectors (b1, . . . ,bJ ) are
assumed to be realizations of a random variable b (here taken to be

log-normally distributed). The statistical representation is then

formula (7) with b instead of bj, together with

lnb*N m,vð Þ

Two coefficients (the vector m of length p and the p6p matrix v)
represent the total population, instead of the J parameter sets in

the individual approach (J=20 for the lung data set and 34 for the

breast data). Combined with an appropriate description of the

error variance, a population likelihood of all the data pooled

together can be defined. Usually, no explicit formula can be

computed for its expression, making its maximization a more

difficult task. This is implemented in a software called Monolix [58],

which maximizes the likelihood using the stochastic approximation

expectation maximization (SAEM) algorithm [59]. Consistently

with our results on the measurement error (see the Results section),

the error model (i.e. the expression of E in (7)) was taken to be

proportional to a fixed power a=0.84 of the volume, although with

a threshold volume Vm=0 (because Monolix does not permit the

setting of a threshold volume). From this estimation process, a

population AICc, denoted AICcpop, was defined, using the same

formula as (12) and the AIC returned by Monolix.

Model prediction methods
For a given animal j and model M, the general setting

considered for prediction was to estimate the model’s parameter

set using only the first n data points and to use these to predict at a

depth d, i.e. to predict the value at time tjnzd, provided that a

measurement exists at this day (in which case it will be denoted by

y
j
n,d ). The resulting best-fit parameter set will be denoted b̂bjn.

Prediction metrics and success score. Goodness of a

prediction was quantified using the normalized error between a

model prediction and the data point under consideration, defined by

NE
j
n,d~

y
j
n,d{M tjnzd,b̂bjn

� �

sE
j
n,d

	

	

	

	

	

	

	

	

	

	

	

	

ð16Þ

Prediction of a single time point was considered acceptable when the

normalized error was lower than three, corresponding to a model

prediction within three standard deviations of the measurement

error of the data and generating success results in good agreement

with direct visual examinations (see Figures 3, S2 and S3). This

allowed us to define a prediction score at the level of the population

(denoted by Sn,d ), by the proportion of successful predictions among

all animals having measurements both at times tn and tnzd (whose

set will be denoted by J n,d and total number by Jn,d ). This metric is

formally defined by

Sn,d~

# NE
j
n,dv3, j[J n,d

n o

Jn,d
ð17Þ

where # E denotes the number of elements of the set E. We then

derived a global score for each model by averaging over all possible

values of n and d. When the total number of animals over which the

success score is computed is small, this could bias the success score

(since for instance only one successfully predicted animal could give a

success score of 100% if there is only one animal to predict). To

lower this bias, we considered a minimal threshold for Jn,d ,

arbitrarily taken to 5 animals. The overall mean success is then

defined by

Overallmean success~ mean
n,d Jn,d§5

	

	

Sn,d|100 ð18Þ

When assessing prediction over the total future curve, thus involving

several time points, we considered the median of the normalized

errors:

NE
j
n,glob~median NE

j
n,d ,1ƒdƒI j{n

� �

ð19Þ
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together with its associated prediction score Sn,glob and population

average NEn,glob.

The previous metrics being dependent on our underlying

measurement error, we also considered the relative error and its

population average, defined by

RE
j
n,d~

y
j
n,d{M tjnzd,b̂bjn

� �

y
j
n,d

	

	

	

	

	

	

	

	

	

	

	

	

, REn,d~
1

Jn,d

X

j[J n,d

RE
j
n,d ð20Þ

A priori information. For each dataset and model, the total

population was randomly and equally divided into two groups.

Individual fits for the first group (the ‘‘learning’’ group) were

performed using all the available data, generating mean values

b1, . . . ,bP
� �

and standard deviations v1, . . . ,vPð Þ of a parameter

vector b1, . . . ,bPð Þ, within the population. This information was

then used when estimating the individual parameter set of a given

animal from the second group (the ‘‘forecast group’’), based only

on a subset of n data points, by penalizing the sum of squared

residuals in the following way

x2A bj
� �

~

X

n

i~1

Res
j
i

� �2

z

X

P

p~1

bjp{bp

vp

 !2

ð21Þ

with Res
j
i defined in (15). This objective replaced the one defined

in (8) for estimation of the parameters. The procedure was

repeated 100 times (i.e. 100 random assignments of the total

population between 10 ‘‘learning’’ animals and 10 ‘‘forecast’’

animals). This number was sufficiently large to have reached

convergence in the law of large numbers (no significant difference

between 20 and 100 replicates, p.0.2 by Student’s t-test). Among

these simulation replicates, we only considered as significant the

cases where Jn,d§5, for the same reasons as explained earlier. For

the lung tumor data set, this did not lead to any exclusion for most

of the situations, the only exceptions being for S3,5 and S3,6 where
only 89/100 and 72/100 replicates were eligible, respectively. In

contrast, for the breast tumor data and depths 1 to 10, respectively

99, 16, 76, 3, 100, 3, 100, 0, 34 and 77 replicates were eligible.

Therefore, results of S3,2, S3,4, S3,6, S3,8 and S3,9 were considered
non-significant and were not reported.

Results

Measurement error
The following method was used for analysis of the error made

when measuring tumor volume with calipers. One volume per

time point per cage was measured twice within a few minutes

interval. This gave a total of 133 measurements over a wide range

of volumes (20.7–1429 mm3). These were subsequently analyzed

by considering the following statistical representation

Y~yTzsE"

where Y is a random variable whose realizations are the measured

volumes, yT is the true volume, e is a reduced centered Gaussian

random variable, and sE is the error standard deviation. The two

measures, termed y1 and y2, were, as expected, strongly correlated
(Figure 1A, r~0:98,pv0:001). Statistical analysis rejected vari-

ance independent of volume, i.e. constant E (p~0:004, x2 test) and
a proportional error model (E= Y) was found only weakly

significant (p~0:083, x2 test, see Figure 1B). We therefore

introduced a dedicated error model, defined by

E~
Y a, Y§Vm

Va
m, YvVm




ð22Þ

Two main rationales guided this formulation. First, we argued that

error should be larger when volume is larger, a fact that is

corroborated by larger error bars for larger volumes on growth

data reported in the literature (see Figure 4 in [2] for an example

among many others). This was also supported by several

publications using a proportional error model when fitting growth

data (such as [42,60]). Since here such a description of the error

was only weakly significant, we added a power to account for

lower-than-proportional uncertainty in large measurements. Sec-

ond, based on our own practical experience of measuring tumor

volumes with calipers, for very small tumors, the measurement

error should stop being a decreasing function of the volume

because of detectability limits. This motivated the introduction of

the threshold Vm. After exploration of several values of Vm and a,

we found a~0:84, Vm~83 mm3 to be able to accurately describe

dispersion of the error in our data (p~0:196, x2 test, see

Figure 1C). This yielded an empirical value of ŝs~0:21:

Figure 1. Volume measurement error. A. First measured volume y1 against second one y2. Also plotted is the regression line (correlation
coefficient R=0.98, slope of the regression = 0.96). B. Error y1{ym against approximation of the volume given by the average of the two measurement

ym~
y1zy2

2
. The x2 test rejected Gaussian distribution of constant variance (p~0:004) C. Histogram of the normalized error

y1{ym

Em

applying the error

model given by Em~
yam, ym§Vm

Va
m, ymvVm




with a=0.84 and Vm=83 mm3. It shows Gaussian distribution (x2 test not rejected, p=0.196) with standard

deviation ŝs~0:21.
doi:10.1371/journal.pcbi.1003800.g001
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We did not dispose of double measurements for the breast

tumor data and the error analysis was performed using the lung

tumor data set only. However, the same error model was applied

to the breast tumor data, as both relied upon the same

measurement technique.

This result allowed quantification of the measurement error

inherent to our data and was an important step in the assessment

of each model’s descriptive power.

Descriptive power
We tested all the models for their descriptive power and

quantified their respective goodness of fit, according to various

criteria. Two distinct estimation procedures were employed. The

first fitted each animal’s growth curve individually (minimization

of weighted least squares, with weights defined from the error

model of the previous section, see Material and Methods). The

second method used a population approach and fitted all the

growth curves together. Results are reported in Figure 2 and

Tables 1 and 2. Parameter values resulting from the fits are

reported in Tables 3 and 4.

Figure 2A depicts the representative fit of a given animal’s

growth curve for each data set using the individual approach.

From visual examination, the exponential 1 (1), logistic (2) and

exponential-linear (1) models did not well explain lung tumor

growth and the exponential 1 (1) and logistic (2) models did not

satisfactorily fit the breast tumor growth data. The other models

seemed able to describe tumor growth in a reasonably accurate

fashion.

These results were further confirmed by global quantifications

over the total population, such as by residuals analysis (Figure 2C)

and global metrics reported in Tables 1 and 2. When considering

goodness-of-fit only, i.e. looking at the minimal least squared

errors possibly reached by a model to fit the data (metric
1

I
x2 in

Tables 1 and 2), the generalized logistic model (3) exhibited the

best results for both data sets (first column in Tables 1 and 2). This

indicated a high structural flexibility that allowed this model to

adapt to each growth curve and provided accurate fits. On the

other hand, the exponential 1 (1) and logistic (2) models clearly

exhibited poor fits to the data, a result confirmed by almost all the

metrics (with the exception of the AICc).
Influence of the goodness-of-fit metric. Being able to

closely match the data is not the only relevant criterion to quantify

the descriptive power of a model since parameter parsimony of the

model should also be taken into account. Other metrics were

employed that balanced pure goodness-of-fit and the number of

parameters (see Materials and Methods for their definitions).

Among them, AICc exhibited the strongest penalization for a large

number of parameters. However, this metric was in multiple

instances in disagreement with the other metrics dealing with

parsimony. For this reason, we also reported the values of AIC.
These were found globally in accordance with the RMSE. The

Figure 2. Descriptive power of the models for lung and breast tumor data. A. Representative examples of all growth models fitting the
same growth curve (animal 10 for lung, animal 14 for breast). Error bars correspond to the standard deviation of the a priori estimate of measurement
error. In the lung setting, curves of the Gompertz, power law, dynamic CC and von Bertalanffy models are visually indistinguishable. B. Corresponding
relative growth rate curves. Curves for von Bertalanffy and power law are identical in the lung setting. C. Residuals distributions, in ascending order of
mean RMSE (13) over all animals. Residuals (see formula (15) for their definition) include fits over all the animals and all the time points.
Exp1= exponential 1, Exp-L = exponential-linear, Exp V0=exponential V0, Log = logistic, GLog=generalized logistic, PL =power law, Gomp=Gom-
pertz, VonBert = von Bertalanffy, DynCC=dynamic CC.
doi:10.1371/journal.pcbi.1003800.g002
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AICcpop gave a weaker importance to the number of parameters,

due to the large number of data points in the setting of the

population approach, since all the animals were pooled together.

For the same reason, values of AICcpop were almost identical to

values of AICpop and only the former were reported. Other

structural and numerical differences (for instance, the individual

approach used a deterministic optimizer while the population

approach was based on a stochastic algorithm) also explained the

discrepancies between the two approaches. When comparing the

results generated by the two approaches, better individual fits were

obtained using the individual approach (see Tables S2). Indeed,

the population approach is better designed for settings where the

number of data points is too low to individually estimate the

parameters, which was not our case.

Taking all these considerations into account, we deemed the

RMSE metric to be a good compromise and used this criterion for

ranking the models in Tables 1 and 2.

Descriptive power and identifiability of the models for

each data set. For the lung data, five models (generalized

logistic (3), Gompertz (4), power law (6), dynamic CC (5) and von

Bertalanffy (6)) were found to have similar RMSE (Table 1),

suggesting an identical descriptive power among them. However,

having one less parameter, the Gompertz and power law models

had smaller AIC (and much smaller AICc) and should thus be

preferred for parsimonious description of subcutaneous tumor

growth of LLC cells. Having an additional degree of freedom

translated into poor identifiability of the parameters for the

generalized logistic (3), dynamic CC (5) and von Bertalanffy (6)

models, as indicated by high standard errors on the parameter

estimates (last column of Table 3) and low robustness of these

estimates with regard to the initialization of the parameters (see the

study of practical identifiability of the models in supplementary

text S2 and Table S3). The Gompertz model (4) was also

supported by the observation that the median value of n estimated

by the generalized logistic model was close to zero.

For the breast data, superior fitting power was obtained by the

exponential-linear model (1), for all but one of the metrics

considered (R2, see Table 2). For all the animals, the fits were in

the linear phase of the model indicating linear tumor growth

dynamics in the range of volumes observed. The Gompertz (4),

generalized logistic (3) and power law (6) models still had high

descriptive power, with mean RMSE and AIC similar to the

exponential-linear model (Table 2). Again, as a consequence of

their larger number of parameters, the dynamic CC (5), von

Bertalanffy (6) and generalized logistic (3) models exhibited very

large standard errors of the parameter estimates as well as large

inter-animal variability (Table 3). Consequently, moderate confi-

dence should be attributed to the specific values of the parameters

estimated by the fits, although this did not affect their descriptive

power.

As a general result for both data sets, all the models with two

parameters were found to be identifiable (Tables 2 and 3). This

was confirmed by a study of practical identifiability performed by

systematically varying the initial condition of the minimization

algorithm (see supporting text S2 and Table S3). For the theories

that were able to fit (power law (6) and Gompertz (4) models for

the lung tumor data and additionally the exponential-linear model

(1) for the breast tumor data), the values of the parameters and

their coefficient of variability provided a fairly good characteriza-

tion of the tumor growth curves dynamics and inter-animal

Table 3. Parameter values estimated from the fits: Lung data.

Model Par. Unit Median value (CV) Mean normalized std error (CV)

Power law a [mm3(1-c)
? day21] 0.921 (38.9) 11.9 (48.7)

c - 0.788 (9.41) 4 (53.4)

Gompertz a [day21] 0.743 (25.3) 6.02 (51.3)

b [day21] 0.0792 (42.4) 13.7 (65.4)

Exponential-linear a0 [day21] 0.49 (19.3) 3.08 (41.5)

a1 [mm3
? day21] 115.6 (22.6) 15.7 (40.7)

Dynamic CC a [day21] 0.399 (106) 447 (89.8)

b [mm22
? day21] 2.66 (241) 395 (176)

K0 [mm3] 2.6 (322) 6.5e+04 (345)

Von Bertalanffy a [mm3(1-c)
? day21] 7.72 (112) 1.43e+04 (155)

c - 0.947 (13.5) 40.9 (73)

b [day21] 6.75 (118) 2.98e+07 (222)

Generalized logistic a [day21] 2555 (148) 2.36e+05 (137)

K [mm3] 4378 (307) 165 (220)

n - 0.00014(199) 2.36e+05 (137)

Exponential V0 V0 [mm3] 13.2 (47.9) 28.9 (55)

a [day21] 0.257 (15.4) 7.49 (48.3)

Logistic a [day21] 0.502 (17.5) 3.03 (48.9)

K [mm3] 1297 (23.1) 17.2 (43.8)

Exponential 1 a [day21] 0.399 (13.8) 2.87 (24.5)

Shown are the median values within the population and in parenthesis the coefficient of variation (CV, expressed in percent and defined as the standard deviation
within the population divided by mean and multiplied by 100) that quantifies inter-animal variability. Last column represents the normalized standard errors (nse) of the
maximum likelihood estimator, defined in (11).
doi:10.1371/journal.pcbi.1003800.t003
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variability. In particular, the power c of the power law model

identified in the lung tumor data set seemed to accurately

represent the growth of the LLC experimental model (low

standard errors and coefficient of variation). Results of inter-

animal variability suggested a larger heterogeneity of growth

curves in the breast tumor data than in the lung tumor data set,

which could be explained by the different growth locations

(orthotopic versus ectopic).

Taken together, our results show that, despite the complexity of

internal cell populations and tissue organization, at the macro-

scopic scale tumor growth exhibits relatively simple dynamics that

can be captured through mathematical models. Models with three

parameters, and more specifically the generalized logistic model

(3), were found highly descriptive but not identifiable. For

description of subcutaneous in vivo tumor growth of LLC cells,

the Gompertz (4) and power law (6) models were found to exhibit

the best compromise between number of parameters and

descriptive power. Orthotopic growth of LM2-4LUC+ cells showed

a clear linear trend in the range of observed volumes, well

captured by the exponential-linear (1), power law (6) and

Gompertz (4) models.

Forecasting tumor growth: Individual curves
The two models that were shown unable to describe our data in

the previous section, namely the exponential 1 (1) and logistic (3)

models, were excluded from further analysis. The remaining ones

were assessed for their predictive power. The challenge considered

was to predict future growth based on parameter estimation

performed on a subset of the data containing only n data points

(with n,Ij for a given j). We refer to the Materials and Methods

section for the definitions of prediction metrics and success

scores.

Models’ predictive power for n=5. The initial scenario

considered the prediction of future growth based on the first five

data points.

We first describe the results for the lung data set. Figure 3

presents a representative example of predictions in this setting for a

given animal of the lung tumor data set (mouse 2, see Figure S2A

for specific predictions for each of the animals using the Gompertz

model (4)). The success criterion that we defined in the Materials

and Methods was found to be in agreement with direct visual

examination. According to this metric, the power law (6), dynamic

CC (5) and von Bertalanffy (6) models seemed able to accurately

predict the global future growth curve while the exponential V0 (1),

exponential-linear (1), Gompertz (4) and generalized logistic (3)

models, although passing close to the next data point, were less

accurate for prediction of the remainder of the data.

Quantifications of the goodness of the prediction on the total

population, reported in Table 5 (see the metric S5,glob) showed that

the prediction success depended on the mouse under consider-

ation. Despite the low predictive power of the curve of Figure 3,

the Gompertz model (together with the von Bertalanffy model),

had the best global score S5,glob, predicting 9/20 mice. A more

detailed examination of mice for when the Gompertz model (4)

failed (Figure S2.A), indicated that most of time the model

interpreted too strongly an initial slowdown. This resulted in large

underestimation of future data points (see mice 3, 4, 5 and 13 in

Figure S2.A). The same predictive pattern and almost identical

predictive curves were observed for the von Bertalanffy (6),

dynamic CC (5) and power law (6) models. On the other hand,

Table 4. Parameter values estimated from the fits: Breast data.

Model Par. Unit Median value (CV) Mean normalized std error (CV)

Power law a [mm3(1-c)
? day21] 1.32 (74.1) 31.2 (48.6)

c - 0.58 (23) 12.1 (62.2)

Gompertz a [day21] 0.56 (18.4) 7.52 (43)

b [day21] 0.0719 (26.4) 12.5 (65.5)

Exponential-linear a0 [day21] 0.31 (16.8) 6.22 (65.9)

a1 [mm3
? day21] 67.8 (33.2) 12.9 (45.4)

Dynamic CC a [day21] 2.63 (81.3) 597 (339)

b [mm22
? day21] 0.829 (399) 1.33e+03 (571)

K0 [mm3] 12.7 (525) 6.48e+03 (361)

Von Bertalanffy a [mm3(1-c)
? day21] 2.32 (113) 1.17e+04 (181)

c - 0.918 (22.5) 128 (65.5)

b [day21] 0.808 (132) 1.48e+08 (300)

Generalized logistic a [day21] 2753 (131) 7.41e+05 (160)

K [mm3] 1964 (557) 232 (433)

n - 2.68e-05 (166) 7.41e+05 (160)

Exponential V0 V0 [mm3] 68.2 (57.2) 34.5 (50.8)

a [day21] 0.0846 (27.7) 13.7 (44.1)

Logistic a [day21] 0.305 (10.2) 3.17 (34.9)

K [mm3] 1221 (31.4) 11.8 (73.8)

Exponential 1 a [day21] 0.223 (5.9) 3.72 (21.3)

Shown are the median values within the population and in parenthesis the coefficient of variation (CV, expressed in percent and defined as the standard deviation
within the population divided by mean and multiplied by 100) that quantifies inter-animal variability. Last column represents the normalized standard errors (nse) of the
maximum likelihood estimator, defined in (11).
doi:10.1371/journal.pcbi.1003800.t004
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when using the generalized logistic model (3), some growth curves

showed a different predictive pattern (see Figure S2.B). Due to the

high flexibility already observed in the descriptive study, this

model often saturated early to fit the first five data points, resulting

in poor future predictions.

Study of short term predictability, for instance at a depth of two

days (score S5,2, Table 5), showed that no more than an average

relative precision of 19% should be expected, for all predictions

taken together.

Substantial differences and overall better predictability were

found for the same setting (n=5) for the breast tumor data. For

instance, the average relative precision at a depth of two days was

13%, using the exponential-linear model. This improved predict-

ability was also expressed by a higher S5,glob, although caution

should be employed in this comparison since the number of points

predicted in S5,glob was lower in the breast tumor setting than in

the lung tumor setting (see Figures S2A and S3). Predictions of all

animals using the exponential-linear model were reported in

Figure S3 and showed that the linear dynamics exhibited by the

breast tumor growth curves could explain this better predictability.

Variable number of data points used for prediction and

prediction depth. For evaluation of the global predictive

properties of the models, we investigated varying the number n
of data points used for estimation of the parameters (respectively

3ƒnƒ9 and 3ƒnƒ6 for the lung and breast data sets) and the

prediction depth d (respectively 1ƒdƒ7 and 1ƒdƒ12). Results

are reported in Figure 4 and Tables 5 and 6.

In contrast with its high descriptive power (Tables 1 and 2), the

generalized logistic model (3) was found to have the lowest overall

mean success rate with all (n,d) settings pooled together for both

data sets (Tables 5 and 6). In this case, high descriptive power and

low predictive ability were linked together. Indeed, the generalized

logistic model (3) suffered from its flexibility when put in a

predictive perspective. As expressed before for the case n=5, the

model fitted very well the initial parts of the curves, but this

resulted in premature saturation of the tumor growth and

eventually low prediction scores (see Figure S2.B). On the other

hand, high success scores were obtained when the model was fed

with a lot of data (n large, see Figure 4.A). This result emphasizes

that a model’s high descriptive abilities might not always translate

into high predictive power.

We now focus on specific results of predictive patterns for each

data set. For the lung tumors, according to their predictive patterns

in the (n,d) plane, the four models von Bertalanffy (6), Gompertz (4),

dynamic CC (5) and power law (6) could be grouped together, and

only one of them is presented in Figure 4A (the von Bertalanffy

model (6), see Figure S4.A for the predictive patterns of the other

models). Interestingly, what occurred with the generalized logistic

model (lower predictive power associated to high flexibility) was not

observed for the two other three-parameter models (von Bertalanffy

(6) and dynamic CC (5)). This indicates a rigidity of these models

similar to the power law (6) and Gompertz (4) models, despite an

additional degree of freedom. Taken together, these four models

had moderate predictive power, with mean overall prediction scores

lower than 45%. The exponential V0 (1) and exponential-linear (1)

models were found to have even lower predictive power (Table 5),

suggesting that the exponential initial phase of the growth in this

data set, might not be predictive of future growth. In most of the

situations, the prediction success was found to increase with n and

decrease with d (see the von Bertalanffy model (6) in Figure 4.A).

Whenever this did not occur (such as in the exponential V0 (1)

predictive pattern of Figure 4.A) it was, for most of the cases, due to

the fact that the two sets of animals predicted in the two situations

were different. In other words, if Sn,dwSn’,d was observed with

nvn0, the animals in J n,d were usually different from the ones in

J n0,d (see Materials and Methods, Models prediction methods for

the definition of J n,d and see also Figure S2). This did not imply

that the same data points were less accurately predicted with n
larger. Surprisingly, this last case was nevertheless observed in some

rare settings. For instance, with mouse 19, the generalized logistic

Figure 3. Examples of predictive power. Representative examples of the forecast performances of the models for the lung data set (mouse
number 2). Five data points were used to estimate the animal parameters and predict future growth. Prediction success of the models are reported
for the next day data point (OK1) or global future curve (OKglob), based on the criterion of a normalized error smaller than 3 (meaning that the model
prediction is within 3 standard deviations of the measurement error) for OK1 and the median of this metric over the future curve for OKglob (see
Materials and Methods for details).
doi:10.1371/journal.pcbi.1003800.g003
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model successfully predicted the volumes at days 17 and 18 using

four data points (corresponding to n,dð Þ~ 4,3ð Þ and (4,4)), but failed
to do so with five data points (corresponding to n,dð Þ~ 5,2ð Þ and
(5,3)), see Figure S4.

For the breast tumor data, predictability was found to be

higher than in the lung tumor data, with an excellent overall

mean prediction success of the exponential-linear model (1)

(83.8%, see Table 6). Consequently, this model ranked 20

percentage points higher than the second best model (dynamic

CC (5)). The average score of the exponential-linear model (1)

resulted from a wide spread predictability in the n,dð Þ plane

(Figure 4.B), with high success rates even at the far future

prediction depth with a small number of data points (for instance,

all five of the animals having a data point at t3z12 were

successfully predicted, S3,12=100%). While the exponential V0

(1) showed low predictive power, the von Bertalanffy (6),

Gompertz (4), power law (6) and dynamic CC (5) models were

similarly predictive, having relatively good overall mean success

rates (ranging from 58.8% to 63.3%, see Table 6).

As a general result, based on the distribution of relative

prediction errors (Figure 4, bottom) all the models had a general

trend for underestimation of predictions.

Tumor growth was more predictable in late

phases. Different tumor growth regimens exist within the same

growth curve and, in a clinically relevant setting, diagnosis might

occur when the tumor is already large. To explore this further, we

tested the predictability of the next day data point (or the second

next day when using the breast tumor data, because in this case

measurements were performed every two days) in two opposite

situations: either using the first three available data points (scores

S3,1 and S3,2 and relative errors RE3,1 and RE3,2) or using the first

three of the last four measurements, as quantified by similar

metrics denoted S
f
3,1, S

f
3,2, RE

f
3,1 and RE

f
3,2. Volume ranges

predicted were 3036128 mm3 and 9096273 mm3 in the early

phase for the lung tumor and breast tumor data respectively,

versus 12456254 mm3 and 13836211 mm3 in the late phases. In

this last setting, in order not to artificially inject the information of

the first volume being 1 mm3 at day 0, we modified the von

Bertalanffy, dynamic CC, generalized logistic, Gompertz, and

power law models by fixing their initial times and volumes to the

previous measurement (the fifth from the end). Interestingly, the

results obtained were substantially different between the two

growth phases. Better predictions were obtained when predicting

the end of the curve, reaching excellent scores of 12–15/16

animals successfully predicted in the case of the LLC data (and

average relative errors smaller or equal than 15%, see Table 5).

Similar improvements were observed for the breast tumor data,

with a 63% increase from S3,2 to S
f
3,2 for the power law model and

up to an 87% increase for the exponential V0 (see the bracketed

numbers in Tables 5 and 6). Hence, the late phase of tumor

growth appeared more predictable, possibly because of smaller

curvatures of the growth curves that led to better identifiability of

the models when using a limited number of data points for

estimation of the parameters.

Overall, our results showed equivalent predictive power of the

von Bertalanffy (6), dynamic CC (5), power law (6), and Gompertz

(4) models for prediction of future tumor growth curves of

subcutaneous LLC cells, with substantial prediction rates ($70%)

requiring at least four data points and at a depth no larger than

one day. The exponential-linear model was better suited for the

orthotopic xenograft breast tumor data, with success rates larger

than 70% in most of the n,dð Þ cases, including excellent scores at

greater depths.
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Figure 4. Prediction depth and number of data points. Predictive power of some representative models depending on the number of data
points used for estimation of the parameters (n) and the prediction depth in the future (d). Top: at position (n,d) the color represents the percentage
of successfully predicted animals when using n data points and forecasting the time point tnzd , as quantified by the score Sn,d (multiplied by 100),
defined in (17). This proportion only includes animals having measurements at these two time points, thus values at different row d on the same
column n or reverse might represent predictions in different animals. White squares correspond to situations where this number was too low (,5)
and thus success score, considered not significant, was not reported. Bottom: distribution of the relative error of prediction (20), all animals and (n,d)
pooled together. Models were ranked in ascending order of overall mean success score reported in Tables 5 and 6. A. Lung tumor data. B. Breast
tumor data.
doi:10.1371/journal.pcbi.1003800.g004
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Forecasting tumor growth: A priori information
When relatively fewer data points were used, for example with

only three, individual predictions based on individual fits were

shown to be globally limited for the lung tumor data, especially

over a large time frame (Figure 4.A, Table 5). However, this

situation is likely to be the clinically relevant since few clinical

examinations are performed before the beginning of therapy. On

the other hand, large databases might be available from previous

examinations of other patients and this information could be useful

to predict future tumor growth in a particular patient. In a

preclinical setting of drug investigation, tumor growth curves of

animals from a control group could be available and usable when

inferring information on the individual time course of one

particular treated animal.

An interesting statistical method that could potentiate this a
priori information consists in learning the population distribution

of the model parameters from a given database and to combine it

with the individual parameter estimation from the available

restricted data points on a given animal. We investigated this

method in order to determine if it could improve the predictive

performances of the models. Each dataset was randomly divided

into two groups. One was used to learn the parameter distribution

(based on the full time curves), while the other was dedicated to

predictions (limited number of data points). For a given animal of

this last group, no information from his growth curve was used to

estimate the a priori distributions. The full procedure was

replicated 100 times to ensure statistical significance, resulting in

respectively 2000 and 3400 fits performed for each model. We

refer to the Materials and Methods for more technical details.

Results are reported in Figure 5.

Predictions obtained using this technique were significantly

improved for the lung tumors, going from an average success score

of 14.9%68.35% to 62.7%611.9% (means 6 standard devia-

tions) for prediction of the total future curve with the power law

model (6) (see Figure 5.A). Prediction success rates were improved

even at large future depths. For instance, predictions 7 days in the

future reached an average success rate of 50.6%, power law model

(6), see Figure 5.C, while their success rate was very low with

direct individual prediction (6.07%). Prediction successes reached

90% (power law model (6)) at the closer horizon of the next day

data point (S3,1), while success rate was only 57.1% using an

individual approach (Figure 5.B). Other small horizon depths also

reached excellent prediction scores (Figure 5.C). The largest

improvement of success rates for the power law model was

observed for S3,3 that went from an average score of 6.86% (with

standard deviation 7.47) to an average score of 75.2% (with

standard deviation 12.9), representing more than an 11-fold

increase. We report in Figure S5 the details of predictions with and

without a priori information for all the animals within a given

forecast group from the lung tumor data set (power law model (6)).

It can be appreciated how additional information on the

parameter distribution in the estimation procedure significantly

improved global prediction of the tumor growth curves. The

impact of the addition of the a priori information was however less

important when using more data points for the estimation (results

not shown).

For the breast data, due to its already high prediction score

without adjunction of a priori information, the exponential-linear

model did not benefit from the method. For the next day data

point of the breast tumor growth curves, predictability was already

almost maximal without adjunction of a priori information and

thus no important impact was observed.

For both data sets, not all the models equally benefited from the

addition of a priori information (Figure 5). Models having the
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lowest parameter inter-animal variability, such as the power law

(6), Gompertz (4), exponential-linear (1), and exponential V0 (1)

models (Table 3), which also had better practical identifiability

(Tables 2 and S3), exhibited great benefit. In contrast, the models

with three parameters showed only modest benefit or even

decrease of their success rates (see S3,glob and S3,1 for the von

Bertalanffy model (6) on the breast tumor data in Figure 5.B), with

the exception of the generalized logistic model (3) on the breast

Figure 5. A priori information and improvement of prediction success rates. Predictions were considered when randomly dividing the
animals between two equal groups, one used for learning the parameters distribution and the other for prediction, using n=3 data points. Success
rates are reported as mean 6 standard deviation over 100 random partitions into two groups. A. Prediction of global future curve, quantified by the
score S3,glob (see Materials and Methods, Models predictions methods for its definition). B. Benefit of the method for prediction of the next day, using
three data points (score S3,1). C. Prediction improvement at various prediction depths, using the power law model (lung data) or the exponential-
linear model (breast data). Due to lack of animals to be predicted for some of the random assignments, results of depths 2, 4, 6 and 9 for the breast
data were not considered significant and were not reported (see Materials and Methods). * = p,0.05, ** = p,0.001, Student’s t-test.
doi:10.1371/journal.pcbi.1003800.g005
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tumor data. In these cases, adjunction of a priori information

translated into poor enhancement of predictive power because the

mean population parameters did not properly capture the average

behavior within the population and were therefore not very

informative. On the other hand, models such as the power law

model (6) on the lung tumor data set, whose coefficient c
characterized particularly well the growth pattern (Table 3), had a

more informative a priori distribution that translated into the

highest improvement of predictive power. For the generalized

logistic model (3) on the breast data, the mean parameters were

able to inform the linear regimen of the growth phase and thus

protected the model from too early saturation.

These results demonstrated that addition of a priori information

in the fit procedure considerably improved the forecast perfor-

mances of the models, in particular when using a small number of

data points and low-parameterized models for data with low

predictability, such as the power law model for the lung tumor

data set.

Discussion

Error model
In our analysis, constant variance of the error was clearly

rejected and although a proportional error (used by others [33])

was not strictly rejected by statistical analysis (p=0.08), a more

adequate error model to our data was developed. However, using

a proportional or even constant error model did not significantly

affect conclusions as to the descriptive power of the models,

identifying the same models (Tables 1, 2) as most adequate for

description of tumor growth (results not shown). Nevertheless, the

use of an appropriate error model could have important

implications in the quantitative assessment of a model’s descriptive

performance and rejection of inaccurate tumor growth theories.

For instance, using the same human tumor growth data, Bajzer et

al. [60] found the assumption of proportional error variance to

favor the Gompertz model for descriptive ability, whereas Vaidya

and Alexandro [30] had observed the logistic model to be favored,

under a constant-variance assumption. The error model used

might additionally have important implications on predictions.

Although detailed analysis of the impact of the error model on

prediction power is beyond the scope of the present study, we

performed a prospective study of predictive properties when using

a constant error model on the lung tumor data and found changes

in the ranking of the models (results not shown).

Theories of growth
As expected, our results confirmed previous observations [9–

11,13,29,32] that tumor growth is not continuously exponential

(constant doubling time) in the range of the tumor volumes

studied, ruling out the prospect of a constant proliferating fraction.

A less expected finding was that the logistic model (linear decay in

volume of the relative growth rate) was also unable to describe our

data, although similar results have been observed in other

experimental systems [31,33]. On the other hand, the Gompertz

and power law models could give an accurate and identifiable

description of the growth slowdown, for both data sets. More

elaborate models such as the generalized logistic, von Bertalanffy,

and dynamic CC models could describe them as well. However,

their parameters were found not to be identifiable from only tumor

growth curves, in the ranges of the observed volumes. Additional

data could improve identifiability, such as related to later growth

and saturation details. It should be noted in this case that the

dynamic CC model was not designed with the intent to quantify

tumor growth, but rather to describe the effects of anti-angiogenic

agents on global tumor dynamics. Because the model carries

angiogenic parameters that are not directly measureable, or even

inferable, from the experimental systems we used, it stands to

reason that they would not be easily identifiable from the data.

Kinetics under the influence of antiangiogenic therapy might thus

provide useful additional information that could render this model

identifiable. For the breast tumor experimental system, the

slowdown was characterized by linear dynamics and was most

accurately fitted by the exponential-linear model. Observed was

exponential growth from the number of injected cells (during the

unobserved phase) that switched smoothly to a linear phase

(exponential-linear model). It should be noted that in the breast

tumor data set, no data were available during the initiation phase

(below 200 mm3) and only the linear part of a putative

exponential-linear growth was observed. Explorations of the

kinetics of growth during the initial phase (at volumes below the

mm3) are needed for further clarification.

Despite structural similarities, important differences were noted

in the parameter estimates between the two experimental models,

in agreement with other studies emphasizing differences between

ectopic and orthotopic growth [61,62]. Our results and method-

ology may help to identify the impact on kinetics of the site of

implantation, although explicit comparisons could not be made

here due to the differences in the cell lines used.

The Gompertz model (exponential decay in time of the relative

growth rate) was able to fit both data sets accurately, consistently

with the literature [13,15,29,31,33]. One of the main criticisms of

the Gompertz model is that the relative tumor growth rate

becomes arbitrarily large (or equivalently, the tumor doubling time

gets arbitrarily small) for small tumor volumes. Without invoking a

threshold this becomes biologically unrealistic. This consideration

led investigators [13,63] to introduce the Gomp-exp model that

consists in an initial exponential phase followed by Gompertzian

growth when the associated doubling time becomes realistic. This

approach could also be applied to any decreasing relative growth

rate model. We did not consider it in our analysis due to the

already large initial volume and the lack of data on the initiation

phase where the issue is most relevant.

The power law model was also able to describe the experimen-

tal data and appeared as a simple, robust, descriptive and

predictive mathematical model for murine tumor growth kinetics.

It suggests a general law of macroscopic in vivo tumor growth (in

the range of the volumes observed): only a subset of the tumor cells

proliferate and this subset is characterized by a constant, possibly

fractional, Hausdorff dimension. In our results, this dimension

(equal to 3c) was found to be significantly different from two or

three (p,0.05 by Student’s t-test) in 14/20 mice for the lung

tumor data set and 13/34 mice for the breast tumor data,

effectively suggesting a fractional dimension. A possible explana-

tion of this feature could come from the fractal nature of the tumor

vasculature [64,65], an argument supported by others who have

investigated the link between tumor dynamics and vascular

architecture [37]. More precisely, the branching nature of the

vascularization generates a fractal organization [37,64,65] that

could in turn produce a contact surface of fractional Hausdorff

dimension. Considering further that the fraction of proliferative

cells is proportional to this contact surface (for instance because

proliferative cells are limited to an area at fixed distance from a

blood vessel or capillary, due to diffusion limitations), this could

make the connection between fractality of the vasculature and

proliferative tissue. These considerations could therefore provide a

mechanistic explanation for the growth rate decay that naturally

happens when the dimension of the proliferative tissue is lower

than three. Our results were obtained using two particular
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experimental systems: an ectopic mouse syngeneic lung tumor and

an orthotopic human xenograft breast tumor model. Although

consistent with other studies that found the power law model

adequate for growth of a murine mammary cell line [38] or for

description of human mammography density distribution data [5],

these remain to be confirmed by human data. This model should

also be taken with caution when dealing with very small volumes

(at the scale of several cells for instance) for which the relative

growth rate becomes very large. Indeed, the interpretation of a

fractional dimension then fails, since the tumor tissue can no

longer be considered a continuous medium. In this instance, it

may be more appropriate to consider exponential growth in this

phase [37].

Prediction
Our results showed that a highly descriptive model (associated

to large flexibility) such as the generalized logistic model, might not

be useful for predictions, while well-adapted rigidity – as provided

by the exponential-linear model on the breast tumor data – could

lead to very good predictive power. Interestingly, our study

revealed that models having low identifiability (von Bertalanffy

and dynamic CC) could nevertheless exhibit good predictive

power. Indeed, over a limited time span, different parameter sets

for a given model could generate the same growth curves, which

would be equally predictive.

For the Gompertz model, predictive power might be improved

by using possible correlations between the two parameters of this

model, as reported by others [15,63,66–68] and suggested by our

own parameter estimates (R=0.99 for both data sets, results not

shown).

If a backward prediction is desired (for instance for the

identification of the inception time of the tumor), the use of

exponential growth might be more adapted for the initial, latency

phase, e.g. by employment of the Gomp-exp model [13,63].

Clinical and preclinical implications
Translating our results to the clinical setting raises the possibility

of forecasting solid tumor growth using simple macroscopic

models. Use of a priori information could then be a powerful

method and one might think of the population distribution of

parameters being learned from existing databases of previous

patient examinations. However, the very strong improvement of

prediction success rates that we obtained partly comes from the

important homogeneity of our growth data (in particular the LLC

data) that generated a narrow and very informative distribution of

some parameters (for instance parameter c of the power law

model), which in turn powerfully assisted the fitting procedure. In

more practical situations such as with patient data, more

heterogeneity of the growth data should be expected that could

alter the benefit of the method. For instance, in some situations,

growth could stop for arbitrarily long periods of time. These

dormancy phases challenge the universal applicability of a generic

growth law such as the Gompertz or power law [69]. Description

of such dormancy phenomena could be integrated using stochastic

models that would elaborate on the deterministic models reviewed

here, as was done by others [70] to describe breast cancer growth

data using the Gompertz model. Moreover, further information

than just tumor volume could be extracted from (functional)

imaging devices, feeding more complex mathematical models that

could help design more accurate in silico prediction tools [18,71].

Our analysis also has implications for the use of mathematical

models as valuable tools for helping preclinical anti-cancer

research. Such models might be used, for instance, to specifically

ascertain drug efficacy in a given animal, by estimating how

importantly the treated tumor deviates from its natural course,

based on a priori information learned from a control group.

Another application can be for rational design of dose and

scheduling of anti-cancerous drugs [22,72,73]. Although integra-

tion of therapy remains to be added (and validated) to models such

as the power law, more classical models (exponential-linear [39] or

dynamic CC [41]) have begun to predict cytotoxic or anti-

angiogenic effects of drugs on tumor growth. Our methods have

allowed precise quantification of their respective descriptive and

predictive powers, which, in combination with the models’

intrinsic biological foundations, could be of value when deciding

among such models which best captures the observed growth

behaviors in relevant preclinical settings.

Supporting Information

Figure S1 Data. Plots of the brute data sets from the lung and

breast experiments. A. All animals’ growth curves. B. Average

curves. C. Per group averages (lung and breast data resulted from

combinations of respectively two and three separate experiments).

G= group.

(TIF)

Figure S2 Examples of individual predictions: Lung

data. Prediction success of the model are reported for the next

day (OK1) or global future curve (OKglob), based on the criterion

of a normalized error smaller than 3 (meaning that the median

model prediction is within 3 standard deviations of the

measurement error) for OK1 and the median of this metric over

the future curve for OKglob. Future growth was predicted using 5

data points and the von Bertalanffy model.

(PDF)

Figure S3 Examples of individual predictions: Breast

data. Prediction success of the model are reported for the second

next day data point (OK2) or global future curve (OKglob), based

on the criterion of a normalized error smaller than 3 (meaning that

the median model prediction is within 3 standard deviations of the

measurement error) for OK2 and the median of this metric over

the future curve for OKglob. Future growth was predicted using 5

data points and the exponential-linear model.

(PDF)

Figure S4 Prediction. Top: Prediction success for models that

were not reported in Figure 4. Bottom: Example where prediction

was less successful when using n=5 data points than when using

n=4 data points, with the generalized logistic model.

(TIF)

Figure S5 Forecast improvement of the power law

model when using a priori information and the lung

data set. Fits were performed using the first three data points for

each animal. A priori information (learned on a different data set)

was added during the fit procedure for the predictions on the right.

(TIF)

Table S1 Initializations of the least squares minimiza-

tion algorithm. Also reported are bounds used in lsqcurvefit for
estimation of parameters of the power law, von Bertalanffy and

exponential-linear models.

(DOCX)

Table S2 Comparison of individual fits between the

individual and population approaches. Fits were performed

using either an individual estimation of the growth curves based on

weighted least-squares estimation or a population approach. In

both settings, the error model was proportional to the volume to

the power a=0.84. The only difference was that Monolix
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estimation did not allow for a setting with a threshold volume Vm,

which was thus taken to be 0. However, due to its low value

(Vm=83 mm3), it was not very active in the individual approach.

Reported are the mean (over the time points) weighted least

squares (i.e. the ones of the first column of Tables 1, 2 except with

Vm=0, i.e. the Monolix setting), for both approaches. More

precisely, if
1
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and maximal values. Note that due to the relatively large volumes

of the breast data, Vm was not active and the values of the

individual approach are exactly the ones of Table 2 in this case

(S2.B). Last column is the p-value of Student’s t-test for significant
differences between the individual and population approaches. A.

Lung data set. B. Breast data set.
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Table S3 Practical identifiability. Two identifiability scores

were reported. The fit score is the proportion of minimization

runs, among the 206 NP performed, for which the resulting

minimized objective converged to the same value as when starting

from the baseline value. The global parametric score is the

proportion of minimization runs that converged to the same

parameter vector, within a 10% relative error. When this last score

was lower than 100%, further analysis was conducted and the

same score was computed for each parameter of the model. We

also reported their median relative deviation to the base value, in

percent. Par. = Parameter. Dev. =Deviation.

(PDF)
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rameters.
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Text S2 Practical identifiability of the models.

(DOCX)
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