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Classical Model of Extrinsic Ferromagnetic
Resonance Linewidth in Ultrathin Films

Robert D. McMichael, Member, IEEE, and Pavol Krivosik

Abstract—This paper describes a classical version of the
two-magnon model of ferromagnetic resonance linewidth in
inhomogeneous magnetic thin films. The ferromagnetic resonance
line broadening due to inhomogeneity is described in terms of
film properties and the statistical properties of the inhomogeneity.
Analytical results for the case of ultrathin films in the limit of zero
damping are compared with numerical results computed with
finite damping.

Index Terms—Ferromagnetic resonance, linewidth, magnetiza-
tion dynamics.

I. INTRODUCTION

COUPLING between the magnetization and the thermal
bath in ferromagnets and ferrimagnets is responsible for

damping, the process that allows the magnetization to lose en-
ergy and approach equilibrium [1]–[9]. The same coupling is
also responsible for thermally driven fluctuations of the magne-
tization [3], [10]–[14]. Both damping and fluctuations are im-
portant for the behavior of magnetic devices, especially heads
and media used in magnetic information storage.

In the time domain, ferromagnetic resonance (FMR) appears
as a ringing of the magnetization [15], while in the frequency
domain, ferromagnetic resonance appears as a maximum in the
transverse susceptibility at a frequency matching the precession
frequency. The ferromagnetic resonance linewidth, which is the
width of this susceptibility peak, provides a convenient avenue
for measuring damping in magnetic materials, with the possible
caveat that it is not always clear how to identify the effects of
inhomogeneity of the sample in the measured linewidth. For ex-
ample, one might assume that the dynamics of the magnetiza-
tion are correctly described by the Landau–Lifshitz–Gilbert
(LLG) equations of motion

(1)

where m/(As) is the gyromag-
netic ratio, is an effective field that depends on the mag-
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netization, applied fields, and material parameters, and is the
LLG damping parameter.

In the typical case of weak damping when the magnetization
is close to its equilibrium direction, (1) describes damped pre-
cession of the magnetization around the equilibrium direction
at a frequency determined by [16]. As described in more
detail below, for special cases where the magnetization and ap-
plied field are parallel, the LLG equations of motion (1) lead to
a full width of the resonance

(2)

This expression is appropriate for an experiment where the spec-
trometer drives the magnetization at angular frequency and
the transverse susceptibility is measured as a function of applied
field. There are other possible phenomenological descriptions
of damping that lead to other expressions for the linewidth [1],
[16], but for some nominally uniform films, the linewidth is well
described by the LLG form of damping [17].

Regardless of the phenomenological description or physical
mechanism of damping, an increase in linewidth can be
expected as a consequence of sample inhomogeneity. The in-
homogeneity may arise from a wide variety of microstructural
origins including magnetocrystalline anisotropy in a poly-
crystalline sample, magnetostriction coupled with nonuniform
stresses, surface anisotropy with film thickness variations, and
step/edge anisotropy. Given that inhomogeneity exists to some
degree in all experimental samples, interpretation of linewidth
data solely as a damping phenomenon will result in an artifi-
cially high estimate of the damping. It is clear that good models
of inhomogeneous line broadening in ferromagnetic resonance
are needed to compensate for possible inhomogeneity effects
in measurements of damping.

Recent modeling of linewidth in thin films [18] supports ear-
lier work in bulk ferrites [19] that indicates that the degree of line
broadening caused by inhomogeneity depends on the relative
strengths of the inhomogeneous effective field and the interac-
tions. In one limit, the inhomogeneities are much stronger than
the exchange and dipolar interactions between different parts
of a film. In this case, the simplest model treats the inhomo-
geneous film as a collection of noninteracting regions where
the magnetization will resonate at a frequency/field combina-
tion that is determined by the local properties of the film. The
resonance becomes a superposition of resonances from different
regions, and the inhomogeneity line shape is a rather direct mea-
surement of the distribution in local effective fields [20]–[25].
These “local resonance” models of linewidth have been suc-
cessful in describing the linewidth in a number of thin-film
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cases [25]–[28]. In particular, when the inhomogeneities have
the effect of a varying applied field, the local resonance model
linewidth for becomes

(3)

In a number of measurements of the frequency dependence of
linewidth in thin films, the data is reasonably well described by
a linear relationship of this type [17], [26], [29]–[34].

In the opposite limit, the exchange and dipolar interactions
are very strong, forcing the magnetization to precess nearly uni-
formly and effectively smoothing the inhomogeneity over the
film area. The two-magnon model of linewidth addresses this
case. The magnetization is treated in terms of spin waves, the
normal modes of the uniform film, or in the terminology of
quantum mechanics, magnons. The usual picture of the two-
magnon model is that inhomogeneities introduce weak interac-
tions between the spin-wave modes that allow the energy of the
uniform precession to leak into a number of other modes, pro-
viding an effective damping of the uniform mode. Alternatively,
the effect of the inhomogeneity may be regarded as a mixing
of the eigenmodes of the uniform film in a way that distributes
the FMR intensity over a number of eigenmodes, resulting in
an FMR peak composed of a number of overlapping resonances
[18].

Typically, the two-magnon model is treated in a lowest-order
perturbation approach, treating the inhomogeneity as a small
quantity. Higher order approaches include consideration of the
effects of inhomogeneity on the spin-wave density of states [35],
[36] and a recursive method described by Schlömann [19].

The purpose of this paper is to describe the two-magnon
model for ultrathin films in classical terms, giving analytical
formulas for the case of ultrathin films in the limit of zero
damping, and numerical results for finite damping. To accom-
modate high-magnetization films, we include all the effects
of the precessional ellipticity. Early classical treatment of
the two-magnon model was given by Clogston [37] for bulk
materials, and more recently for case of a thin film with
in-plane magnetization by Arias and Mills [38], [39]. Quantum
mechanical two-magnon models for thick films have been
published by Sparks [40] and Hurben and Patton [41].

In Section II, the spin-wave normal modes of a uniform ultra-
thin film are reviewed. Section III includes a brief description
of the quantum mechanical two-magnon model. Section IV de-
scribes the excitation of spin waves and their interaction with the
uniform precession to produce an effective damping. Analytical
results for special cases are given in Section V, and example cal-
culations are given in Section VI.

II. SPIN-WAVE NORMAL MODES

Using the coordinate system shown in Fig. 1, the magnetiza-
tion is written as

, where is a two-dimensional (2-D) vector in the plane of
the film. The radial unit vector is chosen to lie along the spa-
tially averaged equilibrium magnetization direction, and and

are chosen to lie along the major axes of the ellipse traced
out by the uniform precession. The magnetization is assumed

Fig. 1. Coordinate system used to describe the magnetization, wave vectors,
and the applied field. The spin-wave wave vectors k lie in the x–z plane, and
the precession of the magnetization traces an ellipse in the ^�–^� plane around a
spatially averaged equilibrium direction in the x–y plane.

to be independent of through the thickness of the film.
Fourier expansions of spatially dependent quantities will use the
convention

(4)

and time dependence is assumed for all dynamic
quantities.

Expressions for , the effective field acting on the mag-
netization, are needed to describe the linear dynamics of the
magnetization near its equilibrium direction. Because the ef-
fective field enters the equations of motion (1) only in a
cross product , the only important components of
are perpendicular to , i.e., components in the – plane. Cal-
culation of the and components of the field is most easily
achieved by expanding the energy of the magnetization in terms
of and , using the constraint
to eliminate . The effective field is then proportional to the
gradient of the local energy density

(5)

Interactions, particularly exchange interactions and
dipole–dipole interactions, are important for the descrip-
tion of spin waves, and ultimately for the behavior of the
inhomogeneous film. Interactions may be described in terms
of a field at a particular location in a magnetic material that
depends on the magnetization at another location. For nonlocal
interactions in a uniform film, we consider the case where the
kernel tensor exhibits translational invariance

(6)

Important examples of such nonlocal interactions are the
dipolar, or magnetostatic interaction and the exchange inter-
action. Note that local energy densities such as Zeeman or
magnetocrystalline anisotropy that have local effective fields
can be described by the special case where is proportional
to .

Using translational invariance, the Fourier components of the
field in a uniform film can be written as

(7)
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Using the coordinate system in Fig. 1, the elements of the nor-
malized stiffness field tensor are given by [18], [42], [43]

(8a)

(8b)

(8c)

(8d)

where is the exchange field for
a spin wave with wave vector under the assumption
that the wavelengths of interest are much larger than the
lattice spacing where is the exchange stiffness, and

is the “internal field” con-
sisting of the component of parallel to the magnetization and
the static part of the demagnetization field. The -dependent
demagnetization factor for a film of thickness is given by

(9)

under the approximation that the magnetization does not vary
significantly across the thickness of the film [44].

The susceptibility tensor can be obtained from the lin-
earized LLG equations of motion (1). For an applied field with
spatial frequency and angular frequency , the transverse sus-
ceptibility tensor is given by

(10a)

(10b)

where .
The imaginary part of (10) describes magnetization damping,

and the particular form follows from our choice of Gilbert
damping in (1). Other descriptions of damping produce sus-
ceptibility expressions with different damping characteristics
[16], but the basic features, including the dispersion relation,
are nearly independent of damping.

The dispersion relation is obtained by noting that the is
minimum and susceptibility is in resonance when

(11)

When a spin wave is driven “on resonance” by a field with wave
vector and , becomes pure imaginary, and for small

the magnetization lags the driving field by .
The dispersion relation is important for a number of reasons,

but its primary importance here is that it encapsulates the
interactions in the film. An example dispersion relation for a
50-nm-thick film of Ni Fe is plotted in Fig. 2(a). Without
either exchange or magnetostatic interactions, the dispersion
relation would be a flat horizontal line. Note that there is a set
of wave vectors describing spin waves with displayed
in Fig. 2(b). These degenerate spin waves play an important
role in the effect of inhomogeneities on the uniform precession.

 

Fig. 2. (a) Spin-wave dispersion relation for a 50-nm-thick Permalloy film
with 101 mT applied in plane. The k = 0 FMR frequency is 9.8 GHz. For any
value of jkj, the highest frequencies are for k ?M and the lowest frequencies
are for k k M . The horizontal lines bound a set of nearly degenerate spin
waves having j! � ! j < 2� � 100 MHz. (b) Half of the wave vectors of
nearly degenerate spin waves. Only k > 0 is plotted.

III. QUANTUM TWO-MAGNON THEORY

The quantum mechanical description of the two-magnon
model has been developed and used by many authors [41],
[42], [45]–[48], and there are several good reviews available
[49]–[51], so only a brief description will be given here.

In the quantum mechanical two-magnon model, the
spin-wave normal modes are described by raising and lowering
operators and . When an inhomogeneous energy term

is added, and and are expanded in terms
of and , the perturbed Hamiltonian can be put into the
form

(12)

where the first two terms describe the linear dynamics of the
spin waves in a uniform film, and the coefficients arise from
the perturbation energy . Only terms involving the
magnon are kept in the perturbation part of the Hamiltonian.
The two-magnon terms in the Hamiltonian containing de-
scribe scattering where magnons are created and
magnons are annihilated. The effective damping rate of the

magnons is the sum of the scattering rates to each of the other
magnon states, and perturbation theory yields the two-magnon
linewidth

(13)

Three features of (13) are noted for comparison with the clas-
sical result described in Section IV. The effective linewidth is
a sum over magnon states, the sum is restricted to degenerate
magnons, and the linewidth depends on the square of the inho-
mogeneity strength.
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Fig. 3. Illustration of spin-wave magnetization (heavy arrows) and resulting
effective fields (light arrows) in an inhomogeneous material with stronger
anisotropy in the shaded regions. The uniform magnetization of the k = 0
mode [panel a), (20)] precesses counterclockwise with angular frequency
! and results in a mostly uniform effective field with a small k = 2�=�
component [panel b), (21)]. The k = 2�=� component of the effective field in
b) drives a spin wave with magnetization [panel c), (22)] that lags its driving
field by �=2 when ! = ! . The effective field resulting from the k = 2�=�
spin wave results in a mostly sinusoidal field [panel d), (23)] with a small
uniform component, H (0) (boxed) that produces a torque that decreases the
amplitude of the k = 0 spin-wave magnetization.

IV. CLASSICAL TWO-MAGNON MODEL

In this section, the spin-wave susceptibility (10) is used to
describe the behavior of the magnetization in a weakly inho-
mogeneous film. Briefly, the interaction of the uniform preces-
sion with inhomogeneities creates a nonuniform field that ex-
cites spin waves, as illustrated in Fig. 3. The interaction of the
nonuniform spin-wave magnetization with the inhomogeneities
generates an effective field with a uniform component that acts
on the uniform precession. The spin-wave susceptibility is com-
plex, so the uniform precession experiences a dissipative field
that is out of phase with the magnetization, creating an effective
damping.

The classical approach to the two-magnon damping process
described below parallels the quantum mechanical approach,
but has two advantages. First, damping of the magnon modes
replaces the delta function in (13) with a finite width peak that
can be changed in a natural way to model different amounts and
phenomenological models of damping. It is shown below that
the two-magnon linewidth has a significant dependence on the
damping. In fact, self-consistent schemes for calculating higher
order effects rely on the dependence of the effective spin-wave
damping on the two-magnon linewidth [19]. Second, results

are given in terms of magnetizations and fields rather than
Hamiltonian coefficients. This property simplifies the process
of calculating the two-magnon linewidth from particular
inhomogeneity models.

Inhomogeneity is introduced as a local, inhomogeneous, per-
turbation energy density . Nonlocal dipolar ef-
fects of variations in , especially pits and holes, have been
treated quantum mechanically elsewhere [40], [41], [51]. Here,
and in what follows, primed quantities are quantities that de-
scribe the inhomogeneity. For each point in the film, the pertur-
bation energy density can be expanded in terms of and

(14)

The linear terms in the second line of (14) provide inhomoge-
neous static fields, which drive magnetization ripple [44]. The
effects of ripple will not be considered further in this paper.

The second-order terms in (14) involve normalized perturba-
tion stiffness fields that are given by

(15a)

(15b)

(15c)

The second term in (15b) is required to make independent
of the choice of coordinate system. With this term, the deriva-
tives are effectively taken along a “great circle” path on the unit
sphere rather than a constant- path. For this paper, however,
this distinction is unimportant because we assume .

The spatial dependence of the inhomogeneous perturbation
energy is assumed to be described by a correlation function

defined by expressions of the form

(16)

where indicates the expectation value of , is the sample
area, and and are vectors in the plane of the film. The sample
is assumed to be macroscopically isotropic so that the correla-
tion function depends only on the magnitude . Because the
stiffness fields are all derived from the same microstructure as
represented by , correlations between different combinations
of stiffness fields are assumed to be described by the same func-
tion .

The Fourier components of the perturbation stiffness fields
can be characterized by the Fourier transform of (16)

(17)

If the inhomogeneity has a characteristic length scale , is
expected to become small for .
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The properties of spin waves presented in Section II and the
statistical properties of the inhomogeneity given above are used
here to describe the dynamic behavior of nearly uniform preces-
sion of the magnetization in an inhomogeneous thin film. The
field due to inhomogeneities is given by

(18)

and in terms of Fourier components

(19)

In the following, the amplitude of is assumed small enough
that only small nonuniformities are introduced into an otherwise
uniform precession, i.e., that the spin-wave amplitudes
are small compared with the amplitude of the mode. For
an essentially uniform precession [illustrated in Fig. 3(a)]

(20)

Substituting this expression into (19), the inhomogeneous part
of the effective field produced by the uniform precession inter-
acting with the inhomogeneity [Fig. 3(b)] is given by

(21)

and multiplication by the spin-wave susceptibility tensor
gives spin-wave magnetization amplitude [Fig. 3(c)]

(22)

Each spin-wave mode will contribute to a uniform component of
the effective field [Fig. 3(d)], so using (19) and (22), the uniform
part of the field becomes

(23)

Because the energy density is real, . Equa-
tion (23) is the effective field acting on the uniform component
of the magnetization due to spin waves excited through inho-
mogeneities. The total field experienced by the uniform mode
is the sum of the stiffness fields for the uniform film (8)
and , the effective stiffness field due to spin-wave excitation

(24)

Including the effects of spin-wave generation, the effective
susceptibility to a uniform applied field is then rederived by re-
placing the stiffness tensor elements in (8) with the effective
stiffness tensor . The susceptibility becomes

(25a)
with

(25b)

where is obtained from (10b). To lowest order in , the res-
onant frequency is changed by an amount

(26)

Each of the elements of the tensor contains an integral
over on four terms, one for each element of the susceptibility
tensor. For purposes of illustration, consider

(27)

Expanding using (10) for the spin-wave susceptibility, can
be written as

(28)

where terms of order have been dropped.
The imaginary parts of contribute to the linewidth so that

the full-width at half-maximum in the imaginary part of the sus-
ceptibility is

(29)

while the real part of is a shift in the resonant frequency.
Equation (28) for the complex frequency shift due to inhomo-

geneity is a primary result of this paper. The uniform film prop-
erties are described by the stiffness tensor elements ( , etc.)
given in (8) and given in (10b). The properties of the inho-
mogeneity are described by the inhomogeneity stiffness tensor
elements ( , etc.) given in (15) and with spatial information
encoded in (16). This classical result has a number of fea-
tures in common with the quantum mechanical result. The ex-
pression includes a sum/integral over wave vectors and the per-
turbation strength appears quadratically as elements of in (28)
and as in (13). Additionally, note that is minimum for
frequencies so that degenerate spin-wave modes con-
tribute most to the integral in (23). The quantum mechanical and
classical descriptions differ in that spin waves with
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and nonzero damping contribute somewhat because of the fi-
nite width of the spin-wave susceptibility maxima, where they
are excluded in the quantum mechanical result.

V. ANALYTICAL APPROXIMATION

This section focuses on situations where the two-magnon
contribution to the linewidth may be calcu-
lated analytically. The methods used here closely follow Arias
and Mills [38]. The principal conditions required to obtain
analytical results include taking the limit of zero damping, film
thickness less than the exchange length, and a cutoff length
scale for the inhomogeneity. Because the effective damping is
calculated at resonance, .

The limit of zero damping allows one to take advantage of the
fact that is a peaked function centered at with
width proportional to . The limit of zero damping allows the
approximation

(30)

Next, to evaluate the delta function in (30), the dispersion rela-
tion is expanded for small values of , specifically by ap-
proximating . This approximation is valid if

and if the quadratic term in an expansion of is
small compared to , i.e., the film thickness must be much
smaller than the magnetostatic exchange length ,
which is typically a few nanometers for most ferromagnetic
transition metals. Using (8), the dispersion relation is approx-
imated by

(31a)

where

(31b)

(31c)

(31d)

If is negative, there will be real, positive values of that
give . A critical value of is determined by

(32)

Note that for magnetization angles , there are no de-
generate spin waves with solutions for real values of .

The largest wave number for which is found for

(33)

Next, the inhomogeneity is assumed to have a correlation
length such that the normalized perturbation stiffness fields
have correlation functions such as

(34)

The presence of a correlation length implies a high-wave-vector
cutoff in the Fourier components of the perturbation fields

(35)

The final simplifying assumption in this section is that the uni-
form film stiffness fields may be replaced by their values,
e.g., that is not strongly -dependent. This approximation
is consistent with the assumption of an ultrathin film that was
made above to obtain the quadratic expansion of the dispersion
relation in (31a).

Incorporation of these approximations and assumptions leads
to an intermediate result for the two-magnon linewidth

(36)

where

(37)

is the local shift in resonance frequency due to inhomogeneity
in the absence of interactions. This quantity differs from the
local resonance linewidth in that a complete calculation of local
resonance linewidth would account for the effects of on the
equilibrium values of and .

A. Small Defect Limit

The small defect limit is defined by . In this case,
the perturbation stiffness fields are essentially independent of
over the region of reciprocal space where the delta function is
nonzero so the denominator in the integral in (36) is approxi-
mately unity. Integrating along the path described by ,
shown in Fig. 2(b)

(38)

This approximation yields an analytical expression for the two-
magnon part of the linewidth in the small defect limit

(39)

where

(40)

is the difference between the frequency of uniform precession
and the frequency of a spin wave with due to exchange
interactions alone. In the small defect limit, the local resonance
frequency variations are narrowed by both the exchange inter-
actions and by the magnetostatic interactions that determine the
ellipticity of the precession and .
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Fig. 4. Two-magnon contribution to the field linewidth as a function of
frequency for two sizes of defects: (a) � = 5 nm, and (b) � = 100 nm. In (a),
the large defect limit would be off scale.

B. Large Defect Limit

In the large defect limit, where , the upper limit of
the integral over wave vectors in (36) is effectively determined
by the defect correlation length . Integrating along four small-
segments where

(41)

Incorporation of this result yields an analytical expression for
the two-magnon linewidth in the large defect limit

(42)

In the large defect limit, the spread in local resonance frequen-
cies is narrowed by magnetostatic interactions, both through

and explicitly through .

C. Unit Conversion

The derivations and results above are presented in SI units.
For those who prefer cgs units, the following conversions are
needed. In (8), (39), and (42), (SI) should be replaced
by (cgs). Normalization of the stiffness fields in (8)
by allows these unitless quantities to have the same

 
 

 

 

 

 

Fig. 5. Two-magnon contribution to the frequency linewidth as a function of
angle at 10 GHz for (a) small defects, � = 5 nm, and (b) large defects, � = 100

nm. The magnetization is in plane at 0 . In (a), the large defect limit is off scale.

numerical value in both unit systems. Also,
(SI) has the same numerical value as (cgs) with

G . Finally, the perturbation stiffness
fields in (15) are converted by replacing with .

VI. EXAMPLE CALCULATIONS

This section presents example calculations where the inho-
mogeneity consists of an inhomogeneous applied magnetic field

that is collinear with the magnetization, but that varies
in strength and sign as a function of position such that (34) and
(35) are valid. In some sense, such a field is unphysical, but it
is helpful for purposes of illustration. Statistical properties of
other, perhaps more realistic types of inhomogeneity are pre-
sented in Appendix I. For the simple inhomogeneous applied
field

(43a)

(43b)

The two-magnon contribution to the linewidth is calculated
using the analytical results for the small defect limit (39) and
the large defect limit (42) in addition to numerical evaluations of
(28) for different values of the damping parameter . In Fig. 4,
the two-magnon contributions to the field linewidth are pre-
sented as a function of frequency for two values of with the
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TABLE I
EXPECTATION VALUES OF INHOMOGENEITY STIFFNESS FIELDS FOR A VARIETY OF POSSIBLE INHOMOGENEOUS PERTURBATION ENERGY TERMS

a p is a unit vector with random direction.

b u is a unit vector with random direction in the plane of the film.

c K m̂ m̂ + m̂ m̂ + (m̂ m̂ )

field and magnetization applied in plane. In this orientation, the
field linewidth is related to the frequency linewidth by

(44)

For low frequencies and magnetization in plane, the internal
field becomes small, and according to (33), the maximum
degenerate spin-wave wave vector also becomes small, so that
the small defect limit will be reached in the limit of low frequen-
cies. This behavior is illustrated in Fig. 4(b), where the numer-
ical results approach the small defect limit for low frequencies
and approach the large defect limit for high frequencies.

In Fig. 5, the angular dependence of the two-magnon contri-
bution to the frequency linewidth is plotted for two values of
. For arbitrary applied field direction, the magnetization is not

generally parallel to the applied field, and the simple conversion
from frequency linewidth to field linewidth in (44) is not appli-
cable.

As the magnetization angle approaches 45 , (33) shows
that the maximum degenerate spin-wave wave vector goes to
zero, so that while the large defect limit may be appropriate
when the magnetization is in plane, the small defect limit will
be approached as .

For , there are no degenerate spin waves and the
analytical results in the zero damping limit predict zero two-
magnon linewidth in this range. For finite damping, however,
spin waves may be excited off resonance, and the numerical
calculation yields a finite two-magnon linewidth.

VII. DISCUSSION

In addition to the description of the two-magnon linewidth
as an active process, where defects drive spin waves or defects
scatter magnons, it is also productive to think of the two-magnon
linewidth in a more passive sense as the apparent resonance vari-
ation that remains after local resonances have been coupled and
essentially averaged by exchange and dipolar interactions [18],
[52]. In this passive description, it is clear that the two-magnon
linewidth must be less than the local variations in the reso-
nance condition in the absence of interactions, i.e., must be
smaller than the local effective field variation and must be
smaller than the corresponding change in resonance frequency
due to the local effective field variation.

In both this classical model and the quantum mechanical ver-
sion, the derivation is through a perturbation approach, and it is
important to recognize that this fact places limits on the validity
of the results, but it is not immediately clear what these limits
are. The dependence of the linewidth on defect size and defect
strength offer some indications. Both analytical two-magnon re-
sults presented above increase with increasing defect size and
quadratically with defect strength, but the linewidth cannot be
increased without limit. It has been recently demonstrated that
for increasing defect size, the linewidth reaches a maximum
value corresponding to the local resonance model [18]. Using
Fig. 4, 100 kA/m (1.2 kOe) rms field fluctuations correlated over

nm and would broaden the resonance line by ap-
proximately 10 kA/m (120 Oe) [Fig. 4(a)]. For nm, and
fluctuations with the same amplitude, however, the two-magnon
model would predict an absurd two-magnon line broadening of
approximately 1.3 MA/m, and the local resonance model would
be more accurate.

Although the two-magnon model and its classical analog
yield effective damping rates, it should be noted that they are
apparent damping rates only in the context of ferromagnetic
resonance experiments, that they do not describe real damping
in the sense of coupling to the thermal bath.

Comparison of the analytical results, (39) and (42) in the
zero damping limit with numerical results calculated from (28)
shows that the damping modifies the two-magnon linewidth sig-
nificantly for damping parameter values typical of magnetic
metals. The analytical results may not be sufficiently accurate
for all purposes of fitting experimental data, but they do provide
useful estimates of the two-magnon linewidth.

APPENDIX

STATISTICS FOR POLYCRYSTALS

The main results of this paper, the effective frequency shift
(28) and the analytical linewidth expressions (39) and (42), are
written in a form that is independent of the microstructural ori-
gins of the inhomogeneity. To calculate linewidths for a partic-
ular form of inhomogeneity, estimates of or the correlation
length must be made, and the expectation values ,
etc., must be calculated from the symmetry properties of the in-
homogeneity. The example calculations in Section VI are for
a very simple form of inhomogeneity, a random strength ap-
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plied field. For a number of more complicated types of inhomo-
geneity, Table I lists expectation values of inhomogeneity stiff-
ness fields for a variety of possible inhomogeneous perturbation
energy terms.

The method used to calculate these values is outlined here.
The normalized magnetization vector in the laboratory frame,

, is expressed in the coor-
dinates of the local crystallographic axes using a rotation matrix

that depends on Euler angles , , and

(45)

For each form of anisotropy, the local anisotropy energy can
be expressed simply in terms of and expanded in terms
of . The resulting complicated expression is differentiated
with respect to and via (15) to obtain stiffness fields. The
expectation values are then obtained by integrating products of
these stiffness fields over the Euler angles.
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