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We demonstrate squeezing of a strongly interacting opto-electromechanical system using a para-
metric drive. By employing real-time feedback on the phase of the pump at twice the resonance
frequency the thermo-mechanical noise is squeezed beyond the 3 dB instability limit. Surprisingly,
this method can also be used to generate highly nonlinear states. We show that using the parametric
drive with feedback on, classical number-like and cat-like states can be prepared. This presents a
valuable electro-optomechanical state-preparation protocol that is extendable to quantum regime.

INTRODUCTION

The field of nano- and optomechanics has recently
moved into the domain of quantummechanics [1] by cool-
ing resonators to the ground state [2–4], achieving strong
coupling between photons and phonons [5–7], and, most
recently, by entangling them [8]. Also, squeezing of light
mediated through optomechanical backaction has been
demonstrated [9–11]. Along the same lines, experiments
with quantum protocols are currently being explored in
the classical regime [12–14], but first nonclassical states of
the harmonic oscillator [15–18] will need to be prepared.
As we will demonstrate here experimentally, parametric
squeezing is well suited for this purpose when combined
with real-time control.

Squeezing is a powerful technique where the stochas-
tic motion of a resonator is reduced in one quadrature
at the expense of an increase in the other one. It is
an important concept in the context of backaction evad-
ing [19] and pulsed measurements [16]. However, for the
most often used squeezing method where the resonance
frequency ω0 is modulated at twice that frequency [20]
(so-called parametric squeezing) the maximum squeezing
that can be achieved is only 3 dB; this happens when the
modulation amplitude of ω0 equals the damping rate γ0.
Beyond this limit the other quadrature of the resonator
becomes unstable leading to regenerative parameteric os-
cillations. Currently a number of ways to circumvent this
problem are being studied [21, 22]. Here we demonstrate
a feedback technique where the phase of the parametric
modulation is adjusted in real time and the 3 dB limit
is overcome. The method also naturally leads to non-
Gaussian states of the mechanical resonator.

THE OPTO-ELECTROMECHANCIAL SYSTEM

AND PARAMETRIC SQUEEZING

To achieve a high degree of squeezing in an optome-
chanical system, one wants to efficiently modulate the
spring constant k. Although optical readout can give
unsurpassed displacement sensitivity [1], typically opti-

FIG. 1: (a) Colorized scanning electron micrograph show-
ing an overview of a device taken under an angle; zooms of
typical H-resonators are shown in (b) and (c). The waveg-
uide is shown in red, the electrodes in yellow, and the part
of the resonator not covered by the moveable electrode in
blue. The arrows indicate the direction of motion for the fun-
damental in-plane mode. (d) The measurement setup. (e)
Power spectral density of the displacement noise (symbols)
with fit (line) measured at VDC = 0.5V. (f) Driven response
at VDC = 0.5V and Vd = 11µV. The fit yields a quality
factor of 62, 000± 1, 000.

cal backaction effects are weak. Therefore, we combine
optical readout with strong electrostatic forces in an inte-
grated opto-electromechanical device (Fig. 1(a)-(c)). Re-
cently we used similar nanofabricated devices as optome-
chanical phase-shifters [23] and showed that these display
very strong electrostatic interactions [24]. The movable
part of the device consists of four thin arms that connect
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to a rectangular block containing a photonic crystal. An
electrode runs over one pair of arms and is close to an-
other, fixed, electrode. The other side of the resonator
runs close to the waveguide of an on-chip Mach-Zehnder
interferometer (Fig. 1(a)), enabling sensitive displace-
ment detection using the measurement setup shown in
Fig. 1(d). The fundamental in-plane eigenmode of this
“H-resonator” has a resonance frequency around 723 kHz
and the thermo-mechanical noise at room-temperature
is resolved with a signal-to-background ratio of 29 dB
as shown by the spectrum in Fig. 1(e). By applying a
static (VDC) and an a.c. voltage (Vd) between the elec-
trodes, the resonator is actuated; Fig. 1(f) shows the
driven response. The small driving voltage that is used
is a manifestation of the large electrostatic interactions
in the H-resonator.
In such strongly interacting electromechanical systems,

the resonance frequency can be tuned via the electro-
static spring effect [24–26]. By recording driven measure-
ments (cf. Fig. 1(f)) while sweeping VDC, a curvature of
f ′′
0 = −2.0 kHz/V2 is found. Hence, by applying a pump
voltage VP sin(2ωF t+θ) the resonance frequency is mod-
ulated at twice the reference frequency ωF ≈ ω0 with an
amplitude χ = f ′′

0 VDCVP . Such a signal is called a “2f”
parametric pump and its effect is most easily analyzed
using the complex amplitude of the resonator A. In the
frame rotating at ωF it is defined as [27]:

A ≡

(

u+
u̇

iωF

)

exp(−iωF t). (1)

This means that an oscillating displacement u(t) =
A0 cos(ωF t) has a complex amplitude A = A0 and like-
wise u(t) = A0 sin(ωF t) becomes A = iA0. By taking
the time derivative of Eq. (1) and inserting the equa-
tion of motion mü = −k(t)u − mω0γ0u̇ + F into that
expression, the differential equation for the dynamics of
the complex amplitude is obtained. In the rotating wave
approximation (RWA) it is [20]:

Ȧ ≈ i∆0A−
γ0
2
A+

χ

2
eiθA∗ −

i

2
fF , (2)

where ∆0 = (ω2
0 − ω2

F )/2ωF ≈ ω0 − ωF is the detuning,
mfF =

〈

2Fe−iωF t
〉

RWA
is the force acting on the res-

onator in the RWA, and m is its mass. The term with
A∗ in Eq. (2) indicates that the parametric pump breaks
the time invariance and leads to squeezing [20].
The rotating frame is not only a convenient represen-

tation for the equation of motion, but is also directly
accessible in the experiment: a lockin amplifier (Zurich
Instruments HF2; Fig 1(d)) demodulates the photode-
tector signal at ωF and, after scaling by the transduction
factor, its two quadratures X1 and X2 are the real and
imaginary part of A. The inset of Fig. 2(e) shows a rep-
resentative phase-space trajectory of such a demodulated
timetrace. Note that when the signal-to-noise ratio be-
tween the mechanical signal and the imprecision noise is

FIG. 2: Parametric squeezing of the thermal motion. (a)-
(c) Colorplots of the measured pdf at the indicated pump
power. (d),(e) Evolution of the angle (d) and variance (e) of
the squeezing for increasing pump power. The dashed line
shows the 3 dB limit for parametric squeezing. (f) Squeez-
ing angle versus the applied phase shift of the 2f drive signal.
The insets show the pdf near θ = π/4, 3π/4, 5π/4, 7π/4 re-
spectively. All markers and error bars in this figure are the
mean value and standard deviation of 10 individual measure-
ments, respectively. The pdfs are reconstructed from these 10
traces combined, and ∆0 ≈ 0 everywhere.

high (see Fig. 1(e)) the trajectories accurately represent
the mechanical motion. By repeatedly measuring these
trajectories, the probability density function (pdf) of the
resonator, which is the classical analogue of the quantum
Wigner function, can be reconstructed [28]. As shown in
Fig. 2(a) the Brownian motion of the resonator appears
as a circular Gaussian in the pdf in the absence of a pump
voltage, i.e. at VP = 0.

By increasing VP the pdfs becomes ellipsoidal as fluc-
tuation in one quadrature decrease, whereas they are en-
hanced in the orthogonal direction [Fig. 2(b,c)] thereby
squeezing the thermal motion. This can be quantified
by extracting the variances in these two directions (i.e.,
the squared lengths of the minor and major axes of the
ellipses). As shown in Fig. 2(e) the squeezing increases
with increasing VP but when the normalized variance of
the squeezed quadrature reaches 1

2
the fluctuations in the

anti-squeezed quadrature grow exponentially until lim-
ited by nonlinearities in the resonator [29–31]. Above
this threshold χ > γ0 and parametric oscillations result,
which are characterized by a large mean value of A. In
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our strongly coupled high-quality electromechanical res-
onator [24] this happens at VP = 4.1mVrms which is or-
ders of magnitude lower than previously reported thresh-
olds for top-down devices [20, 32] and is even below that
of extremely floppy bottom-up devices [33]. Interestingly,
the low threshold could be used to efficiently encode in-
formation in the phase of the oscillations [32], but here
we focus on the sub-threshold behavior. In that regime
the maximum attainable squeezing is thus limited to 3
dB.

OVERCOMING THE 3D LIMIT USING

REALTIME PUMP-PHASE FEEDBACK

The angle of the squeezing ellipse is set by the phase
between the 2f pump and the reference frame. Figure
2(d) indicates that the squeezing angle remains constant
for fixed θ. Changing the phase of the reference frame
rotates the apparent squeezing angle [20], but nothing
happens to the actual motion. However, when the pump

phase is varied, the squeezing angle of the actual motion
rotates. This is an important distinction that enables
squeezing beyond 3 dB as we will show later. Figure
2(f) shows that by adjusting θ the ellipsoidal pdf’s rotate
proportionally to 1

2
θ.

In principle, squeezing exceeding 3 dB is possible when
the pump exceeds the threshold (i.e. χ > γ0), but in
this case the resonator will ring up to large oscillation
amplitudes and the squeezing cannot be stationary [34].
By using a pump that is not exactly at twice the reso-
nance frequency (i.e. when ∆0 6= 0) the threshold pump
power can be increased, but still the maximum amount
of squeezing that can be obtained is limited to 3 dB,
although estimation schemes can further reduce the un-
certainty in the position [35]. Here we use a different
method, where the phase of the pump is adjusted in real
time [36], based on the measured location of the resonator
in phase-space as illustrated in Fig. 3(a-c). In particular,
we estimate ϕ = 6 A using the phase ϕ̂ measured by the
lockin amplifier and use its programmable digital-signal
processor to update the 2f phase θ every 70µs. When
this adjustment is chosen carefully, the squeezing direc-
tion can be optimized in real time as illustrated in Fig.
3(a-c). Equation. (2) shows that when θ → θ0 + 2ϕ(t),
the dynamics of A become independent of A∗. However,
in reality the actual phase ϕ is not known and only the
estimated phase ϕ̂ can be used. Inserting this into Eq.
(2) yields:

Ȧ ≈
(

i∆0 −
γ0
2

+
χ

2
eiθ0+2i(ϕ̂−ϕ)

)

A−
i

2
fF , (3)

which no longer contains A∗. Equation (3) also shows
that when the phase estimate is accurate (i.e. when ϕ̂ =
ϕ) the resonance frequency and damping rate can be ad-
justed through the phase offset θ0 as ∆ = ∆0+χ sin(θ0)/2

and γ = γ0−χ cos(θ0) respectively. Figure 3(d) shows the
dependence of the linewidth γ on θ0 for three different
pump powers. Without a pump the linewidth remains
constant at 12.8Hz; with the pump on the linewidth
shows the sinusoidal dependence γ = γ0 + χ cos(θ0 − α)
expected from Eq. (3) (α is an offset due to delays in
the system). The maximum reduction in the thermal
noise coincides with the largest damping [37], i.e. at
θ0 = α ≈ −0.25π. This value is set and the pump power
is increased. This squeezes the thermal motion of the
resonator as shown in Fig. 3(e). For low VP the amount
of squeezing increases with increasing pump power, just
as in the case without real-time feedback (cf. Fig. 2(e)).
The squeezing approaches 3 dB around VP = 6.5mVp,
but now when increasing the power further no instability
is encountered and the motion is squeezed beyond the 3
dB limit (dashed line). At VP = 42mVp the maximum
squeezing of 6.7± 0.3 dB is obtained. Further increasing
the power reduces the squeezing again.

This degradation is analogous to the process in active
feedback cooling where imprecision noise reheats the res-
onator at strong feedback [1, 37–39]. In our case the
imprecision noise makes that the pump phase is not ex-
actly at the optimal value α + 2ϕ − π/2 as ϕ̂ is not an
accurate estimation of ϕ. By improving the measure-
ment sensitivity the phase estimation will become better
and the maximum squeezing is enhanced. However, ulti-
mately the squeezing must be bounded by the zero-point
motion uzpm due to the Heisenberg uncertainty principle
which requires ∆X1 · ∆X2 ≥ u2

zpm. Since the feedback
tracks ϕ the pdfs remain circular as shown in Fig. 3(e).
This means that ∆X1 = ∆X2, thus ultimately limiting
the squeezing to ∆X1 = ∆X2 = uzpm. However, the
current device is still far from this limit (which requires
∼ 72 dB of thermomechanical noise squeezing at room
temperature) but by cooling the device with a dilution
refrigerator this number can be reduced by more than
40 dB.

NONLINEAR FEEDBACK: CLASSICAL

NON-GAUSSIAN STATE GENERATION

Squeezing from all directions simultaneously (i.e.
isotropically) can be viewed as cooling, but we emphasize
that the mechanism that causes the reduction of the oc-
cupied phase space in our parametric pump scheme with
phase estimation is very different from other, linear, cool-
ing techniques. Interestingly, our technique is inherently
nonlinear and naturally generates non-Gaussian classical
states that do not arise when simply cooling or paramet-
rically driving the resonator. Figures 4(b,e) show two
examples: a number-like and a cat-like state; the Wigner
functions of the corresponding quantum states are shown
in (a) and (d). The Wigner function of the number state
|n = 1〉 consists of a donut-shaped density function with
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FIG. 3: (a-c) Schematic illustrations of the real-time squeez-
ing feedback process. The complex amplitude of the res-
onator follows at trajectory in the (X1, X2)-plane (gray).
The red stick indicates the position at a certain time (a)
and the ellipse indicates the squeezing direction. The max-
imum squeezing and anti-squeezing occurs along the minor
and major axis respectively. (b) Some time later the com-
plex amplitude has changed and no longer points along the
minor axis where the optimal squeezing occurs. By measur-
ing the phase of the complex amplitude, the squeezing an-
gle can be corrected in real-time (c). (d) Dependence of the
linewidth on the pump phase and pump power. Fits (solid
lines) give χ = 0.03± 0.06, 3.01± 0.06, and 7.06± 0.13 Hz for
VP = 0, 2.5, and 5.0mV respectively. (e) Squeezing below
(blue) and beyond (red) the 3 dB limit. The inset shows the
stationary pdf at the maximum squeezing on the same scale
as Fig. 2(a). All errorbars indicate fit uncertainties.

a negative region in the center (gray), a signature of the
state’s quantumness [40]. Experimentally, the resonator
can be prepared in a similar, albeit classical, state by
further increasing the pump strength [Fig. 4(c)]. This
creates a pdf where the resonator is preferentially located
on a circular region with an amplitude of about 30 pm.
There is a clear reduction of the probability of finding
the resonator near the origin. This can be understood as
follows: When the resonator has a small amplitude, com-
parable to the imprecision noise, the phase estimation is
not very reliable and the squeezing is ineffective, pushing
the resonator away from the origin. However, as the am-
plitude grows due the error ϕ̂− ϕ, the phase estimation
gets more accurate and the resonator gets squeezed back
toward the origin until a dynamic equilibrium is reached.
It is thus less likely to find the resonator at small am-
plitudes, reducing the pdf near the origin. A dip in the
probability density is clearly visible in the data. Note

that self-sustained and parametric oscillations would also
show ring-like pdfs. However, this is not the case here.
First of all, the amplitude is much smaller than for para-
metric oscillations; for 100mV pump strength the most
likely amplitude 16 pm as indicated by the cuts in Fig.
4(c). This is two orders of magnitude smaller than the
much larger parametric oscillation amplitude (typical a
few nm) that result above threshold without feedback.
Furthermore, free oscillations are also ruled out theoret-
ically since Eq. (3) shows that there is no fixed point ex-
cept for the zero-amplitude solution A = 0. Both the pdf
and the cuts clearly show the deviation from the Gaus-
sian shape that one would obtain for regular parametric
squeezing or with linear active feedback cooling. The
nonlinearity of the feedback thus naturally leads to non-
Gaussian pdfs and this bring interesting prospects for
generating non-Gaussian quantum states.
The symmetry of the pdf in Fig. 4(b) indicates that

the state of the resonator is phase-insensitive. This is
because the feedback squeezes isotropically as explained
above. However, it is also possible to generate phase-
dependent states where the circular symmetry is broken.
By applying a separate 2f pump signal with a fixed phase
and yet keeping the co-rotating feedback on, a time de-
pendence is introduced and non-cylindrical pdfs should
emerge. Figure 4(e) shows that this is indeed the case.
For this combination of fixed and feedback pumps the
resonator is in an equal probability of two displaced co-
herent states, analogous to the cat state shown in (d).
This pdf is the result of the feedback that forces the res-
onator to the donut-like pdf of Fig. 4(b) and the fixed
pump that pushes the resonator to the sigar-like shapes
shown in Fig. 2. The resonator can thus be in two dif-
ferent positions in phase space separated by a region of
low probabilitiy near the origin. The resonator dynami-
cally switches between them [41] resulting in the pdf that
resembles the cat state in Fig. 4(d). Figure 4(f) shows
this switching, which is characterized by telegraph-noise-
like transitions from one displaced state to the other.
Although the feedback reduces the phase space of the
resonator to one of the two states for most of the time,
sometimes the thermal noise brings the resonator close
to the origin where the phase estimation is inaccurate.
This way the pump phase might become misaligned al-
lowing the resonator to switch over to the state with the
opposite phase. Then it will stay in that region of phase
space until the next jump occurs.

CONCLUSIONS AND OUTLOOK

We have demonstrated that our parametric feedback
cannot only be used to squeeze the thermomechanical
motion by more than 3 dB but will also be an indis-
pensable tool to prepare mechanical resonators in highly
nonlinear classical states. We emphasize that everything
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(d)(a)

(e)(b)

(f)(c)

100

V = 0 mVFB rms

150

V = 150 mVFB rms

V = 150 mVFB rms

V = 150 mVpump rms

FIG. 4: The calculated Wigner functions (top panels) for a
quantum mechanical number state |n = 1〉 (a) and a cat state
|β〉 + |−β〉 that consists of a superposition of two coherent
states with amplitude β = 3 exp(iπ/4) (d). The gray areas
indicate regions where the Wigner function is negative. In
the classical regime these areas are washed out and the dis-
tribution is always positive. (b),(e) experimentally observed
pdf’s as prepared using our parametric feedback scheme. (e)
horizontal cuts through pdfs measured for different strengths
of the 2f feedback. (f) measured dynamics of the quadrature
along the long axis X// of the cat-like state shown in (e).

demonstrated here can in principle be extended to the
quantum regime [1]: The parametric actuation can be
done using quantum-backaction-limited optical fields [42]
through the optical spring effect, and also the optical
readout is in principle shot-noise limited. The nonlinear
feedback will thus create correlations between the quan-
tum imprecision noise and the resonator motion. Cur-
rently we have demonstrated our feedback scheme us-
ing classical resonators but when employing cooling GHz
resonators close to their groundstate (either using a di-
lution refrigerator [2] or using optical backaction cooling
[3]) the thermal motion vanishes and is replaced by the
zero-point motion allowing to employ our scheme with a
true quantum system. Then, in principle only quantum
noise will be fed back to the system and hence it seems
feasible that not only highly nonlinear states, but even
true non-classical mechanical states can be generated.
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