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ABSTRACT: The quantum field-theoretic approach to classical observables due to Kosower,
Maybee and O’Connell provides a rigorous pathway from on-shell scattering amplitudes to
classical perturbation theory. In this paper, we promote this formalism to describe general
classical spinning objects by using coherent spin states. Our approach is fully covariant with
respect to the massive little group SU(2) and is therefore completely synergistic with the
massive spinor-helicity formalism. We apply this approach to classical two-body scattering
due gravitational interaction. Starting from the coherent-spin elastic-scattering amplitude,
we derive the classical impulse and spin kick observables to first post-Minkowskian order
but to all orders in the angular momenta of the massive spinning objects. From the same
amplitude, we also extract an effective two-body Hamiltonian, which can be used beyond
the scattering setting. As a cross-check, we rederive the classical observables in the center-
of-mass frame by integrating the Hamiltonian equations of motion to the leading order in
Newton’s constant.
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1 Introduction

The experimental observations of gravitational waves generated during black-hole and

neutron-star mergers [1, 2] have accentuated the need for an accurate and efficient the-

oretical description of binary inspiral dynamics of celestial bodies. A new perspective on



this classical problem in general relativity has recently been offered by methods rooted in
quantum field theory (QFT), which profit from a wide variety of on-shell methods devel-
oped for the study of quantum scattering amplitudes. In particular, many state-of-the-art
post-Minkowskian (PM) computations of the two-body dynamics of Schwarzschild and Kerr
black holes have been performed using the philosophy of effective field theory (EFT), either
in the genuinely quantum-theoretic sense [3-8] or in the form of classical worldline effective
theory [9-24], see also refs. [25-32] for concurrent developments using eikonal methods.

A related framework for computing classical observables directly from expectation val-
ues of appropriately chosen QFT operators has been developed by Kosower, Maybee and
O’Connell (KMOC) in ref. [33] and further extended in subsequent works [34-36]. In par-
ticular, although ref. [34] only considered massive particles of spin 1/2 and 1 in the KMOC
formalism, it was already mentioned that for a well-defined classical limit of spinning-
particle scattering one should strictly speaking consider very large spin representations.
Such a limit for integer-spin representations was considered concurrently in refs. [37, 38|,
albeit in a heuristic manner, as well as in the eikonal setting in refs. [6, 8, 39], see also
refs. [40-46].

In this paper, we aim to elucidate the more rigorous machinery behind certain uncer-
emonious steps that were taken in some of the mentioned works. For this, we employ the
KMOC framework and construct the incoming massive spinning states using the coherent-
state formalism [47-49], which is based on the Jordan-Schwinger construction of the general
spin representations of the massive little group SU(2). At a superficial level, the coherent-
state formalism provides a perfect SU(2) spinor to saturate the little-group indices that
were left uncontracted in earlier approaches to the classical limit of quantum scattering
with spin [37, 39] — where a heuristic notion of “generalized expectation value” was in-
troduced instead. In addition, the coherent-state formalism provides guidance as to which
quantities one should send to zero or infinity in the classical limit and with which speed.
In particular, the normalization of these states precisely cancels with non-classical terms,
allowing us to directly extract the classical spin vector from the amplitudes. This normal-
ization also identifies the relevant three-point amplitudes which are diagonal in the spin of
the massive particles.

Massless coherent states have also been very recently used for classical radiation in
ref. [36]. In such an approach, a state corresponding to a classically meaningful carrier-
force field (e.g. electromagnetic or gravitational) is described as an on-shell momentum
integral over states with arbitrary numbers of massless quanta. Similarly, here we construct
massive states with classically meaningful angular momenta from states with arbitrarily
large quantum spins. The basic difference is the discreteness of the set of spin states that
we need to sum over in the massive-spin setting.

Specializing to gravity in section 3, we consider general classical multipole interactions
that couple the angular momentum of a massive body to the gravitational field. Such
interactions may be included in the formalism by considering spinning quantum particles
non-minimally coupled to the graviton. We observe an interesting feature of such non-
minimal couplings: by default they become power-suppressed in the classical limit. In other
words, we see a need to effectively rescale the quantum coupling by inverse powers of & in



order to reproduce the freedom of choice in the classical multipole moments. Interestingly,
if one does not apply such a “superclassical” rescaling of the non-minimal couplings, they
seem to disappear in the classical limit, leaving the Kerr black hole as the naturally favored
spinning object.

In section 4 we employ our formalism to compute the leading-order net changes in linear
and angular momenta of general spinning objects during two-body gravitational scattering.
These basic Lorentz-covariant observables, given by egs. (4.17) and (4.19), are naturally
derived from the four-point coherent-spin amplitude (4.9). We complement our results by
presenting an effective two-body Hamiltonian in the center-of-mass (COM) frame, which
encapsulates the dynamical information contained in this amplitude. The value of such a
Hamiltonian is in its universality, as it can easily be used for bound-state problems just as
well. We find our Hamiltonian (4.28) to be in a different gauge as compared to the result
of ref. [44], so we validate it by recomputing the COM versions of the linear and angular
impulse observables directly from the corresponding Hamiltonian equations of motion.

At various points in our paper we pause to consider the particularly interesting case of
spinning black-hole scattering, in which we find perfect agreement with the classical 1IPM
solution to all orders in spin [50], as well as a new perspective on the considerations of
ref. [37].

2 Classical observables via coherent spin states

In this section we review the KMOC formalism for classical observables [33-36] focusing on
the aspects due to the spin degrees of freedom, which are implemented using coherent states.

The starting point of the formalism is to consider the change in the expectation value
of a certain quantum operator O due to scattering:1

AO = (in|STOS|in) — (in|O|in) = i(in|[OT — TTO]|in) 4 (in|TTOT |in), (2.1)
AIO AQO

where we have used the scattering matrix S = 1 4 4iT. As indicated, this object naturally
splits into two parts, linear and quadratic in the scattering transition operator 7T'. For this
observable to have a well-defined classical interpretation, we need the |in) states to behave
in a predictable manner in the classical limit.

For concreteness, we set up relativistic scattering with an impact parameter b* for
two massive objects with definite classical momenta m,uf and mbug , where uib =1 and
b-usp =0. Then a convenient choice of the initial state is [33, 51]

. ib- d*
jin) = / a(p1)¥s (p2)e™ P/ |p1; pa), / = /%@(po)(S(pz —m?),  (2.2)
p1 /P2 P (2m)
with the relativistic momentum-space wavefunctions of the form
1 872 1/2 p-u
Ye(p) = — {} exp (—) 2.3
W= ek Em 23

n refs. [33-35] the right-hand side of eq. (2.1) is written as i(in|[O, T]|in) + (in|T"T[O, T]|in) due to the
unitarity relation 7T = T — iTTT. Here we choose to deal with three terms instead of four. At the leading
perturbative order, only A;O contributes, in which 7T may as well be replaced by T



Here the normalization involves the modified Bessel function of the second kind. These
wavefunctions produce well-behaved one-particle expectation values

<p,u>§ = mu" + 0(5)7 <p2>§ = m27 <p2>§’u;t:(1,0) = gng + 0(52)7 (2'4)

the latter of which can be interpreted as the standard deviation (squared) in the rest frame.
The dimensionless parameter £ may therefore be thought of as the ratio
2
vl o= (- B (25)
which must naturally be sent to zero in the classical limit [33].

The main feature of the initial states (2.2) is that they are built up from definite-
momentum states, for which we know best how to compute scattering amplitudes. In the
presence of additional degrees of freedom, one needs to find a way to model them with
quantum states in a similar manner [34, 35].

2.1 Quantum spin

In the presence of angular degrees of freedom at the classical level, we wish to encode them
using spinning quantum states. Let us first review the salient features of quantum angular
momentum.

2.1.1 Definite-spin states

It will be particularly convenient to use Schwinger’s construction [52], in which general spin
states are obtained from the zero-spin state |s =0) by acting with two kinds of creation
operators:

(aT)S+SZ (aT)Sf‘S'Z

1 2
0), $,=—8—s+1,...,s —1,s. 2.6
\/(s+sz)!(s—sz)!‘ ) i (26)

Let us covariantize this construction right away — at this point merely with respect to the

’8732> =

massive little group SU(2). We then implement the angular-momentum algebra using the
Pauli matrices as follows:

[a%, al] = oF, S = gaTa“bab = [S%, 8] = ihe Tk Sk, (2.7)

a

Note that the creation and annihilation operators are naturally equipped with the SU(2)
spinor indices that are dual to each other under the symplectic bilinear form ey,. The
vectorial rotations O € SO(3) are related to their spinorial counterparts U € SU(2) via the
standard double covering map

1 . )
0" = itr(oZUajUT). (2.8)

The operator algebra (2.7) is evidently covariant with respect to such transformations,

which encode the arbitrariness of the choice of the spin quantization axis:?

a® — U%a®, al — Uabaz = aZ(UT)ba = St 098I, (2.9)

2The standard Pauli matrices, in which ¢ is diagonal, imply spin quantization along the z-axis. Ro-
tations (2.9), which transform S — OS = gai(UTUU)“bab, are equivalent to choosing another spatial
direction 2 = O™, for which f1 - (UTeU) = ¢® is diagonal.



Starting from the scalar state, which by definition obeys a®|0) = 0, we may now
construct SU(2)-covariant s-spin states

©®2s
15, {a}) = |5, {a1 .. .ass}) = ———al al .. .af yo>:(%) 0. (2.10)

(28)' ai a2 a2s \/7

Here the indices are automatically fully symmetrized, and for brevity we have introduced

the symbol ®, which will denote the symmetrized tensor product [40]. Note that the
normalization of the general spin states (2.10)

(s,{a1...ass}|s' {b1.. . bag'}) = 5§I5EZE e 5;,122:)) = 55 (5) (2.11)

involves two symmetrizations (one of which is redundant), which include the 1/(2s)! de-
nominators and imply combinatorial prefactors when translated to the states (2.6):

|s, 52) :\/ (25): s {1, 2} (s,8.|8 8Ly =850%. (2.12)
’ (s+s2)!(s —s2)! R,—/’ ’ T 578

s—l—sz S—S,
For future reference, the spin expectation values are explicitly

STy = (5, {a}|S]s), (b)) = his 63 0@ 622 622 = s 3% 0, © (37) 720,

. (2.13)

As is standard for quantum angular momentum, this representation is diagonal in the
total-spin quantum number s and not entirely diagonal in the spin-projection quantum
number s..

2.1.2 Coherent spin states

The reason why we chose Schwinger’s construction [52] to deal with definite-spin states is
that it allows for a straightforward implementation of coherent spin states — which are
well-suited for setting up classical angular momentum, see e.g. refs. [47-49]. These states
are defined as

o) = e~80"2e0%li0) o g%la) = a%a), (2.14)

starting from the same scalar state as above. We use &, to denote complex conjugation of
the SU(2) spinor a®. The coherent spin states may of course be immediately expanded in
terms of the definite-spin states:

_ —Gaa?/2 s {ar. . an)) = e—(@0)/2 o~ (a)©2s N
| > 8;/2%; \/7 | {1 28}>— 2szom | {}>

(2.15)
where we have also introduced a shorthand notation for the lengthy but straightforward
contractions of little-group indices.

The crucial property of the coherent spin states is the behavior of their one-particle
expectation values for the angular momentum operator, namely
2

W (5 (Ga) + it (aota)].  (2.16)

Paca), (50 = (al8 )a+

(S)a = 5



The first equation above implies that classical spin is obtained in the limit where the spinors
grow as

o] = Vaea® = \/2|sal/h = OK?). (2.17)

In this limit (S%S7), factorizes into (S%)4(S7)4, and more generally we have
(@l8%"a) = ((S)a) ™" + O(h) — (sa)*". (2.18)
2.2 Covariant spin quantization

Before we return to the computation of a classical observable from eq. (2.1), it is worthwhile
to covariantize the above construction further — now with respect to the Lorentz group.
Indeed, we wish to be able to describe states with different momenta p*, as opposed the
rest-frame spinning states considered thus far.

2.2.1 Definite-spin wavefunctions

An elegant way to promote our discussion to Minkowski space is offered by the massive
spinor-helicity formalism [53] (for earlier formulations see refs. [54-59]), which relies on the

splitting of the four-momentum into two Weyl spinors:?

Pag = Puotis = [0")alpals = €alp®)alp’ls, p* = det{p,;} = m”. (2.19)
Here the familiar SU(2) little-group indices a and b should not be confused with the Weyl
SL(2,C) indices o and /3, which represent the Lorentz group. The latter are also raised
and lowered using the two-dimensional Levi-Civita tensors, e.g. (p%|® = ¢*?|p?) 5, and the
placement of the angle and square brackets helps to differentiate between the two chiralities
and allows to keep the indices implicit. The same notation is widely used in the massless
spinor-helicity formalism [61-65], in which the momentum splitting is more straightforward:

kog = kuolt s = |k)alkl5, k? = det{k, 4} = 0. (2.20)

The on-shell spinors serve as ideal building blocks for definite-spin wavefunctions ap-
pearing in quantum field theory. For Dirac or Majorana fermions, one may use [53]

up =0t = %) ul =9% = s assumin, =P} =—=1Ip)
p— “-p <|pa]d> J p — Y—p ( [pa|d> g {\—p] _ 1l (2.21)

9,%"), these four-spinors obey all the

ah 0
standard properties, such as the Dirac equation (p — m)u, = 0. For vector bosons, one

In the Weyl basis of the gamma matrices v# = (

may adopt massive polarization vectors [39]
_av _ 4P onlp”)]
PH Vom
which are automatically transverse and spacelike. General higher-spin wavefunctions may
then be constructed as [39, 41, 66]

(2.22)

integer s : Ez{JZ};...us = az(f:jlw e Eij‘S*1“2S), (2.23a)
half-integer s : u}[)iﬁ._'ulsj = ué“legfj? e ngj@“?s). (2.23b)

3 An exposition of the formalism consistent with our current conventions may be found in ref. [60].



2.2.2 Covariant spin

The spin-s wavefunctions set up a relativistic representation for angular momentum, natu-
rally divided into subspaces of definite total-spin quantum number. Indeed, their spanning
properties follow from their inner products in each such subspace:
b b\ ©2s _ b b\ ©2s

Sptay 5 = (CDTO) T gy = (DR 2m(E)"T (224)
where the discrepancy in the overall factors, as compared to eq. (2.11), is due to the
conventional properties of polarization vectors and spinors. Moreover, appropriate spin-s
generalizations of the Lorentz generators ¥#"7 . = i[nt?¥ — n¥?0H], namely

. . UV\O]...0. _ VuY,o1 o2, .. SO 01, .. §Os—1 N VUV,0
integer s: (XAY) s = ST 0720 075 AL A O O T I B

half-integer s : = %[W“,’yy] + Zfsl], (2.25)

may be combined with the on-shell momentum into the Pauli-Lubanski spin operator

1
Ya= %ewpzwpﬂ (2.26)

The one-particle matrix elements of this (dimensionless) operator are explicitly [37]

. 1 ;
integer s : = Epfa} B &éb} = S$0pu,(a1 (b1 52; e 522‘8)), (2.27a)
. 1 bas

half-integer s : (—UTQm Upgay- B ul{Jb} = S0pu(m (b1 533 . 5(125)). (2.27D)

The prefactors on the left-hand side simply account for the aforementioned difference in
the normalizations of the quantum states and their wavefunction counterparts. The non-
trivial ingredient on the right-hand side of eq. (2.27) is the Lorentz-covariant SU(2) spin

operator [34]
b 1

e = =5 (Palouls”] + el ls")]). (2.28)

not to be confused with the SL(2,C) matrices O’Z 5 and %, Tt is transverse, and its
properties mimic those of the Pauli matrices:

b a b d_ _ sdsb bd
P Opua =0, Opua” =0, 0 Opue” = =050 — €ace’”,

pa
12294 ;
byx __ a w vy b _ 77 p'p b Z;wpo
(Upuya ) = Opub > (Jpap)a - {77 T T2 0o + EG PpOpo,a -

(2.29)
Unsurprisingly, it coincides with the Dirac spin operator meab = ﬂpa’y#’yg’ug /2m. More-
over, in the rest frame p* = (m, 0) the operator o, reduces to (0,UToU) for some little-
group rotation U € SU(2). Therefore, the one-particle matrix elements (2.27) comprise
a Lorentz-covariant representation of the rest-frame angular-momentum operator (2.13).
Indeed, if we use the tracelessness property in eq. (2.28) to define oy, = opp1t = —0oppu2?,



such that ag = —1, then it can be found to serve as the spin-quantization unit four-

vector [37]:
sob, a1 =...=a =1,
Epa) - ep _ (s —op, Yiiia;=2s+1,
S e ] (=D e =242, (2:30)
Bppay St
Up{ay- uéa} sez+l [ —(s =1)al, 23 fia =4s —
—s0y, ai :...:a28:2,

where no summation of the little-group indices is implied.
To summarize, the one-particle angular-momentum representation for a given momen-
tum p* is (now with h)*

s’ s’ R bas s’ ©(2s—1
()5 fay* 1" = hs 65 ol (m(blagg..-aazs)) = hs s ol b @ (6)) (2s=1), (2.31)

It satisfies the transverse Lie algebra

14 Zh vpo
(S8, Syl = Ee“ P7DpSpos (2.32)

which reduces to eq. (2.7) in the rest frame. For completeness, the anticommutator is

(1S Sp14) gy ™1 = = W25 67 [ — " /] (30) ™

ta) (2.33)

17525 = 1) ol @ op o (8) 7.

A straightforward extension of the coherent-state discussion in section 2.1.2 allows for a
well-defined classical limit for spin

h
_ e iz _
<S]‘D‘>a = 5(040504) ﬁ—m st p-8sq =0, (2.34a)
(S8Sy)a = (Sh)alSy)a + O(h) — shisds etc. (2.34b)
2.3 Classical observables
We are now in position to write an initial state for two massive objects “a” and “b” with
definite classical linear and angular momenta:
: ib-p1/h
in) = / Ya(p2)n(p2)e ™ p, 0, ) (235)
p1Jp2
®2s1 b\(®2s9
2 2 ib-p1/h (a”) (87)
~UalPHIBIP /2 5™ [ gibpi/ha, (1), (o) “|p1, 51, {a}; p2, 52, {b}).
p1;p2 (281)!(282)!
51,52 >
*Raising and lowering the SU(2) indices is performed with €*® = —eqp (such that eqpe®® = %) and by
convention either on the right, aq = €50, or on the left, @* = @,e®?, so that G = (aa)*. Moreover,
Opu’s = €0ppucteay = —0pup®, hence the little-group transformations U,® = exp{iw”op,}." and U%, =

€*Uleqy = exp{—iw"opu)}»* are hermitian conjugates: U%, = (U™ 1)* = (U,%)*.



Here the SU(2) spinors « and (3 transform in the little groups of p; and pa, respectively,
which are integrated over. However, let us recall that their main purpose is to define classi-
cal spin vectors s# and s}, in the sense of eq. (2.34a), which in presence of the momentum-
wavefunction integration should be upgraded to

(a(u)ota(u)), (2.36)

()60 = 5 [0 PaIrbal) = o = Jim

such that u - sq; = 0. Therefore, in the context of computing classical observables, we only
need to consider the spinors a and § which depend on the momenta in a unitary fashion
— exclusively to account for the misalignment between the little-group representations of
p* and u*, namely

aa(pl) = Uac(pl/maaua)ac(ua)a (237)

and likewise for S(p2). This is why in eq. (2.35) we allowed their SU(2)-invariant norms
to be pulled outside of the momentum integration. We leave the residual momentum
dependence of o and S implicit, until we need to specify it further.

Let us now return to the observable AQ, which we split into two parts:

MO =] T () () ha (1)t (p2)iph, i p, BI[OT =TT O] pr, 03 pa, B),
P1,P5,P1,P2

D20 = [ e () () e (p1) v (p2) (P s P, BITTOT p1, s pa, ), (2.38)
P1:P2,P1,P2

where k¥ = p/1” —pY is a momentum mismatch. In the present context of relativistic spinning
objects, O should be thought of as either a momentum or spin operator. Depending on
whether it is the latter or the former (or a function thereof), we may need or not need to
further expand the coherent spin states in terms of definite spins.

2.3.1 Impulse formulae

Let us consider the more involved case of the angular impulse observable. The contribution
linear in the scattering transition operator 7' is
_ 2 s . . & ,®23’1 ad 251
Ay St = e lolm - ., e i b/h%(pllwb(l?’z)wa(pl)l/)b(m)( ) - o)
ors) VPLPR 1P (2s7)!(2s1)! (2.39)
<i(ph. s, v, BIISET — TS [pr, 51, {a}; 2, B).-

Here and below, we will make use of the completeness relation in the Hilbert subspace

involving at least the two massive particles a and b,’

e 5 2 oo koo 5:X) - o1 s X1 (2.40)
P1,p2 sy

5The basic one-particle completeness relation for coherent spin states is

[l - S s fal) - (ool = 30 37 fsssuho sl = 1.

25=0 25=0 s,=-—s



Here the dot is again used as a shorthand for the contraction of the little-group indices
{ai1,...,as }. Of course, the spin operator S# does not change the number of particles and
is diagonal in p; and s;. Therefore, in the case of eq. (2.39) the matrix elements of the
quantum operators in the second line become

(pllv 5117 {a/};p/Qﬂ ﬁ’[SgT - TTSS] ‘ph 31, {a};pg, ﬁ> (2‘41)

= / 3 [6pg_r16pf2_m (58) 1 s ey - (Y, {ekira, BIT o, 51, {ati pa, )

(s A BT o i B) - (S) ¥ a8y

= @m0 | 3 (S5 o) AT 0y 81,5135, Bl i )

C1yeeeyCot
°1

- Z (A*(Pl,81;P2,5’]7,1,5/1;17,275)){0}{a/}(551){c}{a}]’

Cl,.-+5Csq

where 8, s is a shorthand for the on-shell delta function 2p°(27)35®)(p — p’). We have
thus converted the transition matrix elements to scattering amplitudes, in which we write
the outgoing particles first and the incoming particles after the vertical line — so as to
mimic the structure of the matrix elements and preserve consistency with the placement
of the SU(2) indices. The indices of the complex-conjugated amplitude in the last line
are dualized but still written in the “out-in” order. The spin operators in the definite-spin
representation (2.31) have also been reduced with respect to the total-spin quantum number
in a natural way: (S;j){a}{b} = (Sg)s’{a}s/zsj{b}. Note that in the explicit summations in
the last two lines of eq. (2.41) the number of the contracted SU(2) indices are different,
and they correspond to distinct little groups.

After integrating the momentum-conservation delta function

[ 2n 0+ 2~ — ph)
p

e iy (2.42)
= [0 + K08 ~ K12k + k)3 (20 b — k),
and replacing p} = p1 + k and p), = py — k in the rest of the integrand, we obtain
. Gyl ©2s] a® ®2s1
Mg = e I ST [ [y Ry — B ) O
a1 JPLP2 K (2s))1(2s1)!
51
' [(551+k){a }{c/} A Gy (pr ok, 85 p2— K, Blp1, s13 2, B)
— (A (pr, 51300, Blpr+hs s —h, B) () Y (S0 ], (249)

where [ is a shorthand for the two-dimensional integration measure in eq. (2.42).

~10 -



After similar manipulations involving the completeness relation (2.40), the second
angular-impulse contribution

(64)°2 (0o
@i (2.4
(pl, sh, {d'}; b, BITTSET |, 51, {a}; p2, B),

which is quadratic in the transition operator T', may be rewritten as

DSt = elel® 3™ / e ) (9 e (p1) ¥ (p2)
P1,P5,P1,P2

/
51,81

& /)@25’1 (aa)®231

AuSH — o llal? —ikeb/h, VO (s — k)b (Qq
s = Y Jpo R 14 B 2= Ry i) T

d*wid*wsy 0 0 0 0 ) )
> W@(pl + w})O(py + ws)d(2p1 - w1 4 wi)d(2p2- wo + w3)
1:52

s//7 1"

x 3 80 (w1 + wz + px) (A (pr+wi, s7; patwa, 55, {b); X|pi+k, 815 p2—k, 8))
X

: (551+w1){6}{e} A (D1 i, 8 patws, s, {bY X pa, s15p2, B). (2.45)

Analogously, the momentum-change contributions A P and Ag P! together give

Apr= [ [ (k)0 2 — K)o (r2) (2.46)
Pp1,p2
x {(p1+k)“i«4(p1+k‘,a;pz—k,ﬁ\pl,a;pmﬁ) — PLiA"(p1, s pa, Blp1+k, asp2—k, B)

dlwrdwy o o0vo 0,0 2 2
+ Z Wg(pl + wl)@(pQ + w2)5(2p1 - wq + w1)5(2p2 wo + w2)
57,5y

Xy 8 (w1 +wa+px) A*(pr+ws, 7, {a}; patws, sb, {b}; X|p1+k, 0; p2—k, B)
X

- (p1+wi)" A(prHwr, s, {a}; pa+w2, 55, {b}; X |p1, a; p2, 5)},

where the spin degrees of freedom merely play a spectator role, as they are not affected by
the momentum operator.

2.3.2 h power-counting

The impulse formulae above hold in fully quantum field theory. Let us now analyze the
powers of A to determine the simplifications due to the classical limit.

Formally, the classical limit should be defined in terms of dimensionless quantities;
namely, for each particle we take

202 2
Emg s 2 00 lalf=1y-sy = oo (2.47a)

These conditions on the incoming objects, however, are not sufficient to guarantee that the
scattering outcome will be classically calculable. To rule out the possibility of head-on or
deeply inelastic collisions, which tend to heavily depend on the internal structure of the
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projectiles, we must additionally impose that the impact parameter be much larger than
the wavepacket spreads (which we estimate via Heisenberg’s uncertainty principle):

h ~ h
(Up)a,b \/gma,b.

bl = V=82 > (0)ap 2 5 (2.47D)

In other words, we require that |b] > 04 > (Acompton)a,b at the same time, where of course
ACompton = 2mh/m. Due to the Fourier transformation to momentum space via e_ik'b/h,

this naturally translates to
k| =V —k? < (0p)ap X \/gma,b. (2.47¢)

Indeed, outside of this classically relevant region of small |k| the Fourier integral becomes
highly oscillatory at least for some b. The condition (2.47c) is further improved in the
longitudinal directions, as both copies of the momentum wavefunction, 1, (p1) and ¥} (p1 +
k), become sharply peaked around the same classical momentum myu/ (and likewise for
particle b), thus constraining k - u, 1, < {map < (0p)ab-

Perhaps a simpler way to keep track of the above limits is offered by the heuristic
classical limit 7 — 0, for which we adopt the following rules:

O, 0p < W2, & o h, || oc B2, |k| o A, k-ua,bodi?’/z. (2.48)

The remaining quantities, such as map, u | and s, remain classically meaningful. In
fact, all force-carrier momenta inside scattering amplitudes should be thought of in terms
of their wavenumbers k* = k* /B, as argued on unitarity grounds in ref. [33].

2.3.3 Leading classical impulse

Here we wish to focus on the classical observables at leading order in the coupling constant.
Both in gauge theory and gravity, it is convenient to absorb factors of 1/v/% into the
coupling constants [33], namely

Vae = e/Varh, Kk = /321G /h. (2.49)

Indeed, since we choose to work with momentum-space amplitudes of mass dimension
M*=" the natural expansion parameters for them must have a pure mass dimension, such
as 0 for the fine-structure constant o, and —1 for the gravitational coupling x defined
above. The need for these additional powers of h arises from the mismatch between the
dimensions of momenta and coordinate derivatives. (We still keep ¢ = 1.)

At leading order, unitarity restricts the amplitudes to be hermitian via the identity
Tt =T —iTTT ~ T. Hence we have tree-level conjugation rules such as

A (91, 519, B o1, 51592, 8) = (A (b1 susp2, BIph, 84595, 87) oy 10 (2:50)
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Therefore, the linear- and angular-impulse formulae (2.46) and (2.43) simplify to

APﬁzé/ /e-“’“'bwpl)mwb(pzwk“A<0><p1+k,a;m—k,mpl,a;pz,ﬁ), (2.51a)
P1,p2

n— je—llal? —ikb o () O251 () ©281
asg =it 5 /pp/ R e T

[(Sgﬁk){a/}{c'} A s (pr+E, 815 p2—k, Blp1, 5152, B) (2.51Db)
- A(O){a/}{c} (pl +k, 3,13]92—]‘137 B|p17 515 P2, B) ’ (S;loll){c}{a}} )

where we have also neglected the shifts by £k = O(h) in the momentum wavepackets.

In fact, in these leading-order equations i may be set to zero everywhere but in the
denominators, for instance, in §(2p1- k + k?) = §(2p1- k)/h + O(hP). This is because the
leading contribution in & will end up O(h°) by itself — which is not the case at higher orders,
where the leading contributions develop poles in & that cancel only after summing multiple
contributions, and it is the subleading terms O(h?) that give the classical observables [33].
In view of this, and keeping in mind that in the KMOC formalism both p/' and p = pi +k*
correspond to the initial-state momentum m,u¥, we propose to treat them democratically

ph= (0 +p1)/2 = p + k)2, ph = (05 +03)/2 = ph —K"/2, (2.52)
such that the wavefunctions (2.3) satisfy the following exact identities
Va1 + k)va(pr) = [$a(pa) V(2 = k)vn(p2) = [u(pw)*. (2.53)

The overall integration measure can then be expressed as

/p ) / /d4p d4pbd4 ( g_ k0/2)@(p2 + k0/2)@(pg _ kO/Q)@(pg + k0/2)
<5(pa —mg + K/ 4)5(p, — mi, + k°/4)5(2pa- k)3 (2po- k), (2.54)

where in the classically relevant region |k| = O(h) the four theta functions amount to
simply ©(p2)O(p))). We also see that the masses of p, and py, are both shifted by —k?/4 =
O(h?). Since these shifts may be safely ignored in the classical limit, the only important
k dependence in the measure remains in the transversality delta functions. Therefore, we
are allowed to make the integration-measure replacement

/171,p2/k - /pa,pb/k’ /,f /(547:;25(2193- k)d(2pp- k), (2.55)

where [ is now the standard eikonal measure, while [, ~and [, are defined just as in
eq. (2.2) without any additional reference to k.

Furthermore, the LO impulse formula (2.51a) may be rewritten in terms of a partial
derivative in the impact parameter:

0

APF = _h% [%a(pa) |96 (1)
Pa,Pb

) (2.56)
></ e~ AO) (pu+k /2, o pr,—k/2, Blpa—K/2, a; po+k/2, B).
k
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This seemingly four-dimensional derivative should be understood in the two-dimensional
sense within the transverse subspace

Epp, ={z €R iz pa=u-p, =0}, (2.57)

A simple way to enforce this is to additionally contract d/0b, with the transverse projector

(pa - pp)% — QO%paanﬂPapba (2.58)
a

0%, (pa, pb) =

which we leave implicit for the time being. Note that at this order there is no need to
distinguish Ep p, 2 K and EL >0

Ua Ut

2.3.4 Leading classical spin kick

In order to understand the classical limit of the angular impulse (2.51b) more closely, we
need to simplify its SU(2)-index structure (which currently refers to multiple little groups)
by boosting the spin operators to the same reference momentum. In view of the tensor-
product structure (2.31) of these operators, it is only the spin-1/2 operator (2.28) that is
boosted non-trivially:

[

ﬁ 1%
o 2pak Opap + OR)| U%(pa,path/2), (2.59)
d

"Zaik/zab =U"(patk/2,pa)|0ch,

see refs. [34, 37] or section 3.2 below for more details. The SU(2) transformations here
satisfy
Uac(paik/27pa)UCb(pa)paik/2> = 5IC)L (260)

and have the same nature as those introduced in eq. (2.37) for the coherent-state spinors.
We may therefore identify

Qg (pa+k/2)Uac(pa+k/27pa) = dc(pa>7
Uca(paypa_k/Q)aa(pa_k/Q) = ac(pa)'

This allows us to rewrite the leading angular impulse (2.51b) with all SU(2) indices asso-

(2.61)

ciated with the little group of the same momentum p,:

AS“—ze_”a” 2 (Da 2 (&a’(pa)pzs/l(aa(pa))QQSl .
)3 /pa,ﬁ p) Pl [ EEaTEm (2.62)

Pk, {a’} o
-{[S{.fa S”] {,}-A(O){C}{a}(pa+k/278’1;pb—k/2,ﬁ|pa—k/2,81;pb+k/2,ﬁ)

2m2 Pa

N g i, {c}
= A (a2, 53— /2.Blpa /2 515+ /2. ) - S+ By | }
Ma {a}

where we have introduced little-group reduced amplitudes

A{a/}{b}(pa+k/2a Sllapb_k/27 6’pa_k/27 Sl;pb+k/27 /3> = U{a,}{c’}(paapa+k/2)

(e , () (2.63)
Ay (Patk /2, 81500 — k)2, Blpa—k /2, 515 p0+k/2, B) - UNY () (Pa—k/2, pa),
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These amplitudes may be expressed as functions of momenta and spin operators. The
external spin operators in the formula (2.62) occur in the form of a commutator and an
anticommutator with the tree amplitude. Due to the crucial property (2.16) of the coherent
spin states, the leading classical contribution comes from replacing the spin operator with

its expectation value (S ). Hence the anticommutator amounts to a factor of two:

([Spas Al+)a = 25y, )a(A)a + O(R). (2.64)

Pa

It may seem that the commutator term should be negligible with respect to the anticommu-
tator. However, since the latter is multiplied by k, = fik,, the leading classical contribution
of the former is just as important. Now the only operators inside the amplitude that S
does not commute with are its own components, as encoded by the transverse spin al-
gebra (2.32). In view of the contraction with the coherent spin states, we may ignore
the order of multiplication in the leading non-vanishing commutator contribution, which
becomes [37]

0 iR (A
55{}7 > + O(h) = Le'uypapau<spap>aﬂ + O(h). (2.65)
pa’

<[Sga,~/4]>a = <[S£1’SU] My 8<So >a

Pa
Here the coherent-spin amplitude (A), is understood to be a function of the classical spin
<S[,;)a at momentum p,, and the partial derivative should be understood in the three-
dimensional sense within the subspace transverse to p,.
It is convenient to have a shorthand notation for spin-length expectation values
1
Ma,

1
m,

akl = —(Sh )a, ap (S8 )5 (2.66)
They are in correspondence with classical spins si = (S ) and s, = (S ), to which
they become proportional, but strictly speaking only after integration over p, and py, as
in eq. (2.36). In terms of these intermediate spin lengths, the leading angular impulse may

therefore be expressed as [37]

0

h 0
ASE = 7/ a\Pa 2 2 |\phal = — e avla,
Sa my Pavpb"lp (pa) "o (po) 1" | P o € Pava P 0ag

7 (2.67)
x/ ™M A (pat- /2, 0 pb —k/2, Blpa—k/2, a5 pi+ /2, 5).
k

3 Classical spinning amplitudes

In this section we analyze the coherent-spin amplitudes, in terms of which we have already
written the leading-order impulse formulae (2.56) and (2.67). These amplitudes naturally
appear in the expectation value of the scattering transition operator

ity = [ G002 AT i, B (31)

- ‘wa(]?a)’2|¢b(pb)’2 /IceiiE.bA(pa+k/27 Oé;pb—k/Q, /B‘pa_k/27 avpb+k/27 /8)7

Pa,Pb
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Figure 1. Residue of tree-level four-point scattering amplitude in ¢ channel.

which may be called “the scattering function” in the impact-parameter space. It is, roughly
speaking, an eikonal Fourier transform of “the classical scattering amplitude” in momen-
tum space.

The classical limit is dominated by small momentum transfer

t =k* = h%k?, (3.2)

where the tree-level four-point amplitude is factorized into two three-point ones:

ZA plva’pha;k?i)
ﬁQkQ (3.3)

x A (ply, B; k, F|p2, B) + O(1/h),

as illustrated in figure 1. For real external momenta on the mass shell, k is always spacelike.

A(O)(pha p276‘p17 Q] p27

However, we may extract the t-channel residue by first considering complex on-shell mo-
menta consistent with &2 = 0 and then analytically continuing the result to real spacelike
k, along the lines of the Holomorphic Classical Limit of ref. [40].
3.1 Three-point amplitudes
Let us now focus on the classical limit of the three-point amplitude shown in figure 2

Ag = A(O) (p27 ﬁ‘ph Q] kv h)

R ) R
) PI Ve

which we have relabeled with respect to the amplitudes appearing in eq. (3.3), so as to

a)©2s1 (3.4)

_A(O){b}{a}(p2,82|pla51§k, h),

unclutter the notation within this subsection. Although we have allowed the angular-
momentum spinors to be different for the incoming and outgoing massive states, we will
keep in mind that, in view of the classical impulse formulae, we are particularly interested
in the case where o = . Note, however, that the state expansion above involves a double
summation over amplitudes with all possible combinations of incoming and outgoing mas-
sive spins. In fact, one can think of coherent-state amplitudes as generating functions for
various definite-spin amplitudes, for instance

Aj

el " "L e

A(O){b} u , ,S1:k,h) = ———
{a} (P2, 52|p1, 513 K, ) (251)!(252)! LOBs dat

a=£=0
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Figure 2. Tree-level three-point scattering amplitude.

For concreteness, we work with the case of gravitational interaction. We start with
the minimal-coupling amplitudes®

K (201,)@28
Aoy (P2 slprsik, +) = 2 <m23>2x2, (3.6a)
2b1a ©®2s
Air?i)éb}{a}(p% S|p17 55 k’ _) = (—1)28—"—1&@-’3_2 (36b)

2 m2872 ’

where z is the unit-helicity factor that has multiple equivalent representations in terms of
massless helicity spinors or polarization vectors:

-1
o= Klpafr) - mlkr] f@(m ety = {(m -6‘)] : (3.7)

— mkry  (Elpilr] 0m m

These simplest general-spin amplitudes were proposed by Arkani-Hamed, Huang and
Huang [53] based on their tame behavior in the massless limit, but were soon real-
ized [39, 41] to correspond to scattering of Kerr’s rotating black hole (also obtained by
means of on-shell heavy particle theories [67]). Let us derive this result in our current
formalism.

3.2 From minimal coupling to Kerr

The minimal-coupling amplitudes correspond to the diagonal slice s = so = s of the
summation in the total-spin quantum numbers, so their contribution to the coherent-spin
amplitude (3.4) is simply

K 9 (la 01 s e (201092 .
i = — a2 5 L0 2L ey

3,min _
’ 2s)! m2s—2
=0 (29) (3.8)

_ _gm2$267(llall2+\lﬁll2)/2 exp {15b<2b1a>aa}.
m

Recall that in section 2.3.4 we boosted the initial- and final-state spin operators to the
same intermediate momentum p,. In the same spirit, we are now going to determine the

6Stricty speaking, the amplitudes (3.6) should appear with an additional prefactor of (—1)!*), as in
ref. [66]. However, this prefactor is merely due to the conventional normalization (2.24) of the external
wavefunctions, by which we have taken care to divide in eq. (3.6) and the following.
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dependence of the above exponent on the angular-momentum operator S’ , which generates
the little group of the average momentum p, = (p1 +p2)/2 = p1 +k/2. The three-point on-
shell kinematics implies that this momentum is also on-shell due to p; -k = p2-k = p,-k = 0,
and it is related to p; and po via boosts

iphkY
2m?

it kY P

P ip
p’f—exp[— Eul/:| Pas pé’—exp[;mgﬁw] Pa- (3.9)
ag g

The initial- and final-state spinors may be similarly boosted using the chiral Lorentz gen-
erators ot = igltg¥! /2:

itk 1
1) = Ut ) exp| 22 ) = Ul n, ) (Jon) = - lblen) ), (310
a a Z‘pgku a a 1
2% = U(pa,pu) exp| e o[ = (20 = Utalpa,p) (@]~ - (allH] ).

where we have used the nilpotency of pfk”c,, for k? = 0.7 Recalling the mild momentum
dependence (2.37) of the SU(2) spinors, as well as the properties of SU(2) transformations
pointed out in footnote 4, we may rewrite the exponent in (3.8) as

2 a 2 1 a
Bipa) (21} () = Bl ((ana) = - ([ blaa) + (el blad]))a'(p). (310)
Here (a’a,) = md?, and we may recognize the SU(2) spin generator®
a 1 a a| =
oty = 5 ((a%lo" ) + [a]"]ar) ). (3.12)

showing the separation between spinless and spin effects.
Having thus evaluated the positive-helicity amplitude (3.8), for completeness we display
the coherent-spin amplitudes for both graviton helicities:

+ K 9 49 _(lal2+82)/2+ B h- -~
‘A3,min__§m e Ul +0B1%)/2+5 eXp{:Fka“(ﬁagaa)}’ (313)

where all spinors are understood to correspond to the little group of p,. A remarkable
property here is that we have factored out the standard coherent-state overlap function

(Bla) = ol +B12) /245 (3.14)

Note that in the classical limit of the four-point amplitude (3.3) we take 3, = (a®)* and
can therefore identify the spin expectation value (2.34a):
A5

,min!ﬁ:a - 2

1 - _
= —Em2y®2 exp {q:mku<55a>a} = —gm%ﬂeij'aa. (3.15)

Importantly, this result would have been classically vanishing if the exponential suppression
by the original prefactor e~ (ol +l8I%)/2 = ¢=lal® a5 ||a||2 grows as 1/h, had not been

canceled by the exponential growth of eBo = ellall?,

"While here we consider the boosts from p1,2 to pa, similar relations between spinors, whose momenta
differ by quantum fluctuations, can be obtained by means of on-shell heavy-particle EFT variables, as
discussed in refs. [67, 68].

8The apparent sign difference between eqgs. (2.28) and (3.12) is due to all indices being always raised “on
the left” in the spinor-helicity formalism, whereas in SU(2) we have o}%, = e’“az‘,"cdedb.
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3.2.1 Connection to Kerr black hole

The exponential spin-multipole structure that we have obtained is a firm basis for the
identification of the minimal-coupling amplitudes with gravitational scattering of black
holes. The argument for this is given in refs. [37, 39] and is based on the classical stress-
energy tensor [50]

L (x) m/dTu(“ exp(a x 3)”) yuP 5 (x — ur), (3.16)

Kerr

which in linearized gravity serves as an effective source for a Kerr black hole with mass m,

a*x0

velocity u# and spin length a*. The exponential e**, involving the Levi-Civita contraction

(a* b)H = e Pa,bg, (3.17)

may be shown to yield precisely eFkaa when coupled to an on-shell graviton (see appendix A
for a matching calculation encompassing the Kerr case). In fact, formulae identical to the
right-hand side of eq. (3.15) appeared in ref. [37] but featured chiral-spinor versions of
the Pauli-Lubanski operator (2.26) instead of the spin expectation value a¥. An obvious
advantage of our current approach is that it enables us to directly identify the classical
spin vector right away, instead of heuristically replacing quantum-mechanical operators
with the corresponding classical quantities.

3.2.2 Multipoles from lower spins

As first noticed in ref. [69], lower spin-induced black-hole multipoles may be extracted
from considering particles with finite quantum spin. Namely, the 22°-pole interaction ap-
pears for spin-s particles. To see how this occurs in our formalism, let us truncate the
exponential (3.8) in the argument above:

r b ®2s
+,trunc _ ka2 o2 1 ~ ©2s <2 1a> (G ©2s
‘A3,min ’ﬂ:a - 2'7’. € 2822:0 (28)!(ab(p2)) m2s—2 (Ck (pl))
_”O‘H2 " 1 ~ ®2s 5b h k M»b 2 a ©2s 3.18
et Y <zs>!<ab<pa>> %= gfuonie) - (00m) (318)
_ R 2.2 Z Z (a(pa)) (—hk: . >@”® (89225 (09(p,)) O,
2 o 0n0n'2s—n 2m @

To deal with this truncated sum, we may use the following property of the quantum
angular-momentum representation (2.31), true for any lightlike & satisfying p - k = 0:

W29 5ok 0,%) " o (5O, (3.19)

. nys-1a} ,
[(k Sp) } s’ {b} — 2n(25 —_ n)| s/

Whenever n > 2s, the gamma function I'(2s — n + 1) = (2s — n)! in the denominator
develops poles, implying that the right-hand side then vanishes, so we can still obtain an
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exponential:

+,trunc K 2 2 —|a? Z Z @25
: = —=m e
A3,m1n ‘B:a 2 23 ' n'

(ks ey
Les )] e
m {a}

28= O
r {b}
_ k2 2 _|af? 1 ©2s { i];, S } a\®2s
= ——m*x°e — ab -exp|— - Sp, (o
4s
_ 2.2 o) el < [_1—. ]>
—5m ZSZO 2591 —k - Sp, n (3.20)

where we have used a finite-spin expectation value defined in an obvious way as (O)es =
(@)% - 0348, gy - (@)9%%/||a||**. For any finite truncation r, taking [af| — oo
according to the classical limit (2.47) would nullify the coherent-spin amplitude. Moreover,
for any finite s = 0,1/2,...,7/2, the spin exponential in eq. (3.20) is naturally truncated
at the 22° multipole, exactly as in refs. [37, 39, 67]. However, if we presume a classical-limit
property of the type (2.34b), we may recognize that the multipoles which are present in
the finite-spin contributions above very well correspond to those in our full result (3.15)
— except for the summation over s and the normalization prefactors e~ 1ol ||a|[4s /(2s)!,
which are important in the coherent-spin formalism but should rather be ignored in a
finite-spin approach.

3.3 Non-minimal coupling

Now that we have explored how the multipole structure of a Kerr black hole arises from
the minimal-coupling amplitudes, we may as well consider more general massive particles
which couple to gravity in a non-minimal way. We write the corresponding three-point
amplitudes still for equal spins but otherwise in full generality as [53]

2s N 2 <2b1a>®(25—n)

K n
Aggl{b}{a} (p27 8|p17 55 k? +) = _5 Z In m25+n—2 © (<2bk> <k1a>)® ’ (321)
n=0

2s —n—279b1 10(2s8—n)
1 _x 2°1, n
CUPIES g e o (kL)
n=0

Ag(:gl{b}{a} (p27 S|p1a 53 ka _)

The dimensionless coupling constants g;" and g, are understood to be related by complex
conjugation due to parity conservation. Moreover, as we have seen above and will be able
to further confirm below, the minimal couplings gét determine the gravitational interaction
at zero spin and are therefore pegged to unity by the equivalence principle. Importantly,
we assume that the coupling constants gf>0 depend only on their “non-minimalness” n
and not on the spin quantum number s.

Let us construct the non-minimal coherent-spin amplitude for positive helicity:

n+2
—(llal|? gn«T a\2s—n /5 a\ "
'A;_,gen = —76 (lel+1181%) /2 Z Z 28 e 2(5b<2b1a>a ) (Bb<2bk><k1a>a )

25s=0n= 0
LB g o (a2 o on (B2 kL)t \ & (By(2La)a )
2m v i Zg ( m By (201,) ) 2 (25)!m?2s

n=0 2s=n
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_ 2m2x267<uau2+||/3|| )/2 exp{15b<2b1a>aa} (3.22)

S (B - (e )]

where changing the order of summation allowed us to evaluate the sum in the total-spin

quantum number s. Setting 3, = (a®)*, we can again identify

G p) (2 L) (1) = ol = -, (3.23)

as in section 3.2. In addition, we will now also need the equalities
zap(p2)(2°k) (k1a)a®(p1) = o~ ap(p2) 2K [k 1a)a (p1) = 2m* (k- @a). (3.24)

They may be proven by using the three-point spinorial identities
21 = ~(2L) = —(@R)RL), PR =a(@R), L] =e(kl),  (3.25)

together with the parity-conjugated version of eq. (3.23)

1_ . _
= —Gp(p2)[2"La]a’(p1) = [la]* + k- aa, (3.26)

which was implicitly used earlier to arrive at the negative-helicity version of eq. (3.13). In
this way, we obtain

o +9%k-a, 1"[, T(n o> Fk- a)
Aﬂ: _ m2x:|:2€:|:k~aa + _a] 1— ! , 3.27
wenli0= "3 2 [P+ a (n—1)! 3217

where we have again displayed both helicity amplitudes for completeness. In the classical

limit (2.47), the gamma-function term is exponentially suppressed, since I'(n,||a|/?) ~

|2(n—1) o

as ||al| = oco. Even still, the non-minimal couplings gff>0 seem to be
’—271

/2D
polynomially suppressed by ||«

This means that, in order to be able to model a classically spinning massive object
with generic spin-induced multipoles using a quantum particle, one needs to introduce non-
minimal coupling constants gf;o that scale as O(h~").? In general relativity, the dynamics
of such classical objects is conveniently described by the worldline effective theory, in
which the spin-induced multipole contributions linear in the curvature tensor enter via the

interaction Lagrangian [70-72]

—1)"
Sr = m/dT{ ((2713'CEszn(a V) 2Ry, VpuAa“u”ap (3.28)
n=1 :
+ i ﬂc ans1(a - V)V Ry, o utaPut af
BS“™ nrp ’
=1 (QTL + 1)' z=r(T)
9 Alternatively, one could rescale the non-minimal coupling constants g,jf>0 already in eq. (3.21) — by

switching to massless spinors |k) and |k] in place of |k) and |k], which are both O(h'/?).
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where *Ry,p = /=9 €xporR771p/2, and r#(7), u(7) = drt/dr and a#(7) are the co-
ordinate, velocity and spin functions of proper time, respectively. In fact, it is possible
to establish a correspondence between our non-minimal couplings ijf>0 and the dimen-
sionless worldline Wilson coefficients Cpgen and Cggen+1. To do this, here we rely on the
scattering amplitude

+ _ K 92 42 o~ Crgen 7. \2n — Cpgznti 7 2n+1:|
Ao k) = —om2a {2:(%m<ka>:i2%@n+lﬂw a1, (329)

n=0
which follows from the worldline action above and is derived in appendix A. The classical

limit of the amplitude (3.27) may be reorganized in a similar fashion:

D
o _
2, 42 Fk-aa +
—— M X e
9 n§:[)gn

_ K 2 42 — 7 n (—2)7g
=—gma Z(:Fk-aa) Z

— 2
=0 = (n =)l

A

+2k - a, 1"
7gen ‘ﬂ:a =

lee]f?

(3.30)

We can therefore read off the worldline Wilson coefficients implied by the non-minimal
amplitudes (3.21):

2 (9n)1(—2)" ¢E Al (9p £ 1)(=2)gE
Z g’l‘ C _ Z g?“
2n —r)l|al2’ Bgzt = (2n —r + D)lfaf?

r=0 r=0

This matching clearly requires that g7 and g;, be real and equal to each other. Moreover,
let us point out the fact that, as explained in appendix A, in passing from the action (3.28)
to the amplitude (3.29) we had to introduce the n = 0 terms with Cpqo = —Cpgqt = 1,
which unequivocally follow from the worldline kinetic terms. Hence

g = Cpso =1, gt = llal*(Cpgr + 95)/2 = 0. (3.32)

The crucial feature of the Wilson-coefficient map (3.31) is that, in order to describe
a generic classical particle using the three-point amplitudes (3.21), one must consider the
non-minimal coupling constants g,~¢ that depend on the classical spin length a of the
particle via

2
laf? = == v/=a?. (3.33)

The only gravitational objects escaping this rule seem to be black holes, for which g(j)[ =1
and g7f>0 = 0.

In this section, we have naturally landed on equal coefficients g, = g,, for positive-
and negative- helicity amplitudes. Non-equal coefficients can be motivated by the electric-
magnetic duality, which in electromagnetism mixes the electric and magnetic charges. The
gravitational electric-magnetic duality relates the mass and NUT charge parameter in a
similar manner [73]. Together with double copy and the Newman-Janis shift [74], the du-
ality generates a whole web of theories described in refs. [75, 76], in which the three-point
coupling coeflicients gff develop complex phases while still being related by complex con-
jugation.
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3.4 Unequal spin amplitudes

So far we have been focusing on the diagonal slice s; = so of the double sum in the three-
point coherent-spin amplitude (3.4). This is because, as we will show in this section, the
off-diagonal contributions vanish in the classical limit, or at least may be considered to
vanish unless certain artificial assumptions are made beforehand.

For concreteness, let us consider the positive-helicity amplitudes with s; > so, which
may be written in full generality as [53]

0){5} K <A R
A81>82{(l}(p27 SQ’ply 817 k + - — = Z gn ,81,82 251+n 2 (334)

X <2b1a> (252 n) ® <2bk>®n ® <k1a>®(251—282+n).

Dressing it with coherent states gives

2s _
2 .%'81 so+n

T = —2m2p2e—lalP+181%)/2 In,s1,52
As o155, = —5m af Z Z Z (251)!(252)lm2s1+n

259=0 2s1=2s9+1 n=0

X (By(21a)a®) 2" (By(2K) (B 1a)a) " ((k1a)a®) 2™ 72

(3.35)

We are now interested in the behavior of the above triple sum in the classical limit, in which
lall = O(R~Y2) = ||| k) = O(R'?). (3.36)

So the only factor that has a chance to counteract the vanishing of the exponential prefactor
is the term

~ Bolp2) (2100 (1) = Bulpa)a () — Bl ), (3.37)

in which the second contribution is classically finite but the first one grows as O(1/h).
Indeed, we have seen in section 3.2 how this contribution can in principle combine with the
exponential prefactor to produce the coherent-state overlap (5|a), which is finite unless
o — B|| = oo, as follows from |(Ba)|? = e ll*=AlI”. Let us therefore denote the finite
dimensionless contributions O(R?) as

) b a? €T ~
ﬁbg;ziiaiia(pgl) = A, —5By(p2) (2K} (kla)a" (p1) = B,

in terms of which the amplitude contribution writes

L kla)a(py) = C, (3.38)

35

oo 282

_ In,s +r/2, SQB cr = a\282—n
AF B2 (lalP A1) Z Sy I Ay (3.3
ez 2 2s0=0r=1n=0 252 +r (252)' ( ﬁa ) ( )

Moreover, although we have allowed the coupling constants g, s, s, to depend on the
spin quantum numbers, in the following estimations let us replace them with

Yn = SUpP ’gn,shsz‘- (3.40)

§1>52
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This is going to allow us to change the order of summation:

2"43 ,81>82
/im2 2

—(|le||? 2 Yn|B ol C- AB@ o[22
< e~ Ualz+igiy/2 5~ _YnlBI" Z’ ry At (3.41)
n=0 ‘Aﬁa r=1 250= n\/ 28 + T) (282)

In order to deal with the square roots of the factorials, we use the following inequality

t+r)t =T(t+r+1)DE+1) > T2(t+3/2)T(r), tr=12,... (342

The resulting sum may be evaluated using

00 at _ el F(n 4 1/2’ CL) e
E:WVHﬂn_v@P_IwHﬂpg}<¢w a>0. (3.43)

Hence our estimation becomes

2A3 ,81>82

Kkm2z2

o—(lalP+1812)2 5~ _YnlBI" Z V or e’\‘/I"AB“a | (3.44)
(r—1)! |AB,0|

Here we may recall that AB,a® is precisely given by eq. (3.37), so we finally obtain'”

—(llell=118ID?/2
< B2t 1 p
Aoz < 5me” =7 exp | Eu(B151. o)
o yn|B" o~ lCI

2 el [ 2 =T

In the classical limit, we are interested in 8 = «, including the case where B, = (a®)*,

(3.45)

which means that the relative “cosine” inside the inner product 8,a® should be regarded
as at least finite. Therefore, the product 3,0 grows as O(1/h). Similarly to situation
with the equal-spin non-minimal couplings in section 3.3, the coupling-constants vy, are
accompanied by factors of 1/(,a®)" and are thus power-suppressed — unless they or
their counterparts g s, s, are rescaled at the level of the scattering amplitude (3.34). For
equal spins, however, such a rescaling procedure was motivated by the knowledge of clas-
sical multipole interactions, which could be modeled by proportionally amplified coupling
constants. In addition, the crucial difference between equal and unequal spins is the pres-
ence of an overall factor 1/|8,a%"/? = O(h'/?) in the estimation (3.45), which means that
even the “almost minimal” couplings gos,,s, Would need to scale as O(h~1/2). Since we
are not aware of classical interactions that would benefit from such an elaborate rescaling
procedure — which in this case could not be consistently implemented by a |k) — |k)
switch, and moreover the classical interpretation of the expression C' = /x(k1,)a®/m
seems rather obscure, we see no interest in trying to retain the non-equal spin couplings
in the classical limit. We are thus vindicated for ignoring the off-diagonal contributions in
the coherent-spin amplitude (3.4).

1071 the discussion following eq. (3.45), we assume that the sums in the second line of the equation
converge regardless of the & scaling. In fact, the series in 7 is absolutely convergent by the d’Alembert ratio
test. The convergence of the series in n seems to depend on the values of A, B and B,a%, but it is natural
to assume that the coupling constants gn,s,,s, (and their suprema y,) contain a factorial dependence on n,
such as that implied by the Wilson-coefficent map (3.31) for equal spins.
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4 Elastic gravitational scattering

In this section we return to the four-point amplitude A©) (P, a; ph, Blp1, a; pa, B), which
determines the leading-order impulse and spin-kick observables via the formulae (2.56)
and (2.67). We have already explained that the classical limit of this amplitude is naturally
factorized into a product of two three-point amplitudes, as depicted in figure 1. Now that
we have extensively dissected these lower-point ingredients, we may proceed to constructing
the four-point amplitude.

For the sake of generality, we will use the “classical” amplitudes (3.29), which in
appendix A are derived from the worldline effective action with free Wilson coefficients

027'7, = CE8277,, 02n+1 = CB82n+1. (41)

In view of the matching (3.31), we may easily reinterpret these amplitudes as the classical
limit of the coherent-state amplitudes (3.27). After the above Wilson-coefficient relabeling,
we can write them simply as

AO(ph, alpy, a; k, +) = 5m xﬁz 4k -a,)" + O(RY), (4.2)

and similarly for particle b, except a sign switch for k. If we plug these amplitudes into
eq. (3.3), we run into the helicity-factor ratios, which on the ¢-channel pole kinematics
evaluate to

Za/zH = Y(1 — ), Th/Ta = y(1 4+ v). (4.3)

Here we have used the relative Lorentz factor «v and the corresponding velocity v defined by

1 Pa- Pb
7 V1—0v2  mamy (44)

The physical meaning of these quantities is that in the rest frame of one of the incoming

particles the other one moves with speed v, as in

{pé‘ = 7Ma(1,0,0,0),  Lorents boost {péj = (ma,0,0,0), (45)

phy = (my,0,0,0), Pl = ymi(1,0,0, —v).

Therefore, the classical limit of the elastic scattering amplitude (3.3) becomes
A(O) /,CY; /7 y O ) :_K:mmb

(P, @; P, Blp1, s p2, B) ST Z’y "
4.6

<30 G (4, f: Cona (1 ay)"™ + O(5)

Ay ol b .

n1=0 na=0 2

We are still not entirely ready to analytically continue this expression away from the t-
channel pole kinematics, since it contains parity-odd products of the type k - a — which
make sense on the three-point kinematics and are naturally accompanied by the helicity-
dependent signs, but are alien to real-valued classical physics. Note, for example, that in

— 95—



order to make the transition between a clearly parity-even action (3.28) and the amplitude
expression (3.29) we need the three-point identity (A.9) involving the massless polarization
vector. Now that we wish to go away from the on-shell kinematics for the graviton, using
eq. (A.9) is not an option. There are, however, four-point identities which involve the
Levi-Civita tensor and are valid on the ¢-channel pole kinematics, namely [37]

iew,pgpgpgl?:pag = mambvv(/% Cag), éeuypopgpﬁl%pag = mamb’yv(l;: - ap). (4.7)
For brevity, we follow ref. [50] in introducing the notation

(w, V]

2 € Kot af
wh = PaPb , [w* ay = (xw)\,a* = pupPa @ (4.8)
MaMpyv MaMyYV

which allows us to write a new expression for the elastic scattering amplitude that may be
understood beyond the ¢t-channel pole kinematics:

ST Cim2m2~2
A (pa+ /2,0 p,— k)2, Blpa—k/2, 0 py /2, 6) =~ b T (49)
— Can, C - - n .
2 ani —bng . n1 . 2 5/2
X zi:(l Fo) m%;zo TN (tik - [wxan)) ' (Lik - [wxap]) ™ + O(h 7).

4.1 Eikonal phase

Our formulae (2.56) and (2.67) for both of the leading-order impulse observables involve
the eikonal Fourier transform of the above amplitude

AL (b) = /k e Y 4O (p,+k /2, ; po—k /2, Blpa—k/2, @ pp+k/2, B), (4.10)

where [, is the measure (2.55). This object is widely referred to as the eikonal phase [4-
8, 25, 29, 31, 77]. In view of the form of the integrand (4.9), let us proceed to computing
the integrals

. e—ikb _ 7 B2 dAk B _ eikby _ B
500 00) = [ R Fu = [ o R RN g (A1)

where we have extracted the Planck constants inherent to the eikonal measure. We have

also taken care to indicate that these integrals only depend on b = ITI*,(pa, pp)b”, which

1

lies in E- as opposed to the original impact parameter b € E- .

Pa,Pn?
The simplest of these integrals is a scalar that may be computed in the center-of-mass

(COM) frame, in which k is constrained to be (0, k', k2,0) € Eéa,pb. The result is

2

10(,) = (log /=02 +Cc),  Ce=log s +7muer + O),  (412)

8Tmampyv

where C; is a logarithmically divergent constant, which we wrote in terms of the infrared
regulator € < |k, |. Being interested in the observables, the formulae for which only depend
on the derivatives of A (b), we may safely omit this infinite constant later. All of the
tensor integrals (4.11) may now be obtained as partial derivatives

9 0
90
g g 0L (4.13)

I(an)m#n (bJ_) = jMIIHVL . [[HnVn
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The projectors (2.58) are important to ensure that the resulting expression stays transverse
in all of its indices. In this way, one can obtain explicit answers like

in? o 1 (5, = —h2 BRI —2bM by

_— = 4.14
8mmampyv b2’ (2) (4.14)

" (b)) =
(1)( 1) 8TMmampyv bt ’

which match those in e.g. ref. [34]. However, we choose to exploit the fact that the numer-
ator of our amplitude (4.9) depends on k exclusively via k - [w * a,], which already does
the job of projecting the non-transverse components of any such integral for us. We may

therefore write the eikonal phase (4.10) directly in terms of derivatives:
Gmamy, X (£1)ymtn2
AV ) =— 77 EEZOLDY %camcbm (4.15)
+

n1.ma=0 TL1!’I7,2.
x ([ws ag] -0y, )" ([ an] - 4, )" log /03 + O(h™112).

As a cross-check, we can switch to Kerr scattering by setting Cy,, = Cpy, = (—1)". Then
the infinite sums organize themselves into translation operators, and eq. (4.15) becomes

B Gm,

AL (B) = =L 51 ) log y = (b F 0 (aa+ )’ + O, (4.16)
+

h

which matches the eikonal phase in ref. [37].

4.2 Impulse observables

We are now ready to compute the leading-order linear and angular impulses. First, we
apply the formula (2.56) to the eikonal phase (4.15) and obtain

0

APE = —Tig [ a(pa) Pl () PAL (0) (4.17)
ab,u Pa,Pb

_ g 2 = (il)nﬁ_nQ ni nz bt

= Gmamb; zi:(l + o) nl%ﬂiﬂl!ml Cani Cony ([w * an] - )" ([w * ap) - Op) 2 ;

Here “cl” identification indicates that the wave-function integration has localized the initial

momenta p;‘ p, on their classical values ma7bu’; - This has allowed us to replace the trans-

L

verse projection of the impact parameter b, € E;,J;a p, Dy the original quantity b € E;; , .

Other quantities are also naturally understood in terms of the initial four-velocities:

1 1
= Uy Up, [Wel * aly = ———=€x\upubupa’. (4.18)

Yol = —F7/——
2 2
\/1_vcl 761_1

In particular, the spin-length expectation values, defined at momenta p,}, in eq. (2.66), are

now identified with the initial classical angular momenta s, 1, = maybaglb.

Similarly, the spin kick formula (2.67) yields the following answer:

h v 8 vpo 6
At = [ )P P et g = € bty | AL )

a v Pa;Pb

Y 2 - (il)n1+n2
:—Gmambazi:(liv) Z —

n1,m2=0

n2
gy Cam Cona ([wx an] - ) (4.19)

e - 5] (1w ca] - 00)" log V7
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where the derivatives in the square brackets could be easily evaluated further for the price
of enlarging the final expression. Note there is always at least one derivative acting on
the logarithm, thus ensuring that the answer stays independent of the implicit infrared
singularity. More structure expectedly arises in the Kerr black-hole scattering case, in
which we derive

b _ Y o[b £ w x (aa+ ap)]*

AP} Gmambv Ei (1Fv) b L w+ (a0t ap)2 (4.20a)
wo _ g (LFv)? [ . u

ASE Gmamy, ” Ei D Ew (@t o)l (- [b £ w *ap))uk (4.20Db)

+ fylv((w;,- aa) [b £ w* (aa+ ap)]” — (aa- b+ w * ap)) [up— ’Vua]u)}

We have verified that these expressions are entirely equivalent to the leading-order black-
hole results first obtained by Vines [50].

cl

4.3 Effective Hamiltonian

An alternative route to classical mechanics due to gravity, that is notably also usable for

bound-state problems such as binary compact-object inspirals, is to pass via an effective

two-body Hamiltonian. It is convenient to set it up in the center-of-mass frame, in which
[ .3 (Ea + Eb)|p|

Pa = (Ea, p), pb = (Eb, —P), E;=\/p*+ mi, 7= amaimb' (4.21)

Then the conservative Hamiltonian is composed of the kinetic energy (F, + Ey,) and an
effective potential V' [6, 78, 79]:

H(r,p, 8a, Sb) = \/p? +m2 + \/p? + m} + V(r,p, Sa, Sb). (4.22)

The leading-order effective potential may be extracted directly from the tree-level classical
scattering amplitude simply as

1) h? P’k ikr 4(0) (L.
Vv (T,p, Sa: Sb) = _4E Eb/(2ﬂ'>3e A (k7p7 Saa Sb)) (423)
a

whereas a more intricate EF'T matching is needed [3, 80] at higher orders. Another impor-
tant difference of this approach from the KMOC formalism is that it does not involve any
additional momentum-wavefunction integration so the momenta pg ,, are identified with
the classical incoming momenta m,, bu , from the start. In fact, the amplitude input is then
taken to be A(pa+k, pr — k|pa, pp) — as opposed to A(pa+k/2,pb—k/2|pa—k/2,pr+k/2).
This difference is, however, irrelevant at leading order, since the classical limit sends & — 0
in the numerator anyway. Therefore, the COM amplitude may be read off directly from
our result in eq. (4.9):

AO (. p, S, Sp) = STEMAIEY ) (4.24)
h3k ¥

0 CamComa (L 0+ . m n2
x Yo T b2< mak~[p><,5’a]) <ik-[p><Sb]> :

|
ni,n2=0 ni: 712
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where the Levi-Civita contractions have naturally been converted to cross products:

wea® =0, [wedi=—-[pxal,  p=p/lpl. (4.25)

Let us further justify how we have just traded the spin vectors a,p, for S,1,/ma,p in
translating between eqs. (4.9) and (4.24). We wish to follow the EFT approach of ref. [6], in
which the integer-spin amplitudes are constructed directly in terms of the rest-frame spin
operators S’ab acting on external polarization tensors. By invoking a coherent spin-state
construction [81], these operators themselves were identified with the classical spin vectors
obeying the equations of motion

0H ) 0H . 0H

= - = Six i = a,b. 4.2

Note that the minimal boost from the rest frame of particle a to the COM frame is

Sa (p-Sa)p 0o P-Sa

a, = — a) = )
ma  m2(Ea+my)’ a m2

(4.27)

(Here and below, the corresponding expressions for particle b may be easily obtained by
flipping the sign in front of p.) Clearly, the triple product k - [p x a,] is insensitive to the
spin-length contribution proportional to p, so the COM amplitude is indeed given simply
by eq. (4.24).

Taking its three-dimensional Fourier transform (4.23), we immediately obtain the 1PM
effective conservative potential at first PM order:

Gm mi~?
V(. p, 8., 8p) = ——2-bL Fv) (4.28)
2, Ey Zi:
> n1Cbn 1 " 1. "2
> %(t[@ % S.]- vr> (:I:[p x Sl - vr) x
im0 Tin2! Ma, m, 7|

This closed-form expression is spin-exact but remarkably simple and may be easily ex-
panded to any required order in the angular momenta by repeated differentiation. In the
particularly interesting case of two Kerr black holes, the effective potential becomes

Gm2m?~? (1+0v)?
SO s g — G 4.29
(T,p, ) b) 2F. B, Z ]r:th afa+ab)‘ ( )

where we are still free to use either a,1, or S, p/mab.

An expression very similar to eq. (4.28) in the form of a Fourier integral has been writ-
ten by Chung, Huang, Kim and Lee [44], who then expanded it to the first four orders in
spin and found agreement with the literature [72, 82-86]. Our results, however, are differ-
ent from those of ref. [44]. This is perhaps most evident in our black-hole potential (4.29),
which has a simpler denominator than in ref. [44]. We claim, however, that our Hamilto-
nian (4.28) is physically equivalent to that in ref. [44] and differs from it by something that
would constitute a gauge choice in a more traditional derivation of an effective two-body
Hamiltonian from general relativity. Indeed, the absence of terms involving (7 - p) in the
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potential of ref. [44] corresponds to the so-called isotropic gauge, whereas we start to run
into such terms already at quadratic order in spin:

11 {282 -2(p 8.)° +6(7P)(7 - Sa)(D - Sa)
2

N
ERRE 3802 - 3G pes?y. Y

Since finding canonical transformations between Hamiltonians is a non-trivial task,
here we choose to follow a more instructive path and rederive (the COM version of) the
impulse observables (4.17) and (4.19) directly from our potential (4.29).

4.4 Observables from motion

The starting point for solving the equations of motion (4.26) perturbatively is to acknowl-
edge the fact that the kinetic part of the Hamiltonian depends exclusively on momenta.
This means that in absence of interaction only the relative trajectory r(¢) has a non-trivial
evolution. Therefore, we can set up the initial conditions by assuming the momenta and
spins to be constant at zeroth order in G:

p(t) = +OG),  5;(t) =SV +0(q), (4.31a)

whereas the relative trajectory becomes

_oH _p P _ [
= op = E+Eb+O(G) = rit)=b+

Ea+Eb

ats p} L+ O(G).  (431b)

m

Here we have set r(0) = b, so the impact parameter, such that b - p,, = 0, naturally
coincides with the minimal distance between the two massive objects. Here and below, we
use the subscript “in” to freeze the affected dynamical variables at their initial values; e.g.
En =\ /m2 +p2, [P X Splin = Py x S, etc.

4.4.1 Impulse from motion

In order to handle the two-body motion of general spinning objects with more ease, it is
convenient to introduce a shorthand for the following differential operators

oo Cn 1 R n )
C]j-E(VT) = Z ](:lz[p x 8] - VT> , j=a,b, (4.32)

| :
= n! m;
which are ubiquitous to the 1PM effective potential (4.28). Its coordinate derivative

aH Gm? mb'y i N o o
or  2E,B, ; LF 0)’C(Vi)C, (V) + OGT) = -p (4.33)

governs the evolution of the momentum variable. In the non-spinning case C;E = 1, the
leading-order solution is obtained by straightforward time integration

a b B, E
dt a0 [EE;EEbprnt _ vt~ lmieel C, (4.34
‘7“’3 Ea+FE o 2 MaMpYV Nn3/2 " (12 Mamyyv 5 1/2+ > ( . )
I8 b+[ a b b I:EaiE} t ) (b + [TE‘b}lnt )
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where in the denominator we have used the kinematic relation (4.21). To do the same in
the general spinning case, we need to convince ourselves in the following:

b+ [EﬁjEE.ab Pt

(b7 [mamere]? 2)7/27

cx - = CE (V)G (V)

a,1n

(Vr)Coin (V) (4.35)

3
7| r=b+[izbp) ¢

This is indeed true due to the structure of C; m(Vr), which differentiate exclusively along
directions orthogonal to p;,. In other words, these differential operators only depend on

the transverse gradient!!
Vi' = in Ve, Hfﬁ = 5ij - piinp{n/p?n = Vy = i)in(ﬁin' VT) + vi_v (4'36)

where we have used the COM-frame version of the transverse projector (2.58). Therefore,

we can formulate a more general statement:
(Vrl)®”f(r)|T:b+c = (VE)®"f(b+¢)  provided that ¢t =Tpe=0,  (4.37)

from which eq. (4.35) follows directly. We also remind the reader that the impact-parameter
differentiation is always assumed to be transverse, Vy = V,f.

In this way, we find that the momentum equation of motion is solved by

GQOtQ)’Y 25+ b2t [(EEJ-%;I)) ] 2
p(t) = —{ SE.E, Z Fv)°C;(Vp) Cb (V) ]m \/b2 mamb'YU = " +C+0(G?)
EaFEy 1n
GmampYin b
i too + QWi Z(l + v)lncszm(vb)cb 1n(vb)g2 +C + O(GQ) (438)

+

where the two time limits differ only by an overall sign. The impulse Ap is the difference
between these two limits. It can thus be read off directly from eq. (4.38) even without
specifying the constant of integration C, which, incidentally, can be determined simply by
enforcing p(—o0) = p;,. Recalling the definition (4.32) of the differential operators, we can

express the net momentum change as

Canl Cbng

B Y 2 .- L. "
Ap = —Gm,my, " Z(l Fv) Z 1] <ima[p X Sl 'Vb>

+ ni,n2=0

(4.39)
b

1 2

x| £—I[px Sp]-V ) —.

( P X Sv] -V ] ™
n

We can now easily recognize that this leading-order solution to the Hamiltonian equa-

tions of motion is nothing but the COM-frame version of the Lorentz-covariant impulse
observable (4.17), which was computed earlier using scattering amplitudes.

Note that we use subscripts in the gradients V, and V; simply to specify the differentiation variables.
Directional derivatives are then constructed via an explicit scalar product, as in (p;,- V).

~ 31—



4.4.2 Spin kick from motion

Let us now find the leading solution to the angular-momentum equation of motion

+
acg gr)] \71'! +O(G?).  (4.40)

i > (1 Fv)%CE (V) {Sa x
+

The new differential operator

(v i (ilr AR )nlr < V] (4.41)
85’ — n—l ‘ma map & " p " '

is clearly transverse as well. We may therefore convert between derivatives V, and Vj as
before and integrate the spin evolution all the way to

Gmamyy e OCgc(Vb)}
at = |\ 1 a™T oo
S (1) { i S TS Tt
4.42
\/b2 mgmé,vv mtz 4 [mgméﬁv]int ) ( )
XlOg 2 mjnbv m:nbv +C+O(G)
VO [l — (), ¢

In order to safely take t — +o00, we need to evaluate the gradient that became exposed in
eq. (4.41). We find that its late/early time limits give simply

b2—|— [mamb'yv]? 24 [mamb'yv] ¢ 9
[pin % V3] log v e R Folbux bl (143
\/b +[ EaE)b ]int _[ Ea.Ey Lnt

Thus we arrive at the following expression for the three-dimensional angular impulse:

~ :FCan1Cbn2 1. "
ASa == —Gmamb Z F U Z Z —" Zl:*[p X Sb] . Vb
n1=11ng=0 nl— ng.ma my
(4.44)

(n1—1)
« (il[fa % Sl vb> Liw-sop— - Sa)b]]

ma,

4.4.3 Frame-choice subtlety

The reason why we have labeled the above expression as AS, is to discern it from a
similar result that follows from scattering amplitudes. Namely, taking Aa, to be the
three-dimensional part of the Lorentz-covariant spin kick (4.19) in the COM frame, we can
convert it to its rest-frame version AS, by appropriately perturbing the boost relation-
ship (4.27):

ma(p'Aaa)+Ap'Sa . p'Sa
Ea(Ea + ma) p ma(Ea + ma)

AS, = m.Aa, — Ap + O(G?), (4.45)

where we have used AE, = O(G?). In this way, we find the full angular impulse to be

Ap-S.)p— (p-Sa)Ap

X (
AS, =AS, )
S Sat ma(Ea +ma)

(4.46)

~32 -



where the AS, portion is given precisely by the solution (4.44) to the equations of mo-
tion. The rest of the terms are evidently due to Ap, which was computed in eq. (4.39).
In fact, they can be seen to descend from the contribution in the master spin-kick for-
mula (2.67) that involves 8Ai0)(b) /Ob”, and they are therefore structurally different from
AS,. Moreover, these terms can be traced further back to the boost difference (2.59)
between the angular-momentum operators associated with the incoming and outgoing mo-
menta p, F k/2 in the scattering amplitude.

It should then not come as a surprise that this difference between AS, and AS, is
explained by the fact that these two changes in the rest-frame angular momenta are actually
set up in different frames. Indeed, AS, has been derived from the equations of motion

OH _ (s, H), {5080} =cikst, (4.47)

Sa:—SaXﬁ

which rely on the classical analogue of the rest-frame spin algebra (2.7), which disregards
changes in momenta. Therefore, AS, follows the rest frame of the initial momentum

(Ea, P)in, whereas AS, refers to the rest frame of the outgoing momentum (E®, p;, + Ap).
It is perhaps more clearly summarized by the following scattering diagram:

(S + AS)' = L',((m,0), (E,p))m(a + Aa)"

™ /

St = L, ((m,0), (E, p))ma* (4.48)

e

(S + AS) = Liﬂ((m, 0), (E,p+ Ap))m(a+ Aa)*,

where the “a” and “in” subscripts are omitted for brevity. The standard minimal boosts
are given by

(p1+ Pz)A(pl +p2)u
P+ p1pe

L u(p2.p1) =0, + ;%Pﬁpm - pi = p3, (4.49)
and the arrows in the diagram (4.48) show the time evolution from past to future infinity.
Note that in both cases the Lorentz-covariant angular momentum develops the same spin
kick m,Aak, as given by eq. (4.19), and it is only at the level of the three-dimensional
frame choice that the discrepancy between AS, and AS, appears.

The self-consistent choice is of course to define S to be in the rest frame of p,, =
P + Ap, so we tend to regard AS, = S — S a5 the true rest-frame angular impulse.
One should therefore be aware of this subtlety when dealing with solutions of the three-

dimensional equations of motion (4.47).

5 Summary and outlook

In this paper, we have extended the KMOC formalism [33-36] to describe general spinning
bodies. Their classical angular momenta are build up as coherent superpositions of massive
quantum states with arbitrarily large quantum spin numbers. In section 3.2.2 we have
also commented on how quantum states with finite lower spins can still be use to model
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lower-multipole interactions, as it was done in ref. [34] following earlier intuition from
refs. [69, 87, 88]. In many ways, we find that our approach provides a more solid justification
for the earlier treatments of classical scattering of spinning black holes [37, 39, 40]. Note
that coherent spin states were also invoked in the EFT approach of refs. [6, §].

We have observed throughout sections 2 and 3 that the SU(2) spinors, on which coher-
ent spin states depend, naturally saturate the little-group indices that represent the spin
quantum numbers in scattering amplitudes considered within the massive spinor-helicity
formalism [38]. In fact, such spinors can even be used as a convenient bookkeeping device
for the spin degrees of freedom, as recently employed in ref. [89].

Here we have concentrated on the three-point amplitudes involving graviton emission,
as well as the classical limit of the elastic scattering amplitude for two massive bodies.
Although the coherent-spin summation involves amplitudes with arbitrary combinations of
definite massive spins, we could prove that all three-point amplitudes with two massive par-
ticles of unequal spins (and one massless particle) are naturally suppressed in the classical
limit. From the four-point coherent-spin amplitude, we have computed the leading-order
impulse (4.17), spin kick (4.19) and an effective two-body Hamiltonian (4.28), which can
be used beyond the scattering setting. Unlike the Hamiltonians of refs. [6, 8, 44], which
were obtained directly in the isotropic gauge, our result is in a different gauge.

We have chosen to verify the validity of our Hamiltonian by direct time integration
of the corresponding equations of motion, from which we could rederive the impulse ob-
servables in the center-of-mass frame. We found perfect agreement for the net momentum
change Ap. As for the angular impulse, the net change in the rest-frame angular momen-
tum ASa, which we obtained from the Hamiltonian equations of motion, was found to be
missing certain terms that are present in the answer AS, derived from scattering ampli-
tudes. The same superficial discrepancy was earlier noticed in ref. [77]. In section 4.4.3,
we have found that these angular-impulse terms depend on the linear impulse Ap and are
simply due to the mismatch between the three-dimensional frames, in which they are set
up. In other words, they can both be obtained by considering slightly different Lorentz
boosts of the same Lorentz-covariant answer ASF,
KMOC formalism.

It will be interesting to apply our formalism to gravitational Compton scattering [89—

which is unequivocally given by the

91]. The amplitudes for such a process are known to suffer from a spurious pole at higher
spins [41, 53, 66], but solutions to this problem have already started to take shape [89, 90].
In this setting, the KMOC formalism will naturally integrate our coherent-state approach
to spin and a similar approach to classical radiation [36].
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A Non-minimal spin multipoles

Here we outline a connection between the Wilson coefficients for the spin-induced multipole
couplings in the worldline effective action (3.28) and the corresponding “classical” three-
point amplitudes. We start by expanding the curvature tensor in terms of the linear
gravitational perturbation h,, = gu, — Muw,

1
Ryuvp = i(auayhm — 0,0phry — OxOyhyp + 0x0phy) + O(h?), (A1)

and plugging this into the worldline effective action. We get

St = — 5 / dr { 1 Gy Csen(a-0) By (A.2)
+ Z iC'BSz 11(a-9)" ut P Ty a,0- } + O(h?)
i pYo uv .
27”L+ ) z=r(T)

In producing the above result, we were allowed to neglect the time derivatives of u* and a*,
since they are O(h) and thus increase the order of approximation. Moreover, we have taken
care to introduce the n = 0 terms, which are hardwired into the worldline kinetic terms

Skin = / dr [—mm — ;SWQW} (A.3)

along with their Wilson coefficients Cpgo = —Cpq1 = 1, see e.g. refs. [41, 92].
Let us reinterpret the linearized action (A.2) as the interaction

dk _ _
Slnt — _7/d4xh,ul/ ) gen - 2/ 4 ,ul/ gen( k)> (A4)

where the effective stress-energy tensor can be read off eq. (A.2) as

© C 2n C 2n+1 -
Tg‘g’; m/dre 2_: [ ES)' ufu” + %zu(“e”)p”%agl@ . (A5)
Note that in the case where Cpgen = —Cpgen+1 = 1 the stress-energy tensor (A.5) may be

shown to be equivalent to the Kerr source given in eq. (3.16).
A recipe to obtain a scattering amplitude from the worldline action (A.4) is to consider
a straight particle trajectory and couple it to an on-shell graviton:

- — %
W (k) — r2mo(k)eley, iy =Lr = wrr) =L (A.6)
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Then the interaction term becomes

.
Stos = / (;iﬂ];25(k2)5(2p~k).,4gen(p, k), (A7)

in terms of the “classical amplitude”

e C 2n , T i C 2n+1 -
Afn(p, k) = —k(p- &)’ D52 (k-a)® £ B (k- a)?" |, (A.8)
g k nz::o (2n)! ,;0 (2n +1)!
where we have used
i el kuppas = F(p - f-:ki)(k -a). (A.9)

This identity holds on the support of the delta functions in eq. (A.7), which is, strictly
speaking, incompatible with real momenta. However, we can understand the above equa-
tions in the sense of analytic continuation to complex kinematics, which is precisely the
context of section 3. Alternatively, one might consider an analytic continuation to “split”
signature (+,+, —, —), as e.g. in refs. [92, 93].

An easy cross-check of eq. (A.8) is to observe that for Cpgen = —Cpgen+1 = 1 it reduces
to the expected Kerr result (3.15):

AE (p,k) = —rk(p-ef)?[cosh(k - a) Fsinh(k - a)] = —ngxi2eij'“. (A.10)
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