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Abstract. Would physical laws permit the construction of computing machines that are capable of
solving some problems much faster than the standard computational model? Recent evidence suggests
that this might be the case in the quantum world. But the question is of great interest even in the
realm of classical physics. In this article, we observe that there is fundamental tension between the
Extended Church–Turing Thesis and the existence of numerous seemingly intractable computational
problems arising from classical physics. Efforts to resolve this incompatibility could both advance
our knowledge of the theory of computation, as well as serve the needs of scientific computing.

1. Introduction

One of the great scientific achievements in the last century was the formalization
of the concept ofcomputation. Due to the work of Church [1936], Turing [1936],
and others, a standard model of computation emerged; today’s digital computers
can be regarded as implementations of this model. One reason for the acceptance of
this model was the fact that many seemingly different formulations of the concept
of computation, of which theTuring machinemodel was one, turned out to be
essentially equivalent. The evidence for the Turing model to be the correct model
seemed so convincing that a term,Church–Turing Thesis, evolved into existence
over the years to express that conviction.

The Church–Turing Thesis(CT) is the belief that, in the standard Turing ma-
chine model, one has found the most general concept forcomputability. In other
words, if a function can be computed by any conceivable hardware system, then
it can be computed by a Turing machine. This may not have been the belief of
Church and Turing, but it has become the common interpretation of CT. With the
development ofcomputational complexitytheory, which studies further refinements
of the computability notion, another version of CT came into use. TheExtended
Church–Turing Thesis(ECT) makes the stronger assertion that the Turing machine
model is also as efficient as any computing device can be. That is, if a function is
computable by some hardware device in timeT(n) for input of sizen, then it is
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computable by a Turing machine in time (T(n))k for some fixedk (dependent on
the problem).

CT, and especially ECT, have strong implications. They imply that at least in
principle, to make future computers more efficient, one only needs to focus on im-
proving the implementation technology of present-day computer designs. Although
accepted by many, the validity of CT and ECT has also been called into question
over the years. Among more recent work on the subject, we refer interested readers
to the excellent discussions in Vergis et al. [1986], Steiglitz [1988], Penrose [1989,
1994], and Smith [1993, 1999]. While different viewpoints have been expressed, it
is also clear that certain consensus has been reached in the literature regarding the
nature of CT and ECT. Namely, CT and ECT are not statements about mathematics,
but rather conjectured constraints on physical laws. They cannot be proved once and
for all, since any physical laws may be subject to refutation one day. However, once
a system of physical laws is specified (together with specifications on how input and
output are handled), it then becomes a well-defined mathematical question whether
these theses are valid. In fact, such questions have been examined for a number of
particular systems (see Vergis et al. [1986], Steiglitz [1988], Penrose [1989, 1994],
and Smith [1993, 1999]).

In this article, we wish to put some of these issues into sharper focus, and point out
certain challenges and opportunities for research in this regard. We shall concentrate
our discussions on the Extended Church–Turing Thesis.

2. The Dilemma

What is a computing device? It is rational to adopt the view that any physical system
capable of providing reliable output is a potential computing device. With this in
mind, one may observe that there is certain inconsistency between ECT and the
status of scientific computing today. Note that, in general, a computation can be
embedded in the evolution of a physical system, with the input data encoded as initial
states of the system, and the output being the measured values of the observables
(such as velocity, temperature, etc.) at some specified time. For example, consider
a physical system governed by some set of explicit equations with variablesx. Let
g(x) be a function easily computable (in the Turing sense) fromx. Given the initial
values of the variablesx = x(0) at timet = 0, the value ofg(x(t)) at somet > 0
can be regarded as the output of a computing device, provided thatg(x(t)) is robust
with respect to slight perturbations of the initial valuesx(0).
Consider the following three statements:

(A) ECT is valid;
(B) Polynomial-time solvability is an appropriate criterion for computational

feasibility;
(C) There are observables in many physical systems for which no known efficient

algorithms exist.

These statements all seem sensible individually, but are inconsistent with one
another. (A) implies that we should be able to use a Turing machine to compute
in polynomial timeg(x(t)) with x(0) and t as inputs. (B) then implies that one
should be able to find a practical algorithm to computeg(x(t)), which is at odds
with (C).
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The above inconsistency is not unexpected in the case of quantum systems,
since it has been speculated for many years [Feynman 1982] that quantum systems
cannot be efficiently simulated by standard Turing machines. The discovery of
a polynomial-time quantum algorithm for factoring integers [Shor 1997] lends
support to the hypothesis that quantum computers might be strictly more efficient
than Turing machines.

For classical physical systems, however, this inconsistency is somewhat surpris-
ing, and seems to go against the prevailing opinions (but not all, see, e.g., Smith
[1993]). Before considering some concrete physical systems, let us review a rep-
resentative argument in favor of ECT for classical systems. The reasoning goes
somewhat like this: If the physical system is governed by differential equations that
behave mildly, then the standard numerical methods using grids can simulate the
system accurately and in polynomial time. If the physical system behaves violently,
then the physical variables are unpredictable and uncontrollable, in which case these
variables cannot be used for computing purposes. (See, e.g., Penrose [1989] where
the context is CT instead of ECT.) The weakness in the above argument we feel
is that, in violent physical systems, even though the physical variables could be-
have unpredictably, there might be physical observables (which are functions of
the physical variables) behaving robustly. We shall discuss in the next section how
such possibilities might arise.

3. The N-Body Problems

Newton’s gravitational theory for a system ofN point-like particles provides a
natural setting for studying ECT. Assume that the particles have massesmi , and
occupy positionsr i(t) at timet , where 1≤ i ≤ N. Then Newton’s theory gives the
following system of equations forcelestial mechanics: for 1≤ i ≤ N,

d2r i(t)

dt2
= G

∑
j 6=i

mj
r j (t)− r i(t)

|r j (t)− r i(t)|3 ,

whereG is the gravitational constant. The natural computational problem is then,
given the 2N initial positionsr i(0) and velocitiesr ′i(0), and timet > 0, compute
the N positionsr i(t).

Although Newton’s equations for celestial mechanics look simple, the behavior
of the solutions (as a function of timet) can be very complex. We say that the
solution runs into asingularity at time t0, if the solution ceases to be analytic at
t = t0. For example, when two or more particles collide, a singularity naturally
occurs. It was also recognized that at least theoretically there exists the possibility
of other types of singularities. In 1895, Painlev´e [1897] proved that, forN = 3, the
only singularities are due to collisions, and made the following conjecture:

Painlev́e’s Conjecture. For N > 3, there exist noncollision singularities.
Many researchers had tried to settle this question without success until, in 1987,

Xia [1992] proved that Painlev´e’s Conjecture is true for allN > 4 (the caseN = 4
is still open). Subsequently, Gerver [1991] gave another proof of the result. Their
proofs showed that, for some clever choice of initial conditions, the system can
exchange its gravitational potential energy for kinetic energy at a geometrically
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faster rate. The speed of the particles increases so rapidly that at some finite time
t0, the particles go to infinity. An interesting historical account of this problem can
be found in Diacu and Holmes [1996].

It has been suggested [Smith 1993] that such sigularities might be exploited
to disprove ECT (or even CT). For any initial conditionsβ, define the predicate
P(β) to be 1 if it leads to a noncollision singularity, and 0 otherwise. Plausibly,
a gravitational system might be constructed to decide the value ofP(β) by time
t = t0, while it could be hard to decide the value by Turing machines. This is not a
rigorous refutation of ECT, since the gravitational system used needs to be infinite
in size. Furthermore, the functionP may not be robust, and thus the inputβ needs
to be specified to infinite precision.

However, we can use this example to illustrate the possibility of a nontrivial
computation by physical systems even if the systems may be chaotic. Assume that
the set of singularities is of nonzero measure. LetQ(β) denote the probability for
P(β ′) to be 1, if the inputβ ′ is randomly chosen from a ball of some fixed radius
centered atβ. Then Q(β) is a continuous function that can be probabilistically
computed by a gravitational system (albeit of infinite size), even though the system
may be chaotic.

It would be interesting to find a realistic example of a nontrivial computation
performed by a Newtonian gravitational system. The size of the physical system
should be a finite function, preferably polynomial inN, and there should be only
finite accuracy in the measurement of particle position and velocity. It is not clear
whether the singularity phenomenon mentioned above can be utilized to yield such
an example.

We now turn to another example, Einstein’s gravitational theory ofN-body
systems. The equations given by General Relativity are nonlinear partial differential
equations, with suitable initial conditions (see, e.g., Misner et al. [1973]). Numerical
computations for such systems have become very important for astrophysics studies,
and many scientists have been actively working for years in pursuit of efficient
algorithms for this problem. There are good approximation algorithms under special
restrictions (such as when the velocities involved are slow or the gravitational field
is weak), but a systematic and efficient solution to the general case is still elusive
(see Damour [1990] for a review). There should be ample room in this rich theory
for identifying good candidates to perform nontrivial computations.

4. Conclusions

Statements such as CT and ECT are important for computer science, since they
reflect our assessment of how well the notion of computation is understood. In this
article, we point out some intuitive conflict between ECT and the state of art in
scientific computing, and suggest that it may be worthwhile to resolve this conflict.
We conclude with some natural research problems along this direction.

(1) Investigating Mathematical Questions. Studying ECT gives added motiva-
tion for settling some interesting open questions in mathematics. For instance, we
mentioned in the last section that a nonzero measure set of singularities would lead
to a robust predicate useful for discussing ECT. It is an open problem in celestial
mechanics whether the singularity set is of measure 0. The answer is known to be
positive forN ≤ 4 [Saari 1977], but is open forN > 4.
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(2)Applying Paradigms from Theoretical Computer Science. Traditionally, sci-
entific computing and theory of computation are largely nonoverlapping fields.
In recent years, some of the questions in scientific computing have begun to be
examined from the theoretical computer science angle. To study ECT, a natu-
ral direction would be to apply the paradigms from theoretical computer sci-
ence to the algorithmic questions concerning physical systems. For example, is
it possible to embed an NP-complete problem into a computational problem in
General Relativity? How close, at least theoretically, can this embedding be con-
verted into a machine for solving NP-complete problems? In the opposite direction,
one can try to find polynomial-time algorithms for various physical systems and
thereby confirm the validity of ECT (e.g., see Vergis et al. [1986] and Smith [1993,
1999]).

Note that there is an advantage in studying simple systems such as theN-body
systems. In more complex systems, there are sometimes hidden forces, and the
successful embedding of a hard computational problem does not automatically
imply the existence of a fast computing device even theoretically (see Vergis et al.
[1986]).

(3) Developing New Paradigms. The formal framework of theory of computa-
tion has been developed mainly for problems that are logical and discrete in nature.
The concept of polynomial-time feasibility is quite successful when applied to such
computational problems. Would the study of scientific computations in the context
of ECT lead to a different set of criteria? Some complexity models for dealing
with computations in real numbers have been developed in recent years, using the
standard Turing model as a guide (see, e.g., Blum et al. [1997]). Quite possibly,
further modifications will be needed in order to fully address complexity questions
in scientific computing.

REFERENCES

BLUM, L., CUCKER, F., SHUB, M., AND SMALE, S. 1997. Complexity and Real Computation. Springer-
Verlag, New York.

CHURCH, A. 1936. An unsolvable problem of elementary number theory.Amer. J. Math. 21, 345–
363.

DAMOUR, T. 1990. The problem of motion in Newtonian and Einsteinian gravity. InThree Hundred
Years of Gravitation, S. W. Hawking and W. Israel, Eds. Cambridge University Press, 128–198.

DIACU, F., AND HOLMES, P. 1996. Celestial Encounters: The Origins of Chaos & Stability.Princeton
University Press, Princeton, N.J.

FEYNMAN, R. P. 1982. Simulating physics with computers.Internat. J. Theor. Phys. 21, 467–488.
GERVER, J. 1991. The existence of pseudocollisions in the plane.J. Diff. Eq. 89, 1–68.
MISNER, C. W., THORNE, K. S.,AND WHEELER, J. A. 1973. Gravitation. Freeman.
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