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1 Introduction

There has been a long history of development in the extraction of classical quantities from

observables of quantum field theory. Earlier examples include perturbative computations of

the metric from vacuum expectation value of the gravitational field [1], or the stress-tensor

form factors [2, 3]. Later on, it was shown that two-body potentials can also be extracted

from scattering amplitudes [4–6]. Recently there has been a surge of renewed interest

inspired by the successful extension of the modern advancements of scattering amplitudes

to these problems. For example, the simplification of loop-level gravitational scattering

amplitudes either through the double copy [7] or BCJ relations [8], has been utilized for

the computation of classical potentials [9, 10]. Furthermore, the massive spinor-helicity

formalism introduced by one of the authors [11], has enabled a more streamlined approach

to the computation of spin-effects in the classical potential [12, 13] and scattering angle [14].

An important aspect in the success of applying amplitudes for black hole physics is

that for long range forces, a black hole is well described as a point particle. In essence,

this is a reflection of the no hair theorem: for the asymptotic observer, a black hole is

completely characterized by its mass, spin and charge, much like that of an elementary

particle. Indeed, this feature is well appreciated in the context of Schwarzschild black holes,

being treated as minimally (gravitationally) coupled massive scalar. For spinning black

holes, the natural counterpart would be spinning particles. Indeed, the new massive spinor-

helicity formalism introduced in [11], allows one to kinematically identify the minimally

coupled spin-s particle. In particular, its cubic coupling to the graviton yields the following

three-point amplitude:

x2κ

2

〈12〉2s

m2s−1
(1.1)

where the angle brackets represents the spinors of the massive legs and the definition of x

is of kinematic origin:

xλαq =
λ̃qα̇p

α̇α
1

m
, (1.2)

where λq, λ̃q are the spinors of the massless leg. For s ≤ 3
2 this amplitude matches to that of

minimal coupling. Remarkably, Kerr black hole can be identified as the classical-spin limit

of such minimal coupling, i.e. s→∞, ~→ 0 with s~ fixed. Indeed this was confirmed in the

matching of the three-point amplitude induced from minimal coupling with the worldline

formalism with black hole Wilson coefficients [13] or the coupling to the Kerr black hole

stress-tensor [14], as well as through its effect on the impulse [15].

The simplicity of on-shell approach for Kerr black holes motivates us to apply it to

the spin effects of general stellar objects. A general purpose approach is well established

in the context of the one-particle effective field theory (EFT), where one works with a

worldline action in a non-trivial background [16–21]. The interacting part of the action

can be organized as

LInt =
∑
a

CaOa , (1.3)

where Oa is comprised of the worldline fields as well as curvature tensor of the background

sourced by the worldline, and Cas are the “Wilson coefficients”. Distinct objects are then
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reflected in their distinct value for these Wilson coefficients. The potential is then derived

by treating the operators as sources, exchanging quanta of gravitational fields.

In this paper, we derive the leading spin effect terms of the classical potential for

general spinning objects by constructing the amplitude associated with the general one-

particle EFT. The closed form of the EFT for spin couplings to all order in spin can be found

in [22]. We begin by first converting these worldline operators, linear in gravitational field

strength, to a three-point amplitude. The worldline operators act on the physical Hilbert

space, whose states are momentum eigenstates and form irreducible representations of the

massive little group, SU(2). Thus each operator is understood as a matrix acting in little

group space, i.e. O{I} {J} where {I}, {J} are irreps of some particle, chosen to be 1 without

loss of generality. A prescription for obtaining an amplitude from a set of operators in little

group space, is to sandwich it with polarization tensors of particle 1 and 2; schematically,

∑
a

CaO{I}a {J} →
∑
a

Ca(ε
∗{µs}
2 ){I}O{K}a {J}(ε1,{µs}){K} = M3(1{J}s 2{I}s q)

q

1 2
(1.4)

where {µs} is the Lorentz indices of the polarization tensor and {I}, {J} are little group

indices for the polarization tensors of two distinct particles. Importantly, the polarization

tensors themselves carry non-trivial spin-effects. Indeed setting up the polarization tensor

ε
{I}
{νs}(p0) for reference momentum p0, all other polarization tensors can be obtained from

it via:

ε
{I}
{µs}(pi) = [G(pi, p0)]{µs}

{νs}ε
{I}
{νs}(p0) (1.5)

where G(pi, p0) is the Lorentz boost that transform p0 to pi. The leading order in G (1

PM) gravitational potential is then encoded in the factorization limit of the four-point

amplitude, whose residue is the product of the aforementioned three-point amplitude.

Importantly, in the extraction of the classical potential, one must take into account

the spin degrees of freedom that are inherent in the polarization tensors. To this end, we

map the out-going polarization tensor to the incoming one,

ε
∗{I}
{µs}(pout) = ε

∗{I}
{νs}(pin)

[
G(pin, p0)G−1(pout, p0)

]{νs}
{µs} , (1.6)

and the spin-dependent pieces are contained in G(pin, p0)G−1(pout, p0). We introduce

Hilbert space matching as a procedure for incorporating the effects of such a succession

of Lorentz rotations, which can be decomposed into pure boosts and pure rotations. The

rotation part, which is explored in section 3.2, depends on the reference momentum p0,

whose choice is observed to be related to spin supplementary conditions (SSC). For our two-

body problem, a natural choice for p0 is the C.O.M momenta, whose results also matches

with the Newton-Wigner SSC where the spin operators satisfies the canonical commutation

relations [22]. The boost part, which is explored in section 4.1, is independent of reference

momentum p0 and affects the interpretation of Wilson coefficients with vanishing effects in

the classical-spin limit.

– 2 –
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To simplify the discussions, we first consider the classical-spin limit and construct the

leading post-Newtonian (PN) order potential to all orders in spin-operators for general

spinning compact bodies, which is the leading term in the double expansion of G and p2.

The result is first checked by comparing with known quartic order in spin results for general

spinning compact bodies [23–27], and then by comparing with equivalent order potential

for binary black holes by Vines and Steinhoff [28].

Next, we analyse the finite-spin effects. Here by finite-spins we are referring to keeping

s fixed, absorbing a factor of ~ into s while setting the remaining ~s to zero for the classical-

limit. Note that the operator that enters the final potential is in effect given by,

(Oeff){I} {J} ≡ (ε∗1,{νs})
{I} [G(pin, p0)G−1(pout, p0)

]{νs}
{µs}O

{K}
{J}(ε

{µs}
1 ){K} . (1.7)

It is interesting to consider the Wilson coefficients in such effective operator basis. Remark-

ably, we find that when minimal coupling is recast into this effective basis, the “effective”

Wilson coefficients are simply 1 without taking the classcial-spin limit!1 Recall that in [13],

reading off the Wilson coefficients associated with minimal coupling from eq. (1.4) yields

CSn = 1 +O(s−1) , (1.8)

i.e. there are deviations from the Kerr BH that vanishes in the classical-spin limit. The fact

that the effective Wilson coefficient is 1 indicates that the “finite-spin” effects are exactly

cancelled by the finite spin terms in the Hilbert-space matching procedure.2

Finally, we study in detail the classical-spin limit of minimal coupling. Focusing on

the spin-dependence of the amplitude, we find that

when cast in the chiral basis, the one graviton exchange for minimal coupling

factorizes completely into a spin-dependent combinatoric factor and a spin-

independent kinematic term.

This “universality”, allows us to obtain the classical-spin limit of minimal coupling from

any finite-spin computation, by simply retaining the universal piece and replacing the

combinatoric factors by their infinite-spin asymptotic form. This turns out to be the

prescription presented in [13]. We also show that universality is a reflection of binomial

expansion hidden in the amplitude, and we comment on its persistence at one-loop order

in appendix D and its generalisation to non-minimal couplings in appendix E.

This paper is organized as follows. In section 2, we review the matching of one-

particle EFT to on-shell three-point amplitudes. Next, we compute the leading PN classical

potential between two bodies to all orders in spin in section 3. After presenting Hilbert

space matching in section 4, the justification for the prescription given in [13] is outlined

in section 5 for tree-level(1 PM) order. We conclude our paper with section 6.

1An equivalent conclusion has been reached independently from heavy particle effective theory (HPET)

point of view [29] while this manuscript was under revision.
2The same statement has been made in the work of [30]. However, the spin-operator defined there are

different than that in this work. Furthermore, the result disagrees with the earlier work of [31]. We will

comment on these discrepancies in detail.
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2 One-particle effective action to on-shell amplitudes

In this section, we derive a map between the one-particle EFT and the three-point ampli-

tude. Since residue of the one-graviton exchange in the four-point amplitude is given by

the product of two three-point amplitudes, the latter contains all necessary information to

compute the leading order potential.

2.1 Three-point amplitude of general EFT

We begin by considering the effective action of a classical point particle coupled to a

quantum gravitational background. Such a formulation has been introduced by Goldberger

and Rothstein [16] to compute relativistic corrections to Newtonian potential, and the

first attempt to include spin and multipole moments has appeared by Porto [17]. The

formulation we base our construction on was introduced by Levi and Steinhoff [22], where

a generic treatment of rotational variables were introduced and a closed form description

of spin couplings to all orders in spin were given. Currently the approach has become

one of the main techniques for computing the spin-dependent post-Newtonian effects of

gravity [17–22, 26, 27, 32–35]; consult the reviews [36, 37] for a more complete list of

references. This is an effective action where the gravitational field is decomposed into

modes with different scaling properties and modes shorter than the scale rs of the compact

object has been removed, thus allowing us to approximate the black hole as an isolated

compact object. One then starts with the following worldline action [17]:

S =

∫
dσ

{
−m
√
u2 − 1

2
SµνΩµν + LSI [uµ, Sµν , gµν(yµ)]

}
(2.1)

where uµ ≡ dyµ

dσ , Sµν correspond to the spin-operator, and Ωµν is the angular velocity.

In this section we choose the covariant Spin Supplementary Condition (SSC) pµSµν = 0,

where pµ = (p1−p2)ν
2 .3 This allows us to identify the spin-operator with the spin-vector via

Sµν = − 1
mε

µνρσpρSσ. Note however, that the choice of SSC does not affect the on-shell

three-point amplitude as we will show shortly in section 2.2.

The first two terms of the EFT Lagrangian eq. (2.1) are called minimal coupling

and are universal, irrespective of the details of the point-like particle, while the terms in

LSI correspond to spin-induced multipole terms that are beyond minimal coupling, and

depend on the inner structure of the particle. The angular velocity Ωµν is defined as

Ωµν := eµA
DeAν

Dσ , where eµA(σ) is the tetrad attached to the worldline of the particle. The

spin-induced multipole moments given in [17, 19, 20, 22] is:

LSI =
∞∑
n=1

(−1)n

(2n)!

CES2n

m2n−1
Dµ2n · · ·Dµ3

Eµ1µ2√
u2

Sµ1Sµ2 · · ·Sµ2n−1Sµ2n

+

∞∑
n=1

(−1)n

(2n+ 1)!

CBS2n+1

m2n
Dµ2n+1 · · ·Dµ3

Bµ1µ2√
u2

Sµ1Sµ2 · · ·Sµ2nSµ2n+1 .

(2.2)

3The difference p1−p2
2

was used to define average momentum to comply with conventions of amplitude

literature; all momenta are considered to be incoming.
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where E and B are the electric and magnetic components of the Weyl tensor4 defined as:

Eµν := Rµανβu
αuβ

Bµν :=
1

2
εαβγµR

αβ
δνu

γuδ , (2.3)

and the covariant derivatives act on the Riemann tensors. Here the Riemann tensors

contain linear perturbations around flat space, and the information with regards to non-

trivial backgrounds is encoded in the Wilson coefficients CSn , which is set to 1 for Kerr

black-holes.

Since each Riemann tensor is linear in the perturbed metric, these operators represent

the coupling of the worldline particle to a graviton. Thus it naturally maps to a three-point

amplitude involving two identical massive spin-s state and the emission of a graviton:

q

1 2

= M−2
s =

∑
i

ε
∗{µs}
2,{Is}Oi ε

{Js}
1,{µs} , (2.4)

where ε
{µs},{Js}
1 , ε

{µs},{Is}
2 are the polarization tensors of particles 1, 2 respectively, with

{µs} representing the symmetrized s Lorentz indices, and {Is} represent the 2s sym-

metrized SU(2) little group indices.5 These polarisation tensors act as basis vectors in

the little group space. The task is then simply working out the action of the worldline op-

erators on the physical states. Note that as the worldline operators Oi are Lorentz scalars,

the Lorentz indices of the polarization tensors of particle 1 and 2 are contracted with each

other. The worldline derivatives are converted as:

uµ =
pµ1
m
, Dµ → ∂µ = −iqµ, hµν = εq,µεq,ν . (2.5)

Having converted the spin-operator to spin-vectors through covariant SSC, naively one

then simply identify the latter with the Pauli-Lubanski pseudo-vector,

Sµ = − 1

2m
εµνρσpνJρσ , (2.6)

where P acts on the physical state which we choose to be particle 1, hence pµ = pµ1 .6

However, as physical states are irreps of the SU(2) little group, the spin operators in Oi
should be thought of as operators acting on the little group space. To relate Sµ defined in

eq. (2.6) into a little group space operator, we sandwich it with polarization tensor of say

particle 1. That is, we define:

(Sµ){Is}
{Js} ≡ ε∗1,{Is} S

µ ε
{Js}
1 ⇔ Sµ ε

{Js}
1 ≡

∑
{Is}

(Sµ){Is}
{Js}ε

{Is}
1 (2.7)

4The vacuum Einstein equation reduces to Rµν = 0, therefore the Riemann tensor is equal to the Weyl

tensor Rµνλσ = Cµνλσ in this background.
5For brevity, equations appearing in section 3 and onwards will simply denote little group indices as

uppercase Latin indices without curly brackets, e.g. I, J , and K.
6Such a spin-vector operator with operator P substituted by an eigenvalue p1 will sometimes be denoted

as Sµ(p1), although this dependence will be usually implicit in our notations.
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where we’ve suppress the Lorentz indices of the two ε1,{Is}, which are contracted with

Lorentz indices of J in eq. (2.6), and ε∗1,{µs},{Is}ε
{µs},{Js}
1 = δ

{Js}
{Is} . This definition is equiva-

lent to the definition considered in [38] since spinor-helicity variables form a representation

of the Lorentz group, therefore the variables can be considered as one-particle states.

ε∗1,{Is} S
µ ε
{Js}
1 ⇔ 〈p1, {Is}|Sµ|p1, {Js}〉 (2.8)

This means it is unnecessary to compute Noether currents as in [38] to obtain matrix

elements of spin variables. Details of this discussion will be given in section 4.2. As such,

Sµ is a Lorentz vector carrying 2s⊗2s SU(2) indices of particle 1, separately symmetrized.

Now, the spin-vectors Sµ appear in the one-particle EFT as

· · · (q · S){Is}
{Js}(q · S){Js}

{Ks} · · · = · · · ε∗1{Is} (q · S) ε
{Js}
1 ε∗1{Js} (q · S) ε

{Ks}
1 · · · , (2.9)

where the equality corresponds to substituting eq. (2.7). We see that it is equivalent to

products of SL(2,C) operators, sandwiched with the polarization tensors contracted in

their little-group indices. Each contraction yields a projection operator

ε
{Js}
α1α̇1···αsα̇sε

∗
{Js},β1β̇1···βsβ̇s

= Pα1β1···αsβs;α̇1β̇1···α̇sβ̇s =
(
I− P̂

)
α1β1···αsβs;α̇1β̇1···α̇sβ̇s

(2.10)

where P is identified with a transverse projection operator, with pα1α̇1
1 Pα1β1···αsβs;α̇1β̇1···α̇sβ̇s =

0, and P̂ is comprised of products of p1/m and the Levi-Cevita tensors ε, ensuring the trans-

verse property of P. As we will now show, due to the special three-point kinematics, the P̂
part of the projection operator will not contribute to the final amplitude.

First, we derive the explicit form of (q · S). In SL(2,C) representation, the Lorentz

generator Jµν splits into chiral and anti-chiral representations. It’s action on an (s, 0)

representation can be written as:

(Jµν)α1α2···α2s
β1β2···β2s =

∑
i

(Jµν)αi
βi Īi

·
= 2s(Jµν)α1

β1 Ī1, (Jµν)α
β =

i

2

(
σ[µσ̄ν]

) β
α
,

(2.11)

where Īi = δβ1
α1 · · · δ

βi−1
αi−1δ

βi+1
αi+1 · · · δ

β2s
α2s , with a similar form for the conjugate representation.

The sign
·

= means the r.h.s. can be used instead of l.h.s. of
·

= as SL(2,C) indices are

symmetrised, but the proper definition for Jµν is the expression between = and
·

=. Using

this, we find that

m (Sµ) β
α =

1

4
[σµ(p1 · σ̄)− (p1 · σ)σ̄µ] βα , (2.12)

m (Sµ)α̇
β̇

= −1

4
[σ̄µ(p1 · σ)− (p1 · σ̄)σµ]α̇

β̇
. (2.13)

When contracted with the massless momentum q, one finds:

(q · S) β
α =

x

2
λqαλ

β
q ≡

x

2
|q〉〈q|

(q · S)α̇
β̇

= −
λ̃α̇q λ̃qβ̇

2x
≡ −|q][q|

2x
,

(2.14)
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where the variable x is defined in eq. (1.2). Now since for our on-shell three-point kine-

matics,

[q|p1|q〉 = 0, (2.15)

any factors of p1 in between (q · S) must vanish. This implies that the factors of P̂ in the

projection operator will drop out, thus leading to,

(q · S){Is}
{Js}(q · S){Js}

{Ks} · · · (q · S){Ks}
{Ls} = ε∗1,{Is}(q · S)P(q · S)P · · ·P(q · S)ε

{Ls}
1

= ε∗1,{Is}(q · S)(q · S) · · · (q · S)ε
{Ls}
1 (2.16)

where the product of (q ·S) factors in the last line denotes contraction over SL(2,C) indices.

Returning to the expression for the amplitude eq. (2.4), we have:

ε
∗{µs}
2,{Is}(Oiε1,{µs})

{Js} = ε
∗{µs}
2,{Is}

[
(Oi){Ks}

{Js}ε
{Ks}
1{µs}

]
= ε

∗{µs}
2,{Is}

[
ε∗1{Ks}(q · S)(q · S) · · · (q · S)ε

{Js}
1 ε

{Ks}
1{µs}

]
= ε∗2,{Is}P(q · S) · · · (q · S)ε

{Js}
1 (2.17)

where we’ve used eq. (2.10). Finally since due to three-point kinematics,

ε∗2,{Is}p1(q · S) = −ε∗2,{Is}p2(q · S) = 0, (2.18)

when sandwiched between ε∗2,{Is} and (q·S), P = I, we see that when converted to scattering

amplitudes, we can simply replace (q · S) in O by (q · S).

Putting everything together, we finally arrive at the three-point amplitude derived

from the one-particle EFT [13]

M2η
s = ε

∗{Is}
2

[
2s∑
n=0

κmx2η

2

CSn

n!

(
−η q · S

m

)n]
ε1{Js} (2.19)

for integer spin s, where η = +1 for positive helicity graviton and η = −1 for negative

helicity graviton. Since this expression is a contraction between polarisation tensors of

different momenta, the expression cannot be interpreted as a matrix element in terms of

spin operators, a point that we will come back to in sections 3.2 and 4.1. Note that for fixed

s, the polarization tensor is in ( s2 ,
s
2) representation containing s chiral and s anti-chiral

SL(2,C) indices, and thus can only transform non-trivially under at most 2s spin vector

operators Sµ. Thus M+2
s will receive contributions from the terms in the one-particle

effective action with Sn where n ≤ 2s. The first two Wilson coefficients are fixed as unity

from the universal terms in eq. (2.1), while CSn>1 are simply the electric and magnetic

Wilson coefficients CES2n and CBS2n+1 of eq. (2.2). As the polarization tensors can be

written in terms of products of massive spinors:

εµ1µ2···µs → εα1α2···αsα̇1α̇2···α̇s =
1

ms
λα1{I1λα2I2 · · ·λαsIs λ̃α̇1Is+1 λ̃α̇2Is+2 · · · λ̃α̇sI2s} , (2.20)

– 7 –
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the three-point amplitude can be written purely in terms of kinematic variables as:

M2
s =

∑
a+b≤s

κmx2

2
CSa+bnsa,b〈21〉s−a

(
−x〈2q〉〈q1〉

2m

)a
[21]s−b

(
[2q][q1]

2mx

)b
,

nsa,b ≡
1

m2s

(
s

a

)(
s

b

)
. (2.21)

The coupling constant κ is defined as
√

32πG where G is the gravitational constant. Note

that as the polarization tensors carry both dotted and un-dotted indices, the amplitude

depends on both chiral and anti-chiral spinors. We will refer to such representation as the

polarization basis. Using Dirac equations we can convert to a representation that is purely

in terms of chiral spinors, which we will refer to as the chiral basis.

2.2 The equivalence of covariant and NW SSC at three-points

We’ve derived the three-point amplitude from the one-particle EFT using the covariant

SSC, obtaining eq. (2.21). At this point, one might worry that this implies that the three-

point amplitude might be scheme dependent. This is not the case as we now show.

Switching SSC is equivalent to shifting the “centre” of the body [22]. Let us start with

covariant SSC and consider the difference in switching to NW SSC, defined as Sµν(Pν +

meν) = 0. Consider the following shift from covariant SSC to a new SSC

Sµνcov → Sµν = Sµνcov −XµP ν + PµXν . (2.22)

The following choice of Xµ shifts from covariant SSC to NW SSC, where eµ is a unit

time-like vector and P 2 = m2.

Xµ =
Sµνcoveν

m+ P · e
, (2.23)

The change in spin length 1
2S

µνSµν under this switching of SSC is 1
2S

µνSµν = 1
2S

µν
covScovµν+

m2X2. It may not be obvious that spatial displacement of the centre X2 < 0 reduces spin

length, but this is because the increase in mass dipole moment S0i is far greater than the

increase in spin Sij .

The changes in the three-point amplitude induced from switching SSC by eq. (2.22) is

proportional to the following expression.

δ(ΩµνS
µν) ∝ (qµε

±
ν − ε±µ qν)XµP ν , (2.24)

where ε is the polarization vector whose square gives the polarization tensor of the graviton.

Due to three-point kinematics q · P = 0, only the first term needs to be considered. Thus

we have

δ(ΩµνS
µν) ∝ qµXµ ∝ Sµνcovqµqν = 0 . (2.25)

where the last equality is obtained from substituting eq. (2.23) for Xµ. Therefore, changing

the covariant SSC to NW SSC does not change the three-point amplitude deduced from

one-particle EFT.
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2.3 Minimal coupling in s� 1 limit as BHs

As shown directly in [14, 15], the classical-spin-limit of minimal coupling reproduces various

classical observable of Kerr black holes, such as stress-tensor form factor and impulse. In

the context of one-particle effective action, it was shown in [13] that the Wilson coefficients

of minimal coupling at finite-spin deviate from that of Kerr black hole (CSn = 1) by ∼ 1
s

terms. Thus in the limit s → ∞ we recover Kerr black hole. Here we give a brief review

of the map between the Wilson coefficient in the EFT basis and the coupling constants,

gis, defined kinematically in the (anti)chiral spinor basis as follows. Begin with the general

form of three-point amplitudes introduced in [11]:

M+2
s =

κmx2

2m2s

[
g0〈21〉2s + g1〈21〉2s−1x〈2q〉〈q1〉

m
+ · · ·+ g2s

(x〈2q〉〈q1〉)2s

m2s

]
,

M−2
s =

κmx−2

2m2s

[
g0[21]2s + g1[21]2s−1 [2q][q1]

xm
+ · · ·+ g2s

([2q][q1])2s

x2sm2s

]
,

(2.26)

Here, we’ve expressed the coupling to the positive helicity graviton in the chiral spinor basis

and the negative helicity graviton in the anti-chiral basis. For these choices, the minimal

coupling simply corresponds to setting all couplings except g0 to zero:

M+2
s,min =

κmx2

2

〈21〉2s

m2s
, M−2

s,min =
κmx−2

2

[21]2s

m2s
. (2.27)

The minimal nature of the coupling can be seen in the high energy limit where all momenta

are approximately massless, the expression matches to the minimal derivative three-point

amplitude. Caution: the minimal coupling of eq. (2.27) for s > 2 is different from the

usual usage of minimal coupling in the QFT literature where the derivatives of the kinetic

term are simply covariantized, as shown in appendix A.

In [13] it was shown that at large s, the minimal couplings are matched to one-particle

EFT with Wilson coefficients CSn = 1 +O(1/s). To show this, we first work out the map

between CSn and gi, by converting the EFT amplitude in eq. (2.21), into the chiral basis.

This requires us to convert the square brackets to chiral spinors using the following two

identities:

[21] = 〈21〉+
x〈2q〉〈q1〉

m
,

[2q][q1]

mx
= −x〈2q〉〈q1〉

m
. (2.28)

We then arrive at:

M+2
s =

∑
a+b≤2s

x2CSa+bnsa,bλ
2s
2

[
Is−a

(
−x|q〉〈q|

2m

)a(
I +

x|q〉〈q|
m

)s−b(
−x|q〉〈q|

2m

)b]
λ2s

1 .

(2.29)

Comparing with eq. (2.26) gives the following relation between CSn and gi

gi =

i∑
n=0

F si,nCSn , F si,n =
1

(−2)n
(s!)2

(i− n)!

n∑
m=0

1

(s−m)!(s+m− i)!m!(n−m)!
. (2.30)
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a b

Figure 1. The graviton exchange diagram between source a and b that yields the leading 1
q2

singularity, which is responsible for the classical potential.

Equipped with this, we can derive the Wilson coefficients for minimal coupling, which sets

gi = 0 for i 6= 0. For example, since

g0 = CS0 , g1 = s(CS0 − CS1),

g2 =
s2(CS2−2CS1+CS0)

2
+
s(2CS1−2CS0−CS2)

4
, (2.31)

normalizing g0 = 1, the vanishing of g1 and g2 sets

CS2 =
2s

2s− 1
. (2.32)

This indeed tends to unity as one approaches the s � 1 limit. Similarly the vanishing of

g3 sets CS3 = 2(s+1)
2s−1 . Thus in summary we see that the Wilson coefficients for minimally

coupled particles deviate from that of Kerr black holes:

CMin,s
Sn = CKerr,sSn +O

(
1

s

)
. (2.33)

It is not hard to work out the precise coefficients for 1
s corrections. A brief outline is given

in appendix B. Up to O(s−2) order it can be shown analytically that

CMin,s
Sn = 1 +

n(n− 1)

4s
+

(n2 − 5n+ 10)n(n− 1)

32s2
+O(s−3) . (2.34)

3 Classical potential for general EFT at leading PN order

Here we derive the classical potential for general one-particle EFT to all orders in spin and

leading PN for each spin degree. Here by classical, we are referring to the usual notion

that the interaction is occurring at distances much greater than the de Broglie wavelength

of its individual constituents. We begin with the graviton exchange diagram of spinning

particles in the centre of momentum (COM) frame for the 2 → 2 process. The kinematic

set up is shown in figure 1 and given by

p1 = (Ea, ~p+~q/2), p3 = (Eb,−~p−~q/2), p2 = (Ea, ~p−~q/2), p4 = (Eb,−~p+~q/2) (3.1)

where the exchanged momentum qµ = (p1 − p2)µ = (0, ~q) is space-like, and on-shell condi-

tions imply ~p · ~q = 0. We also adopt the definitions ~p+ ~q/2 = ~p1 = −~p3, which will become

– 10 –
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useful when writing the potential. In the context of our 2 → 2 scattering, the distance be-

tween scattering bodies is associated with the impact parameter |~b|, where ~b is the Fourier

transform of ~q. Thus the classical limit is naturally associated with |~q| � |~p|,ma,mb, and

| ~J | ∼ |p|/|q| � 1, where ~J is the spatial part of the angular momentum [5]. This hier-

archy can be naturally matched to counting in Planck’s constant ~, where we restore [39]

(maintaining c = 1)

qµ → ~qµ, Sµ → 1

~
Sµ, G→ 1

~
G, ma,b → ma,b, pµ → pµ . (3.2)

The counting for Sµ is inherited from Jµ, and qµ becomes the wavenumber. Thus in terms

of ~ counting, the following combination is “dimensionless” and contributes to the classical

potential to all orders,

G|q|, qS . (3.3)

where we’ve suppressed the Lorentz indices for now. In particular, the expansion in G|q|
indicates that loop-level computations contains classical pieces, where one has

G

q2

(
A+BG|q|+ CG2q2 log q2 +O(G3)

)
(3.4)

where A,B,C are kinematic factors arising from tree, one-loop and two-loop computations

respectively. This representation corresponds to the Post-Minkowskian (PM) expansion.

To make contact with the post-Newtonian (PN) expansion, one further expands in p2

m2 ,

which correspond to the non-relativistic limit.

When the gravitating object is spinning, then A,B,C also has dependence on the spin

operator Sµ. From the previous discussion, we have the following as the only linear in spin

combinations with O(~0) scaling.

q · S, ε(p1, p3, q, S) ≡ εµνλσpµ1p
ν
3q
λSσ = (Ea+Eb)~p× ~q · ~S . (3.5)

Note that due to the following identity for the product of two Levi-Civita tensors [40],

εijkεlmn =

∣∣∣∣∣∣∣
δil δim δin

δjl δjm δjn
δkl δkm δkn

∣∣∣∣∣∣∣
= δil(δjmδkn − δjnδkm)− δim(δjlδkn − δjnδkl) + δin(δjlδkm − δjmδkl) ,

any term that is even order in ~p×~q · ~S can be successively reduced to a sum of polynomials

of p2 and (q · S), up to terms proportional to q2 which do not contribute to the classical

potential at leading perturbation order. Therefore the most general ansatz is at most linear

in ~p × ~q · ~S. Based on this power counting argument we expect the potential to have the

following schematic form at leading order in Newton’s constant G,

V (p, q, S) =
4πGmamb

q2
(F0 + Faε(p1, p3, q, Sa)+Fbε(p1, p3, q, Sb)) , (3.6)

where Fi are functions of p2, ma,b, and Sa,b · q. Note that while the spin operators are

non-commuting, the commutator of spins [Si, Sj ] = i~εijkSk has an extra power of ~, so
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the difference between different orderings do not contribute at classical level. Finally, each

power of Sµ formally counts as 0.5 PN in the PN expansion because spin contains a factor

of 1/c when restoring c.

Since we are interested in leading order in G effects, the relevant information is con-

tained in the exchange of single graviton between two sources, where the cubic coupling is

given by the operators in the one-particle EFT. For spinning sources, there is a subtlety

in obtaining the potential from the amplitude: the external states form irreps of distinct

Little groups. In other words, the amplitude is a matrix element in tensor product of

distinct little group space, while the potential is understood to be matrix elements in the

same Hilbert space.7 Thus in extracting the potential for spinning sources one needs to

introduce a mapping procedure which we term Hilbert space matching (H.M.), which will

be discussed in more detail in sections 3.2 and 4.

As discussed previously, classical means that we are expanding in small |q|. In Lorent-

zian signature, qµ is spacelike and |q| → 0 translate to the zero momentum limit. On

the other hand, by analytically continuing to complex (or split signature) momenta, we

can have |q| → 0 correspond to null momenta, q2 = 0. The advantage of such analytic

continuation is that with q2 = 0 the amplitude factorizes, with its residue given by the

product of two three-point amplitudes. This approach was coined the holomorphic classical

limit (HCL) introduced by Guevara [12], where the leading order potential is extracted as:

V (p, q) =
M4(s, q2)

4EaEb

∣∣∣∣
q2→0

=
M3 ⊗M3

4EaEb q2
+ H.M. , (3.7)

The residue is given by the product of three-point amplitudes, which we have computed

for general EFTs in the previous section, and the on-shell momenta for external particles

are parameterized as:

p1 = |η̂]〈λ̂|+|λ̂]〈η̂|, p2 = β′|η̂]〈λ̂|+ 1

β′
|λ̂]〈η̂|+|λ̂]〈λ̂|,

p3 = |η]〈λ|+|λ]〈η|, p4 = β|η]〈λ|+ 1

β
|λ]〈η|+|λ]〈λ| . (3.8)

Note that each momentum is complex and the spinors are constrained by 〈λ̂η̂〉 = [λ̂η̂] = ma

and 〈λη〉 = [λη] = mb. Note that since the transverse momentum is,

qµ = (p1 − p2)µ = (0, ~q) = −|λ̂]〈λ̂| − (β′ − 1)

(
|η̂]〈λ̂| − 1

β′
|λ̂]〈η̂|

)
= |λ]〈λ|+ (β − 1)

(
|η]〈λ| − 1

β
|λ]〈η|

)
,

(3.9)

the parameters β and β′ are required to satisfy the relations

q2 = −(β′ − 1)2m2
a

β′
= −

(β − 1)2m2
b

β
, (3.10)

and the HCL corresponds to taking β, β′ → 1.

7Classical limits are really applicable to matrix elements and not operators. JWK would like to thank

Nima Arkani-Hamed for pointing this out.
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Since in the HCL limit q is null, the four-particle kinematics reduces to a product of

two copies of three-particle kinematics, where we have:

〈21〉 = −

(
[21] +

[2λ̂][λ̂1]

x1ma

)
,

x1〈2λ̂〉〈λ̂1〉
ma

= −

(
− [2λ̂][λ̂1]

x1ma

)

〈43〉 = −
(

[43] +
[4λ][λ3]

x3mb

)
,

x3〈4λ〉〈λ3〉
mb

= −
(
− [4λ][λ3]

x3mb

) (3.11)

Here, the x-factors can be defined via x1 = [−λ̂|p1|ζ〉
ma〈−λ̂ζ〉

and x3 = [λ̂|p3|ζ〉
mb〈λ̂ζ〉

. The product of

x-factors can be expressed as

x1

x3
=

u

mamb
= ρ+

√
ρ2 − 1,

x3

x1
=

v

mamb
= ρ−

√
ρ2 − 1. (3.12)

where the variables u and v are defined as:8

u = [λ|p1|η〉, v = [η|p1|λ〉 , ρ =
p1 · p3

mamb
=

u+ v

2mamb
. (3.14)

Note that in the non-relativistic limit we have

ρ = 1+
|~p|2

2µ2
+O

(
|~p|4

µ4

)
, (3.15)

where µ = mamb
ma+mb

is the reduced mass, and the PN expansion correspond to expanding

around ρ = 1. Finally, in the HCL limit, the operators ε(p1, p3, q, Sa) and q · Sa are

proportional to each other up to factors of
√
ρ2 − 1:

ε(p1, p3, q, Sa) HCL−−−−−→− im
2
amb

√
ρ2 − 1

(
q · Sa
ma

)
. (3.16)

Thus in practice these two operators are disentangled by keeping track of which order in√
ρ2 − 1 they appear.

3.1 The leading singularity and its PN expansion

Starting with the three-point amplitude of general EFTs computed in section 2, eq. (2.19),

we are now ready to construct the classical potential at 1 PM to all orders in spin. Gluing

8These variables satisfy the following useful identities

[η|p1|η〉[λ|p1|λ〉 = uv −m2
am

2
b

[λ|p1|λ〉 = − (β − 1)2

β
m2
b + (1− β)v +

β − 1

β
u .

(3.13)
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the three-point amplitudes and summing over the two intermediate helicity states one has:

Rest = A+
3aA

−
3b +A−3aA

+
3b

= (−1)sa+sb

2sa∑
i=0

2sb∑
j=0

α2m2
am

2
b

CSia
C

Sjb

i!j!

(
x2

1

x2
3

[
ε∗(2)

(
q · Sa
ma

)i
ε(1)

][
ε∗(4)

(
q · Sb
mb

)j
ε(3)

]

+
x2

3

x2
1

[
ε∗(2)

(
−q · Sa

ma

)i
ε(1)

][
ε∗(4)

(
−q · Sb

mb

)j
ε(3)

])

= (−1)sa+sb

2sa∑
i=0

2sb∑
j=0

Bi,j

[
ε∗(2)

(
q · Sa
ma

)i
ε(1)

][
ε∗(4)

(
−q · Sb

mb

)j
ε(3)

]
(3.17)

The coupling constant α is defined as α = κ/2 =
√

8πG. The spins sa and sb are assumed

to be integers. The sign factor (−1)sa+sb appears due to the choice of mostly minus metric

signature; |ε(P)|2 = (−1)s. This sign factor is irrelevant when computing the classical

potential. The Bi,j coefficient can be straight forwardly worked out to be

Bi,j =
(−1)j

x2
1

x2
3

+ (−1)i
x2

3

x2
1

i!j!
α2m2

am
2
bCSia

C
Sjb
. (3.18)

One then simply substitute eq. (3.12) for the x-factor ratios and one obtains the full 1 PM

result. For simplicity we will perform a PN expansion and keeping the leading PN result

for each spin.9 Taking the non-relativistic limit, the above yields:

Bi,j |ρ→1 =
[(−1)i + (−1)j ]− 2

√
ρ2−1[(−1)i − (−1)j ]

i!j!
α2m2

am
2
bCSia

C
Sjb

+O(ρ2−1) . (3.19)

We are keeping the factor
√
ρ2−1 since for i+j = odd the leading term vanishes. We

will proceed by stripping off the polarization tensors first, and consider the form of the

remaining operator. The effects of the polarization tensors will manifest itself in the Hilbert

space matching to be done later.

When i+ j is even, the first term is the leading PN contribution. When i+ j is odd,√
ρ2−1 term is the leading PN contribution. The two cases are treated separately.

• i+ j even: (−1)i = (−1)j can be used to simplify the expression.

Bi,j
t

(
q · Sa
ma

)i(
−q · Sb

mb

)j
= −(−1)

i+j
2

2α2m2
am

2
b

i!j!q2
CSia

C
Sjb

(
−i~q · ~Sa
ma

)i(
−i~q · ~Sb
mb

)j
(3.20)

In position space, the expression becomes

−
(−1)

i+j
2 α2m2

am
2
b

2πi!j!
CSia

C
Sjb

(
~Sa
ma
· ~∇

)i(
~Sb
mb
· ~∇

)j
1

r
. (3.21)

9For full 1 PM result see [41].
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With non-relativistic flux normalisation 1
4EaEb

' 1
4mamb

,

−
(−1)

i+j
2 CSia

C
Sjb

i!j!

(
~Sa
ma
· ~∇

)i(
~Sb
mb
· ~∇

)j
Gmamb

r
. (3.22)

• i+ j odd: due to the following vector identity [13], any of Sa or Sb can be converted

to spin-orbit coupling term.[
~v × ~Sa · ~q

] [
~Sb · ~q

]
=
[
~Sa · ~q

] [
~v × ~Sb · ~q

]
+ q2~v · ~Sa × ~Sb (3.23)

The q2 dependent part will combine with q2 of the denominator to yield q0 order

expression, which does not contribute to long-distance effects. Therefore, there is a

freedom for choosing which of Sa or Sb acquires spin-orbit coupling. The convention

we choose is to attach spin-orbit coupling to odd powered spin to comply with the

ansatz eq. (3.6). For convenience, let us treat the cases separately.

For odd i and even j, attach spin-orbit factor to Sa. The expression
Bi,j
t

(
q·Sa
ma

)i(
−q·Sbmb

)
j

is then evaluated as follows.

(−1)
i+j+1

2
4α2m2

am
2
b

i!j!q2
CSia

C
Sjb

[(
~p1

ma
− ~p3

mb

)
×

~Sa
ma
· (−i~q)

](
−i~q · ~Sa
ma

)i−1(
−i~q · ~Sb
mb

)j
(3.24)

Going to position space and including non-relativistic flux normalisation factors, the

contribution is evaluated as follows.

−
2(−1)

i+j+1
2 CSia

C
Sjb

i!j!

[(
~p1

ma
− ~p3

mb

)
×

~Sa
ma
· ~∇

](
~Sa
ma
· ~∇

)i−1(
~Sb
mb
· ~∇

)j
Gmamb

r

(3.25)

For even i and odd j, attach spin-orbit factor to Sb. The expression
Bi,j
t

(
q·Sa
ma

)i(
−q·Sbmb

)j
is then evaluated as follows.

(−1)
i+j+1

2
4α2m2

am
2
b

i!j!q2
CSia

C
Sjb

[(
~p1

ma
− ~p3

mb

)
×

~Sb
mb
· (−i~q)

](
−i~q · ~Sa
ma

)i(
−i~q · ~Sb
mb

)j−1

(3.26)

Going to position space and including non-relativistic flux normalisation factors, the

contribution becomes the following.

2(−1)
i+j+1

2 CSia
C

Sjb

i!j!

[(
~p1

ma
− ~p3

mb

)
×

~Sb
mb
· ~∇

](
~Sa
ma
· ~∇

)i(
~Sb
mb
· ~∇

)j−1
Gmamb

r

(3.27)

Now that we have determined the polarization tensor-stripped part of the operator (3.17),

we will proceed and account for the spin effects in the polarization tensors.
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3.2 Hilbert space matching

Scattering amplitudes are matrix elements between states that form irreps under distinct

little groups, one for each particle. When considering our 2 → 2 scattering, in figure 1, while

states 1 and 2 are associated with the same massive particle a, their little group space is

distinct since their momenta are different (the same goes with 3 and 4). As one can apply a

Lorentz boost to transform between different momenta, the same transformation will relate

the different little group spaces. This mapping of little group space will be termed Hilbert

space matching. Since the polarization tensors form a natural little group basis, they are

related by these Lorentz boosts and thus contain extra spin operators. The purpose of

this section is to derive these spin factors rigorously. Note that a similar discussion was

addressed for classical-spin variables of GR in [22].10

Without loss of generality, we will consider the spin effects for polarization vectors.

Let’s begin with a reference momenta p0 at rest. The corresponding polarization vector

then takes the form

εµi (p0) = δµi (3.28)

where the little group index on the polarization vector is aligned with the spatial directions.

As we will see, having such a reference momenta allows us to define the little group frame

in a uniform fashion. For the two body system, the natural reference momenta would be

the momenta of the COM, i.e.

pµ0,a/b =
ma/b√

(p1+p3)2
(p1+p3)µ (3.29)

where p0,a p0,b are the COM momentum appropriately normalized such that it squares

to m2
a and m2

b respectively. Now the polarization vector for generic momentum p can be

obtained by applying the boost that transforms p0 to p, i.e. G(p; p0)µ ν , and11

pµ = G(p; p0)µνp
ν
0 , εµI (p) = G(p; p0)µνε

ν
I (p0) . (3.31)

Using this, we can relate the polarization vectors between in- and out-momenta,

εI(pout) = G(pout; p0)G(pin; p0)−1εI(pin) . (3.32)

Recall that the three-point amplitude, which will serve as the seed for the 1 PM potential,

derived from our computation is understood as:

ε∗µI (pout)OK J εKµ(pin) , (3.33)

for the EFT operators OK J that acts on the little group space.12 Using eq. (3.33) we have:

ε∗µI (pout)OK J εKµ(pin) = ε∗µI (pin)
[
G(pin; p0)G(pout; p0)−1

]
OK J εKµ(pin)

= ε∗µI (pin) ÕK J εKµ(pin) , (3.34)

where ÕK J is the matrix element acting on the little group space of the in-state particle.

10The authors would like to thank Michèle Levi for informing us about the analogue.
11The explicit form of G(p; p0)µν is given as:

G(p; p0)µν = δµν −
(p+ p0)µ(p+ p0)ν

(p · p0) +m2
+

2pµp0ν

m2
. (3.30)

12For general QFT amplitudes operators act on Lorentz indices of the polarisation tensors. A systematic

method to convert these operators to act on little group space will be given in section 4.2.
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To extract the spin-operators in the Lorentz transformation, we first write:

G(pA; pB) = e−iλ(pA;pB)pµAp
ν
BJµν

λ(pA; pB) =
log
[

1
m2

(
pA · pB +

√
(pA · pB)2 −m4

)]
√

(pA · pB)2 −m4
.

(3.35)

Next, we decompose Jµν into “rotation” and “boost” part, denoted as Jµνr and Jµνb respec-

tively. In the rest frame, Jµνr will be related to the spin-vector via, Jµνr = − 1
mε

µνλσpλSσ.

Thus a covariant definition of Jµνr would be the part of Jµν which vanishes when acting on

pin, which is the frame our final operators are defined in. This indeed reduces to spatial

rotations in the rest frame of pin. Thus we have,

Jµνr (p) = Jµν − 1

m2

(
pµpλJ

λν + Jµλpλp
ν
)
, Jµνb (p) =

1

m2

(
pµλJ

λν + Jµλpλp
ν
)
. (3.36)

Now expanding out the combination of Lorentz generators relating the out polarization

vector to the in, we have

log
[
G(pin; p0)G(pout; p0)−1

]
= −ipµin

(
λin

[
1− λoutp0 · pout

2

]
pν0 +

λinλoutm
2

2
pνout

)
Jµν

− iλout

[
1− λinp0 · pin

2

]
pµ0p

ν
outJµν

(3.37)

where λin,out = λ(pin,out; p0), and we truncated to second order in λin,out. Higher order

terms will be higher in the PN expansion. Recasting in the basis of Jb and Jr (or equiva-

lently pµinJµν and Jr), where we denote the coefficients as ∆λν and αso;

log
[
G(pin; p0)G(pout; p0)−1

]
= −ipµin∆λνJµν − iαsopµ0p

ν
outJr,µν

= −ipµin∆λνJµν + i
αso
m
pµ0p

ν
outp

λ
inS

σ
inεµνλσ .

(3.38)

The spin Sµin is defined via momenta pµin. In the non-relativistic limit we may take λin '
λout ' m−2, leaving

∆λν ' pνout

m2
, αso '

1

2m2
(3.39)

log
[
G(pin; p0)G(pout; p0)−1

]
' −i 1

m2
pµinp

ν
outJµν +

i

2m3
εµνλσp

µ
0p

ν
outp

λ
inS

σ
in . (3.40)

This separation illustrates a very important difference: the second term depends on the

choice of reference momenta p0 and are thus frame dependent while the first term is inde-

pendent. The second term can be regarded as log
[
G(pin; p0)G(pout; p0)−1G(pout; pin)

]
and

generates spin-orbit interaction, and when we substitute p0 defined in eq. (3.29) into the

expression, we obtain

i

2m3
εµνλσp

µ
0p

ν
outp

λ
inS

σ
in = − i

2m2
~pout × ~pin · ~Sin = −1

2

~p

m
×
~Sin

m
· (−i~q) . (3.41)
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The effects of the boost term ipµin∆λνJµν = log
[
G(pout; pin)−1

]
, which is independent of

reference momentum p0, are suppressed in powers of 1/s as we will show in section 4, so

they can be neglected in the infinite spin limit.

In summary, the presence of contracted polarization tensors leads to

ε∗(p2) · ε(p1) = ε∗(p1)

[
11−

(
~p1

ma
×

~Sa
ma

)
· −i~q

2
+ · · ·

]
ε(p1) . (3.42)

For particle b, there is an additional sign factor due to definition of ~q, which is consistent

with the dictionary provided in [31].

ε∗(p4) · ε(p3) = ε∗(p3)

[
11 +

(
~p3

mb
×

~Sb
mb

)
· −i~q

2
+ · · ·

]
ε(p3) . (3.43)

In sum, the overall effect is to multiply all the results obtained in the previous sections by

the factor

1− 1

2

[
~p1

ma
×

~Sa
ma
− ~p3

mb
×

~Sb
mb

]
· (−i~q) = 1− 1

2

[
~p1

ma
×

~Sa
ma
− ~p3

mb
×

~Sb
mb

]
· ~∇ (3.44)

and truncating to leading PN order. This effect can be compared to Vkin of eq. (3.32) in [28],

which is an augmentation of Vel+Vmag in eq. (3.31) by the factor
[
1− 1

2 (v1 × a1 − v2 × a2)
]

followed by truncation to leading PN order.

In the above we have chosen to define our potential as an operator acting on the

little group space of the incoming particle. One could alternatively choose that of the

outgoing particle, but the result will not change since the Hilbert-space matching factor

relevant for s → ∞ limit is simply a Lorentz rotation, i.e. from |out〉 = R|in〉 we have

〈out|in〉 = 〈in|RT |in〉 = 〈out|RT |out〉.

3.3 The general/Kerr 1 PM leading PN potential

Combining the terms arising from Hilbert space matching, the general leading PN all order
in spin classical potential is given as

Vcl = −
∞∑

m,n=0

(−1)nCS2n−m
a

CSm
b

(2n−m)!m!

(
~Sa
ma
· ~∇

)2n−m(
~Sb
mb
· ~∇

)m
Gmamb

r

−
∞∑

m,n=0

2(−1)m+nCS2m+1
a

CS2n
b

(2m+ 1)!(2n)!

[(
~p1
ma
− ~p3
mb

)
×

~Sa
ma
· ~∇

](
~Sa
ma
· ~∇

)2m(
~Sb
mb
· ~∇

)2n
Gmamb

r

−
∞∑

m,n=0

2(−1)m+nCS2m
a
CS2n+1

b

(2m)!(2n+ 1)!

[(
~p1
ma
− ~p3
mb

)
×

~Sb
mb
· ~∇

](
~Sa
ma
· ~∇

)2m(
~Sb
mb
· ~∇

)2n
Gmamb

r

+

∞∑
m,n=0

(−1)nCS2n−m
a

CSm
b

2(2n−m)!m!

([
~p1
ma
×
~Sa
ma
− ~p3
mb
×
~Sb
mb

]
· ~∇

)(
~Sa
ma
· ~∇

)2n−m(
~Sb
mb
· ~∇

)m
Gmamb

r

(3.45)

Up to quartic order in spin, the results match with the known results available in the

literature [23–27].
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For Kerr black holes, all Wilson coefficients are unity. The summation in the first line

of the above can be simplified as follows:

−
∞∑
n=0

(−1)n

(2n)!

[(
~Sa
ma

+
~Sb
mb

)
· ~∇

]2n
Gmamb

r
(3.46)

The above expression reproduces − cosh(a0 × ∇)m1m2
R of eq. (3.31) in [28], where the

following notation had been adopted.

(~S · ~∇)2 1

r
≡ −(~S × ~∇)2 1

r
(3.47)

The difference of both sides does not contribute to long-distance dynamics as it is some

multiple of Dirac delta. Using the notation eq. (3.47) on eq. (3.46) yields

−
∞∑
n=0

1

(2n)!

[(
~Sa
ma

+
~Sb
mb

)
× ~∇

]2n
Gmamb

r
= − cosh

[(
~Sa
ma

+
~Sb
mb

)
× ~∇

]
Gmamb

r
.

(3.48)

For the second and third line, once again we can use eq. (3.47) to simplify it to the form:

−
2CSia

C
Sjb

i!j!

[(
~p1

ma
− ~p3

mb

)
·
~Sb
mb
× ~∇

](
~Sa
ma
× ~∇

)i(
~Sb
mb
× ~∇

)j−1
Gmamb

r
. (3.49)

Setting all Wilson coefficients to unity gives:

−
∞∑
n=0

2

(2n+ 1)!

(
~p1

ma
− ~p3

mb

)
·

[(
~Sa
ma

+
~Sb
mb

)
× ~∇

]2n+1
Gmamb

r
(3.50)

which can be formally written as

−2

(
~p1

ma
− ~p3

mb

)
· sinh

[(
~Sa
ma

+
~Sb
mb

)
× ~∇

]
Gmamb

r
. (3.51)

This expression matches −2(v1 − v2) · sinh(a0 × ∇)m1m2
R of eq. (3.31) in [28]. Applying

similar identities to the last line we find the complete 1 PM leading PN potential for

rotating black holes:

V BBN
cl =

(
−cosh

[(
~Sa
ma

+
~Sb
mb

)
× ~∇

]
−2

(
~p1

ma
− ~p3

mb

)
· sinh

[(
~Sa
ma

+
~Sb
mb

)
× ~∇

])
Gmamb

r

+
1

2

([
~p1

ma
×

~Sa
ma
− ~p3

mb
×

~Sb
mb

]
· ~∇

)
cosh

[(
~Sa
ma

+
~Sb
mb

)
× ~∇

]
Gmamb

r
.

(3.52)

The above result can be matched to eq. (3.31) and eq. (3.32) in [28]. The first few terms

of eq. (3.52) are;

Vcl = −Gmamb

r
+
G

r2
n̂ ·
[

4ma + 3mb

2ma
~p1 × ~Sa − (a↔ b)

]
− G

r3
(δi,j − 3n̂in̂j)

[
mb

2ma
CS2

a
SiaS

j
a + (a↔ b) + SiaS

j
b

] (3.53)

where n̂ = ~r
r .
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We end this section with a curious observation; the classical potential eq. (3.45) mod

the Hilbert space matching terms in eq. (3.44), matches to intermediate results in EFT

computations in [17, 26, 27] where higher time derivatives has not yet been eliminated. In

EFT computations the classical potential is obtained by fixing spin variable gauges and

doing Feynman diagram computations. The result obtained at this point will in general

contain higher time derivatives such as ~̇S and ~̇v, and neglecting these higher time derivatives

will give an expression equivalent to eq. (3.45) without the last line; for example, compare

the results given in this section with eq. (48) of [17] and eq. (71) of [26] for spin-orbit

interactions, terms proportional to C1(BS3) in eq. (3.10) of [27] for (Sa)
3 interactions, and the

sum of first two terms proportional to C1(ES2) in eq. (3.10) of [27] for (Sa)
2Sb interactions.

The last procedure of EFT computations is eliminating higher time derivatives through

redefinition of variables. Since the last line of eq. (3.45) is generated through Hilbert space

matching procedure, this procedure generates the terms corresponding to terms generated

from redefining variables to eliminate higher time derivatives.

4 Classical potential from finite spins

As was shown in previous sections, the Wilson coefficients CSn that generate the amplitude

for minimal coupling is unity plus O(s−1) deformations. Näıvely, this would lead one

to expect that the potential computed from minimal coupling at finite spin is distinct

from that of Kerr black holes. However, as discussed earlier, in computing the potential

one needs to perform Hilbert-space matching, which carries its own finite-spin effects.

Remarkably, the corrections induced from the boost operator cancels the effects from the

O(s−1) deformations of the Wilson coefficients, rendering the “effective” Wilson coefficient

to be unity, and thus reproduces the correct Kerr black hole! Here we give a detailed

discussion of such finite-spin cancellation, and comment on the some of the previous results

in the literature.

4.1 Hilbert space matching at finite spins and minimal coupling as black holes

Consider the following on-shell three-point kinematics where momentum ~q is complex null;

(~q)2 = 0. We will restrict to integer spins in this section.

p1 = (m,~0) , q = (0, ~q) , p2 = (m,−~q) (4.1)

Recall that the finite-spin effects from the Hilbert-space matching are due to boost gen-

erators log
[
G(pout; pin)−1

]
in eq. (3.40) and are independent of the choice of reference

momentum p0. Thus, for the purpose of discussing finite spin effects, we are at liberty to

set p0 of to p1 and eliminate Thomas-Wigner rotation effects, i.e. the second term in (3.40)

vanishes. The little group matrix element ε∗I(2) · εJ(1) is computed as

ε∗I(2) · εJ(1) = ε∗I(1)
[
ei

~q
m
· ~K
]
εJ(1) = ε∗I(1)

 s∑
n=0

(−1)n

(2n)!

(
~q · ~K
m

)2n
 εJ(1)

= ε∗I(1)

[
s∑

n=0

(−1)n(2s− 2n)!

(2s)!

(
s

n

)(
q · S
m

)2n
]
εJ(1)

(4.2)
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where eq. (C.8) has been used to obtain the last line together with the condition (~q)2 = 0.

The coefficient of (q · S)2n scales as (−4s)−n in the limit s → ∞, so they are finite spin

effects for n 6= 0. Inserting these finite spin pieces into eq. (2.19) will give the following

result.

M2η
s =

κmx2η

2
ε∗I(1)

[
s∑
i=0

(−1)i(2s− 2i)!

(2s)!

(
s

i

)(
−η q · S

m

)2i
] 2s∑

j=0

CSj

j!

(
−η q · S

m

)j εJ(1)

=
κmx2η

2
ε∗I(1)

[
2s∑
n=0

CSneff

n!

(
−η q · S

m

)n]
εJ(1) ,

(4.3)

where we’ve incorporated the Hilbert-space matching terms to define the effective Wilson

coefficient CSneff
. The relation between CSn and CSneff

is given as:

CSmeff

m!
=

bm/2c∑
i=0

(−1)i(2s− 2i)!

(2s)!

(
s

i

)
CSm−2i

(m− 2i)!

=
∑
n=0

(
δm,n −

δm−n,2
4s

+
δm−n,4 − 4δm−n,2

32s2
+O(s−3)

)
CSn

n!
.

(4.4)

One can interpret CSneff
as the 2n-multipole of the particle which would be measured by

an observer at infinity.13 Remarkably, substituting the Wilson coefficients for minimal

coupling while keeping the finite-spin effects, for example eq. (2.34), we find that the

effective CSneff
turns out to be unity! In other words,

Minimal coupling reproduces the Kerr Black hole Wilson coefficients at finite spins

once the Hilbert space matching terms are included!

The complete proof of this statement is given in appendix E.

Note that since the boost part of the Hilbert space matching is independent of choice

of p0, the above statement would hold for the choice used to evaluate the potential, i.e.

eq. (3.29). Thus when combined with the spin-orbit part, we can conclude that minimal

coupling reproduces the potential for Kerr black holes for finite s, in the sense that it

reproduces the correct spin-dependent terms up to degree 2s in spin operators. In the

following, we will verify the above statement directly on the amplitudes computed from

Feynman rules.

4.2 Example: gravitational potential from spin-1 spin-0 scattering

Let us consider a concrete example to verify that the potential derived from the scattering

amplitude of spinning particles matches with the Kerr black hole potential, without resort-

ing to taking the infinite-spin limit. We will use the scattering of massive spin-1 and scalar

particle as an example. This system has been computed previously in [31] and [30] with

conflicting results. We will comment on the root of their discrepancy in the next section.

13Indeed the reference frame p0 chosen here is very similar to the “body-fixed frame” introduced in [22].
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As we will now show, indeed the correct potential up to degree two in spin-operator is

reproduced.

The amplitude of a graviton exchange between a vector and a scalar is given by [30]14

iM = −4πGmamb

~q2
ε∗µ2 [−ηµν + 2p̂3µp̂2ν + 2p̂1µp̂3ν − p̂1µp̂2ν ] εν1 , (4.5)

where the hatted variables are defined as p̂µi = pµi /mi and mi are the masses of the particles

respectively, with m1 = m2 = ma and m3 = m4 = mb. We’ve suppressed the little group

indices for simplicity. Note that unlike our previous expression, where the Lorentz indices

of the polarization vectors are contracted with each other, which was the case since we

were considering the factorization limit, here they also contract with the momenta. Thus

schematically we have:

ε∗2,{µs}O
{µs},{νs} ε1,{νs} = ε∗1,I,{λs} [G(p1; p0)G(p0; p2)]

{λs}
{µs}O

{µs},{νs} ε1,{νs} . (4.6)

We can extract the matrix elements through an appropriately generalised version of eq. (2.7).

Returning to the example eq. (4.5), we need to express ε∗2 using ε∗1. In the non-relativistic

limit the approximation p̂i · p̂j ' 1 can be applied to eq. (3.30), yielding

ε∗2µ ' ε∗1α
[
δαµ −

1

2
p̂α0 p̂1µ +

1

2
(p̂α0 p̂2µ − p̂α2 p̂0µ)− 1

2
p̂α2 p̂2µ

]
. (4.7)

Inserted into the numerator of eq. (4.5) then yields,

−ε∗µ1
[
ηµν +

1

2
(p̂0µp̂2ν − p̂2µp̂0ν)− 2(p̂3µp̂2ν − p̂2µp̂3ν) +

1

2
p̂2µp̂2ν

]
εν1 . (4.8)

We now recast the above expression in terms of spin operators.

Recall that the spin operator matrix element in little group space Sµ, defined in

eq. (2.7), is given by

Sµ(p) = (−1)ε∗ρ(p)

(
− 1

2m
εµνλσpν [Jλσ]ρδ

)
εδ(p) =

i

m
εµνλσpνε

∗
λ(p)εσ(p) , (4.9)

where one keeps in mind that the polarization vectors carry little group indices. An addi-

tional sign factor appears due to metric signature; ε∗µε
µ = −I.15 The squared spin operator

(SµSν) is computed as

(SµSν) = − 1

m2
εµαβγενλρσpαpλε

∗
βεσ

∑
`

ε`,γε
∗
`,ρ = −εµε∗ν − I

(
ηµν − pµpν

m2

)
(4.11)

14We have simplified the expression and corrected the sign of ηµν . This expression is equivalent to eq. (70)

of [31].
15The matrix elements for the Lorentz generator Jµν is given as:

[Jµν ]ρσ = i[ηµρδνσ − ηνρδµσ ] . (4.10)
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where we’ve used the completeness relation for summing over the little group index `:∑
`

εµ` ε
∗
`,ν = −δµν +

pµpν
m2

. (4.12)

Equations eq. (4.9) and eq. (4.11) can be rewritten in the following form respectively.

ε∗µi ε
ν
j − ε∗νi ε

µ
j = − i

m
εµνλσpλSij,σ (4.13)

ε∗µi ε
ν
j + ε∗νi ε

µ
j = −(SµSν + SνSµ)ij − 2δij

(
ηµν − pµpν

m2

)
(4.14)

Averaging over the two, we get

ε∗µi ε
ν
j = −δij

(
ηµν − pµpν

m2

)
− i

2m
εµνλσpλSij,σ −

1

2
(SµSν + SνSµ)ij

= −δij
(
ηµν

2
− pµpν

m2

)
− i

2m
εµνλσpλSij,σ −

(
SµSν + SνSµ

2
− ηµνSαSα

4

)
ij

(4.15)

The above expression can be used to convert amplitudes written in terms of polarisation

vectors into potentials with spin variables. The second line is separated into trace/anti-

symmetric/symmetric traceless terms and reflects the fact that ηµν(SµSν)ij = −2δij is a

quadratic Casimir. Combining eq. (4.8) and eq. (4.15), eq. (4.5) becomes

iM ' −4πG

~q2

[
11 +

i

2m3
a

ε(p0, p2, p1, S)− 2i

m2
amb

ε(p3, p2, p1, S) +
(q · S)2

2m2
a

]
ij

= −4πG

~q2

[
11− 1

2

~p1

ma
×

~S
ma
· (−i~q) +

2(ma +mb)

mb

~p1

ma
×

~S
ma
· (−i~q) +

(~q · ~S)2

2m2
a

]
ij

(4.16)

for PN order of our interest, yielding the correct potential eq. (3.53) up to S2
a order.

4.3 Comparison with existing literature

The treatment of polarisation tensors in the previous section is a generalisation of the

treatment given in [38], where p0 was implicitly chosen to be equal to pin. For example,

the constrast of the treatment can be seen by comparing eq. (4.12) of [38]

ε∗µi (p1 + ~q̄)ενj (p1) = ε∗µi ε
ν
j −

~
m2

1

(q̄ · ε∗i ) p
µ
1ε
ν
j −

~2

2m2
1

(q̄ · ε∗i ) q̄µενj +O(~3) , (4.17)

to our eq. (4.7); the anti-symmetric combination (p̂0p̂2 − p̂2p̂0) is missing in the above

formula. The results are consistent since we recover the above formula from eq. (4.7) as

p0 → p1. This means the amplitude eq. (4.21) of [38] needs to be augmented by the

corresponding spin-orbit factor, which can be implemented as the following transform.

δij → δij − i

2m3
1

εµνλσp
µ
0 (~q̄)νpλ1

(
sij/~

)σ
(4.18)
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A sign difference has been introduced to compensate for difference in the conventions;
the convention is ε0123 = +1 in this paper, while ε0123 = +1 in [38]. Incorporating this
contribution into eq. (4.21) of [38] yields the following expression.

~3Mij
1−0 = −

(κ
2

)2 4

q̄2

[(
(p1 · p2)2 − 1

2
m2

1m
2
2

)
(δij − i

2m3
1

εµνλσp
µ
0 q̄
νpλ1s

σ ij)

− i

m1
(p1 · p2)pρ1q̄

σpλ2 ερσλδs
δ ij
1 +

1

2m2
1

(
(p1 · p2)2 − 1

2
m2

1m
2
2

)
(q̄ · sik1 )(q̄ · skj1 ) +O(~2)

]
(4.19)

Going to the COM frame and taking p0 to be at rest in this frame, the leading PN contri-

bution is equivalent to eq. (4.16). Note that the extra term introduced in eq. (4.18) is a

rotation factor which drops out in the polarization sum used to define 〈∆s〉 in [38]. Thus

our observation that the finite-spin approach, which once again entails keeping s finite and

absorbing an associated factor of ~, reproduces the classical-spin dynamics is in accordance

with the matching observed in [38].

In [30, 31], spatial components of polarisation tensors were simply considered to be

equivalent to polarisation tensors of the reference momentum, which was taken to be at

rest in the COM frame. Up to linear order in spin the näıve treatment will give the same

answer, but starting at quadratic order in spin the results start to deviate. For example,

eq. (77) of [31]

εb∗f · εbi ' −ε̂b∗f · ε̂bi +
1

m2
b

ε̂b∗f · ~p ε̂bi · ~p+
i

2m2
b

~Sb · ~p× ~q −
1

4m2
b

ε̂b∗f · ~q ε̂bi · ~q (4.20)

is clearly incompatible with our eq. (4.7) due to the factor of (4m2)−1 in (~ε · ~q)2. The same

computation is listed as eq. (16) in [30] and spin-quadratic term (~q · ε̂1~q · ε̂∗2) matches, but

it is unclear how this result has been derived.

ε∗(p2) · ε(p1) ≈ −ε̂1 · ε̂∗2 −
1

2m2
a

~q · ε̂1~q · ε̂∗2 −
1

2m2
a

(qipj − piqj)ε̂1iε̂∗2
j

(4.21)

5 Universality and the classical-spin limit

While the discussions so far revolves around amplitude representations using polarization

tensors, the power of modern amplitude techniques can only be fully put in force when

the expressions are given in purely on-shell variables. The simplicity of minimal coupling

eq. (2.27) compared to the EFT amplitude eq. (2.19) is one manifestation of this fact. An-

other example is provided by the scattering amplitude for Compton scattering [11, 13, 42];

A4(p1, k
+1
2 , k−1

3 , p4) = α2 〈3|p1|2]2

〈2|p1|2]〈2|p4|2]

(
[12]〈34〉+ 〈13〉[24]

〈3|p1|2]

)2s

A4(p1, k
+1
2 , k+1

3 , p4) = α2 m2[23]2

〈2|p1|2]〈2|p4|2]

〈14〉2s

m2s
.

(5.1)

The simplicity of the three-point amplitude for minimal coupling is manifested when the ex-

ternal spinors are converted into preferred (anti-)chiral basis using the Dirac equation [11].
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Since minimal coupling yields the dynamics of Kerr black holes, this motivates us to look

into the problem of computing the classical potential of minimally coupled particles in the

chiral basis. Remarkably, we observe that for the residue of the tree-level graviton exchange

and the triangle coefficient for the one-loop two graviton exchange:

the coefficient of the spin operators of degree i and j in particle a and b respectively

takes the form:

Asa,sbi,j = Ai,j(−1)2sa+2sb
(2sa)!

(2sa − i)!
(2sb)!

(2sb − j)!
, (5.2)

where sa and sb is the spin of the two particles. Importantly as long as Ai,j is non-

vanishing, which requires i ≤ 2sa and j ≤ 2sb, it is independent of spin.

In other words, the each term in the residue factorizes into a universal part and a spin-

dependent part which is only comprised of combinatoric factors. Recall that the relation

between minimal coupling and Kerr black hole is unambiguously established in the strict

s → ∞ limit [15]. The above identity allows us to access the asymptotic limit from finite

spin computations! This is indeed the approach taken in [13], which reproduced the classical

potential up to quartic order in spin.

Let us now demonstrate eq. (5.2), by evaluating the t-channel residue eq. (3.17) for

minimal coupling in the anti-chiral basis:

Rest = A+
3aA

−
3b +A−3aA

+
3b

= α2m2
am

2
b

{
x2

1

x2
3

(−1)2sb〈21〉2sa [43]2sb +
x2

3

x2
1

(−1)2sa [21]2sa〈43〉2sb
}
.

(5.3)

The sign factors (−1)2sa and (−1)2sb are remnants of taking momenta p2 and p4 as outgoing.

Again using eq. (3.11), this can be converted into the anti-chiral basis

Rest =

2sa∑
i=0

2sb∑
j=0

Asa,sbi,j

[2|2sa
(
|λ̂][λ̂|
x1ma

)i
|1]2sa

([4|2sb
(
|λ][λ|
x3mb

)j
|3]2sb

)

=

2sa∑
i=0

2sb∑
j=0

Asa,sbi,j xiyj

Asa,sbi,j = α2m2
am

2
b

(
x2

1

x2
3

(2sa)!δj,0
(2sa − i)!i!

+
x2

3

x2
1

δi,0(2sb)!

(2sb − j)!j!

)
(5.4)

Note that only Ai,0 and A0,j are non-vanishing. Importantly the only dependence of Asa,sbi,j

on spins of external particles sa and sb is through combinatoric factors. In other words,

defining:

Asa,sbi,j = Ai,jN
sa,sb
i,j , N sa,sb

i,j = (−1)2sa+2sb
(2sa)!

(2sa − i)!
(2sb)!

(2sb − j)!
. (5.5)

the factors Ai,j
16 are independent of spins sa and sb, proving the relation eq. (5.2). Note

that for generic values of non-zero gi>0 the above property will not hold! Here, in the leading

16The Ai,j coefficient here is the same as the Ãi,j in [13]
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PN expansion, Ai,j = α2m2
am

2
b

(
δj,0
i! +

δi,0
j!

)
. As we will demonstrate in appendix D, the

same universality behaviour occurs at one-loop up to s = 2 where minimal coupling leads

to unique Compton amplitude.

To obtain the classical potential, we simply take the classical-spin limit. We introduce

formal parameters x̃ = 2sax and ỹ = 2sby and hold x̃, ỹ fixed while taking the sa, sb →∞
limit, yielding

lim
sa,sb→∞

Rest =

∞∑
i,j=0

Ai,j x̃
iỹj , (5.6)

where integer spins are assumed. We can now compare with the polarization tensor basis

to obtain the spin-dependent pieces of the potential. Recall that t-channel residue is given

in the last line of eq. (3.17), which we recast into on-shell matrix elements using eq. (2.14).

As in eq. (3.17) we assume the spins sa and sb to be integers.

Rest = (−1)sa+sb

2sa∑
i=0

2sb∑
j=0

Bi,j

i∑
k=0

ñsai,k〈21〉sa−k
(
−x1〈2λ̂〉〈λ̂1〉

ma

)k
[21]sa−i+k

(
[2λ̂][λ̂1]

x1ma

)i−k

×
j∑
l=0

ñsbj,l〈43〉sb−l
(
−x3〈4λ〉〈λ3〉

mb

)l
[43]sb−j+l

(
[4λ][λ3]

x3mb

)j−l
.

(5.7)

The coefficients ñsi,k are rescaled version of nsi,j coefficient in eq. (2.21).

ñsi,k =
i!

2i

(
s

k

)(
s

i− k

)
. (5.8)

Using eq. (3.11) to convert all angle brackets to square brackets and recasting in terms of

I, x, and y variables as before results in the following expression.

Rest =

2sa∑
i=0

2sb∑
j=0

i∑
k=0

j∑
l=0

Bi,jñ
sa
i,kñ

sb
j,l (I + x)sa−k xi (I + y)sb−l yj . (5.9)

The classical limit proceeds as the previous case; we introduce formal parameters x̃ = 2sax

and ỹ = 2sby, and then take sa, sb →∞ limit while holding x̃ and ỹ finite.

lim
sa,sb→∞

Rest =

∞∑
i,j=0

B∞i,j
2i+j

x̃iỹjex̃/2+ỹ/2 (5.10)

Matching eq. (5.10) to eq. (5.6) gives a solution for the coefficient of minimal coupling,

Bmin,∞
i,j , as a function of Ai,j :

Bmin,∞
i,j = 2i+j

∑
k,l

Ai−k,j−l
(−2)k+lk!l!

(5.11)

As one can see the classical potential, computed from Bmin,∞
i,j , can be computed from Ai,j

which are spin independent. In other words due to the universal behaviour of minimal
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coupling, allows us to obtain the classical-spin limit from simple manipulation of finite-

spin amplitudes ! Augmented with the Hilbert space matching term, gives the full potential.

Indeed the r.h.s. of eq. (5.11) is what was used to compute the potential in [13].

While demonstration of universality has been restricted to tree level computations,

the same property also holds at one-loop level as shown in appendix D. The origin of this

universality reflects the fact that the minimal coupling three-point amplitude for general

spins can be viewed as a one parameter family with a special feature: the 3-pt amplitude

of spin-s is simply 2s power of that of spin-1
2 . We remark that it is possible to extend this

combinatoric structure to non-minimal couplings as shown in appedix E.

6 Conclusions

In this paper, we derive the spin-dependent pieces of the leading post-Newtonian order

gravitational potential for general spinning body from the one-particle effective action, to all

orders in spin. We first cast the EFT operators into three-point amplitudes, parameterized

by the EFT Wilson coefficient. Special care was taken in defining the spin-operators, which

acts on the physical Hilbert space, i.e. the irreps of massive Little group. This requires

us to map the polarization vectors to a common basis, which for the two-body problem

we choose to be the center of mass momenta, generating extra spin-operator dependent

terms. We refer to this procedure as Hilbert-space matching. After gluing the three-

point amplitudes and with the addition of the Hilbert space matching terms, we derive the

leading post-Newtonian order classical potential for general spinning objects, to all orders

in spin. As consistency checks, we compare the result to known quartic order in spin

results for general spinning compact bodies, and then compare to the known equivalent

order potential for binary black holes. We stress the importance of choosing an appropriate

reference momentum to define the basis of the Little group space, as the spin states of the

gravitating bodies should be labelled consistently throughout the stellar binary evolution

and thus so must the reference momentum.

Our result was derived by going to the classical-spin limit, i.e. taking s → ∞. At

finite spins, it is known that the Wilson coefficients for minimal coupling deviates from

unity by finite spin effects. On the other hand, it is clear that the Hilbert space matching

also has finite spin effects. Thus it is interesting to see what the potential looks like for

minimal coupling at finite spins. Remarkably, we find that minimal coupling at finite

spin reproduces the black hole potential to the prescribed spin order! In other words,

the finite spin effects cancel each other. Whether such cancellation is a feature of current

perturbation order or a feature that continues to higher perturbation orders remains as a

problem to be explored. We also comment on the various discrepancies in earlier work on

classical-spinning potentials from the scattering of spin- 1
2 and 1 particles [30, 31].

Finally, we consider the computation of the classical potential using amplitudes in

the uniform chirality basis, where the massive spinors of the external legs are converted

to the same chirality. This basis is more “natural” for the amplitudes as expressions

simplifies. When restricted to minimal coupling in the HCL, we find that for finite spins,

the potential factorizes into a spin-dependent combinatoric factor and a spin-independent
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function. We term such factorization as universality, reflecting the fact that the spin-

independent function is universal for all spins. This allows us to compute this factor using

finite spins, and then simply replace the combinatoric factors with its classical-spin limit.

This yields the formula first proposed in [13], which was argued intuitively.

While finite spin particles are expected to reproduce dynamics of Kerr BHs when

taking into account the boost effects suppressed in powers of 1
s , this statement is only true

for the polarisation tensor basis. For example, the boost effects in anti-chiral basis is not

necessarily suppressed in powers of 1
s as is evident from eq. (E.2). However, we may use

universality to take the classical-spin limit in the anti-chiral basis and separate the boost

effects. Considering that expressions using polarisation tensors are likely to be unavailable

as we go to higher loops, universality is expected to be a useful tool to directly access the

classical-spin limit and compute the potentials.
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A Lagrangian description of minimal coupling

For s ≤ 2, the minimal coupling eq. (2.27) coincides with the minimal coupling for Dirac

fermion, FµνFµν for vectors, and Rarita-Schwinger for spin- 3
2 and KK gravity for spin-2.

These reflect the fact that in the high-energy limit where the kinematics becomes massless,

the amplitude becomes the minimal coupling for self-interacting fields. Beyond spin-2 no

such construction is known in flat-space. In conventional QFT literature minimal coupling

is simply the covariantization of the kinetic terms, which is simply the d’Alembertian oper-

ator plus terms that enforces the state to be transverse traceless. The goal of this appendix

is to explicitly demonstrate that our higher spin minimal coupling do not match with such

case, where the action is constructed from the viewpoint of Weinberg’s textbook [43]; the

free kinetic action is the inversion of the propagator. The conventions for spinor-helicity

variables are the same as the ones used in [13] throughout the appendices.

The kinetic term for arbitrary integer spin field that is responsible for the factor 1
p2−m2

in the propagator can be promoted to curved space as follows.

Skin =

∫ √
−g (−1)s

2

(
Dµφν1···νsDµφν1···νs −m2φν1···νsφν1···νs

)
(A.1)

The sign factor (−1)s is there to make sure that the kinetic term for physical degrees of

freedom have the right sign. This action contributes to the three-point amplitude through
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the derivative D, and the contribution in the chiral (undotted) basis is given as follows.

M3 =
κx2

2m2s−2

2s∑
i=0

gkin
i 〈21〉2s−i

(
x〈23〉〈31〉

m

)i
(A.2)

gkin
i =

(
s

i

)
− s
(
s− 1

i− 1

)
= −(i− 1)

(
s

i

)
(A.3)

The propagator also contains projection terms in the numerator which project onto physical

degrees of freedom. Terms in the Lagrangian that are responsible for such projection terms

on flat space will in general contain terms where derivatives on the fields are contracted to

one of the indices of the fields that derivatives act on.

(∂µφ
µ
ν1···νs−1

)(∂λφ
λν1···νs−1) . (A.4)

Doing integration by parts, this term can be cast as follows.

(∂µφ
λ
ν1···νs−1

)(∂λφ
µν1···νs−1) . (A.5)

In the above expression, derivatives are contracted to the field that it does not act on.

These expressions can be promoted to curved space as follows.

(∂µφ
µ
ν1···νs−1

)(∂λφ
λν1···νs−1) =⇒ gαβgµνgλ1σ1 · · · gλs−1σs−1(Dαφβλ1···λs−1)(Dµφνσ1···σs−1)

(A.6)

(∂µφ
λ
ν1···νs−1

)(∂λφ
µν1···νs−1) =⇒ gαβgµνgλ1σ1 · · · gλs−1σs−1(Dαφµλ1···λs−1)(Dνφβσ1···σs−1)

(A.7)

Up to surface terms, eq. (A.6) and eq. (A.7) differ by a term linear in the curvature tensor

Rµν = [Dµ, Dν ]. Therefore, any expression of the form eq. (A.7) can be converted to the

form eq. (A.6) by introducing extra Riemann tensor couplings.

√
−g(gαβgµν − gανgβµ)gλ1σ1 · · · gλs−1σs−1(Dαφβλ1···λs−1)(Dµφνσ1···σs−1)

∝ ∂[· · · ] +
√
−ggαβgµνgλ1σ1 · · · gλs−1σs−1(φβλ1···λs−1)([Dα, Dµ]φνσ1···σs−1)

(A.8)

Linear coupling to h obtained from the substitution gµν → ηµν − κhµν and Dµ → ∂µ + Γµ
on eq. (A.6) will not contribute to on-shell three-point amplitude, due to transverse nature

of on-shell physical DOF; pµε(p)
µ = 0. Also, terms linear in the curvature tensor cannot

affect g1 and only can affect gi≥2. This shows g1 = 0 is a constraint that cannot be changed

for coupling to gravitons. To remove the ambiguity coming from eq. (A.8), expression of

the form eq. (A.6) and its generalisation to multiple derivatives will be considered as the

canonical expression for terms introduced to kill unphysical degrees of freedom.

The following coupling of the curvature tensor to higher-spin fields generate electric

couplings.

LES2j−2

int = m4−2j
(
∂µ1 · · · ∂µj−2∂ν1 · · · ∂νj−2Rµj−1νj−1µjνj

)
φµ1···µjσ1···σs−jφ

ν1···νj
σ1···σs−j

(A.9)
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Although in principle covariant derivatives D must be used, considering them as partial

derivatives ∂ suffices for analysing 3pt amplitudes. This piece is related to the Wilson

coefficient CES2j−2 appearing in one-particle effective action for point particles. The contri-

bution of this coupling to the 3pt amplitude in the chiral (undotted) basis is given below.

LES2n

int =
(

2n−2︷ ︸︸ ︷
∂ · · · ∂ R)φφ

m2n−2
→ κx2

2m2s−2

2s∑
i=2n

gES2n

i 〈21〉2s−i
(
x〈23〉〈31〉

m

)i
(A.10)

gES2n

i = −(−1)s(−1)n

2n−1

(
s− n− 1

i− 2n

)
, n ≤ s− 1 (A.11)

As n is restricted to the range n ≤ s−1 for eq. (A.9), the coupling that affects CES2s needs

to be introduced independently. The following coupling will do the job, but it turns out

that this coupling is unnecessary.(
∂µ1 · · · ∂µs−1∂ν1 · · · ∂νs−1Rµsνs+1µs+1νs

)
(∂µs+1φµ1···µs) (∂νs+1φν1···νs) (A.12)

The magnetic couplings are generated by the following couping to the curvature tensor.

LBS2j−1

int = m2−2j
(
∂µ1 · · · ∂µj−2∂ν1 · · · ∂νj−1Rµj−1νjµjνj+1

)
φµ1···µjσ1···σs−j

(
∂νj+1φ

ν1···νj
σ1···σs−j

)
(A.13)

This piece is related to the Wilson coefficient CBS2j−1 , and this coupling’s contribution to

the 3pt amplitude in the chiral (undotted) basis becomes the following.

LBS2n+1

int =
(

2n−1︷ ︸︸ ︷
∂ · · · ∂ R)φ(∂φ)

m2n
→ κx2

2m2s−2

2s∑
i=2n+1

gBS2n+1

i 〈21〉2s−i
(
x〈23〉〈31〉

m

)i
(A.14)

gBS2n+1

i =
(−1)s(−1)n

2n

(
s− n− 1

i− 2n− 1

)
, n ≤ s− 1 (A.15)

All magnetic couplings up to CBS2s−1 are covered by this coupling.

We empirically find that defining the following coefficients

cES2n = (−1)s(−2)n−1 (s+ n− 1) · · · (s− n)

(2n)!
= (−1)s(−2)n−1

(
s+ n− 1

2n

)
(A.16)

cBS2n+1 = −(−1)s(−2)n
(s+ n− 1) · · · (s− n− 1)

(2n+ 1)!
= −(−1)s(−2)n

(
s+ n− 1

2n+ 1

)
(A.17)

gives the following sum

gmin
i = gkin

i +
s−1∑
n=0

(gES2n

i cES2n + gBS2n+1

i cBS2n+1)

= −(i− 1)

(
s

i

)
+

s−1∑
n=1

[(
s− n− 1

i− 2n

)(
s+ n− 1

2n

)
−
(
s− n− 1

i− 2n− 1

)(
s+ n− 1

2n+ 1

)]
= δi,0

(A.18)
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which holds for 0 ≤ i ≤ 2s.17 In other words, the following action

Smin = Skin +

∫
d4x

[
cES2nLES2n

int + cBS2n+1LBS2n+1

int

]
(A.19)

corresponds to minimal coupling of higher-spin fields to gravitons.

B Wilson coefficients for minimal coupling

To compute 1
s corrections to Wilson coefficients for minimal coupling, the inverse matrix of

the matrix F si,n in eq. (2.30) is needed. F si,n can be expanded as an asymptotic series in 1
s ;

F si,n =
(−1)n

2n
1

(i− n)!n!

∞∑
m=0

(
n

m

)
(s!)2

(s−m)!(s+m− i)!

=
(−1)n

2n
si

(i− n)!n!

∞∑
m=0

(
n

m

)
e−

i2−(2m+1)i+2m2

2s
+O(s−2)

=
(−1)nsi

(i− n)!n!

(
1− 2i2 − 2(n+ 1)i+ n(n+ 1)

4s
+O(s−2)

)
(B.1)

Note that in the s→∞ limit, F si,n scales as O(si). This motivates us to introduce g̃i and

F̃ si,n as finite s→∞ quantity:

g̃i =
i!

si
gi , F̃ si,n =

i!

si
F si,n (B.2)

This particular scaling allows a simple expression for F̃ si,n in the asymptotic limit s→∞.

F̃i,n ≡ lim
s→∞

F̃ si,n =

(
i

n

)
(−1)n (B.3)

As a matrix, F̃i,n is a lower triangular infinite matrix which squares to the identity, i.e.∑∞
n=0 F̃i,nF̃n,j = δi,j . Therefore, in the asymptotic limit s→∞

g̃i =
∞∑
n=0

F̃i,nCSn → CSn =
∞∑
i=0

F̃n,ig̃i (B.4)

Inserting g̃0 = 1 and g̃i>0 = 0 into the above equation indeed yields CSn = 1, which is the

leading result in 1
s . The subleading 1

s terms of F̃ si,n is;

F̃ si,n = F̃i,n −
2i2 − 2(n+ 1)i+ n(n+ 1)

4s
F̃i,n +O(s−2) . (B.5)

The inverse matrix up to the same asymptotic order can be computed using the formal

matrix identity (11− h)−1 =
∑∞

i=0 h
i.(

F̃ s
)−1

n,i
= F̃n,i +

1

s

∑
j,k

2j2 − 2(k + 1)j + k(k + 1)

4
F̃n,jF̃j,kF̃k,i +O(s−2) .

= F̃n,i +
1

s

(−1)in!

i!

∑
j,k

(−1)j+k
2j2 − 2(k + 1)j + k(k + 1)

4(n− j)!(j − k)!(k − i)!
+O(s−2) .

(B.6)

17The sum has been checked up to s = 200 numerically.
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Therefore, the Wilson coefficients for minimal coupling up to this order is

CMin,s
Sn =

(
F̃ s
)−1

n,0
= 1 +

n!

s

∑
j,k

(−1)j+k
2j2 − 2(k + 1)j + k(k + 1)

4(n− j)!(j − k)!k!
+O(s−2)

= 1 +
n(n− 1)

4s
+O(s−2) .

(B.7)

It is also possible to work out higher order corrections to arbitrary order analytically using

the procedures outlined above. For brevity, we only report the result for CMin,s
Sn up to

O(s−2) order obtained analytically;

CMin,s
Sn = 1 +

n(n− 1)

4s
+

(n2 − 5n+ 10)n(n− 1)

32s2
+O(s−3) . (B.8)

C Properties of boosts

C.1 Approximating powers of boost generators ~K

The Lorentz generators and their algebras are;

J i =


1

2

(
σi
) β
α

Chiral

1

2

(
σi
)α̇
β̇

Anti-chiral

, Ki =


i

2

(
σi
) β
α

Chiral

− i
2

(
σi
)α̇
β̇

Anti-chiral

(C.1)

[J i, J j ] = iεijkJk , [Ki,Kj ] = −iεijkJk , [J i,Kj ] = iεijkKk , (C.2)

where σi are the Pauli matrices, J i = 1
2ε
ijkJ jk are the rotation generators, and Ki = J i0

are the boost generators.18 The explicit form for the Lorentz group generators in the

representation ( s2 ,
s
2) are obtained as a tensor sum of above.

J i =
1

2
(σi ⊗

2s−1︷ ︸︸ ︷
· · · ⊗ 11 + · · ·+

2s−1︷ ︸︸ ︷
11⊗ · · ·⊗σi)

Ki =
i

2
(σi ⊗

2s−1︷ ︸︸ ︷
· · · ⊗ 11 + · · ·+

s−1︷ ︸︸ ︷
11⊗ · · ·⊗σi ⊗

s︷ ︸︸ ︷
· · · ⊗ 11

−
s︷ ︸︸ ︷

11⊗ · · ·⊗σi ⊗
s−1︷ ︸︸ ︷
· · · ⊗ 11− · · · −

2s−1︷ ︸︸ ︷
11⊗ · · ·⊗σi) .

(C.3)

Since little group indices will always be symmetrised, the expressions for generators and

their products can be simplified further. For this purpose, let us first fix the normalisations

of the spinors for particles of unit mass at rest, where arrows ↑ and ↓ are the little group

indices.

|0↑〉α = |0↑]α̇ =

(
1

0

)
, |0↓〉α = |0↓]α̇ =

(
0

1

)
〈0↑|α = −[0↑|α̇ = −(0 1), 〈0↓|α = −[0↓|α̇ = (1 0)

(C.4)

18Treatment of boost generators as rotation generators in general spacetime dimensions has been given

in [44].
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The second line follows from the first line by adopting the definition ε↑↓ = +1. Adopting

this normalisation, the generators and their products are simplified as below where
·

=

denotes numerical equivalence when inserted between bra and ket vectors of spin-s states

in the rest frame.

J i
·

= 2s× 1

2
σi ⊗

2s−1︷ ︸︸ ︷
· · · ⊗ 11

J iJ j
·

= 2s× 1

22
σiσj ⊗

2s−1︷ ︸︸ ︷
· · · ⊗ 11 +(2s)(2s− 1)× 1

22
σi ⊗ σj ⊗

2s−2︷ ︸︸ ︷
· · · ⊗ 11

Ki ·= 0

KiKj ·= −2s× 1

22
σiσj ⊗

2s−1︷ ︸︸ ︷
· · · ⊗ 11−

[
2s(s− 1)− 2s2

]
× 1

22
σi ⊗ σj ⊗

2s−2︷ ︸︸ ︷
· · · ⊗ 11

(C.5)

The symmetrisation argument can be used to show that (K)2n+1(J)m
·

= 0, so only even

powers of ~K need to be worked out. The contribution with largest s dependence will be

the contribution where all Pauli matrices are allotted to different spinor indices, given that

s > n. The coefficient for such a contribution can be worked out from simple combinatorics.

2n︷ ︸︸ ︷
J · · · J ·' (2s)!

(2s− 2n)!

1

22n

2n︷ ︸︸ ︷
σ ⊗ · · ·⊗

2s−2n︷ ︸︸ ︷
11⊗ · · · ⊗ 11 + · · · (C.6)

2n︷ ︸︸ ︷
K · · ·K ·'

[
2n∑
m=0

(−1)m
(

2n

m

)
(s!)2

(s−m)!(s− 2n+m)!

]
(−1)n

22n

2n︷ ︸︸ ︷
σ ⊗ · · ·⊗

2s−2n︷ ︸︸ ︷
11⊗ · · · ⊗ 11 + · · ·

= (2n)!

(
s

n

)
1

22n

2n︷ ︸︸ ︷
σ ⊗ · · ·⊗

2s−2n︷ ︸︸ ︷
11⊗ · · · ⊗ 11 + · · · (C.7)

Comparing the two yields the relation

1

(2n)!

(
~λ · ~K

)2n ·
=

(2s− 2n)!

(2s)!

(
s

n

)(
~λ · ~J

)2n
+ (~λ)2F2n−2(~λ · ~J) (C.8)

where F2m(x) is some even polynomial of degree 2m. The appearance of the factor (~λ)2

follows from anti-commutator of Pauli matrices; σiσj + σjσi = 2δij .

D Universality at one-loop

In this section, we will only be interested in the G2~0|~q|−1 effects which can be cleanly

captured by the t-channel triangle in the HCL limit. To compute the integral coefficient, we

apply the unitarity cut approach [45, 46] especially by Forde [47], where the contributions of

each integral is separated by their distinct set of propagators. By putting these propagators

on-shell unitarity dictates that the result must be given by the product of tree-amplitudes.

In our case, the triangle cut, we have the product of two minimal coupling three-point

amplitude and a gravitational Compton amplitude, as illustrated in figure 2. The triangle

coefficient can then be captured by removing the contributions from the box integrals.
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L

P1

P2

k4

k3

P3

P4

ma

mb

Figure 2. The triangle cut used to compute the 2 PM potential.

Compared to tree level, the new feature at one-loop is the gravitational Compton

amplitude, involving two massive spinning particles and two massless gravitons:

For Kerr black holes, we will be interested in the Compton amplitude which correspond to

the four-point extension of the three-point minimal coupling. More precisely, the residue

of the massive pole must yield the product of three-point minimal coupling discussed pre-

viously. However as shown in [11] and [13] for s > 2, due to polynomial ambiguities,

factorization constraints do not uniquely determine the gravitational Compton amplitude.

More precisely, by matching to the factorization pole in all three channels, for s ≤ 2 we

can find a solution:

M
(s≤2)
4

(
1s,−2s, k−2

3 , k+2
4

)
= − 〈k3|p1|k4]4

〈k3|p1|k3]〈k4|p1|k4]〈k4|k3|k4]

(
−〈1k3〉[2k4] + 〈2k3〉[1k4]

〈k3|p1|k4]

)2s

(D.1)

where |k4〉, |k4] and |k3〉, |k3] are massless spinors for the massless propagators. Importantly,

the result does not contain any 1
m factors. This has two important implications: 1. One

can take m → 0 limit smoothly, indicating that the spinning particle has a point-like

description. 2. Since pure polynomial terms must have 1
mn factors simply on dimensional

grounds, they can be considered as finite size effects and do not mix with eq. (D.1). For

s > 2, the situation is drastically different. The amplitude takes the form (see [13] ):

M
(s>2)
4

(
1s,−2s, k−2

3 , k+2
4

)
= − 〈k3|p1|k4]4

〈k3|p1|k3]〈k4|p1|k4]〈k4|k3|k4]

(
〈12〉−[12]

m
+ · · ·

)2s

+ · · · ,

(D.2)
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where we’ve only listed the leading term in propagators and 1
m expansion. We see that

unlike s ≤ 2, here the leading piece already contains non-trivial 1
m dependence, thus

making the separation of finite size effects from that of what is dictated by factorization

operationally meaningless.

D.1 Universality for s ≤ 2

For s ≤ 2 particles, we insert the Compton amplitude eq. (D.1) into the computation of

the triangle integral in the HCL limit. Taking spin 1 and spin 2 as an example, the triangle

integral in the HCL limit yields the following coefficients for the anti-chiral basis (defined

in eq. (5.4)):19

• S0
aS

0
b

As=1
0,0

m2
am

2
b

= −24π2G2 (ma +mb)

|~q|
+O(ε2)

As=2
0,0

m2
am

2
b

= −24π2G2 (ma +mb)

|~q|
+O(ε2)

(D.3a)

• S1
aS

0
b

As=1
1,0

m2
am

2
b

=
4π2G2 (4ma + 3mb)

|~q|ε
+

24π2G2 (ma +mb)

|~q|
+O(ε)

As=2
1,0

m2
am

2
b

=
8π2G2 (4ma + 3mb)

|~q|ε
+

48π2G2 (ma +mb)

|~q|
+O(ε)

(D.3b)

• S1
aS

1
b

As=1
1,1

m2
am

2
b

=
4π2G2 (ma +mb)

|~q|ε2
+

4π2G2 (mb −ma)

|~q|ε
+

14π2G2 (ma +mb)

|~q|
+O(ε)

As=2
1,1

m2
am

2
b

=
16π2G2 (ma +mb)

|~q|ε2
+

16π2G2 (mb −ma)

|~q|ε
+

56π2G2 (ma +mb)

|~q|
+O(ε)

(D.3c)

• S2
aS

0
b

As=1
2,0

m2
am

2
b

= −π
2G2 (ma +mb)

|~q|ε2
− 2π2G2 (4ma + 3mb)

|~q|ε
− π2G2 (34ma + 27mb)

2|~q|
+O(ε)

As=2
2,0

m2
am

2
b

= −6π2G2 (ma +mb)

|~q|ε2
− 12π2G2 (4ma + 3mb)

|~q|ε
− 3π2G2 (34ma + 27mb)

|~q|
+O(ε)

(D.3d)

19Here, ε =
√
ρ2 − 1.
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• S2
aS

1
b

As=1
2,1

m2
am

2
b

= −π
2G2 (ma +mb)

|~q|ε2
− π2G2 (ma + 6mb)

2qε
− π2G2 (4ma + 11mb)

2|~q|
+O(ε)

As=2
2,1

m2
am

2
b

= −12π2G2 (ma +mb)

|~q|ε2
− 6π2G2 (ma + 6mb)

|~q|ε
− 6π2G2 (4ma + 11mb)

|~q|
+O(ε)

(D.3e)

• S2
aS

2
b

As=1
2,2

m2
am

2
b

=
π2G2 (ma +mb)

8|~q|ε2
+
π2G2 (mb −ma)

4|~q|ε
+

13π2G2 (ma +mb)

32|~q|
+O(ε)

As=2
2,2

m2
am

2
b

=
9π2G2 (ma +mb)

2|~q|ε2
+

9π2G2 (mb −ma)

|~q|ε
+

117π2G2 (ma +mb)

8|~q|
+O(ε)

(D.3f)

Importantly, the A coefficients satisfy the following identity:

As=2
i≤2,j≤2 =

4!2

(4− i)!(4− j)!
(2− i)!(2− j)!

2!2
As=1
i≤2,j≤2 . (D.4)

The factors in front of As=1
i≤2,j≤2 are the combinatoric factors defined in eq. (5.5), of spin 2

devided by that of spin 1. Thus we again find that at one-loop, the classical contribution

extracted from minimally coupled spin 1 and 2 respects universality as defined in eq. (5.5).

Although we’ve only displayed up to O(ε)0 for brevity in eq. (D.3a) to eq. (D.3f), the

universality behaviour is satisfied to all orders in ε. Similarly, we’ve also checked that

universality also holds for spin-1/2 and 3/2.

D.2 Universality for s > 2

Given that universality is found to hold for minimal coupling with s ≤ 2, we naturally ask

whether there exists some higher spin extension of minimally coupled gravitational Comp-

ton amplitude, such that universality is respected. A straightforward BCFW construction

of the Compton amplitude yields a non-local expression for s > 2 (see also [42]). However

since we are interested in only the classical part of the triangle integral, a priori it is not

clear whether this would yield a problematic potential. On the other hand, a manifestly

local, albeit non-unique, higher-spin extension was given in eq. (5.24) of [13]. We analyse

both cases separately in this section and show that universality can be maintained.

D.2.1 The BCFW Compton amplitude

First, we start from the BCFW representation of the Compton amplitude, which is con-

structed from the 〈k3, k4] shift:

MBCFW
4 (1s,2s, k−2

3 , k+2
4 )

=
M̂3(1s,−P̂ s

14, k̂
+2
4 )M̂3(2s, P̂

s
14, k̂

−2
3 )

〈k4|p1|k4]
+
M̂3(1s,−P̂ s

13, k̂
−2
3 )M̂3(2s, P̂

s
13, k̂

+2
4 )

〈k3|p1|k3]

=− 〈k3|p1|k4]4

〈k3|p1|k3]〈k4|p1|k4]〈k4|k3|k4]

(
〈1k3〉[2k4] + 〈2k3〉[1k4]

〈k3|p1|k4]

)2s

(D.5)
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Taking p2 → −p2, it indeed recovers (D.1). Note that while for s > 2 the expression is

non-local, it factorizes correctly on all three channels. Since it is just an extrapolation of

eq. (D.1) to s > 2, not surprisingly the HCL limit of the triangle integral satisfy universality

for all spins. Take A4,0 as an example:

As=3
4,0

m2
am

2
b

= −225π2G2 (ma +mb)

8|~q|ε2
− 75π2G2 (4ma + 3mb)

2|~q|ε
− 225π2G2 (23ma + 16mb)

16|~q|
+O(ε)

As=2
4,0

m2
am

2
b

=
15π2G2 (ma +mb)

8|~q|ε2
− 5π2G2 (4ma + 3mb)

2|~q|ε
− 15π2G2 (23ma + 16mb)

16|~q|
+O(ε)

(D.6)

We find that As=3
4,0 = 15As=2

4,0 = 6!2

(6−4)!(6−0)!
(4−4)!(4−0)!

4!2
A4,0, which indeed satisfy the univer-

sality relation.

An interesting self-consistency test is the following; assuming universality also holds

at one-loop, then the computations done for s ≤ 2 would be sufficient to capture the

correct potential involving operators Sn≤4 by r.h.s. of eq. (5.11). Here, we take the BCFW

Compton amplitude in the polarization tensor basis and take the classical-spin limit of the

triangle integral. In the basis of eq. (5.7) we find:

• S0
aS

0
b

BBCFW
0,0 =

24π2G2m2
am

2
b (ma +mb)

|~q|
+O(ε)2 (D.7)

• S1
aS

0
b

BBCFW
1,0 = −

4π2G2mam
2
b (4ma + 3mb)

|~q|ε
−

12π2G2mam
2
b (4ma + 3mb)

|~q|
ε+O(ε)3 (D.8)

• S2
aS

0
b

BBCFW
2,0 =

2π2G2m2
b (ma +mb)

|~q|ε2
+
π2G2m2

b

[(
22+ 12

2s−1

)
ma+

(
15+ 12

2s−1

)
mb

]
|~q|

+O(ε)2

=
2π2G2m2

b (ma +mb)

|~q|ε2
+
π2G2m2

b (22ma + 15mb)

|~q|
+O

(
1

s

)
+O(ε)2

(D.9)

• S3
aS

0
b

BBCFW
3,0 = −

π2G2m2
b

(
1 + 2

2s−1

)
(4ma + 3mb)

|~q|εma

−
π2G2m2

b

[(
11 + 24

2s−1

)
ma +

(
13
2 + 18

2s−1

)
mb

]
|~q|ma

ε+O(ε)3

= −
π2G2m2

b (4ma + 3mb)

|~q|maε
−
π2G2m2

b (22ma + 13mb)

2|~q|ma
ε+O

(
1

s

)
+O(ε)3

(D.10)
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• S4
aS

0
b

BBCFW
4,0 =

π2G2
(

1
4 + 1

2s−1

)
m2
b (ma +mb)

|~q|m2
aε

2

+

π2G2m2
b

[
152s3−28s2−390s+87

8(1−2s)2(2s−3)
ma +

3(4s3−11s+1)
(1−2s)2(2s−3)

mb

]
|~q|m2

a

+O(ε)2

=
π2G2m2

b (ma +mb)

4|~q|m2
aε

2
+
π2G2m2

b (19ma + 12mb)

8m2
a|~q|

+O

(
1

s

)
+O(ε)2

(D.11)

We find that it indeed reproduces the r.h.s. of eq. (5.11). We also comment that universality

of BCFW representation is based on the same combinatoric structure at tree level analysed

in section 5.

D.2.2 The s > 2 local Compton amplitude

Now, we turn to the local representation of the Compton amplitude given in eq. (5.24)

of [13]. We first ask if universality is respected when comparing with the known Compton

amplitudes (s ≤ 2) for coefficients A0,0 to A4,4, and if not can the situation be rectified by

inclusion of suitable polynomial terms.

We analyze the coefficients Ai,j extracted from the gravitational Compton amplitude

for s = 6 in [13]. For i, j ≤ 4, we expect to match with that computed from s ≤ 2 via

universality. In the following, we give a few examples.

1. i, j < 4 (Si<4
a Sj<4

b ):

Alocal,s=6
2,0

m2
am

2
b

= −66π2G2 (ma +mb)

|~q|ε2
− 132π2G2 (4ma + 3mb)

|~q|ε

− 33π2G2 (34ma + 27mb)

|~q|
+O(ε)

(D.12)

Comparing with eq. (D.3d), one finds

Alocal,s=6
2,0 =

12!

(12− 2)!

(4− 2)!

4!
As=2

2,0 =
12!

(12− 2)!

(2− 2)!

2!
As=1

2,0 (D.13)

where universality between the local amplitude and eq. (D.1) is satisfied. Similarly,

comparing between different higher spins, we also find universality. For example for

s = 4, 6

Alocal,s=4
2,0

m2
am

2
b

= −28π2G2 (ma +mb)

|~q|ε2
− 56π2G2 (4ma + 3mb)

|~q|ε

− 14π2G2 (34ma + 27mb)

|~q|
+O(ε)

=
8!

(8− 2)!

(12− 2)!

12!

Alocal,s=6
2,0

m2
am

2
b

(D.14)
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2. i = 4, j < 4 (Si=4
a Sj<4

b ) effects:

operators with S4 are the highest degree for which spin-2 particles can probe. Here,

unlike the BCFW higher-spin extension, we indeed find discrepancy with that from

universality. Take for example A4,0:

Alocal,s=6
4,0

m2
am

2
b

= −7425π2G2 (ma +mb)

8|~q|ε2
− 2475π2G2 (4ma + 3mb)

2|~q|ε

− 1485π2G2 (460ma + 317mb)

64|~q|
+O(ε)

=

{
495− 297ε2mb

8 (ma +mb)
+O(ε3)

} As=2
4,0

m2
am

2
b

(D.15)

We see that the s = 6 and s = 2 results no longer differ by an overall combinatoric

factor. In other words, universality is lost. However, as discussed in [13], given

the polynomial ambiguity of Compton amplitudes beyond s > 2, we can restore

universality simply by adding local contact terms. Indeed by adding

M s=6
contact = −3

2
(8πG)m2

(
12

4

)(
〈k32〉[k41] + 〈k31〉[k42]

2m2

)4(〈12〉 − [12]

2m

)8

(D.16)

to the spin-6 Compton amplitude, we find:

Alocal+contact,s=6
4,0

m2
am

2
b

= −7425π2G2 (ma +mb)

8|~q|ε2

− 2475π2G2 (4ma + 3mb)

2|~q|ε
− 7425π2G2 (23ma + 16mb)

16|~q|
+O(ε)

=
12!

(12− 4)!

(4− 4)!

4!
×
As=2

4,0

m2
am

2
b

(D.17)

We now see that a correct contact term makes Ai=4,j<4 = Alocal + contact
i=4,j<4 . For generic

spins, the suitable contact term is:

M s
contact = −3

2
(8πG)m2

(
2s

4

)(
〈k32〉[k41] + 〈k31〉[k42]

2m2

)4(〈12〉 − [12]

2m

)2s−4

(D.18)

Note that this contact term is constructed in a way that it only modifies the be-

haviour of Si≥4
a Sj≥4

b and we do not need to worry about breakdown of universality

for Si=4
a Sj<4

b .

3. i > 4, j > 4 (Si>4
a Sj>4

b ):
having patched up our local expression such that universality is respected for Ai,j

– 39 –



J
H
E
P
0
9
(
2
0
2
0
)
0
7
4

with i, j ≤ 4, we now turn to its fate for i, j > 4. Again, focusing on spin-6, we find

Alocal+contact,s=6
5,0

m2
am

2
b

=
3465π2G2 (ma +mb)

2|~q|ε2
+

17325π2G2 (4ma + 3mb)

8|~q|ε
+

693π2G2 (107ma + 72mb)

4|~q|
+O(ε)

Alocal+contact,s=3
5,0

m2
am

2
b

=
105π2G2 (ma +mb)

8|~q|ε2
+

525π2G2 (4ma + 3mb)

32|~q|ε
+

21π2G2 (107ma + 72mb)

16|~q|
+O(ε)

=
6!

(6− 5)!

(12− 5)!

12!

Alocal+contact,s=6
5,0

m2
am

2
b

(D.19)

where universality is still preserved. Here, we conclude that even with the modifica-

tion from the contact terms eq. (D.18) universality is still preserved by all spins.

E Residue integral representation for three-point amplitude

To prove that minimal coupling reproduces Wilson coefficients of Kerr black holes after

Hilbert-space matching, we first note that chiral spinor brackets and anti-chiral spinor

brackets can be exchanged when momentum of in-state p1 and out-state p′1 are the same,

p1 = p′1.

〈1′1〉 = −[1′1] (E.1)

Following the kinematical set-up in section 4.1, we go to the frame where p1 = p′1 is at rest.

The Hilbert space matching of minimal coupling becomes

〈21〉2s = 〈1′|2sei
q·K
m |1〉2s = 〈1′|2se−

q·S
m |1〉2s ' ε∗(1′)e−

q·S
m ε(1)

[21]2s = [1′|2sei
q·K
m |1]2s = [1′|2se

q·S
m |1]2s ' ε∗(1′)e

q·S
m ε(1)

(E.2)

which is the chiral(anti-chiral) basis version of eq. (4.2). The relations K = iJ = iS

for chiral spinors and K = −iJ = −iS for anti-chiral spinors has been used, and ' in

the above expression denotes equivalence up to normalisation. In other words, minimal

coupling corresponds to unity Wilson coefficients CSneff
= 1. The same conclusion has been

reached from heavy particle effective theory (HPET) point of view in [29].

The map can be generalised to arbitrary CSneff
. Using the expression for q·S

m in the

chiral basis [13],

gi〈21〉2s−i
(
x〈2q〉〈q1〉

m

)i
=

2i(2s− i)!gi
(2s)!

〈2|2s
(
q · S
m

)i
|1〉2s

=
2iĝi
i!
〈2|2s

(
q · S
m

)i
|1〉2s ,

(E.3)
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where we have introduced the notation gi =
(

2s
i

)
ĝi. The above expression can be matched

to eq. (4.3), which expresses the amplitude through CSneff
.

2iĝi
i!
〈2|2s

(
q · S
m

)i
|1〉2s =

2iĝi
i!
〈1′|2se−

q·S
m

(
q · S
m

)i
|1〉2s

= 〈1′|2s
∑
n

CSneff

n!

(
−q · S

m

)n
|1〉2s ,

(E.4)

yielding the relation

gi =

(
2s

i

)
ĝi =

1

2i

(
2s

i

)∑
n

(−1)n
(
i

n

)
CSneff

. (E.5)

We may ask if there is an expression for the three-point amplitude that directly ex-

presses the ampitude in terms of CSneff
. Such an alternative expression can be found by

adopting following definitions.

ū(p2)u(p1) =
[21]− 〈21〉

2m

Sµ1/2 =
1

2
ū(p2)γµγ5u(p1) = − 1

4m
([2|σ̄µ|1〉+ 〈2|σµ|1])

(E.6)

The definition for spin vector Sµ1/2, which can be considered as the scaled spin vector Sµs
2s of

the full spin vector of a spin-s particle Sµs , has been adopted from Holstein and Ross [31]

with a sign choice that matches to our conventions. An extra factor of 1
2m has been

inserted as a normalisation condition ūI(p)u
J(p) = δJI . Setting the momentum conservation

condition as p2 = p1 + q, we propose the following residue integral representation of three-

point amplitude which expresses spin-s amplitude as 2s power of spin-1
2 amplitude.

M2η
s =

κmx2η

2

∮
dz

2πiz

( ∞∑
n=0

CSnr z
n

)(
ū(p2)u(p1)− η

q · S1/2

mz

)2s

=
κmx2η

2

∮
dz

2πiz

( ∞∑
n=0

CSnr z
n

)(
[21]− 〈21〉

2m
+
η

z

[2|q|1〉+ 〈2|q|1]

4m2

)2s

.

(E.7)

Here the contour encircles the origin, and the contour integral merely serves the auxiliary

function of extracting the right combinatoric factors. For positive helicity η = +1, this

expression becomes

M+2
s = (−1)2sκmx

2

2

∮
dz

2πiz

( ∞∑
n=0

CSnr z
n

)(
〈21〉
m

+
z − 1

z

x〈23〉〈31〉
2m2

)2s

. (E.8)

Using the binomial expansion leaves the following residue integral to be worked out.∮
dz

2πiz
zn
(
z − 1

z

)i
= (−1)i

i∑
j=0

∮
dz

2πiz

(
i

j

)
(−z)jzn−i = (−1)n

(
i

n

)
. (E.9)
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One then finds:

M+2
s = (−1)2sκmx

2

2

2s∑
i=0

(
2s

i

)[
1

2i

∞∑
n=0

(−1)n
(
i

n

)
CSnr

](
〈21〉
m

)2s−i(x〈23〉〈31〉
m2

)i
≡ (−1)2sκmx

2

2m2s

[
gr0〈21〉2s + gr1〈21〉2s−1x〈2q〉〈q1〉

m
+ · · ·+ gr2s

(x〈2q〉〈q1〉)2s

m2s

] (E.10)

Comparing the coefficients gi of eq. (E.5) with the above formula, we can conclude that

the Wilson coefficients CSnr used in eq. (E.7) is equivalent to CSneff
; CSnr = CSneff

.

One advantage of the representation eq. (E.7) is that evaluation of cuts become simple

as the sum over 2s intermediate states of a spin-s particle can be substituted by a sum

over 2 intermediate states of a spin- 1
2 particle. This property follows from the following

identity.

∑
P2s

M1(1,P, q1, z1)2sM2(P,2, q2, z2)2s =

[∑
P

M1(1,P, q1, z1)M2(P,2, q2, z2)

]2s

(E.11)

In the above identity,M1 andM2 are arbitrary expressions bilinear in the massive spinor-

helicity variables schematically written as bold variables. This identity can be proved by

writing the sum as the sum over overcomplete basis of spin coherent states.

Another advantage of the expression eq. (E.7) is that it allows us to straightforwardly

take the infinite spin-limit and connect to one-particle EFT three-point amplitude. For-

mally writing ūu = 1 and suppressing the subscript s of Sµs ,

lim
s→∞

M2η
s = lim

s→∞

κmx2η

2

∮
dz

2πiz

( ∞∑
n=0

CSnr z
n

)(
1− 1

2s
η
q · S
mz

)2s

=
κmx2η

2

∞∑
n=0

CSnr

n!

(
−η q · S

m

)n
,

(E.12)

which is the one-particle EFT amplitude eq. (2.19).
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