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ABSTRACT 

Classical trajectories are computed for linear H + C12  collisions 

and used to construct the classical limit of the S-matrix for reactive 

and non-reactive transitions between individual quantum states. An 

interesting feature of this system is that both "direct" and "complex" 

mechanisms participate in the collision dynamics. ; The two mechanisms 

contribute additively to individual S-matrix elements, and within a 

trandom phase approximation" for the complex contribution it is seen that 

they also contribute additively to the transition probability. The com-

plex contribution to a transition probability is strictly classical, but 

interference structure may be prominent in the direct contribution. 
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I. Introduction 

It is well-recognized now that at least the gross features of atomic 

and molecular collision dy -namics are accurately described by classical 

mechanics. The facility with which classical trajectories can be corn-

puted, with averaging over various initial conditions (usually by Monte 

Carlo methods), and used to generate averaged collision properties (thermal 

rate constants for chemical reaction, the average energy transfered be-

tween internal and translational degrees of freedom, etc.) is evidenced 

by the large amount of such work currently being reported.. For the 

relatively simple atom-diatom and diatom-diatom collision systems this 

strictly classical approach has almost reached the stage of being a tool 

for the analysis of experimental results. 

Motivated by the way classical mechanics has been used within a 

quantum mechanical framework to treat elastic atom-atom scattering, 2  we 

have recently shown3  how exact classical mechanics (i.e., numerically 

computed trajectories) for a complex collision.system (i.e., one with 

internal degrees of freedom, such as A + BC) can be used to construct 

the classical limit of the quantum mechanical S-matrix (the "classical 

S-matrix") describing transitions between individual quantum states of 

the collision partners! Use of classical mechanics to construct such 

transition, or scattering amplitudes (rather than transition probabili-

ties or cross sections directly) means that the quantum principle of 

superposition is incorporated, and, just as in elastic scattering, the 

interference features so obtained seem to be the chief contribution of 

quantum mechanics. It is often.possible to analytically continue the 

interference structure into classically forbidden domains so that 
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transitions which proceed by tunneling can also be treated by classical 

mechanics 5  (analogous to the WKB treatment of tunneling in one-dimensional 

problems). The general.conclusjon of the examples studied thus far is 

that classical dynamics, appropriately used, is capable of much greater 

detailed accuracy than may have been previously suspected. 

This paper reports results of the classical S-matrix approach applied 

to a linear reactive atom-diatom collision, H + Cl - HC1 + Cl; the 

particular potential surface used, collision energies employed, etc., are 

6 
those for which Miller and-Light have recently reported quantum mechani- 

cal results. Section II presents the details of the classical S-matrix 

approach as it applies to the linear reactive A + BC system, and Section 

III discusses the numerical - results for H + Cl2 . The most interesting 

new feature seen in this system, other than that of reaction itself, is 

the participation of two distinct collision mechanisms; some trajectories 

are "direct', whereas others lead to "complex formation and are thus 

quite complicated. It is seen in Section III how "direct" and "complex" 

mechanisms contribute to the S-matrix and. to the net transition probability. 

II. Classical S-Matrix for Linear Reactive A + BC Collisions. 

The general expressions for the classical S-matrix have been given 

in reference 3; here the notation and results are summarized as they 

apply to the linear reactive A + BC collision. Figure 1 shows the coor- 

dinates, ra  and  Ra  being the vibrational and center-of-mass translational 

coordinates for initial arrangement a(A + BC), and r and R being 

analogous, coordinates for arrangement c(AB + C); we refer to these as 

the cartesian coordinates for arrangements a and c. A linear trans-

formation relates the cartesian coordinates of the two arrangements 
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where A, B and C are the masses of the individual atoms. 

The classical Hamiltonian, in terms of the cartesian coordinates and 

momenta of arrangement 	a, is 

H(P, 	a' Ra 	ra) 	a2'a + 	
a2'a + VtOt(r, R) (2) 

where the internal and translational reduced masses are 

ma = BC/(B+ C) 

= A(B + c)/(A + B + C) ; 

the Hainiltonian can be similarly expressed in terms of the cartesian 

coordinates and momenta of arrangement c. The internal (vibrational) 

potentials in arrangements a and c are 

tot v(r)=21m 	V a a R —, 00 
a 

tot 
v (r ) = Lim 	V 
C C 

Rc  

the potential surface of Miller and Light 6  is such that these vibrational 

potentials are Morse functions 
a 

-a,(r-r ) 	-a(r-r ) 
v(r) = Dte 	o - 2e 	o J , 	 (3) 

where the Morse parameters D, a, and r correspond to diatornic molecule 

BC for arrangement a and AB for arrangement c. 
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To effect quantization in the asymptotic regions one carries out a 

canOnical transformation of the internal degree of freedom from cartesian 

variables r and p to angle-action variables q and n. The generator of 

this canonical transformation7, of the F2-type, is given by 

± fdr t 	{€(n) - v ( r l)]}V 2  

which for the Morse potential of Equation (3) becomes 

f2 (r,n) = ± 	{ - ( - z + 2z - x2) 1/2 + cosf(z -i)(i x2)_h/2 

- X cosf(z - 	
- 2)1/2 z]}, 
	 (5)A. 

where 

z = exp 

k = 2(2mD)V 2/a  

- 	2n+1 

±=signofp 

In terms of the angle-action variables the internal Hamiltonian (for either 

arrangement), p 2/2m + v(r), becomes the semiclassical (Bohr-Sommerfield.) 

eigenvalue function (which, for the Morse oscillator, happens to be iden-

tical to .the quantum eigenvalue expression) 

€(n) = -D(l - 2n+ 1 ) 2 
	 (6) 

and the cartesian variables r and p are given in terms of q and n 

by 

I 



r(q,n) = r0  + 	log 	- (1 - x2)l/2 cos q]} 	( 7) 

p(q,n) = m €'(n) r(q,n) 
	, 	 ( 8) 

where •X is given below Equation (5). All of the expressions in this 

paragraph apply equally well for either arrangement a or c. 

It actually turns out to be most convenient to carry out the 

numerical integration of Hamilton's equations in the cartesian variables 

r, p, R, and P rather than the angle-action variables q, n, R, and P. 

Initial conditions, however, are specified in terms of angle-action 

variables; i.e., one specifies initial conditions in angle-action vari-

ables, transforms to cartesian variables and computes the trajectory, 

and then transforms back to angle-action variables in the final asymptotic 

region. At fixed total energy E, therefore, one specifies initial values 

q and n for the initial arrangement (subscripts 1 and 2 refer to 

initial and final times t 1  and t 2) 
 respectively; when it is necessary to 

specify the time subscript, the arrangement index y = a, c is written 

as a superscript), and then initial values of all the cartesian variables 

are given by 

R = large 

= 
1 +11a 	1 

= r(q, n) 

= p(q1 , n1 ) , 

where the functions €(n), r(q,n), and p(q,n) are given by Equations 

(6) - (8). 

With these initial conditions Hamilton's equations, with the 

p 
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Hamiltonian of Equation (2), are numerically integrated until one of the 

asymptotic regions is reached. The final vibrational energy is €, 

+ v(r)  

where r = a(non-reactive) or c(reactive); the final vibrational quantum 

number is found by inverting the eigenvalue function in Equation (6) 

n(€) = -1/2 +(l/2)k[l - ( €/D) 1/ 2 ] , 	 (10) 

so that .n is given by 

with € given by Equation (9), and y = a or c. 

This final vibrational quantum number, as a function of the initial 

angle-action variables of the internal degree of freedom, n(q, nt), is 

the fundamental classical trajectory function which is required. It 

plays precisely the same role here as in the case of non-reactive vibra-

tional excitation9, except that nowthere is a reactive and a non-

reactive.branch i.e., since a particular trajectory is either reactive 

or non-reactive, there will be one range of q a1 which gives non-reactive 

trajectories and thus determines n(q, n t), and another range of 

which give reactive trajectories and thus determines n(qa,  n). 
S 

	

	

To construct the classical S-matrix for a particular n - n trans- 

lation, therefore, one finds all roots of the trajectory relation 

1,a \ 	I n2 q1 ) = n2  

where n is fixed. (and not explicitly indicated as an argument of the 
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trajectory function) and where n, on the RHS of Equation (iLl) is an 

integer. The classical, S-matrix for the n1 a - n2 i  transition is thus 

	

42 ) a] -1/2 exp [i(n, n)] , 	 (12) 

where y = a(non-reactive) or c(reactive), and where the phase 0 is 

specifiedbelow; the sum is over all the roots of Equation (ii). The 

transition probability is the square modulus of the S-matrix element 

Isni n i  

To construct the phase associated with a particular trajectory, be 

it reactive or non-reactive, it is useful to take cognizance of the fact 

that the canonical transformation from cartesian variables (r , R , p a a a 

P ) of arrangement a to cartesian variables (r , R , p , P ) of 
a 	 c 	c c 	c 

arrangement c is a point canonical transformation - i.e., the coordin-

ates r and R are expressible in terms of the coordinates ra and Ra 

alone and do not involve the monenta p a 
 and P a (see Equation (i)). The 

F1-type generator for a point canonical transformation, however, is 

identiôally zero) °  The phase of the S-matrix in the coordinate 

representation of the cartesian variables is therefore given by 

(r 4, r R) = 	dt Pa(t) Ra(t) + pa(t) ra(t) 	(la) 

= S 	dt Pc(t) E(t) + p(t) rc(t) , 	(iLb) 	\1 

t l  

whether y = a or c. The fact that Equation (1 1 a) and Equation (lb) are 
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equal is a result of the fact that this tirearrangement transformation" is 

a point canonical transformation; i.e., according to the general trans-

formation principles established in reference 3, Equation (14b) should 

have added to it the term F, (r, R,, r 
a  , R a,) which results from the rear- 

.L  

rangement, but, as noted, this generator is identically zero. 

The phase of the classical S-matrix in the "quantum number repre-

sentation tt  (i.e., the moinentumrepresentationof the angle-action variables) 

is then obtained by carrying out canonical transformations in the initial 

and final asymptotic regions from the coordinate representation of 

cartesian variables to the momentum representation of angle-action variables; 

the generator for. this transformatiOn is 

F2 (r R, n p) =PR+ f2 (r,n) , 	 (15) 

where f2  is given by Equation (5). Thus the phase 	n) in Equa- 

tion (12) is 

= P R + f2(r, n) - P R - f2(r, n) 

t2  

d.t2T, 	 (16) 

.tl  

where the integrand of the integral over time is twice the total kinetic 

energy expressed in the cartesian variables of either arrangement 

2T=P R +p r a a. 	a a 	 . 

Pa/JLa  + p2/m 

or the same with a -+ c. 
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The phase is conveniently computed together with r(t), R(t), 

Pa(t) Pa(t) by introducing an additional first order differential equa- 

tion for the function x(t), 

j(t)=PR+pr, 	 U 

with initial condition 

= P R + f2 (r, n) ;. 

at the end of the trajectory, with X(t 2 ), n, etc., determined, the phase 

of the S-matrix is given by 

y a 4'(n2, n1) 
	Y(t )  -P R - f2 (r, 4) 

for y = a(non-reactive) or c(reactive). 

In concluding this Section it should be, observed that there are 

actually no inconveniences or special complications which enter the treat-

ment due to the possibility of rearrangement channels. This is in 

marked contrast to the purely quantum situation where the complexity is 

considerably increased due to the fact that the coupled channel 

Schrodinger equations become integro-differential equations when rear-

rangement chaamels are included.
11 
 Classically, on the other hand, 

reactive trajectories are no more difficult than non-reactive ones, and 

it has been seen above that construction of the classical S-matrix is 

likewise no more difficult in the case of reaction. 

III. Results for H + C1 2  

The potential surface for this system is that which has been devised 

by Rankin and Light 12  but with the potential parameters used by Miller 
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• 	 and Light in their recent quantum mechanical computations; two values 

for the total energy are considered, 13  0.3 eV and 0.1 eV above the value 

of the potential at the saddle point. At the higher energy (0.3 eV) vi- 

• 	brational states 0-5 are open in the initial arrangement (Cl2 ), and 

states 0-7 are open in the final arrangement (Hcl); at 0.1 eV total 

energy states 0-2 and 0-6 are open in the initial and final arrangements, 

respectively. lit 

Figure 2 shows a typical classical trajectory function n(q, n) 

for E = 0.3 eV, n 	0, and with the potential parameters of Table II, 

• 	 reference 6. There is one interval of q in which the function is quite 

smooth and well-behaved (all of these trajectories being reactive) and 

another in which it is exceedingly complicated - here the computed points 

are shown directly, and no attempt is made to draw in the continuous 

segments. Varying the initial phase q.only slightly in this latter 

interval causes the trajectory to change from reactive to non-reactive, 

or vice-versa, and causes large changes in the final vibrational quantum 

number; all energetically accessible vibrational states are reached by 

trajectories in this interval. 

From these features, as well as by direct inspection of the trajec-

tories and the collision times, one concludes that this complicated 

structure is due to multiple collisions (in classical language), or the 

• 

	

	 formation of a collision complex (in quantum language). This at first 

seems surprising, for the potential is not "attractive" in the ordinary 

sense; i.e., if one follows the "reaction path" from H + Cl2  to HC1 + Cl, the 

potential energy increases monotonically up to the saddle point and then 

decreases monotonically. Complex trajectories arise because of a "pinch" 
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in the direction perpendicular to the reaction coordinate both before 

and after the saddle point region itself. The situation is analogous to 

traveling through a broad canyon with narrow entrance and exit valleys. 

Individual classical S-matrix elements are constructed by the pro-

cedure discussed in Section II. For the 0 -, 5 reactive transition, for 

example, the roots of Equation (II) are indicated graphically by the 

intersection of the horizontal dotted line with the reactive branches of 

the classical trajectory function. It is seen that there are two 

"direct 1" trajectories and many "complex" trajectories which contribute 

to the 0 - 5 reactive transition, so that the classical S-matrix element 

is 

1/2 	 1/2 1/2 
S = p1 	exp(i4 1 ) ~ p2 	exp(i2)+ 	k 	exp(ik) 	(17) 

k=3 

= Sdit + 5complex 	
(18) 

i.e., direct and complex mechanisms contribute additively to the S-Matrix. The 

two phases l and 2 
 associated with the direct trajectories are of the same 

order of magnitude (Il - '2I <ir), but the phases k for the complex 

trajectories all differ from 	and 2' and from each other, on the order 

of several multiples of 27r. (This is due to the extra phase accumulated 

along the trajectory during the life of the collision complex.) In the 

transition probability, 

= 	l2 
	

(19) 

therefore, interference terms between different complex trajectories, and 

between complex and direct trajectories, tend to average (upon summing 
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over all the complex trajectories) to zero. This gives 

P = p1  + 	+ 2(p1p2)1/2 sin(2 - 	+ 	
(20) 

; direct 	complex 

i.e., within this ttrandom  phase approximation' t  for the phase of the com-

plex trajeOtories the contribution of direct and complex mechanisms to 

the transition probability is also additive. Furthermore, the complex 

contribution is strictly classical and can be conveniently determined, 

for example, by Monte Carlo methods (or any other space-filling method 

of sampling). Even simpler than this, one would expect a statistical 

approximation15  to describe the complex contribution adequately. 

It is not necessary, therefore, to find the many roots to Equation 

(11) which are associated with complex trajectories. W±thin the 

1 averaged classical approach used previously , and which is equivalent 

to a Monte Carlo treatment, one determines the complex contribution to 

the transition probability as 

P r 	a (complex) = 	h1'2  (nVN) n2 , n1' 	 c  
(21) 

where Lq is the width of the q interval which leads to complex forma-

tion, N is a number of trajectories computed at equally spaced q values 

in the interval 	and m is the number of such trajectories for which 

the final vibrational quantum number is in the interval (n - 1/2, n + 1/2). 

The statistical approximation to this complex contribution is 

i a(complex) = (&i 
c 	C 	a 
/27r)/(N + N ) 	, 	 (22). 

.  
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where Lq is as above, and N and Na are the number of reactive and non-

reactive states which are classically accessible from the initial state 

a 
n1. This latter approximation thus assumes that all classically allowed 

final states are equally likely to be formed from the collision complex. 
1 

Figure 3 shows the numerical results for total energy E = 0. 3 eV 

and the potential parameters of Table II, reference 6. The 'miform 

semiclassical expression 9  was used for the direct part of the transition 

probability rather than the "primitive" semiclassical form in Equation 

(20). Classically forbidden transitions were treated by expanding the 

trajectory function in a power series about its extrema to sufficiently 

high order than additional terms did not affect the complex roots thus 

obtained5 ; in most cases their contribution was actually negligible in 

comparison to that from complex formation. 

For each initial state n 
a
1  = 0, 1, and 2, non-reactive transitions 

occur only via complex formation, and reactive transitions have a con-

tribution from both direct and complex mechanisms. For n = 0 a 100 

trajectories were computed at equally spaced points in the interval Lq 

which led to complex formation, and the complex contribution to each 

transition was determined by Equation (21). The dashed line in Figure 3 

shows the non-reactive transition probabilities which result from this 

treatment, and it is seen that they are roughly independent of the final 

quantum:..number; i.e., the statistical approximation (Equation (22)), 

which would give all the non-reactive transition probabilities as 

0.035, is actually not too bad. The actual distribution 

into final states is seen to favor the smaller and larger quantum numbers 

somwhat. The complex contribution to reactive transitions is similar. 
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Since the statistical approximation for the complex contribution is 

reasonably accurate for n = 0, it was used for the cases n 	1 and 2 in 

Figure 3; this simplifies matters considerably, since only the boundaries 

are thus required The value of the tranition probability to final 

quantum number 0 in each case shows the value that complex formation contri-

butes to each transition probability, reactive and non-reactive. 

For n = 2 in Figure 3, one sees prominent interference structure in the 

reactive transition probabilities similar to that séenin previous studies. 9  

A strictly classical treatment of the direct contribution would, of course, 

miss this feature. 

A brief survey was made of the case E = 0.3 eV with the potential para-

meters of Tables I and III of reference 6. With the parameters of Table III 

and n = 0, all trajectories were direct (i.e., no complex formation) and 

reactive, and the final vibrational quantum numbers were typically smaller 

than those for the potential parameters of Table II. 	With the potential 

parameters of Table I and n = 0, the region of complex-formation was greater 

than that for the parameters of Table II. 

Finally, the cases E = 0.1 eV with the potential parameters of Tables II 

and III, reference 6, were also examined briefly in order to compare some 

features with the quantum results. The classical trajectory function 

n(q, n) was computed for n = 0, 1 and 2, and the total reactive probabil-

ity was determined in a strictly classical approximation, 

P/27r 
- 	reactive 	reactive 

For the potential parameters of Table II the classical values were approx-

imately 0.90, 0.75, and 0.80, for n = 0, 1, 2, respectively, compared to 

the corresponding total reactive probability of Miller and 



Light6  of o.81, 0.28, and 0.04. For the parameters of Table III the 

classical values were 1.00, 0.70, and 0.60, compared to the quantum 

values6  087, 0.52,  and  0.13.  These quantum and classical results are 

thus in rather poor agreement even at this rather gross level. The 

reason for the lack of agreement is not completely clear. 

One possible factor contributing to the disagreement is the fact 

that complex formation appears prominently in the classica1 dynamics. 

Without the inclusion of a number of closed channels in the quantum 

calculation, it seems doubtful that a coupled-channel treatment can 

describe this dynamical feature. It is well-known, for example, that 

Feshbach resonances (a type of complex formation) which appear in the 

scattering of an electron from a hydrogen atom17  cannot appear in a 

coupled-channel description which retains only the open channels. 

Before a detailed comparison of individual transition probabilities 

obtained semiclassically and quantum mechanically could be possible, it 

would also be necessary to transform the quantum results from the harmonic 

oscillator basis to the physically meaningful basis of Morse oscillator 

states. Thus, 

S  n2,n1 = 	
< n2 N > SNN <N1 1n1  > 

N1 , N2  

where IN> and In > are harmonic and Morse states, respectively, SNN 
2'l 

is the S-matrix in the harmonic basis obtained in reference 6, S 	is n2,n1  

the physically meaningful S-matrix, and < fIN> is the overlap between 

harmonic and Morse states. 



-17- 

IV. Summary and Conclusions. 

With this particular system it has been seen that both "direct"and 

"complex" collision mechanisms can be operative essentially simultaneously.  

Furthermore, direct and complex mechanisms contribute additively to the 

S-matrix and, within the "random phase approximation" to the complex 

contribution, they also contribute additively to the transition probability. 

The complex contribution to the transition probability is strictly class-

ical, but interference terms between direct trajectories can be quite 

prominent. 

Whether this situation is typical, or an artifact of this particular 

potential surface, is not known at this time. There are obviously many 

processes which take place wholy by direct mechanisms and others which 

proceed wholy by complex formation. Just how often it arises that a 

process has significant contributions from direct and complex mechanisms 

is a question that will most likely be answered experimentally before it 

is theoretically. 
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shown how the usual statistical approximation, and extensions there-

of, result in the case of complex formation. 

W.H. Miller, J. Chem. Phys., 514, 15 June 1971. 

P. G. Burke, Adv. Atom. Mol. Phys., 14, 173 (1968). 
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Figure Captions 

The vibrational and translational coordinates which pertain to 

arrangement a (A + BC) and arrangement c (AB +c). 

The final vibrational quantum number (solid line and solid points for 

reactive trajectories, open points for non-reactive trajectories) as 

a function of the initial phase of. vibration. The initial vibrational 

quantum number is n 1  = 0, the total energy (referred to the potential 

energy at the saddle point) is 0.3 eV, and the potential parameters 

are those of Table II, reference 6. The horizontal dotted line at 

= 5 indicates the graphical solution for the roots of Equation (11). 

Transition probabilities from initial vibrational states 0(bottom), 

1, and 2 (top) of Cl2  to various final vibrational states n. The 

points connected by the solid line are reactive transitions (final 

diatom = HC1), and the points connected by the dashed line in the 

bottom figure are non-reactive transitions (final diatom = Cl 2 ). The 

total energy and potential parameters are the same as those for 

Figure 2. For initial states 1 and 2 the statistical approximation 

(see Section III of the text) was used to obtain the complex con-

tribution to each transition probability and the value of the trans-

ition probability to find state 0 in the figure is the value of the 

complex contribution to each final state, reactive and non-reactive. 
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This report was prepared as an account of work sponsored by the 
United States Government. Neither the United States nor the United 
States Atomic Energy Commission, nor any of their employees, nor 
any of their contractors, subcontractors, or their employees, makes 
any warranty, express or implied, or assumes any legal liability or 
responsibility for the accuracy, completeness or usefulness of any 
information, apparatus, product or process disclosed, or represents 
that its use would not infringe privately owned rights. 
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