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CIASSICAL S-MATRIX FOR LINEAR REACTIVE

S .
COLLISIONS OF H + C1,

C. C. Rankin and W. H. Miller'
Inorganic Materials. Research Division,
Lawrence Radiation Laboratory,
. Department: of Chemistry,

University of California,
Berkeley, California 94720 .

. ABSTRACT

: Ciéséiéal trajéctories are computed for linear H + Ci2 collisions
_and.uséd tbvconstruct the classical 1limit of‘the S-matrix for reactive
and.noﬁfreactive'fransitions ﬁetweén iﬁdividual quantum states. An
interesting feature of this system is that both "direct" and "complex"
mechanismé partidipate iﬁ'the collisionbdynamics..'The two mechanisms
éontribﬁté additively to individﬁal S-matrix elemedts, and within a
"randoﬁ phase approximation" for the complex contfibuti@n it is seen that
they aiso-contribute additiyely to the transition probability. The com-

plex contribution to a transition probability is strictly classical, but

interference structure may be prominent in the direct contribution.
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I. Introduction

ItAis'well-recognized now that at least the gross features of atomic
and molecular collision dynamics are accurately described by classical
mechanics. bThe facility withvwhich classical trajeetories can be com-
puted, With averaging ovef various initial conditions (usually by Monte
Carlo methods), and used to generate averaged collision properties (thermal
rate'coﬁstants for chemical reaction, the average energy transfered be-
tWeen iﬁternal and translational degrees of freeaom, etc.) is evidenced
.by the large amount of such work currently belng reported For the
relatlvely Slmple atom-dlatom and diatom-diatom collls1on systems this
»strlctly class1cal approach has almost reached the stage of being a tool
for the analysis of'expefimental resﬁlts. |

Motivated by the way classical mechanics has been used within a
quantum mechanlcal framework to treat elastic atom-atom sca.tterlng,2 we

3

have recently shown™ how exact cla551ca1 mechanics (i.e., numerlcally
-computed trajectories) for a comtlex collision system (i.e., one with
internei”degrees of freedom; sueh as A + BC) can bé used to construct
the claséical limit.of the quantum mechanical S-matrix (the "olassical
S-matrix") describing transitions between individual quantum states of
the collision pa.:r'tners.)'L Use of classical mechanics to construct such
transition, or scattering amplitudes (rather than transition probabili-
ties or oross sections directly) means that the quantum principle of
superpoeition is incorporated, and, just as in elastic scattering, the
iﬁterferenee features so.obtained‘seem to be the chief contribution of

quantum mechanics. It is often possible to analytically continue the

interference structure into classically forbidden domains so that



vtran51t10ns whlch proceed by tunnellng can also be ‘treated by class1cal
mechanlcs5 (analogous to the WKB treatment of tunnellng in one-dimensional-
problens). The general.conclnsion of the examples studied thus far is
that class1cal dynamlcs, approprlately used, is capahble of much greater
detalled accuracy than may. have been prev1ously suspected.

-This paper reports results of the class1cal S-matrix approach applled
to a linear1reactive atomfdiatom,collision,’H + Clé - HC1 + Cl; the
particular‘potential-snrfaceansed; collision_energies employed, etc;, are
those.for;nhich Miller and:Light6 have recently reported quantum mechani-
cal resnlts; Section II presents the details of the classical S-matrix
approach.as it applies to tne linear reactire A + BC system, and Section

IIT diScusses the numerical . results for H + Cl,. The most interesting

2
new feature seen in this system, other than that of reaction itself, is
the participation of two distinct collision mechanisms; some trajectories
are "&irect",vwhereaS'others'lead to "complex formation" and are thus

quite complicated. It is seen in Section ITT how "direct" and "complex"

mechanisms contribute to the S-matrix and to the net transition probability.

II. Classical S-Matrix for Linear Reactive A + BC Collisions.

The general expressions for the classical S-matrix have been given
in reference'B;‘here tpé notation and results are summarized as they
apply to the linear=reactive A+ BC‘collision. Figure 1 shows the coor-
dlnates, ra and R belng the v1brat10nal and center- of—mass translational
coordlnates for initial arrangement a(A + BC), and r, and R being
analogous.coordinates for arrangement c(AB + C); we refer to these as
the cartesian coordinates for arrangements a and c. A linear trans-

formation relates the cartesian coordinates of the two arrangements
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Ré [/ A B(A + B + C) (R,
{ A+B (A +B)(B +C) '
| o= - (1)
r 1 . C- T R
a “

¢ "B FC
where A, B and C are the masses of thé individual atoms.

The classical Hamiltonian, in terms of the cartesian coordinates and

momenta of arrangement a, is
. - 2 2 tot,
H(P,, s Ry, 7)) =B /au +p /om +V (xR (2)
where the internal and translational reduced masses are

= BC/ (B % c)

- B
i

M3+mmk+ﬁ+mg

Ha

the Hamiltonian can be similarly expressed in terms of the cartesian
coordinates and momenta of arrangement c. The internal (vibrational)

potentials in arrangements a and c¢ are

v (r ) = 2im Vtot
& a R - o
: a
v (r) = £im ytot ;
Rc—>oo

the potehtial surface of Miller and Light6 is such that these vibrational

potentials are Morse functions
w(r) = pfeB(F-Ty) | pealr-ry), (3)

where the Morse parameters D, a, and r, correspond to diatomic molecule

BC for arrangement "a and AB for arrangement c.
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To effect quantization in the asymptotic regions one carries out a

. canonical transformation of the 1nterna1 degree of freedom from cartesian

variablés-r.and p to angle-action variables g and n. The generator of
this canonical tranéﬁorm@fibn7;"bf the F-type, is given by
o, .

£ (o) E'i'J{idr':{Emfe(n) SvEpYE, (1)

- - Yo
which for the Morse potential of Equation (3) becomes

1/2 L/z '

(r n) = £'= { -(- z + 2z Xe) + cos™t [(z -1)(1 - )
- K:COS'l[(z - m IR U (5)

. where

Z = exp [-;x,(r-rA N
k= 2(em)Y%/a
B ; (1 - en ; 1 )
"t = signofp .

- In tefmé_of the angle-éction variables the internal Hamiltonian (for either
arrangement ), p2/2m + v(r), 5ecbmes the semiclassiéal (Bohr-Sommerfield)
eigenvalue function (which; for the Morse osciliator, happens to be idep—
tical to the quantum eigeﬁvalue expression) |

(e

on + 1)2

- €e(n) = -D(1 - =

and the’@artesian vafiables r and p are given in terms of q and n

by .
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>, r(q,n) = ré +at log {A-e[l - (1 - Ag)l/é cos q]}‘ (7)
_plg,n) = m €'(n) @Eé%;%l ’ o . o (8)

where X is given below Equation (5). All of the éxpressions in this

—

'paragrapﬁ’apply équally weli for either‘arrangeméht 'a’ or. c.
It actually turns out to be most céhvenient8 ﬁo carry out the
numericgl integration of Hamilton‘s équations in the cartesian variables
r, p, R, aﬁd P rathei thén the angle-action variables g, n, R, and P.
Initial édnditions, however, are specified in terms of ;ngle-action
variables; i.e., one specifies initial conditions in angle-action vari-
ables, transforms-tp cartesian vaiiables and computes the trajectory,
and then transforms baék to angle-actibn vaiiables in the final asymptotic
region.‘kAt fixed total energy E, therefore, one specifies initial values
qi anqln? for the initial arfangement (subscripﬁs 1 and 2 refer £o
initiai.and final timés tl and t2’ respeétively; when it is neéessary to
specify the time subscript, the arrangement indek Y = a, ¢ is written
as a Supéfscript), and.thén iniﬁial values‘of all‘the cartesian variables

are given by

a
-Rl = large . /
a, a 1/2
% - —{2pa{E-€(nl)]}
r] = r(q}, n})
1 v L
> = p(g?, n%)
. l l) 1 )

where the functions e(n), r(q,n), and p(qg,n) are given by Equations

(6) - (8).

With these initial conditions Hamilton's equations, with the
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:Hamiltonian of Equation (2),_are numerically integrated until one of the

asymptotic regions is reached. The final vibrational energy is ET,
v,€ 'E p$/2m +v. (r) , AT (9)
R Y YT _

where f a(non reactlve) or c(reactlve), the final v1brat10nal quantum

number is found by 1nvert1ng the elgenvalue functlon in Equatlon (6)
; ‘ { 1/2 . .
n(_E)r=-—_l/2 +(1/2)k[1- (-e/D) 1, . . - (10)
so that<n£ is given by
Y o_
n2 - n(GY) )

with éT given bylEQuation (9), and v = a or c.

This finallvierational quentﬁm number, as a function of the initial
angle;actien’veriEbles of the’ihﬁernal degree of ffeedom, ng(q?, n?), is
the fﬁndamental'classical trajectory function which is reqﬁired. It
_playS'precisely the same fole here as in the case of noﬁ-reactive vibra-
tional'eicitétidn9, except that.nOW'there is a reactive and & non-
reactiveibranch; i.e., since a particular trajectery is either reactive
or nen-reactive, there will be one range of q? which gives non-reactive
trajectories end thus dete?mines n;(qi, n?), and enother range of qi
which give reactive trajecteries and thus determines ng(qj, ni).

2

To construct the classical S-matrix for a particular n?-»nr trans-

“lation, therefore, one finds all roots of the trajectory relation
T8y - :

where ni'is fixed (and not explicifly indicated as an argument of the
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trajectory function) and where ng on the RHS of Equation (11) is an
integer. The classical S-matrix for the n? - ng transition is thus
o Ay -1/2 o
o . _ 2} K 's a, : ' .
SaY, n? =2 ~a) a exp [1¢(n2, nl)] ’ (12)
2° 71 aql ny o

where ¥ = a(non-reactive) or c(reactive), and where the phase ¢ is
specified below; the sum is over all the roots of Equation (11). The

transition probability is the squafe modulus of the S-matrix element

"PY - a= .|SY 8.| . ' . : (13)

To'construct‘the phase associated with a particular trajectory, be
. it reactive or non-reactive, it is useful to take cognizance of the fact

that the ¢anonical transformation from cartesian variables (ra, R

a’ PaJ

P ) of arrangement a to cartesian variables'(r s R, p.» P ) of

a _ e’ Ter Fel e ‘
arrangement c¢ 1is a point canonical transformation - i.e., the cerdin-
ates T, and Rc are expressibie in terms of the coordinates r. and Ra
alone and do not involve the monenta pa and P_ (see Equation (1)). The
Fl—type generator for a poin£ canonical transformation, however, is
identically zero.lO The phase of the S-matrix in the coordinate

representation of the cartesian variables is therefore given by

2

i

o(z} ®Y, ¥ &) at B (8) R(8) + 2 (8) 7, () (ika)

nn

at P _(t) ﬁc(t) +p_(t) ;c(t) . (1)

ot S, o S— -

1

whether v = a or c. The fact that Equation (14a) and Equation (1kb) are
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equal is a result of the fact that thls 'reerrangement transformation" is
a p01nt canonlcal transformatlon, i. e., accordlng to the general trans-
formatlon prlnC1ples establlshed in reference 3, Equatlon (14b) should
have added to 1t the term F. (r R ) whlch results from the rear-
rangement but, as noted, thls generator is 1dent1cally Zero.

The.phase of the classical S-matrix 1n;the quantum number repre-
sentatlon (i.e., the mdmentum-representation:of the angle-action variables)
is then obtained by carrying out canonical transformatlons in the 1n1t1al

and flnal asymptotic regions from the coordinate representation of

cartesian variables to the momentum representation of angle-action variables;

the-generétbr for this transformation is
Fo(r R, n P) = PR + £,(r,n) , ' ' (15)

where f2 is given by Equation (5). Thus the phase ¢(n£, n?) in Equa-

tion (12) is

YRT_f(T Y)

T Ay L8 .8 a _ay _
¢(n2, nl) =P/ R + fe(rl, nl) P, R, ry, 0
t2 :
+ s . dt 2T, o (16)
tl :

where the integrand of the integral over time is twice the total kinetic

energy expressed in the cartesian variables of either arrangement

2T =P R +p, T

=P /u, +p/m

or the same with a - c.
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The phase is conveniently computed together with ra(t), Ra(t),
pa(t), Pa(t) by introducing an additional first order differential equa-

tion for the function X(t),
' X(t) = Pa Ra + by ra: v
with initial condition
: a _a a _ay .

at the‘end of the trajectory; with X(tQ)’ ng, etc., determined, the phase
of the S-matrix is given by ’

Y ay _pl n¥ _ Y Y
¢(n2, nl) = x(tg) P, R, - T )

Tor o

J

A
for y = a(non-reacfive) or é(réacfive)."‘

in concluding fhis Section it should be observed that there are
actually no inconveniencés or special complications which enter the treat-
ment due to the possibility of rearrangemént channels. This is in
marked contrast to the purely quantumvsituatidn where the complexity is
considerably increased due to the fact that the coupled channel
Schrodinger equations become integro-differential equations when rear-
rangemént channels are included.ll Classically, on the other hand,
reactive trajectories are no more diffiéult than non-reactive ones, and
it has been seen above that construction of the classical S-matrix is
likewise no more difficult in the case of reaction.

ITI. Results for H + 012

The potential surface for this system is that which has been devised

by Rankin and Light12 but with the potential parameters used by Miller
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and Light6:in their recent quantum mechanical compntations; two values
for the‘totai energy afe-considered,l3 0.3 eV and 0.1 eV abote the value
of the potent1al at the saddle p01nt. At’the highef energy (0.3 eV) vi-
bratlonal states O 5 are open in the 1n1t1al arrangement (Cl ), and

states:O-T’are open in the final arrangement (HCl); at 0.1 eV ‘total

fenergy Stetes 0-2 and 0-6 are open in the initial and final arrangements,

respectively h.
Flgure 2 shows a typlcal classical traaectory functlon n (qi, ni)

for E = 0.3 eV, n

1= O, and w1th the potential parameters of Table IIT,

reference 6. There is one interval of qi in which the function is quite

smooth and well-behaved (all of these trajectories being reactive) and

'anotheroinVWhich it is exceedinglyrcomplicated - here the computed points -

‘are shown directly, and no attempt is made to dren in the continuous

segments. Varylng the 1n1t1a1 phase ql only sllghtly in this latter
1nterval causes the tragectory to change from reactive to non-reactlve,
or vice-versa, and causes large changes in the final vibrational quantum
number, all energetlcally accessible v1brat10na1 states are reached by
trajectories in this interval.

From these features, as well as by direct inspection of the trajec-

tories and the collision tlmes, one concludes that this complicated

- structure is due to multlple collls1ons (1n classical 1anguage), or the

formation of a collision complex (in quantum language). ThlS at first
seems surprising, for the potential is not "attractive" in the ordinary
sensei iie., if one follows the "reaction path" from H +'Cl2 to HC1 + Cl1, the

potential energy increases monotonically up to the saddle point and then

. decreases monotonically. Complex trajectories arise because of a "pinch"
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in the direétion perpendicular to the reaction céordinate both before
and aftef the saddle point region itself. The situatidn_is analogous to
traveling through a broad.canjon with narrow entrance and exit valleys.
Individual classical S-matrix elements ére constructed by the pro-
cedure discussed in Section II. For the O -» 5 reactive transition, for
examplé;vthe roots of Equation (11) are indicated graphically by the
intersection of the horizontal dotted line with the reactive branches of
the claSSical trajectory function; Itvis seen that there are two
"direct" trajectories and many "complex" frajectories which contribute
to theid - 5 reactive fransition, so that the classical S-matrix element

is

n
]

911/2 exp(i¢1) + Pgl/2 exp(i¢2)+ :E: pkl/2 exP(i¢k) (17)
k=3

Sdirect * Scomplex 3 _ (28)
i.e., direct and complex mechanisms contribute;additively to the S-Matrix. The
two phases ¢l and ¢2 associated with the direct trajectories are of the same
order of magnitude (|¢l - ¢2[.S ), but the phases ®k for the complex
trajectories all differ from ¢l and ¢2, and from each other, on the order

of several multiples of 2. (Thisvis due to the extra phase accumulated

along the trajectory during the life of the collision complex.) In the

treansition probability,
2 .
P=|s|® , (29)

therefore, interference terms between different complex trajectories, and

between complex and direct trajectories, tend to average (upon summing
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over alIfthe'complex trajectories) to zero. This7gives

P, +py+ 2epe) 2 stn(ey - o)+ D by (20)
| | ~

Y = Pdirect +'Pcompj.e)c'» ;_

i.e., ﬁiﬁhin this "randdm‘phaée épproiimation" for the phﬁse of the com-
plex tfajeétories tﬁe cdn£ributi6n of direct and compiex mechanisms to -
ﬁhe transition-prbbability ié also additive. Furthermofe, the complex
contribution is strictly classicalvand can be cdnfeniently determined,
for example} by Monte Carlo methods (or any éther.space-filling method
of sampling). Even simpler thaﬁ this, one would expect a statistical

15 v

Aapproximation to describe the coﬁplex‘cdntributibn adequately.

It ié not necéssary, therefore; to find the many roots to.Equatiqn
(ll) which are associated with complex trajectories. Within the
"averagédlélassicalﬁ approach used previously16,‘and:which is.equivalent
to a Monfé.Carlo treatment, one determines the éomplex contribution to
ﬁhe trdnéition probability as

Png, nﬁ(complex)= (ch/Qv)(m/N) | (21)

where ch is the width of the qi interval which leads to complex forma-
tion, N is a number of trajectories computed at equally spaced q? values
in the in£érva1 Aqé, gnd m is the number of such trajectories,fo;_which
the fiﬁél'vibrational quantum_pumber is in the ihterval.(ng - 1/2, n; + 1/2).
The statistical approximation to ﬁhis‘complex contributibn is

15nr & (complex) = (&q /2m)/(N, + N ) - (22).
2 ™ ' . E



~1h-

where ch is as above, and Nc and Na are the numbgi of‘reactive and non-
reactive‘states which are élassically accessible from the initial state
ni. This latter appfoximation thus assumes that éll-classically allowed
final staﬁes are equaily likely té be formed from the collision complex.

Figure 3 shows the numerical results for total energy E = 073 eV
and the potential parameters of Table II, reférence 6. The uniform
semiclassical expression9 was uséd for the direct part of the transition
probability rathér than the "primiti§eﬁwsemiclassical form in Equation
(20). Class1cally forbidden transitions were treated by expanding the
tragectory function in a power series about its extrema to suff1c1ently
high order than additional terms dld not affect the complex roots thus
obtainedS; in most casés their contribution was aétuaily negligible in
éomparison to that from compiex formation. |

Fof éach initial state ni =0, 1, andi2, ﬁonfreactive transitions
oécur:Only.via complex formation, and.feactiﬁe ﬁransitions have a con-
tribution from both direct and complex mechanisms. For n? ='O a 100
tragectorles were computed>at equally spaced points in the 1nterva1 Aq
which led to complex . formatlon, and the complex contribution to each
transition was determined by Equation (21). The dashed line in Figure 3
.shows the non-reactive transiﬁion probabilities which result from this
treatment, and it is seen that they are roughly independent of the final
quantum;}.-.number; i.e., the statistical é,pproximation (Equation (22)),
which would give all the ﬁon-reactive transition probabilities as
(4q/2m)/1h ~ 0.035, is actually not too bed. The actual distribution

into final states is seen to favor the smaller and larger quantum numbers

somewhat. The complex contribution to reactive transitions is similar.
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parameters of Table I and n

_15.

Since the statistical approximation for the complex contribution is

reasonabiy éccuréte for ni =0, it was‘used for thé'cases ni = 1 and 2 in
Figufé 3;“this simplifies matﬁéfs considerably, since'éniy the boundaries
of ch aie_thus required. The value of the transition probability to final
quantum.hﬁﬁbér O in each case shows the value ﬁhat complex formation contri-
butes té éach tréhsition probability, reécti&e:éndann-réactive;

For n;

reactive transition probabilities similar to that séen in previous studies.

= 2 in Figure 3, one sees prominent interference structure in the

9

A stridtly classical'treafment of the direct contribution would, of course,

"miss this feature.

A brief survey was made of ﬁhe‘éase E = 0.3 eV wiﬁh‘the potential para-

méters of Tables I and III‘of referencé‘6. 'With the parameters of Table IIT

a - ’ '
and n;' = 0, all trajectories were direct (i.e., no complex formation) and

breactive; and the final vibrational quantum numbers were typically smaller

than those for the potential parameters of Table II. With the potential

&

1= o, the region of COmplex'formation was greater

- than that for the parameters of Table II.

Finaliy, the cases E = 0.1 eV with the potential parameters of Tables II

and III, reference 6, were also examined briefly in order to compare some

features with the quantum results. The classical trajectory function

ng(qi, ni) was computed for n° = 0, 1 and 2, aﬁd the total reactive probabil-

1

ity was determined in a striétly claséical approximation,

Prea.ctive = Aq‘ri—::ﬁ».ci::‘we/ 2rr ’
For the potential parameters of Table II the classical values were approx-

imately 0.90, 0.75, and 0.80, for ne = 0, 1, 2, réspectively, compared to

1

the cbrresponding total reactive probability of Miller and
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Light6.of 0.81, 0.28, and 0.0h; For the parametefs'of Table ITI the
classical ##lues were 1.00, 0.70, and 0.60, compared to the quantum
values6 Q;87, 0.52; and 0.13. These quantum and élassical results are
thus in rather poor agreement éven at this rather gross level. The
reason fér_the lack of agreement is not comﬁletely clear.

One possiblé factor contribﬁting to the disagreement is the fact
that complex formation appears prominenﬁi? in'the classical dynamics.
Withoutufhe inclusion of a number of‘closed channels in the quantum
calculatioh, it seems doubtful that a coupled-channel treatment can
descriﬁe-this dynamical feature. It is well-known, for example, that
Feshbach resonances (a type of complex formation) which appear in the

17

scattgring of an electron from a hydrogen atom cannot appear in a
coupled~channel description which retains only the open channels.

Before a detailed comparison of individual transition probabilities
obtained S¢miclassicaliy.and quéntum mechanicai1y §ould Ee possible, it
would also be necessary to‘transtrm the quantum results from the harmonic
Oscillaﬁor basis to the physically meaningful basis of Morse oscillator
states. Thus,

S, o = :E:: <nylN,> s o <Nn >,

2’1 2’71
Nl’Ne

where |N > and In > are harmonic and Morse states, respectively, SN N
. 2
. . 1

is the S-matrix in the harmonic basis obtained in reference 6, Sn n is
2’71

the physically meaningful S-matrix, and < nIN > is the overlap between

harmonic and Morse states.
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Iv. Sﬁﬁﬁéry and Conclusions.

wit-f; this partiou_lé,r system it has been seen that both "direct”. and
"complexﬁ collision mechanisms oan-bevoperaﬁivefessentially simultaneously.
Fuithérmoro, difect ondvcompiéxxmeohénioms contribute additively to the
S—motrig¥énd,,within tﬁe "random phase oﬁpfoximation" to the complex |
cohtribﬁ#ioﬁ,'they also conﬁribute addifively to the tiansitiop probability.
The com?ie#vcontribution'tO'the transition probability is strictly cléss—
ical, but interference térms between direct trajectories can be quite
promineof.

Whether this situation is typicdl,-or an artifact of this particular
potential surface, is. not known at this timo; Théré are obviously many
procesées ﬁhich take place wholj by direct mechanisms and others which
proceed wholy by complex formation. -Jﬁsf how often it afises that a
process hés significant contributions-from'direct and complex mechanisms
is a question that will most likély be answeredvexperimentally before it

is theoretically.
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Figure Captions

Thé_vibratioﬁal and translational coordinates which pertain to

arrangement a (A + BC) and arrangement c (AB +C).

'The‘final vibrational quantum number (solid line and solid points for

reaétive trajecfories; open points for hon-reactiveVtrajectories) as
a functlon of the 1n1tlal phase of. v1brat10n. The initial vibrational

quantum number is n, = 0, the total energy (referred to the potentlal

1
energy at the saddle p01nt) 1s 0. 3 eV, and the potential parameters
are those of Table II, reference 6. The horlzontal dotted llne at
n, =5 indicateé the‘giaphical solution for the roots of Equation (11).
Transition probabilities from initial vibraiti_oﬁa.l states O(bottom),

1, and 2 (top) of C12 to Qa?ious final vibrafional states n. The |
p01nts connected by the solid line are reactlve trans1t10ns (flnal
diatom = HC1), and the points connected by the dashed line in the v

bottom figure are non-reactive transitions (final diatom = Cl The

2)'
total energy and potential parameters are the same as those for
Figure 2. Fof iniﬁial states 1 énd 2 the statistical approximation
(seé'Sgction I1T Qf the text) was used to obtain the complex con-

tribution to each transition probability and the value of the trans-

ition probability to find state O in the figuré is the value of the

complex contribution to each final state, reactive and non-reactive.
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