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"The Classical S-Matrix for Rotational Excitation; 

. . * 
Quenching of Quantum Effects in Molecular Collisions" 

WILLIAM H. MILLERt 

Department of Chemistry, University of Califo~nia 

And 

Inorganic Materials Research Tiivision 

Lawrence Radiation Laboratory 

Berkeley, California 94720 

Abstract 

A previously developed theory in which exact solutions of the 

classical equati6ns of motion for a complex collision system (i.e., 

numerically computed trajectories) can be used to generate the 

classical limit of the quantum mechanical S-matrix (the ''classical 

S-matrix") for the scattering process is applied to rigid rotor-ato.m 

collisions (rotational excitation). Compari~on with essentially ex•ct 

quantum results shows that tra~sition probabiliti~s (the square 

~ modulus of an's-matrix element) between individual q~antum states 

are given reasonably accurately by classical dynamics provided the 

interference terms are properly accounted for; a strictly classical 
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approach (neglect of interference) gives poor agr~ement wit~ the. 

quantum values. For averaged collisiort prop~rties~ however, it 

is found that interference and tunneling effects are rapidly 

quenched. The linear atom-diatom system (vibrational excitation) 

and the rigid rotor-atom system are both investigated with regard 

to this question~-namely, how .much ~veraging is necessary to quen~h 

these quantum effects. Results indicate that even ~ummation over 

a few quantum states is often sufficient to make a com~letely 

classical treatment a~propriate. 
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I. INTRODUCTION. 

This pape~ continues investigations of the role played 
•., 

by classical and quantum mechanics in molecular collision 

dynamics. Previous work
1 

has shown how the exact (i.e.: 

numerical) solution of the classical equations of motion 

for a comple~ collision (e.g., art atom plus diatom) can be 

used to construct the classical limit of the quantum mechani-

cal S-matrix (the "classical S-matrix") for the scattering 

process. The only vestige of quantum mechanics retained 

in the scheme is the quantum principle of superposition--

that probability amplitudes associated with indistinguishable 

processes are added, rather than the probabilities themselves. 

Application
2

•
3 

to the linear atom-diatom collision 

(vibrational excitation) has shown that classical mechanics, 

used in this manner, accurat~ly ~escribes individual vibra-

ti6n•l transition probabilities, even when tunneling and 

interference effects are large; i2., these effects are basical-

ly the consequence of quantum superposition, and not the 

quantum equation of motion (i.e., the Schrodinger equation). 

The strictly classital approximation (omission of tunneling 

and in t e r f e r en c e) f o r t h e t ran s i t ion p rob a b i 1 i t i e s a p p e a r e d 

to be ac·curate "on the average", but quite inadequate in 

describing transitions between individual quantum ~tates. 

The present work reports results of the classical S-matrix 
' ' 

approach_applied to the collision of an atom and a rigid 

rotor (a diatomic molecule without the vibrational degree of 

freedom), i.e., rotational excitation. The specific system 



chosen ~s that for which Johnson, Se~rest~ Lest~r, and 

Bernstein
4 

have perfOrmed an essentially exact quantum 

mechanical computation of the S-matrix elements; this is 

in kee~itig with the desire to compare exact quantum and 

exact ~lassical •echanics, there then being no ambiguity 

about the comparison due to any approximations intr~duced 

in either. 

4 

Section II summarizes the general expressions of paper 

I which pertain to the rigid rotor-atom collision and pre

sents numerical results (Figure 1 and Table I) for the stritt

ly classical, primitive semiclassical, and uniform semi-

classical approximations to the S-matrix. Comparing with 

the exact quantum values of ref. 4, the picutre is essentially 

the same as for the linear atom-diatom system of paper II:: 

to obtain accurate results for individ~al S-matrix elements 

it is necessary that interference between the several tlassi~a~ 

trajectories whi~h contribute to an individual transition be 

prOperly included. For this particular system the ph~se 

differences between the interfering trajectories are so small 

that it is essential that one uses the uniform semiclassical 

expressions to achieve reasonably accurate results; i.e., 

this is a very quantum-like system, which Of course makes 

the classical S-matrix treatment all the more interesting~-

for one is fairly certain that it will work in highly classical

like situations. 

In most actual cases, however, one does not observe the 

result~ of completely state-selected experiments; almost always 

··~ 
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one obtains cross sections which are a sum over a group of 

final quantum states and an average over a number of initial 

staies (as well as an average over ~nitial relative collision 

energy). In the rigid rotdr-ato~ system, for e~ample, it is 

usually th~ case that one is interested in cro~s sections 

from an 'initial rotational state to a final one, summed and 

averaged over the final and initial M-components of the 

molecular rotation, respectively. Any averaging of this type--

i.e., anything less than a completely state-selected and 

detected obsetvation--will tend to diminish the effect of 

interference and tunneling: ~nterf~rence terms will tend to 

average to zero and tunneling trarisitions will be neglible 

in compa~ison to non-tunneling ones. 

Sections III and IV pursue this question of how much 

averaging is necessary to obliterate, or quench, these quantum 

effects of interference and tunneling; S~ction III considers 

the rigid rotor-atom system, and Section IV the linear atom-

diatom. Although one must view any general conclusions at 

this stage with caution, it appears that one need average over 

only a very few quantum states to quench completely the inter-

feren~e features. The principal situation in which the 

strictly ~lassical treatment for averaged quantities fails 

is the case that all transitions are classically forbidden 

(i.e., proceed vi~ t~nneling), although. even here there are 

special conditions under which it succeeds (see Sec.c IV). 

Since there is currently a great deal of interest in 

th.e application of classical mechanics to collision problems,
5

-
9 
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we would like to conclude this Introduction-with some remarks 

about our view of the general relation b~tween classical and 

quantum mechanics. Appendix I presents a more elaborate 

discussion of this correspondence, including a derivation 

of the rel~tion (stated in paper I) between unitary trans-

formation elements in quantum mechanics and the genetators 

of canonical transformations in classical mechanics; it is 

also pointed out that the expressions for the classical S

matrix follow directly from these ge~eral transformation 

relations wiihout the riecessity of appealing to path integrals 

(as wa~ done in I). 

The point we would like to mak~ here is that there is 

not any basic inconsistency between the deterministic nature 

of classical m~chanics and the principles of quantum mechanics, 

provided classical mechanics is used appropriately; in fact, 

the Uncertainty Principle is an integral part of the way 

classical mechanics is employed. Consider, for example, the 

classical limit of the propagator (time evolution operator) 

in a coordinate representation 

< I -iHCt 2-t 1 )/hl >· r2 e . . r1 , (1) 

the square modulus of this transformation element is the 

probability that the particle is at position r2 at time t 2 

provided it was at position r 1 at time· t
1
.,..-i.e., with r 1 fix.ed, 

( 2) 

With r
1 

fix~d, however, a unique relatiori between r
2 

and p
1 

(the momentum at time t
1

) is determined by the clas~ical 



'" 

7 

equations of motion; i.e., considering r
1 

fixed throughout, 

specifying p
1 

determines r
2

, or specifying r
2 

determines p
1 

(this is classical determinism). The probability distribu-

ti'ons in r2 and pl are therefore related by 

Prob(r
2

) dr
2 

= Prob(p
1

) dpl; ( 3) 

i.e., the probability that r
2 

has a particular value in the 

interval (r
2

, r
2
+dr

2
) is equal to the probability that p

1 

has the corresponding particular value in the int~rval (p
1

, 

p
1

+dp
1
). The Uncertainty Principle, however, impYies that, 

with r
1 

fixed, p
1 

can have i!.!!Y value--it is random, or in 

other words, its probability distribution is constant: 

Prob(p
1

) = constant. ( 4) 

Eqs.(3) and (4), thus, imply that 

which is the normal~zation derived by Pechukas 8 and different-

ly in I. 

The fa~t that the classical limit of the quantum mechani-

1 i 1 . E ( 1) . . d. · h · · lO ca matr x e ement 1n q. 1s assoc1ate w1t · one un1que 

cla~sical trajectory, therefore, is in no way contradictory 

with the basic laws of quantum mechanics, but indeed in-

corporates them. The particular classical trajectory 

associated with the matrix element in Eq.(l) is determined 

by the "double ended" boundary conditions r
1 

and r
2

, and 

this is a fundamental feature of the correspondence between 

classical and quantum mechanics; it is intimately related 
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to the fact that the g~nerator ·of a canonical tt~nsformation 

in cla~sical mec~anics 1 ~ ha~ as indepe~dent variables ''one 

old variable ~nd one new variable'' (s~~ Append{x I). 

: ' . . 
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II. RIGID ROTOR-ATOM COLLISIONS· 

A~plication of the classical S-matrix s~heme to rigid 

. . 12 
rotor-atom collisions is a spe~ial case of the gerieral 

formulation for the atom-diatom collision problem presented 

in I. Th~ class~cal Hamiltonian governing the system is 

H ( P n • R ) = ( p 2+ n 2 I R 2) I 2.\.l· . ,-v,j; ,qQ,,qj ,v 

(6) 

+ B J 2 
+ V ( R y ) , 

where R and P are the .c~nter of mass radial (translational) 

coordinate and momentum, .Q, is the orbital angular momentum 

of the atom relative to the diatom, j is the rotational 

angular momentum of the diatom, ]J ~s the reduced mass of 

translation, B is the rotation~! constant of the diatom, 

V(R,y) is the interaction potential between the atom and 

diatom, and y is the angle between the center of mass radial 

vector and the vector pointing along the diatom; in terms of 

the canonical variables one has
13 

sin qQ,sin qj, (7) 

where qQ, and qj are the coordinates conjugate to Q.and j ' and 

J is the (fixed) total angular momentum. Units with fl = 1 

are us eel throughout so that Q,, j ' and J are the classical 

equivalent of the corresponding quantum numbers; Q,, j, and 

J are actually replaced in Eqs.(6) and (7) by Q, + i, j + 

14 
and J + ~' for the usual semiclassical reasons, but we 

1 
7, 

have not indicated this explicitly for simplicity of presenta-

tion. 
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For fixed values of J and E, there are two internal 

degrees of freedom, characterized by canonical variables 

The domain of q
1

and qj is the interval 

(0,2w), but one can easily see that the substituti6n 

qj + qj+TI 

leaves the Ha~iltonian unchanged. Thus only half of the 2TI x 2rr 

phase r~iion is independent, and on~ may restrict attention, 

This symmetry i~ that of 

total paiity, and the division of the 2rr x 2rr pha~e region 

- -

into two equivalent parts is t~e classical analog to the 

factorization of the coupled-channel Schrodinger equation 

into t~o non-inter*cting blocks that is possible because of 

total pa~ity' conse~vation in the quantum ~echanical version of 

15 
this problem. If the diatcm is homonucleat (which we assume 

it to be), then the potential V(R,y) is a function only of 

- 2 -
cos y, so that the substitution q

1 
+ q

1
+rr and the substitution 

qj + qj+TI separately leave the Hamiltonian unchanged; i.e., 

molecular parity and orbital parity are separately conserved 

(not just their sum). The 2rr X 2rr phase reSions thus divides 

into four equivalent blocks, so that one only ~eed consider 

the region 0 ~ q 1 ~ rr and 0 ~ qj ~ rr. The quantum mechanical 

version of this is that the coupled-channel Schrodinger 

- 15 
equations factors into f~ur rion-interacting blocks. 

Marcus
6 

has discussed the selectibn rules which result 

from these symmetries, which of c6urse are the same as the 

,, 
~ 
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quantum mechahical ones; Appendix II shows how the normaliza-

tion of the classical S-matrix is modified when symmetries 

are present. With this modification the classical S-matrix 

is constructed according to the general prescription of I . 

For fixed values of total angular momentum J and total energy 

E, initial values for.£, j, q
1

, and qj--denoted by 1
1

, j
1

, 

q
1 

, q. --determine the classical trajectory, for R
1 

is required 
1 J 1 

only to .be large, and by energy conservation 

.( 8) 

With these initial conditions Hamilton's equations 

. CJH . aH 
R = , p = 

(JP aR 
( 9 a) 

aH . oH 
q1 = TI , 1 = -

aq1 
(9b) 

oH . ClH 
qj dj 

, j 
~ 

J 

(9c) 

with the Hamiltonian of Eq.(6), ~re numerically integrated
16 

and final values of .£and j obtained; these final values, 

denoted by 1
2 

and j
2

, are functions of the initial values: 

1 2( q1' qJ. ' 11'jl) and j2(q.£ ,q. ,.£l,jl). 
1. 1 1 J 1 . 

A particularS-matrix elemetrt S. 
1 

l . (J) is constructed 
. J2 2' lJl 

by finding the classical tr~jectories for which .£ and j are 

equal to the integers 1
1 

and jl before collision and the inte-

gers 1
2 

and j
2 

after collision. This is accomplished by fixing 

1
1 

and jl at the particular initial integer values and solving 

the two transcendental equations (with the functional dependence 

of jl and 1
1 

suppressed) 

j2(qn ,q. ) = j 
x,l Jl 2 

(lOa) 
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(lOb) 

iieratively to find the appropriate values f6r q 1 
1 

The phase associated with this tr~jectory is 

and q .. 
Jl 

$j 2t2' j 1 tl (J) = t (tlH2) -r dt [RP+qt l+qj j 1. 

and the classical S-matri~ is 

where 

D 

()12 ()12 

(i~)2 
aq-;- aq:-

det 1 Jl 
2 

dj 2 
a . . 

J 2 

aq-;-
1 ~ 1 

and q evaluated at the root of ~q.(lO). 
jl 

(11) 

(12) 

( 13) 

(Note with q
1 

1 7T 
the 2 factor ra~her than 27T; see Appendix II). The summation 

in Eq. (12) indic~tes a sum of ter~s of this form over all 

roots of Eq.(lO)-~i~e., a sum over all trajectories for which 

j and 1 are (j
1

,£
1

) initially and (j
2

,1
2

) finally. For the 

results presented below .there are either two ot f~ur such terms. 

In cases that j(t) and/or £(t) become small during the 

course of the trajectory, there are numerical problems in 

carrying o~t the numerical integration directly in acti.on-

17 
angle variables. The physical origin of the problem is 

that the variable qj, for example, is the amount of rotation 

-+ 
in th~ plane perpendicular to the instantaneous j vector; 

if j(t) beco~es zero, or small, however, during the trajectory, 

this lnstantnneous plane of rotation is ill-defined, and the 

. . 
expression for qj has a corresponding singularity as j -+ 0. 



13 

For small quantum ~umbe~s, therefor~, the initial 

conditions ~re specified in terms of ~ction•angle variables 

as above, but then transforme~ to ordinary cartesian coordi-

nates a~d the nume~ical integration carried out in these 

.. bl 16 va r1.a. es. At the end of the trajectory one transforms 

back to action-angle variables so that the trajectory functions 

j
2

(qt ,q.) and t
2

(qt ,q. ) are obtained and used to construct 
1 Jl . 1 Jl . 

the classical S-matrix as discussed above. Appendix III 

gives some of the details of the carionical transformation 

between action-angle and cartesian va~iables. 

For their quantum mechanical computation, Johnson, Secrest, 

Lester, an~ nernstein
4 

chose the potential iri Eq.(6) to be 

V(R,y) = v
0

(R) [1 + aP
2

(cos y)], (14) 

where v
0

(R) is a Lennard-Janes 6-12 potential 

(15) 

and a is a constant. For the results on pg. 397 of ref. 4, 

a = .25~ and one may set E = r = 1; in units for which~ 1, 
m 

then, one has ~ = 500, B 0.0025, E = 1, for the reduced 

mass, rotational constant, and t~tal energy, respectively, 

and the -total angular momentum J = 6. 

Table I gives numerical values for the square modulus 

of S-matrix elements for all th~ cla~sically allowed in~lastic 

(j
1
,t

1 
I j

2
,t

2
) transitions for which j

1
,j

2 
= 0,2,4; transitions 

involving j = 6 are not considered s~nce these qtiantum values 

4 
are no t 1 i k e 1 y t o b e a c cur a t e . T h e t e r m s 11 c 1 as s i c a 1 ... , 

11 
s em i c 1 as s i c a 1 11 

, an d " u n i f o r m" i n T a b 1 e I h ave t h e s am e .me ani n g 
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as in paper II: o~ission of all interference terms which 

result when the square modulus of Eq.(l2) is formed, in-

elusion of interference terms just as they arise in squaring "· 

Eq. (12}, and use of uniform semicla~s.ical expressions to 

modify the primitive treatment of th~ interferences, respective-
• 

ly. When there are two terms in the classical S-matrix, the 

uniform semiclassical expression is. the same as in paper II; 

I 
when four classical trajectories contribut~ to a particular 

transition, the uniform expression used i~ that devised in 

Appendix IV. 

The uniform semiclassical resultj in Table I are seem 

to be in good ag~eement with the exact quantum values, although 

the level of accuracy is not as high as that in paper II; 

Fig. 1 shows the comp~r1son pictorially. This somewhat lower 

degree of accuracy is presumably due to the fact that the 

trajectory fun6tions j
2

(q
1 

,q, ) and 1
2

(q
1 

,q. ) for this 
. 1 Jl 1 Jl 

particui~r syst~m are not simple, ha~monic-like functions as 

. . . 

in II, but are mo~e stru~tured; also there is more error 

because of our inability to deal as accurately with four 

coalescent terms in the classical S-matrix as with only two 

terms (see Appendix IV). The potential parameters and cnllision 

en~rgy of this particular system are, too, quite quantum-like 

(or els~ exact quantum calculations would not be feasible) 

as evidenced by the absence of large changes in the rotational 

quantum number (only ~j = ±2 is classically allawed). The 

h1ghly quantum-like nature of the system, however, is e~actly 

what makes application of the classicai S-matrix approach so 
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interesting--for one is fairly certain that it will be 

accurate under classical-like conditions (large quantum 

numbers, large changes in quantum numbers), and the interest 

is to see just how fa.r toward the quantum direction it is 

applicable. 

Another feature of the results in Table I which points 

out the quantum-like nature of the present system is that 

the "primitive" semiclassical treatment of the interference 

is completely inadequate, and one must use the uniform 

expressions. The relation between the "primitive" and 

"uniform" treatment of the interference is essentially the 

same as that of the Airy function to its asymptotic approxima-

tion; Figure 2 shows this comparison. The argument of the 

Ai~y function which pertains to treating the interference 
2 

between two terms in the classical S-matrix is x = <i~¢)~, 

~¢ being the phase difference of the two interfering terms 

(in units of ti.). From Figure 2 it is clear that the primitive 

and uniform treatments will be roughly equivalent if ~¢ > 1, 

but that the primitive expressions because inadequate (quite 

rapidly) for ~¢ < 1. The fact that the primitive and uniform 

semiclassical values in Table I differ so grea~ly, therefore, 

results because the phase ~ifferences between the several 

terms in the classical S-matrix are small. 

Even for a relatively quantum-like system such as this, 

therefore, the individual transition probabilities are gived 

reasonably accurately by classical dynamics employed in the 

framework of the classical S-matrix; i.e., the major influence 

of quantum mechanics is that which results through quantum 

superposition.· 
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I I I. AVERAGED COLLISION PROPERTIES; RIGID RQTOR-AT6M· 

For the rigid rotor-atom collision cohsidered in the 

p~evious sect~on, one is most often intere~ted in .cross sections 

which are a sum over final M-components of mole,cular rotation 

18 
and an average over initial M-components. It is well-known

19 

that thia is equivalent to summin~ and averaging over 

and initial values o£ the orbit•llangular momenta 

final 

L: 
.R.i,R-1 

( 16) 

In any sum over quantum numbers, su~h as in Eq.(l6), on~ 

expect~ that interference terms in the individual transition 

probabilities will tend to can~e1 one a~other; this is a 

type of ''random phase approxi·mation". If this is the case, 

then it w~ll suffice to use the ~trictly classical approxima-

tion for. the individual transition probabilities ~n Eq.(l6)--

. . 

i.e., there is no point in m~king the ~ffort to include intPr-

ference terms if they are going to average to zero. 

In this and the following section, we wish to explore 

this point more fully--the extent to which one can use a 

completely classical treatment for averaged quantities; or, 

~n other words, how much aver•ging is necessary to quench 

the quantum effects of tunneling and interference. 

Before discussing the rigid rotor-atom ~ystem with regard 

to this question, consider first the much simpler quantity~ 

the probability distribution ·for a single p~rticle in a 

harmonic potential; the probability of finding the pa~ticle 

in the internal (x,x+dx) is the square modulus of the wave 

function 
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P (x) = l<xln>l
2

, (17) 
n 

and the strictly classical approximation for this is propor-

tiona! to the inverse velocity 

2 -i 
p CL ( x) 1 [ (n+i) a - X ] 

( 18) = .n 'IT 

where a = 21'i I mw • 

The classic~! probability distribution in Eq.(l8) has singu-

larities at the classical turning points, a phenomenon charac-

teristic of all classical probabiliti~s (which are reciprocal 

Jacobians). A more satisfactory classical-like approximation 

is obtained by averaging the quantity in Eq.(l8) over n, 

p CL(x) _ 
n 

and with Eq.(l8) this gives 

p CL(x), 
n 

(19) 

p CL(x) = 1 ..![/a(n+l)-x 2 - lan-x 2 ]. (20) 
n 'IT a 

Sinee t~e singularity in Eq.(18) i~ integrable, therefore, 

. this averaging process remove~ the singularity. Figure 3 

shows the typical behavior of Eq.(l7) and Eq.(20); not only 

are the singularities in the classical probability remov~d, 

-CL 
but the general character of P is quite similar to the true 

quantum probability, lacking only the interferenc~ structure. 

It seems clear, therefor~, that within a strictly classical 

treatment one obtains more reasonable r~sults by averaging 

th~ ex~ct claasical probability $Omewhat, and using it in 

preference to the exact classical probability itself. 
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Now consider the analogous modifi~ation of the strictly 

classical expression for a ttansition probability. The exact 

classical value is a reciprocal Jacobi~n 

p = ( 21) 
. n2, nl 

wh~re (n,q) ate the action-angle variables for the internal 

I 

degree~ bf fr~edom, n
2 

being a fu~ction ~f q
1 

and n
1 

in the 

usual sense. (For clarity multi-~imensional notation is not 

explicitly used, but it should be clear how the ~xpressions 

would be ~ritten.) Averaging this over n
2 

l 

/2~:2 
~2-?' 

with n
1 

fixed, the variable of fn teg rat ion can be changed 

from n
2 

to q
1

, so that one obtains 

where 6~ 1 is the interval of q
1 

for which 

This averaged classical transition pr6bability in Eq.(2j) 

has no .classical infinities, as does the exact cl~ssical 

( 2 2) 

( 2 3) 

(24) 

quantity in Eq.(21), and is therefore much more satisf~~tory 

when one is restricting attention to a purely classical treat-

ment. 

One will recognize that the "averaged classical.transition 

probability" in Eqs.(23) and (24) is exactly that which would 

. . . 20 
be obtained by the traditional Monte Carlo treatment of 

il 

.•. 
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classical trajectories. In this approach one would choose 

(with n
1 

fixed) the initial phase q
1 

randomly in the interval 

(0,2w); the number of trajectories for which the final quantum 

' 1 1 
number is in the interval (n

2
-z,n

2
+z), divided by the total of 

trajectories, is the n
1

+n
2 

transitiDn probability; this is 

just the Monte'Carlo way of evaluating ~q 1 /2rr in Eq.(23). 

. . . : 

The major point of these arguments, th~n, is that if 

one i~ interested only in av~raged collision quantities for 

which interference and tunneling are probably quenched, then 

the most sens~ble quantity to calculate is _the averaged 

classical transition prob~bility of Eqs.(23) and (24); the 

Mortte Carlo methods are one way of evaluating this quantity, 

a very convenient one for averaging over m~ny variables 

(collision energy, initial quantum state, etc.). For some 

purposes ~t might actually be mote efficient to vary the 

initial variable q
1 

systematically to map out the boundaries 

of the interval ~q 1 contributing to the final states of 

interest. 

The main question remaining is how much averaging is 

necessary before the averaged classical transition probability 

gives accurate averaged collision propeities. As an example, 

the quantities 

P(j2+jl9.1) = -~ 
2 

(25) 

have been computed for the rigid rotor-atom system of Section 

II. These quantities are "less averaged" than those in Eq.(l6) 

[for 9.
1 

is not summed over in Eq.(25)], so that any un~~enched 

quantum effects should appear more prominently in them. In 
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the spirit of "averaged classical transition probabilities" 

discussed abo~e, the quan~ities in Eq.(25) were computed in 

the following manner: with 1
1 

and jl (and ~) fixed, qj and 

q
1 

were assigned initial values 

= n(TI/N) 

= m(TI/N), 

. . . 2 
with n,m = O,· .•. ,N-1, and trajectories (N of them) computed; 

then the quarttity in Eq.(25) is given by 

i(j 2 ~J 1 1 1 ) ~ [number of trajectories for which 

f;ina:l value of j is in the interval (j
2
-l,j

2
+1)]7 

[total number of trajectories]; (26) 

th~ {ntetv~l (j
2
-l,j

2
+1) is used, rather than (J 2 ~4, J

2
+4) 

becau~e of the selection rule ~j = 0, ±2, ±4, ... 

Table II shows results of the above procedure for N = 20, 

compared to the e~act quantum values of r~f. 4; on the basis 

som~ cilculations performed with various N values we estimate 

these results with N = 20 to be within about .02 of the exact 

(N ~ 00 ) averaged classical values. Since the number of terms 

in the quantum tirechanical sum in Eq.(25) is only (2j
2
+1), it 

is indeed remarkable bow few terms one need sum over before 

the aver~ged classical values agree quite well with the 

quaritum ones. The quantity in Eq. (16), which also involves 

a sum over 1
1

, should be even more classical-like. 

The basic conclusion of this section, therefore, is that 

although interference terms appear quite prominently in 

individual transition probabilities (as seen in Sec. II), a 

.•. 
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relatively ·small amount of averaging quenches them; except 

for completely state-sel~cted and detected observations, then, 

the averaged classical approach will probably suf£ice.
21 

As the complexity of the collision partners increases, the 

number of internal degrees of freedom increa~es, the possibility 

of complete state selection dimini~hes, and thus the validity 

of an averaged classical treatment is even more strongly 

warranted. The principal situation for which a completely 

classical treatment of averaged collision properties will 

probably not be sufficient is the case that all transitions 

are classically forbidden; the n~xt Section considers this 

point further. 
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IV. AVERAGE ENERGY TRANSFER; LINEAR. ATOM-DIATOM. 

The model system here is that for which Secrest and 

22 .• 
Johnson have performed exact quantum mechanical computations: 

the diatom is a harmonic oscillator, and the interactiori is 

an exponential repulsion between the atom and the closest 

I 

end of the diatom. Papers II aridiiii have presented classi~al 

S-matrix type calculations for this system, the results of 

which were summarized in the Introduction. 

Here the averaged quantity of interest is the average energy 

transfer ~E, which for a h~rmonic oscillator is (in units of 

tlw) 

( 2 7) 

where is the transition probability from vibrational 

state Within the classical $-matrix framewbrk one has 

p p CL + interference, ( 2 8) = 
n2,nl n2,nl 

where p CL [ 2 ~1(~) njrl (29) 
n2,nl 

If many terms contribute t.o the sum in Eq.(27), theri one may 

replace the sum by an integral and assume that the interference 

term in Eq. ( 28) averages to zero; this gives 

~E ( n
1

) lf 1 
= 21T dn2 

rr8 
- nl ' 

ql 

and with a change of variables in the integral one has 

(30) 
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Eq.(30), which results from the strictly classical 

approximation for the transition probabiliti~s, is the phase-

averaged energy transfer which has recently been cbmputed by 

. 23 . 
Heidrich, Wilson, and Rapp ; 1n most cases th~y found excel-

lent agreement between the results of Eq.(30) and the exact 

quantum values of ref. 22 used in Eq.(27). From the above 

presentation one certainly expects this to be true when there 

are many classically allowed transitions which contribute 

to the sum. The somewhat remarkable feature is that only one 

or two classically allowed terms are necessary for there to 

be good agreement between .Eqs.(30) and (27). 

To explore the situation more fully, we consider for the 

remainder of this section that n
1 

= 0 and that the co~lision 

energy and mass parameter are such that all transitions are 

classic~lly forbidden; this is a situation in which one would 

not necessarily expect Eqs.(27) and (30) to agree. Eq.(27) 

becomes 

( 2 7 I) 

since all higher transitions have much smaller transition 

probabilities; i.e., the average energy transfer is the 0 + 1 

transition probability in this case. 

There are two prescriptions by which classical mechanics 

may be used to generate an approximation to the average energy 

transfer (i.e., P
1

,
0
): (1) 

energy transfer by Eq.(30); 

compute the phase-averaged· 

(2) use the classical trajectory 

function~ to construct the classical S-matrix approximation 

to the classically forbidden 0 + 1 transition probability 
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(by the methods in paper III). To simplity the comparison 

of these two approaches, suppose the trajectory function 

n
2

(q
1

) is given by 

n
2

Cq
1

) =a+ A cos(q
1
+b), (31) 

where 

< < 1; 

in 
i 

II it was see-n that this is often a_good approximation to 

the exact function n
2

{q
1
). The phase-averaged energy transfer 

of Eq.{30) is th~n easily found to be 

6E = P = a. . 1,0 
( 32) 

The classical S-matrix ~pproximation to Pl,O is
3 

P· . = r 2 7T I n ~ q ) I ] - 1 e- 2 I I m <P I 
1,0 2 1 . , 

( 3 3) 

where q
1 

is one of the complex roots bf 

(34) 

and ¢ is the phase: 

-¢ = -fdqlqln2'(ql), (35) 

evaluated at the root of Eq.(34). Eq.(33) can thus be 

eva 1 ua t e d , and us in g the f a c t t h at I a I , I A I < < 1 , one o b t a ins 

P 
.. ::::: _!A. 2 

1,0 4 . (36) 

The two prescriptions, therefore, give completely different 

results: prescription 1 gives [Eq.(32)] Pl,O = *• and prescrip

tion 2 [Eq.(36)] Pl,O = ~A 2 , and in general there is no relation 

between the constants a and A; in fact, the con~tant a cah be 

negative~ as it sometimes is, so that prescription 1 may give 

nones ens e .. 
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Table III shows a few examples of the Heidrich, Wilson, 

and Rapp results which compar~ most poorly with the quantum 

results. of Secrest and Johnson; it is seen that Eq.(32) (the 

. . . . 

phase-av~raged energy transfer) does indeed give neg~tiv~ 

values of Pl,O in some cases. Also shown is the result of. 

the classical S-matrix approach, Eq.(36), which is clearly 

more satisfactory in these cases. 

It is interesting, though perhaps coincidental, that 

prescription 1 (the phase~averaged energy transfei) agrees 

exactly -with the quantum mechanical result in the limit of· 

a hi~h energy, impulsive collision (which means a small mass 

parameter for this model). This is easy to show by solving 

24 
the Shuler-Zwanzig problem to first order in the mass 

parameter m; the res~lt is 

1 

Pl,O = 4ml(E-~)(E-I)J 7 • 

Th~ result from Eq.(30) in this case is 

. ( 37) 

P
1

,·
0 

= 4m(E-l), , (38) 

. which agrees with Eq.(37) for E>>l. The averaged energy 

transfer approach works even for Po,{< 1, therefore, if the 

collision is· impulsive; indeed, the cases of poorest agree-

ment of Eq.(30) with the quantum values are those of low 

energy and large mass parameter. 

In summary, one expects the strictly classical approxima-

tion f~r- the average energy transfer to be accurate if more 

than one or two transitions are classically allowed. If the 

coll{sion is of an impulsive nature {translational velocity 

much greater than internal velocities), then this procedure 
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may give ftccurate results even if all transitions are highly 

forbidden cl~ssically. The principal situation in ~hich it 

is expected ·.to be poor is the adiabatic limit (internal 

velocities m~ch greater than the eoll~sion velocity) . 

. \' 
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V • SUMMARY. 

Fram the results of the rigid rotor-atom problem 

presented in .Section II, one concludes (just as in paper II) 

that the dyriamics of heavy particle collisions is largely 

classical, quantum mechanic~ contributing principally through 

superposition; interference effects appear quite prominently in 

the magnitude of individual transition probabilities. 

If the observed collision property involves the sum 

arid/oi ~verage ov~r several quantum states, however, the 

interferetice terms are rapidly quenched, so that a strictly 

classical approximation to the transition probability 

(averaged so as to remove infinities in the Jacobiari) giv~s 

good agreement with exact quantum results; Sections III and 

IV show examples of this. 

In the case of impulsive dynamics it appears that 

averaged classical quantities may be accurate even when all 

transitions are classically forbidden; there may be oth~r 

limiting cases for which this is also true. The limit of 

an adiab~tic collisiort is a case in which averaged classical 

quantities are not expected to be accurate . 
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Table I. Rigid Rotor-Atom Transition Prdbabilities.
8 

Transition 
b 

Classical 
c 

Semiclassicald Uniform 
e 

Quantum 

2,4-0,6 0.161 0.428 0.213 0.176 
2,6-0,6 0.233 0.509 0.108 0.142 
2,8-0,6 0.263 0.645 0. 26 3 0. 2 34. 

2,6-2,4 0. 130 0.172 0.116 0.109 
4,2-2,4 0.238 0.560 0.211 0.220 
4,4-2,4 0.115 0.136 0.071 0.078 

2,8-2,6 0.260 0.266 0.059 0.063 
4,4-2,6 0.105 0.109 0. 0 2.8 0.019 
4,6-2,6 0.102 0.146 0.109 0.087 
4,8-2,6 0.080 0.106 0.067 0.107 

4,10-2,8 0.636 1. 20 0.369 0.297 

4,4-4,2 0.113 0.134 0.070 0.083 

4,6-4,4 0.121 0.178 0.140 0.111 

4,8-4,6 0.116 0.130 0.056 0.073 

' 

a. The quantities in the table are s. . ( J) l I 
2 

J 2 22 , J 1 Q, 1 
for the 

rigid rotor-atom system discussed in Section II. J = 6 . 
) 

b. The quan~um numbers are j
2

,2
2 

- j
1

,2
1

; micros~opic re-

true for all four methods. 

c. Omission of all interference terms which arise in con-

structing the square modulus of Eq.(l2). 

d. Inclusion of interference terms just as they result in 

constructing the square modulus of Eq~(l2). 

e. Inclusion of interference terms by the uniform semi-

classical expre~s~ons given in Appendi~ IV. 

f. Essentially exact quantum values of Johnson, Secrest, 

Lester, and Bernstein.
4 

f 



Table II. Averaged Rigid Rotor-Atom Transition Proba-
a--

bilities. 

. 'b 
Classical Quantum 

c 

j 1 R.l 
·,. 

0 2 4 6 0 2 4 

0,6 0.33 0.59 0.08 0 0.32 0.55 0.12 
2,4 0·.14 0.41 0.41 o.o4 0.18 0. 43 0.33 
2,6 0.10 0.54 0.34 0.02 0.14 0.56 0.25 
2,8 0.21 0.37 0.40 0.02 0.23 0.38 0.33 
4,2 0.02 0.26 0.33 0.39 0.02 0.25 0.38 
4,4 0.01 0.16 0.56 0.27 0.02 0.10 0.64 
4,6 0.01 0.16 0.53 0.30 o. o·2 .0 .11 0.61 
4,8 0.01 0.22 0.39 0.39 0.02 .0.14 0.53 

4,10 0.02 0.37 0.24 0.38 0.04 0.32 0.30 

a. The quantities in the table are E ,S. R. j R. (J) 1
2 

R. 2 .J 2 2, 1 1 
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6 

0.01 
0.07 
0.04 
0.06 
0.35 
0.24 
0.26 
0.30 
0.34 

for the rigid rotor-atom system discussed in Sectioti II. 

b. Column headings are the values of j
2

; the ent~ies are 

the averaged classical transition probabilities computed 

by the procedure described in the paragraph following 

Eq.(25). 

c. Column headings are the values of j
2

; the entries result 

from using the quantum values of Johnson, Secrest, 

4 
Lester, and Bernstein irt Eq.(25). 

'::-· 
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m,a,E 
a ·b 

Classical Semiclassicalc guantum 
d 

~,0.3,3.0 1.39xl0 
-2 

2.70xl0 
-2 

2.2lxl0 
-2 

1.25,0.2973,2.47275 -4.14xl0 
-4 

4.35xl0 
-4 

1.12xl0 
-4 

1.25,0.2973,3.47275 1.66xl0 
-3 

3. 78x10 
-3 

2.93xl.O 
-3 

0.2,0.114,3.0 -2.99xl0 
-4 

1.46x10 
-3 

7.06xl0 
-4 

0.5,0.114,3.8 -2.5lxl0 
-5 9.05xl0- 5 

4.30xl0 
-5 

0.5,0.114,4.4 5.55xl0 
-5 

2.84xl0 
-4 

2.03xl0 
-4 

0.5,0.114,5.0 4.llxl0 
-4 

7.3lx10 
-4 

6.58x10 
-4 

a. The~e ·are the parameters of the model as defined by 

22 
Secrest and Johnson, except that E is the total energy 

in units of 5w (rather than thw). 

b. These values are the phase-averaged energy transfer as 

defined by Eq.(30), with n
1 

= 0, and computed by Heidrich, 

Wilsbn, 
23 

and Rapp. 

c. These values result from the classical s~matrix approxima-

tion to Pl,O' as given by Eq.(36). 

d. These values are the exact quantum results for Pl,O as 

d b S d J h 
. 22 

compute . y ecrest an o nson. 
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Figure Captions 

1. A visual comparison of the exact quantum results (points 

connected by the solid line) and uniform semiclassical 

resuits (points connected by .the dotted line) which are 

tabulated in T~ble I. .For clariti of the display the 

order of transition~ al6ng the absc~ssa wa~ chosen so 

that the quantum valties incteas~ monotonically. 

2. The sol~d line is th~ regula~ Aiii function Ai(-x); the 

dashed l~rie its a~ymptofic approximations: 
...;. 1 - 1 'IT 3 

1T 
7 x 'IJ'sin(t;+ix7

) 

1 . 1 3 

for x > 0; ~nd ~n~ 7 lxl-'lfexp(-ilxl 7 )for x < 0; the dotted 

line i~ its "classical" approximation: 
1 1 

(2n)- 7 x-'lf, x > 0. 

The ~ari~ble 6~ on the upper abscissa is 6~ 

3. Comparison of the exact quantum probability distribution 

(the solid lines) with the averaged classical probability 

distribution gi~en by Eq.(20) (the dashed lines) for a 

sirtgle particle in a harmonic potential; the parame~er 

a= 2 (b = m = w = 1). The a figure is the case n = 0, 

and b is for n - 2; even for these small quantum numbers 

the averaged classital values are seem to be in rough 

agreement with the quantum distribution (except for 

omission of the interference). 

' • 

... 
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25 ' 
As Dirac emphacizes, quantum mechanics is a mechanics 

of transformations, usually unitary transformations. In con-

structing a se~i~lassical theory of heavy particle dynamics, 

our approach has been to retain the quantum mechanical 

trarisform~tiori pririciples, but to evaltiate the transformation 

elements within the classical limit~ Here we would like to 

give moie details of this correspondence between unitary 

transformations of quantum mechanics and canonical transforma-

tions of classical mechanics than were given in I. 

In discussing unitary transformation elements within 

the classical limit~ it is only n~cessary t6 consider the 

phase of the transformation element, since it was .shown in 

I how the magnitude of any unitary transformation is determined 

from its phase alone. 

Th . i . h b f . . 1 . 26 
e start1ng po nt 1s t e asic trans ormat1on re at1on 

(Il) 

where p and q are any vatiables canonically conjugate to one 

another; as Dirac shows, Eq.(Il) is equiv~lent to the funda~ 

mental cbmmutation relation 

and is also a statement of the Uncertainty Principle. This 

latter point follows since l<qlp>l
2 

is the probability dis-

tribution in q for fixed p (or vice-versa), and the fact that 

j<qjp>j
2 

is constant means that if pis fixed, then q can have 

any value_(or vice-versa). 
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Consider now ; canonical transformation
11 

from the 

variables (q,p) to a new canonical set (Q,P). Q and P are 

functions of the old variables q and p, or one may cbnsider 

p and q to be functions of the new variables Q an~ P; or 

one may con~ider Q ~nd p to be functions of q and P, etc.--

i.e., one may choose any two of the four variables_ q ,p ,P ,Q 

to ,be the independent variables, the remaining two then being 

functions of these two. 
11 . 

It is welL known how the canonical 

transformation is carried out in classical mechanics~ it is 

spec~fied by the gerierator of the transformation, which is 

a function of one old variable and one new variable, such as 

F
2

(q,P) (q and Pare the independent variables in this case). 

In quantum mechanics the canonical transformation is 

specified by the .matrix elements of a complete set of "old 

states" with a complete set of "new states", such as< qjP>; it is 

the relation between the unitary transformat;ion < qjP> and 

the classical generator F
2

(q,P) which we seek. Working within 

the classical limit, let 

< q IP> rv eif(q,P) /h, (I2) 

where f ~s the function to be determined. Using Eqs.(Il) and 

(I2) and the transformation laws of quantu* mechanics (i.e., 

matrix multiplication), ~ne has 

<pIP> = fdq <pI q> < q I P> 

"'.·fd· i[ -pq+f( q. p)] /h . q e , (I 3) 

and in the classical limit (h ~ 0) the integral can be evaluated 

27 
by the method of stationary phase , giving 

<piP> rv 
i[-pq+f(q,P)]/h 

e i. , (I 4) 

:·i 
' 

iJi 



where q is evaluated at the point of stationary phase, the 

solution of 

= 3f(q,P) 
P aq 

i.e., Eq.(15) is the stationary phase requirement. 

Eqs.(11) and (12) again, one also has 

< q I Q> = fdi' < q J P> <pI Q> 

"-' (dP i[f(q;P)-PQ]/h 
. ~ < e ' 

Using 
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(15) 

(16) 

which is also to be evaluated by stationary phase, yielding 

.<qjQ> "-' ei[f(q,P)-PQ)/h, (I7) 

where P is evaluated at the point of stationary phase, the 

solution of 

Q = 3f(g,P) 
aP (I 8) 

We now cortsider the variables q and Pin Eqs.(I5} and (18) 

(the stationary phase relations) to be the independent variables; 

if one assumes that the values of p and Q in these equations 

are precisBly those values which are determined classically 

by the independent vari~bles q- and P, then one recognizes the 

stationary pha~e relations, Eqs.(I5) and (18), to be the 

equat~ons of classical mechanics which determine the classical 

generator F
2
(q,P)--i.e., the function f must be F

2
, so that the 

d e s i red r e 1 at i on 

<qiP> "-' eiF2(q,P)/h 

is proved. From Eqs.(I4), (16), and (!9), other analogous 

correspondence relations follow simply 

<pjP> "-' eiF4(p,P)/fi 

<qjQ> "-' eiF 1 (q,Q)/fi, 

(I9) 
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wher~ the t
1 

and F
4 

generators are related .to F
2 

by 

F
1

(q,Q) = F
2

(q,P) - PQ. 

·rhe basic physical content of the above argument is the 

ide~ involved in going from Eq.(I3), say, to Eq.(I4): quantum 

mechanically the transfoimation element< piP> has ~ontribu-

tions from all possible values of q (cf .. a "sum over all paths" 

. ~ . 28. . . .· . . . 
ala Feynman · ); in the classical limit (expressed mathematically 

by the si~tionary phase approximation), however, only one 

value of q contributes to the "sum", namely that value which 

is determined classically by the fixed values of p and P. 

Dynamical transf~rmation elements (e.g., the s~matrix) 

can also be expressed within ~he above framework by realizing 

that dynamical transformation are also ~anonical (unitary) 

transformations~ If H.(p,q) is the time-independent Hamiltonian 

governing ihe ~ystem, then ihe unitary transformation from 

variables q
1 

and p
1 

(the values of q and p at t~me t
1

) ~o 

variables q
2 

and p
2 

(the values of q and p at time t
2

) is 

(in the classical limit) 

(!10) 

where the F
1 

generator is related to a~ F
2 

in the usual way 

(I 11) 

and here F
2 

is the solution of the Hamilton-Jacobi equation
29 

fnr the Hamiltonian H. It is ~ standard result of Hamilton-

Jacobi theory~ however, that this generator is related to the 

time integral of the Lagrangiah 

... 
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= 1./t [p(t)q(t) - H(p,q) J. (Il2) 

Eqs:~IlO) and (Il2) were the st•rting point in paper I 

for deriving all of the general expressions for the class~cal 

S-matrix. In I th~y were taken from the classical limit of 

. 28 
the Feynman path integral ; here one sees that it is actually 

not necessary to introduce the path integral at all. It is 

possible to derive the expressions for the classical S-matrix 

from standard classical mechanics, plus the general transforma-

tion principles of quantum mechanics. 

Finally, in considering the (q
1

,p
1

) + (q
2

,p
2

) transforma

tion in time as a special type of canonical transformati6n, 

one sees clearly the origin of "doubled-ended" boundary con-

ditions as the ones fundamental to the correspondence with 

quantu~ mechanics--for the independent variables of the 

clasjical generat~r specifying the transformation must be 

"one old variable and one new variable". 
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Appendix I I. Normalization of the Classical S-Matrix ---
wh~n Symmetries Exist. 

For simplicity we consider only one internal degree of 

freedom for the discussion and then state the final result 

for an arbitrary number. The degree of freedom (p,q) has m-

fold symmetry if the trajectory function p
2

(q
1

) is identical 

in them subintervals (0, !7T), c;7T. ~7T), ... , (27T(m~l),27T). 

The classical S-matrix is 

s - m[21Ti dp21-~ i¢> (Ill) 
p2,pl aql . e . ' 

. . . 27T 
where q

1 
is in the first subinterval (O,;-); the fac:tor m 

appears since there are m equal. terms in the (0, 27T.) interval, 

and one must sum over them a11. One now only needs to consider 

. . 27T . 
the subinterval (0 ,-). 

. m 

To see that the expression in Eq. (Ill),· is indeed normalized 

correctly, consider 

E Is 12 = E 
P 

p2,pl 
2 . 1' 2 

2 
m 
27T 1 ~1 -1. 

<3q , 
1 

(I I 2) 

p
2 

takes on integer values, but because of the symmetry, the 

selection rule
6 

jp 2-p 1 j = m,2m,3m, ... pertains. Thus 

!/dp2, E + 

Pz 

so that Eq.(II2) becomes 

1 j· 27T /m m2 

::; dql· 
.m 27T 

0 

= 1. 

,, 
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For N internal degrees of freedom, it is not hard to see 

that the correct expr~ssion is 

i<f> 
e ' 

where m. is the degree of symmetry of the ith internal degree 
l. 

of freedom, D being the usual normalization factor 
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Appendix III. Transformation bet~een Action-Angle Variables 
and Cartesian Cdordinates. 

These r~lations ·are derived from the classical generator 

. 13 
given by Whittaker. Initial values of the action-angle 

variables are specified as discussed in the paragraph preceeding 

Eq. ( 8) of the .text. The angle q
3

, which is conjugate to the 

total angu1~r momentum J, may be set_initially to any aibitrary 

+ + 
The cartesian variables r = (x,y,z), p = {px,py,pz)' value. 

are given in terms of the 
+ 

(X,Y,Z), 
+ 

R = and p = (PX,PY,PZ) 

action-angle variables by 

-+ 
r = rr 

+ A A 

p = prr + {j/r)p 
"..L 

+ A 

R = RR 

+ A A 

p = p .. B. + (R./R)P-L 
R 

where PR is the variable P of the text, and 

sin cos 

.R = qJ cos qR. + A.
1
sin qJ sin 

sin qR./1-A.lz 

qJ cos qj - A2COS qJ sin qj 

. r = cos qJ cos qj - A.
2
sin qJ sin qj 

q.ll-A.
2

2 sin 
. J 

qJ sin qR. + AlCOS qJ cos 
qR. \ 

cos qJ siri qR. + A.
1
sin qJ cos q9, 

! 
I 

q 9./1-A. 2 J cos 
' 2 

·'" 

"" 



sin qJ sin qj - >.
2

cos qJ cos qj 

A 

p .1.. -cos qJ .sin qj - A.
2
sin qJ cos 

where 

cos qj I1-A. 2 

A.l = (!2-j2 +J2)/21J 

A. = (j2-12+.J2)/2jJ ; 
2 

for the rigid rotor case, of course, 

a fixed value. 

2 

one has p 
r 

qj 
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0 and r = 

Since the n~merical integration is not carried otit in 

action-angle var~ables, there might be some question as to how 

the phase in Eq.(ll) is calculated. If (p,q) denote the set 

of cartesian variables and (P,Q) the action-angle variables, 

then from the general t~ansformation relations in I, one has 

(IIIl) 

where 

(III2) 

and F
2 

is the generator of the (p,q)+-+(P,Q) transformation 

(i.e., F
2 

is the solution of the Hamilton-Jacobi equation
29 

for the unperturbed Hamiltonian)., From Whittaker's generator 

(which is of the F 
3
-type) ·one can show that 

(III3) 

so that Eq.(IIIl) become~ 

(III4) 
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the desired expression. 

. . 

This is also a convenient place to discuss some features 

6 
of the ralation between our work and that of Marcus. W~th 

(p.q) and (P,Q) again denotin~ cartesian variables and action-

angle variables, respectively, Marcus uses an express~on for 

the S-matrix which projects unperturbed components out of 

the total wavefunction 

(II IS) 

where ~; 2 cq 2 ) is the eig~nfunction of H~ with eigenvalues P
2

, 

and ~p (q
2

) ~s the-eigenfunction of the total H•miltonian H 
1 . 

0 
which has evolved from the initial asymptotic state ~P (q

1
). 

1 
In terms of transformation elements one has 

so that Eq.(III5) gives 

SP2,Pl rv /dq2fdql 

i[-F2(q2,P2)+~(q2,ql) 
e 

and evaluation of the integrals by stationary phase gives 

where ¢(P
2

,P
1

) is given by Eq.(Illl); i.e., the two.approaches 

are essentially equivalent. 

ill 

··I 

j 

• 
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Appendix IV. Uniform Semiclassical Expressions. 

The particular rigid rotor-atom system treated in Section 

II is so quantum-like that interferences between the several 

terms contributing to the classical S-matrix must be treated 

uniformly. When there are two such terms, the expressions in 

paper II are applicable; thus, if 

(IVl) 

is the primitive semiclassical result, the uniform expression 

is 

where 

A = Ai(-z) , B = Bi(-z) 

and e · i = 1, 2, are the "extra" phases which come from the 
i' 

square root of the Jacobian. For the general case of N 

1T 
internal degrees of freedo~ one has that e

1 
= i(n+-n_), where 

n+(n_) is the number of positive (negative) eigenvalues of 

the NxN J~cobian matrix; for two internal degrees of freedom, 

1T 
therefore, ei = 0 or ± j From the asymptotic relation 

1 1 (1T 2 l) 
7 ~ -- e±i -4-~z 1T z {Ai(-z) ± iBi(-z)] (IV3) 

one can easily see that Eq.(IV2) reduces to Eq.(IVl) as z + oo.· 

For the case that there are four terms in the classical 

S-matrix,--
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s = (I V4) 

the situation complicated, and the 

f~llowing discussion is more the form of a plausibility 

argument than a proof. For definiteness, the four terms 

. TI. Q TI 
are numbered so that e

1 
= 2• e

2 
= e

3 
= · , e

4 
= --z; this also 

implies that ~l is the smallest phase, and ~ 4 is the largest. 

I£ the four trajectories were coalescent (i.e., had small 

phase differences) in pairs, then it is clear that one could 

use Eq.(IV2) to treat the pair-wise coalescence uniformly, 

and interference between the two pairs in the ordinary way; 

one w~uld have, for example,. 

(IVS) 

where s
1

, 2 and s
3

,
4 
~re each of the form ~sin Eq.(IV2); 

this treats the coalescence of terms 1 and 2, and 3 and 4, 

uniformly. Since one must have lei-ejl = i if terms i and j 

coalesce, the only other possible pair-wise coalescence is 

that of 1 with 3, and 2 with 4; th~s would give 

(IV6) 

with each term here of the form as in Eq.(IV2). 

Sin~e uniform ~~ymptotic expressions of the- type we seek 

are normally obtained by evaluation of an integral representa-

tion for the desired quantity (see the Appendix of paper II), 

iri the present ~ase of two internal degrees of freedom one 

needs to consider the following type of integral 

if ( . ) 
g(x,y) e x,y . (IV7) 

Although we have not yet succeeded iri developing a generally 

... 

'. 
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valid uniform approximation for this 2-dimensional integral, 

various limiting cases can be e~aluated uniformly, for example, 

the case that the phase of the integrand is separ~ble: f(x,y) 

= f
1

(x) + f
2
(y). In all such special cases the resulting 

uniform ~xpression for the 2-dimensiortal integr~l is of the 

form of a product of two 1-dimehsional unifor~ expressions. 

The implications of this ar~ that th~ appropriate uniform 

expression ~orresponding to Eq.(IV4) should be of the form 

s 

X I 
+ 

+ 

+ 

where 

i(¢1+¢2+¢3+¢4+el+e2+~3+e4)/ 4 

e 

1 1 

pl iT 
1f 1f 

zl z2 (A
1
+iB

1
)(A

2
+iB

2
) 

l 1 

p2 7T 
"f 'If 

z3 z4 (A
3
+iB

3
)(A

4
-iB

4
) 

1 1 

p3 iT z 1fz 1f 
5 6 

(A 
5
-iB 

5
) (A

6
+iB 

6
) 

1 1 

p4 iT z 1fz 1f 
7 8 

(A
7
-iB

7
) (A

8
-iB

8
) I ( IV8) 

and the z. 's are as yet unspecified. To determine them we 
. l. 

appeal to Eqs. (IV4), (IVS), and (IV6), to which Eq. (IV8) must 

reduce Ln the appropriate limits. Writing out all of these 
I 

relations, one finds that they can all be satisfied s~multaneous-

ly by only one, unique choice of the 

2 

z2 z4 = [,¥(¢2-¢1)]"'3 

2 

z6 z8 = [ i ( ¢ 4- ¢ 3) ] "'3 

Z. IS, 
l. 

namely 

(IV9a) 

(I V9b) 
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. 2 
3 . "'3 

['!r ( ~ 3- .~ 1).] (I V9 c) 

(IV9d) 

Eqs. (IV8) and (IV.9) are thus taken as th'e uni"form ver.sion of 
'~ 

Eq. (IV4). 
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