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Classical Sampling Theorems in the Context of 
Multirate and Polyphase Digital Filter 

Bank Structures 

Abstract-The sampling theorem has been generalized in several di- 
rections since its introduction during the first half of this century. Some 
of these include derivative sampling theorems and nonuniform sam- 
pling theorems. Both of these have also been reinterpreted in terms of 
a multichannel sampling framework. In the world of digital signal pro- 
cessing, multirate systems have gained substantial attention during the 
last 1: decades. A system of this type is the maximally decimated anal- 
ysislsynthesis filter bank, widely used in subband coding, voice privacy 
systems, and spectral analysis. Some of the generalizations of the sam- 
pling theorem can be understood by relating the sampling problem to 
the continuous-time version of the analysis/synthesis filter bank system, 
as was done by Papoulis and Brown. Basically, the recovery of a signal 
from “generalized samples” is a problem of designing appropriate lin- 
ear filters called reconstruction (or synthesis) filters. 

In this paper, this relation is first reviewed and explored further. 
New sampling theorems for the subsampling of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAsequences are derived 
by direct use of the digital filter bank framework. These results are 
related to the theory of perfect reconstruction in maximally decimated 
digital filter bank systems. One of these pertains to the subsampling of 
a sequence and its first few difirences, and subsequent stable recon- 
struction atfinite cost with zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAno error. The reconstruction filters turn out 
to be multiplierless and of the FIR (finite impulse response) type. These 
ideas are extended to the case of two-dimensional signals, by use of a 
Kronecker formalism. This paper also considers the subsampling of 
band-limited sequences. A sequence x ( n )  whose Fourier transform 
vanishes for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI o I 5 L n / M ,  where L and M are  integers with L < M ,  
can in principle be represented by reducing the data rate by the amount 
M I L .  Even though techniques are known to accomplish this reduction, 
this paper discusses a different method which consists in retaining only 
L out of M successive samples and discarding the rest (attractive when 
signal processing prior to transmission is prohibitive). The reconstruc- 
tion problem in this context is addressed. The digital polyphase frame- 
work is used in this paper as a convenient tool for the derivation as well 
as mechanization of the sampling theorems. 

I. INTRODUCTION zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
HE sampling theorem, which was introduced several T decades ago [1]-[3], has been extended by many au- 

thors into various generalized versions [4]-[6]. The sim- 
plest version of the theorem states that a continuous-time 
signal x , ( t ) ,  band-limited to I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAW I < a, can be recon- 
structed from its equally spaced samples, if the sampling 
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frequency is at least equal to the Nyquist frequency 8 
2a. One of the earliest extensions of this theorem was 
stated by Shannon himself in his 1949 paper [ l ] ,  which 
says that if x, ( t )  and its first M - 1 derivatives are avail- 
able, then uniformly spaced samples of these, taken at the 
reduced rate of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA8 / M ,  are sufficient to reconstruct x , ( t ) .  
This result will be referred to as the derivative sampling 
theorem in this paper. A different type of extension called 
the nonuniform sampling theorem, which was stated by 
Black [7, p. 411 (and attributed to Cauchy, 1841!), has 
also been reviewed recently [4]-[6] in various contexts. 
Statements of this extension can be found in [4]-the es- 
sential message being that nonuniformly spaced samples 
of x, ( t )  can be used to reconstruct x, ( t )  to any desired 
accuracy, as long as the “average” sampling rate is at 
least equal to 8. In accord with the traditionally used lan- 
guage [4], these will be collectively referred to as the 
“folk theorems.” A very simple example of this type of 
result can be found in [40, pp. 557-5581. The use of “al- 
most periodic functions” in the interpretation of sampling 
theorems is also worth noting in this context [28]. Some 
results on spectral representation of nonuniformly sam- 
pled waveforms can be found in [38]. 

An excellent tutorial review of the sampling theorem 
and several generalizations, both for one-dimensional and 
multidimensional signals, can be found in [4], along with 
an extensive bibliography from which proofs can be in- 
fered. The derivative sampling theorem and nonuniform 
sampling theorems were given a new and lucid interpre- 
tation in the fairly recent work by Papoulis [5], [39], by 
formulating a unified framework in terms of linear filter- 
ing operations prior to sampling. The Papoulis approach 
has a striking resemblance to the framework of Jilter 
banks, which is a discipline independently developed in 
the discrete-time domain during the last decade. The 1981 
paper by Brown [6], which reinterprets the Papoulis 
framework, brings this resemblance closer, and also 
shows that the reconstruction of x,( t )  from “generalized 
samples” is essentially a problem of desjgning a synthesis 
filter bank. 

Recent advances in signal processing, which evolved in 
a manner independent of the above developments, have 
resulted in the discipline of multirute digital signal pro- 
cessing. A key feature here is the change of sampling rates 
at various stages of the system (hence the name multi- 
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rate), in the form of decimation and interpolation of dis- 
crete-time sequences. Advantages and applications of such 
processing have been well understood [9]-[ 121, and will 
not be elaborated further. The purpose of this paper is to 
exploit further the close analogy between sampling-theo- 
rem frameworks and multirate $iter banks, which involve 
the downsampling of sequences at various stages, fol- 
lowed by subsequent reconstruction. 

Fig. 1 is a typical example of a multirate signal pro- 
cessing system, called the analysis/synthesis system. 
Here, the digital filters Hk( zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAz )  are called analysis filters, 
and split the signal zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx ( n )  into M subbands in the frequency 
domain. The downgoing arrows in the figure represent the 
decimation operation by an integer factor of M. The M 
decimated sequences are typically encoded and transmit- 
ted. At the receiver end, each of these decimated subband 
signals is “interpolated” (the upgoing arrows represent 
this; see the next section for formal definitions), and then 
recombined with the help of the synthesis filters F k ( z )  to 
form the reconstructed signal f ( n  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA). The main application 
of this system is in the subband coding of signals and im- 
ages [IO], [13]-[16]. The system also provides a model 
for short-time Fourier transforms as can be seen from the 
results of [17] (with the number of subbands not neces- 
sarily equal to the decimation ratio M ). Our interest here, 
however, is in the mathematical framework offered by the 
system of Fig. 1. We shall see first that, if suitably 
adopted into the continuous time domain, it can be used 
for obtaining a simplified understanding of several ver- 
sions of the sampling theorem. Moreover, a direct use of 
the discrete time structure of Fig. 1 gives rise to new 
downsampling theorems (or simply “sampling theo- 
rems”) for sequences, some of which can be generalized 
to two (and higher)-dimensional sequences by further ex- 
tensions of Fig. 1. 

Several interesting questions can be posed in connec- 
tion with the reconstructibility of a sequence from various 
subsampled versions. These questions are closely analo- 
gous to the continuous time counterparts, but the answers 
often have certain qualitative differences. As an example, 
let us consider the derivative sampling theorem for a sig- 
nal zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAxu ( t ) .  In order to reconstruct exactly the value of x, ( t ) 
for a given t from the samples of xu ( t )  and X, ( t ), one has 
to perform an infinite amount of computation (because this 
involves ideal reconstruction filters and hence an infinite 
summation [6]). Let us look at the discrete-time version 
of this problem: let x ( n )  be a sequence whose first dif- 
ference is defined byx, (n)  = x ( n )  - x ( n  - 1).  Suppose 
we decimate x ( n )  and x l ( n )  by factors of 2. Can we get 
back x ( n ) ,  for every n, from these decimated samples? 
Not surprisingly, the answer turns out to be yes, and 
moreover, exact reconstruction of x ( n )  can be performed 
with ajinite amount of computation (in fact, with only 
finite impulse response (FIR) filters). Reconstruction pro- 
cedures are most easily obtained by treating this problem 
using the polyphase framework for multirate filter banks. 
Section I11 of this paper deals with this problem in greater 
detail, along with extensions to the two-dimensional case. 
Even though the difference operators used here are the 

Fig. 1. The M-band multirate analysis/synthesis system. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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Fig. 2. A band-limited sequence, and a procedure to decimate it by the 
noninteger factor 3 /2 .  

same as those in [37], the purpose and problem statement 
in [37] are completely different. 

As a second example, let x ( n  ) be a sequence band-lim- 
ited to the region I w 1 < 2 a / 3  [Fig. 2(a)]. We know that 
we can obtain a lower-rate signal with the same amount 
of information simply by creating a continuous time sig- 
nal (by low-pass filtering) and resampling at two-thirds of 
the original rate, resulting in an obvious data-rate reduc- 
tion. A direct discrete-time method for performing the 
same data-rate reduction is also well known [IO] and is 
shown in Fig. 2(b). Here, the signal rate is first increased 
by a factor of 2 [by inserting a zero-valued sample be- 
tween every two adjacent samples of x ( n ) ] ,  and then fil- 
tered to ensure that the “image” created by the zero-in- 
sertion operation is eliminated. The resulting sequence 
x , ( n ) ,  which is band-limited to I w 1 < n/3 ,  can be de- 
cimated by a factor of 3 without causing any aliasing. The 
output x 2 ( n )  has the same spectrum [Fig. 2(c)] as that of 
x ( n ) ,  except that it is stretched by the factor 3/2. Now, 
is this the only way to perform data-rate reduction? 

Imagine that the sequence x ( n )  under consideration has 
been generated at a point where we do not have adequate 
signal processing facilities (such as computational and 
real-time resources). We wish to transmit the signal after 
performing the simplest possible data-rate reduction. It is 
then up to the receiver (who has sufficient funds, time, 
patience and other resources) to figure out the original 
x ( n ) .  Such a scheme, for example, can be useful in mo- 
bile communications systems in which there are several 
moving transmitters, and a central fixed receiving station 
with sufficient signal processing facility. Now the wisdom 
gained from the “folk theorem” tells us that if we simply 
“drop” one out of every three samples of x( n ) ,  thereby 
retaining the average “sampling rate” required by the 
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signal bandwidth, we ought to be able to subsequently 
reconstruct zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx ( n ) .  Not surprisingly, once again, this turns 
out to be true, even though the amount of computation for 
reconstruction required at the receiver-end increases with 
desired accuracy. In any case, if this problem is cast in 
the framework of polyphase digital filter banks, the so- 
lution looks surprisingly simple, leading to closed-form 
expressions for the synthesis filters. The mathematical tool 
for this purpose can be derived by adapting the results of 
[5]. Section IV gives a detailed treatment of this problem, 
along with expressions for the digital synthesis filters. 
Design examples, where such synthesis filters are approx- 
imated with linear phase FIR filters, are included. 

Notations: The letters zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAw and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAQ refer to the frequency 
variables for discrete and continuous signals, respec- 
tively. All signals under consideration are assumed to be 
of finite energy. A contlnuous time finite-energy signal 
x, ( t )  is said to be a-band-limited (or a-BL) if its Fourier 
transform exists, and is zero for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI f l l  I a. The quantity 
0 2a is the Nyquist rate. The letter Tdenotes 27r/0 = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
r / a ,  which is the Nyquist sampling period for the signal 
under consideration. A “band-limited sequence” x ( n  ) 
has a Fourier transform which vanishes for w,  I 1 w 1 I 
7r, where w, < T. Theorems which deal with the subsam- 
pling of sequences are referred to as “sampling theorems 
for sequences. ” 

For real-valued a, sgn [a ]  is equal to 1 for a > 0 and 
-1 for a < 0. Boldfaced quantities represent matrices 
and vectors. The row and column indexes of matrices and 
vectors are always assumed to begin at zero. Superscript 
T and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1- represent transposition and transpose conjugation, 
respectively. A Vandermonde matrix [ 181 V is a square 
matrix (say M X M )  whose Ith column has the form [ 1 
a/ a: * I ] . If al are distinct (and none equal to 
zero) for 0 I l I M - 1 ,  such a matrix is guaranteed to 
be nonsingular. Given an Z x K matrix A and a J X L 
matrix B, the Kronecker product [19], denoted by A zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC3 
B, is defined to be the ZJ X KL matrix 

a M - l  T 

I -  . . .  I 

La,-;,oB a l - , , lB a , - l .K- lB  - 1  
The following can be shown to hold for Kronecker prod- 
ucts [19]: 

(A (8 B)(C @ D) = (AC) @ (BD), (2)  

provided the matrix products are all defined. 
Purpose of the Paper, and Outline: The first purpose 

of the paper is to explicitly place in evidence the relation 
between digital filter banks and sampling theorems for 
continuous-time signals. The other purpose is to develop 
new sampling theorems for sequences (called difference- 
sampling theorems) along with reconstruction proce- 
dures, both for 1-D and 2-D sequences. Finally, nonuni- 
form sampling theorems for sequences are derived, along 
with reconstruction techniques. 

In Section I1 we begin by reviewing certain topics in 
multirate digital signal processing, with emphasis on 
maximally decimated analysidsynthesis systems. These 
systems are closely related to the generalized sampling 
framework for continuous-time signals developed in [5] 
and [6]. In Section I1 we review this relation as well. Sec- 
tion 111 introduces the new family of difference sampling 
theorems for sequences. The procedure for reconstructing 
the original signal from the sampled subsequences is 
greatly facilitated by use of the polyphaseframework [ 111,  
[12], which is defined and used in Section 111. The differ- 
ence sampling theorems are extended to the two-dimen- 
sional case in the same section. Section IV introduces 
nonuniform sampling theorems for sequences, by making 
use of the analysis/synthesis system introduced in Section 
I1 as a tool for representation of nonuniform sampling. As 
explained in Section IV, a simple proof for several non- 
uniform sampling theorems for continuous-time signals 
can be obtained from these results, along with reconstruc- 
tion procedures using filter banks. 

11. DESCRIPTION OF ANALYSI~~YNTHESIS SYSTEMS 

The purpose of this section is to summarize some rel- 
evant results concerning the filter bank system of Fig. 1 ,  
and place in evidence its close connection with the gen- 
eralized sampling theorems for continuous-time signals 
introduced earlier [5], [6]. The crucial building blocks in 
this structure are the decimator and the interpolator [lo], 
[12] which are separately shown in Fig. 3. The M-fold 
decimator (M  being an integer) is described by the input- 
output relation y D ( n )  = x ( M n ) ,  which means that only 
the input samples occuring at times which are multiples 
of M are retained. The “interpolator” is characterized by 
the input-output relation 

x ( n / M )  if n is a multiple of M 

otherwise. 
( 3 )  

In other words, the interpolator inserts M - 1 zero-valued 
samples between adjacent samples of x (n ) .  Even though 
this operation is not “interpolation” as understood intu- 
itively, the name interpolator has become more or less 
standard and will be used in this paper. The operation of 
(3) can be described in the z domain by Yl( z )  = X (  z ), 
so that Y , ( e J w )  = X ( e J M w ) .  Thus, Y , ( e J ” )  has period 
27r/M. Fig. 4(b) shows this effect which is called imag- 
ing. The images, which occur in the region outside - 7 r / M  

< w < r / M ,  can be eliminated, if desired, by low-pass 
filtering. 

The effect of the decimator in the transform domain is 
more involved. Since the time scale shrinks by a factor of 
M ,  this results in a transform-domain stretching. The 
expression for Yo ( e  J“) is a sum of uniformly shifted ver- 

M - 1, i.e., 
sions [IO] ofX(eJ‘IM), viz., X(eJ(w-2nm)/M ) , O I r n l  

M - 1  

Y,(Z) = .L c X(z’IMW”) 
M m = O  

(4 )  



I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
VAIDYANATHAN AND LIU: CLASSICAL SAMPLING THEOREMS zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1483 

x / n )  +yo (n) 

The M-told decimator 

x ( n )  WY, (n) 

Fig. 3 .  The basic multirate building blocks. 

The M-told interpolator 

- 2 x  -n 0 x 2 n  

- 2 x i M  0 2 n i M  

- 2 x  -n 0 n 

Fig. 4 .  Transform-domain effects of decimation and interpolation. 

where W = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAe-J2*/M. If the sequence x ( n )  is not band- 
limited to the region zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI w I  < zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAr / M ,  decimation causes 
aliasing. Under this condition, the terms with m > 0 can 
have an overlap with the m = 0 term, in the region 0 I 
w zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 r ,  as demonstrated in Fig. 4(c), for M = 2. If an 
M-fold interpolator follows an M-fold decimator (as hap- 
pens several times in Fig. l ) ,  the result is stretching fol- 
lowed by compression in the frequency domain (Fig. 5). 
As long as x (  n )  is band-limited to 1 w 1 < r / M ,  the over- 
laps in Fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 are absent. 

A.  Equations Governing the Analysis/Synthesis System 
With the above descriptions for decimators and inter- 

polators, one can immediately write down the relation be- 
tween x(  n )  and the reconstructed signal 2 ( n )  in Fig. l .  
This relation is [12], [20]-[24] 

M -  1 
1 M - l  

x ( Z )  = -  X(ZWm) c Hk(ZWm)Fk(Z), ( 5 )  

i.e., x ( z )  has the form x(Z)cfc: Hk(Z) F k ( Z ) / y  plus 

M m=O k = O  

terms containing X ( z W ) ,  X ( z W 2 ) ,  and so on. So X ( z )  is 
a linear combination of X (  z )  and the alias-components 
X ( z W m ) ,  m # 0. The right-hand side of ( 5 )  can be ex- 
pressed as X T ( z )  H ( z )  f ( z ) / M  where 

X'(Z) = [ X ( Z )  X ( Z W )  * * * x ( z W M - ' ) ] ,  

f T ( z )  = [FO(z) F l ( z )  ' FM-l (z) ]  (6)  

and 

[ H ( z ) ] ,  = H m ( z W k ) ,  0 I k, m I M - 1. (7) 

For arbitrary X ( z ) ,  the alias components X ( z W m ) ,  m > 
0, which are present in X ( z )  can be cancelled only by 

I- I . w -n 

-K IM KIM 

Fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5. The effect of decimation followed by interpolation. 

choosing H k ( z )  and F k ( z )  such that 

where T ( z )  is some function of z .  The M X M matrix 
H ( z ) ,  which was formulated in [2 13 ,  is commonly called 
the alias-component matrix (AC-matrix for short). Given 
a set of M analysis filters H k ( z ) ,  if we can solve for the 
synthesis filters Fk ( z )  such that (8) holds for some T( z ) ,  
then the system of Fig. 1 is alias free. With aliasing thus 
cancelled, the system of Fig. 1 is time invariant and 

. M - 1  

(9) 

describes the overall transfer function x( z ) / X (  z ). If 
H k ( z )  and F k ( z )  are chosen such that T ( z )  is equal to a 
delay, then 2 ( n )  = c x ( n  - no) and the system is said to 
have the perfect-reconstruction property [ 121, [24]-[26]. 
There exist systematic procedures for designing perfect- 
reconstruction systems for arbitrary M ,  based on a class 
of transfer matrices called lossless matrices [ 121, [24], 
[26], [27], but these will not be considered further in this 
paper. 

B. The Generalized Sampling Framework for  
Continuous-Time Signals 

We shall now look into the relation between the dis- 
crete-time filter bank of Fig. 1, and the continuous-time 
analog shown in Fig. 6. This relation gives us additional 
insight, helping us to derive new sampling results, and 
redrive existing ones. The network of Fig. 6 was first used 
by Brown [6] to give a reinterpretation of the generalized 
sampling framework of Papoulis. In this system, Ha,k(S) 
and s) are analog filters, respectively, called analysis 
and synthesis filters. The input x, ( t )  is a-band-limited, 
with Nyquist rate 0 = 2a. The filtering operation is fol- 
lowed by the sampling of the continuous time signals at a 
rate 2 a / M ,  which is M times smaller than the Nyquist rate 
8. In other words, the sampling period for each x,,k( t )  is 
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Fig. 6. The multichannel sampling framework for continuous-time sig- 
nals. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

TI = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAMT = M a / u  (with T 2 a / 0  = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn/a). As the 
filters s) are not ideal band-limiting functions, the 
undersampling of the filtered signals Xu,k( s) results in 
aliasing. Since the sampled version of ~ , , ~ ( t )  has the 
transform zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
X u ( $ )  can be expressed in terms of Xu(s), H o , k ( s ) ,  and 
F a , k ( S )  as 

l a  
X u ( s )  = - c xu 

TI m = - w  

Once again, the terms in (1 1) corresponding to rn # 0 are 
the aliasing terms. If these are somehow cancelled off by 
appropriate combinations of ( s )  and s), the re- 
sulting system is time invariant with transfer function 

(12) 
1 M - ’  

TU(4 = k?o H U , k ( S )  F U . k ( S ) .  

If the transfer functions H u , k ( ~ ) ,  F u , k ( ~ )  can be chosen 
such that (12) equals a delay, then we have perfect recon- 
struction. 

= s k ,  this 
corresponds to differentiation. It is possible in this case to 
show [6] that there will indeed’ exist synthesis filters 
Fu,k (s )  (not necessarily realizable) such that we can re- 
construct zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx, ( t )  perfectly. This gives us a justification of 
the family of derivative sampling theorems. As a second 
example, if we take H u , k ( ~ )  to be pure delays, the result 
can be used to derive nonuniform-sampling theorems. 

The main difference between the formulations of Fig. 
1 and Fig. 6 lies in the summation over rn, which is finite 
in (5) and infinite in (1 1). If we write the conditions for 
alias cancellation as in (8), we have an infinite number of 
equations (one for each r n ) ,  with each equation having M 
terms (one for each k ) .  The band-limited nature of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAxu ( t ) ,  
however, helps to reduce (11) into a finite summation, 
with only A4 values of rn (even though the exact values of 
m participating in the summation depend on the value of 
Q under consideration, as we shall see). These principles 
are best demonstrated with an example, which follows 
next. 

If we choose the analysis filters as 

Example 2.1: Consider the case of two channel: in Fig. 
6 so that M = 2 .  Perfect reconstruction [i.e., Xu(s) = 
X, ( s )  ] can be obtained [for arbitrary a-band-limited 
x, ( t ) ]  if the following equations are satisfied for all rn: 

where 6 ( m )  is the unit pulse function (zero for rn # 0 
and unity for rn = 0). In this example, we have TI = 2T 
= 2 a / u  so that 2 a / T 1  = u. Fig. 7 shows a possible 
sketch of X,(jQ - j am)  for various values of rn. If we 
choose the synthesis filters such that Fa,k( jQ) is zero for 
1 Q 1 2 u, the only values of rn that remain to be consid- 
eredarern = 0, 1 ,  - 1 .  For -u  < Q I 0, only theterms 
in (13) corresponding to rn = 0 and m = - 1 need to be 
considered. For 0 I Q < u, one has to consider only m 
= 0, 1 .  In order to obtain perfect recovery of the signal, 
it therefore remains only to solve for Fa,k (s )  from the 
equations 

H u , o ( j Q )  Hu, l ( .m ] [ F , , o ( ~ Q ) ]  = [g’] I 
] [ F u > o ( i Q ) ]  = [;] 

Hu,o( jQ + ju) H,,l(jQ + j.) F,,l(jQ) 

(14) 

for -u  < Q 5 Oand 

Ha, I (  j Q )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[::I:;:)-- ju) jQ - ju) jQ) 

(15) 

for 0 5 Q < u. Assuming that the 2 x 2 matrices above 
are nonsingular in the indicated frequency ranges, it is 
possible to solve for F’u,o( jQ) and Fa,l( jQ) in each fre- 
quency band. For example, consider the case where 
H,,,(s) = 1 and H,,,(s) = s. This corresponds to the 
situation where the signal xu ( t )  and its derivative are sam- 
pled at one-half the Nyquist rate. Solving for the synthesis 
filters F u , k ( j Q ) ,  we obtain [6] Fu ,o ( jQ)  = T l ( u  - 
IQl)/u, and F u , l ( j Q )  = - jT,  sgn [Q ] /u fo r  ( Q (  I u. 
With jQ) = Fu, l (  jQ) = 0 for I Q I > u, the synthe- 
sis filters are completely defined. The corresponding im- 
pulse responses are f a , o ( t )  = 4 sin2 ( u t / 2 ) / u 2 t 2 ,  and 
& ( t )  = 4 sin2 (ut/2)/u2t. These filters are indeed un- 
realizable ( F u , o ( s )  has poles at s = 03 and F , , , ( s )  is an 
ideal Hilbert transformer). This is not surprising; indeed, 
the simplest version of sampling theorem (Nyquist’s theo- 
rem) also requires an ideal low-pass filter for theoretically 
perfect reconstruction. 

For arbitrary M ,  the situation is similar. Assuming that 
F a , k ( j Q )  = 0 for 1 Q I  1 u, it only remains to cancel 
aliasing in the region I Q I < u. Once again, because of 
the a-band-limited nature of x, ( t ) ,  it can be verified that 
for a given Q in this region, only M values of rn have 
nonzero contributions. As pointed out in [5], if the anal- 
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Fig. 7. A band-limited spectrum, and the alias components for various 
values of m. Here M = 2. 

YSiS filters are chosen to be H a , k ( S )  = s k ,  the M X zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAM 
matrices involved are Vandermonde matrices with dis- 
tinct columns, and therefore nonsingular for all Q. This 
guarantees existence of synthesis filters (not necessarily 
realizable) for perfect recovery of xu ( t ) .  

111. SAMPLING THEOREMS FOR SEQUENCES BASED ON 

FINITE DIFFERENCES 

Consider the discrete-time structure of Fig. 1, where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
H k ( z )  and F k ( z )  are digital filters. Unlike the continuous 
time case, it is possible to find several realizable examples 
of Hk ( z )  and Fk (z ) ,  which give rise to perfect reconstruc- 
tion [ i .e.,  2 ( n )  = cx (n  - no)].  Such examples can be 
found in [12] and [24]-[26]. In principle, these can be 
used to generate new sampling theorems for sequences, 
and there exist an infinite number of these! The purpose 
of this section is to consider a particular subclass of such 
systems, where Hk ( z )  are discrete difference operators. 
In this case, it is possible to find surprisingly simple 
closed-form expressions for the synthesis filters Fk ( z )  
which, in addition, are FIR. 

A. Theorems for One-Dimensional Sequences 

M = 2, with analysis filters 
It is best to begin with an example. Consider the case 

H,(z) = 1, H , ( z )  = 1 - z-I.  (16) 

Let x o ( n )  and x , ( n )  be the outputs of H o ( z )  and H , ( z ) ,  
respectively. Then x o ( n )  = x ( n )  and x l ( n )  = x ( n )  - 
x (  n - 1 ), Le., xI( n )  is the first difference of the sequence 
x ( n ) .  After decimating x o ( n )  and x l ( n )  by factors of 2 ,  
how do we get back the sequence x (  n)?  For this, we em- 
ploy (8): we have to find F a ( z )  and F , ( z )  such that (8) 
holds with T ( z )  equal to a delay. The relevant equations 
to be solved are 

since W = = - 1 in this case. Solving for F o ( z )  
and F l ( z ) ,  we obtain F o ( z )  = 1 + z - l ,  F l ( z )  = -1, 
along with T ( z )  = z - l ,  so that i ( n )  = x (n  - 1).  As a 
motivation for this kind of undersampling, consider a hy- 
pothetical sequence x ( n )  as in Fig. 8. Assume that the 
sample values x (  n )  are 16-bit, nonnegative, fixed-point 
numbers such that the difference x ( n )  - x ( n  - 1 ) has 
magnitude not exceeding 256. The difference can there- 
fore be represented by 8 rather than 16 bits, and a sign 

x ( n ) - x ( n - l )  

Fig. 8. The binary register patterns fora hypothetical sequence and its first 
difference. 

bit. Clearly, a decimated version of x ( n )  along with a 
decimated version of x ( n  ) - x ( n  - 1 ) can be transmitted 
with fewer bits per unit time than x ( n )  itself. The simple 
reconstruction filters F o ( z ) ,  F , ( z )  above enable us to re- 
cover x (  n )  subsequently without error. In practice, the 
properties of the first difference are typically more com- 
plicated than this, but any strong correlation between suc- 
cessive samples can be exploited in this manner. Such 
correlation is, of course, the well-known motivation for 
many data-compression techniques known today [3 13. 

For arbitrary M, if the analysis filters in Fig. 1 have the 
form 

H k ( z )  = ( 1  - z - ' ) ~ ,  0 I k 5 M - 1, (18) 

we can once again invoke (8) to solve for the synthesis 
filters. The AC-matrix H ( z )  has ( m ,  k )  element of the 
form ( 1  - z - ~ W - " ) ~  and, hence, HT(z) is a Vander- 
monde matrix. Since its determinant [18] is a product of 
factors of the form ( 1  - z-l  W-' - 1 + z - ' W - " )  with 
m # 1,  this determinant is a constant times a delay, and 
is nonsingular on the unit circle. Accordingly, by choos- 
ing T( z )  to be an appropriate delay, we can uniquely solve 
for F k ( z )  which are guaranteed to be FIR filters. 

m e  Polyphase-Component Framework: It is of interest 
to derive closed-form expressions for these synthesis fil- 
ters. It is known that the use of the polyphase formulation 
[ 1 11, [ 121, [24] leads to substantial simplification during 
such derivations. We shall therefore define and use the 
polyphase approach next. 

Let H ( z )  = Eflm= --o) h ( n ) z - "  be any transfer function. 
Let us decompose the impulse response sequence h ( n ) 
into M subsequences as follows: e,,, ( n )  = h ( m  + nM ), 
0 I m 5 M - 1. In other words, e , , , (n )  is an M-fold 
decimated version of h ( m  + n ). Let E,,, ( z )  denote the z- 
transform of e, , , (n) .  We then have H ( z )  = 
Et:; z-"E,,,(zM). This is called the polyphase represen- 
tation of H ( z ) ,  and E,,,(z) are the polyphase components 
of H ( z )  [see Fig. 9(a)]. This representation has been 
found to be very useful in the design of uniform filter 
banks [ lo],  [ 111, [23], and in the implementation of "de- 
cimation filters" [ 101. An alternative polyphase represen- 
tation [Fig. 9(b)] takes the form H ( z )  = 

Z - ( M -  I - m ) R  ,,, ( z M ) .  This is obtained merely by de- 

fining R,,, ( z )  = EM - l - ,,, ( z  ), and is found to be conve- 
nient in designing synthesis banks and interpolation filters 
[IO]. 

Let us express each analysis filter in Fig. 1 in the 
polyphase form 
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(a) (b) 

Fig. 9. Two types of polyphase representations of a discrete-time transfer 
function. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
M -  1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Hk(z)  = Z - ~ E ~ ( Z ~ )  (19) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
m = O  

where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAEkm ( z )  are the polyphase components of Hk (2). 

Similarly, let 
M -  1 

Fk(Z) = m = O  c z-(M-'-m)Rmk(ZM). (20) 

This enables us to represent the analysis/synthesis system 
as shown in Fig. 10, where E(z)  = [Ekm(z)] and R ( z )  
= [ Rmk (z ) ] are M x M transfer matrices. This represen- 
tation has been used in the past to obtain necessary and 
sufficient conditions for perfect reconstruction [24]. In this 
section, we use this representation to find out expressions 
for the synthesis filters F k ( z )  which should be used in 
conjunction with (18) so as to obtain,f(n) = cx(n  - no). 

If the matrix R ( z )  is equal to E-'( z) ,  then the structure 
of Fig. 10 reduces to Fig. 1 1 ,  for which we can verify 
easily [24] that i ( n )  = x ( n  - M + 1). For the choice 
of analysis filters as in (18), the M X M matrix E ( z )  be- 
comes 

1 

E =  

1 

0 0  

- 1  0 

-2 1 

-3  3 - 1  . . .  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 

. . .  . 

In words, the rows of E(z) are constants, equal to the 
binomial coefficients occurring in ( 1 - z - ' ) ~ .  In the dis- 
cussions to follow, E in (21) will be called a binomial 
matrix. Clearly, it is a nonsingular matrix (all eigenval- 
ues equal to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA 1 ), and we can find a unique R = E-'.  
The inverse turns out to be particularly simple, as stated 

Lemma 3.1: The M X M binomial matrix E in (21) is 
its own inverse. 

As a result, if we set R = E in Fig. 10, we have a 
perfect reconstruction system! For example, with M = 3, 
the synthesis filters can be obtained as 

' 

. below. 

[ F o ( z )  F , (z )  F'(Z)] = [z-' z-l 11 1 - 1  0 [: -: :I 
(22) 

Fig. 10. Representation of analysis and synthesis banks in terms of poly- 
phase components. 

Fig. 1 1 .  A simple perfect-reconstruction system. 

so that F o ( z )  = 1 + zC1 + z-', F , ( z )  = -zP1 - 2, and 
F2(z) = 1.  As a general rule, it can be verified that, with 
the analysis filters as in (18), the synthesis filter Fk(z) 
computed with R = E has order M - 1 - k for 0 I k 
s M - 1 .  

It now remains to prove Lemma 3.1. A proof based on 
combinatorial arguments can indeed be given, but we 
consider the following argument to be simpler: define 

It is then clear by definition by E that 

Ee(z-') = e ( l  - z - I ) .  (24) 

Thus, the effect of the operator E on e(x)  is to replace 
the argument x with 1 - x .  As a result, 

E'e(2-I) = Ee(1 - z - ' )  = e(z- ' ) .  (25) 

for M distinct values zk of z .  The M x M matrix of 
e(z i l ) ' s  in (26) is Vandermonde with distinct columns, 
and is therefore nonsingular. As a result, it follows that 
E' = I, proving the lemma. The results of the above dis- 
cussions can be summarized as follows. 

Theorem 3. I - n e  Diference-Sampling Theorem: Let 
x ( n )  be any sequence and let xk ( n )  be the kth difference 
sequence, defined to be such that Xk(z) = (1 - 
z-l )kX(z). Then x (  n)  can be recovered from M-fold de- 
cimated versions of x k ( n ) ,  0 s k I M - l .  The recon- 
struction filters F k ( z ) ,  0 I k s M - 1 are FIR with 
orders M - 1 - k, and are given by 

The filters (1 - z - ' ) ~  are all high-pass filters. For rea- 
sons somewhat analogous to the continuous time differ- 
entiators, these filters tend to amplify computational noise 
for large k. However, since the coefficients in both R and 
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E are integers, it is possible to perform all operations using 
integer (modulo-) arithmetic, thereby preventing roundoff 
errors altogether. 

Other variations of the analysis filters, such as Hk(z) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
= ( 1  - z-')'( 1 + z - ' ) ~ - '  which can provide low-pass, 
bandpass, and high-pass functions for appropriate choice 
of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi (with 0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 i I k ) ,  are possible. With analysis filters 
of this form, we still have a lower triangular E matrix, 
with diagonal entries equal to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf 1. A unique zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAR = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE-' 
therefore exists, from which the reconstruction filters 
Fk(z) can be found. These obviously remain FIR filters 
(with integer coefficients) of orders not exceeding M - 1. 

B. Extension to 2 - 0  Sequences 

Consider a two-dimensional (2-D) sequence x ( nl , n2)  
with transform X(zl,  z2).  In this section we would like to 
extend Theorem 3.1 to the 2-D case by appropriately re- 
formulating the filter bank of Fig. 1, and redefining dif- 
ference sequences for the 2-D case. In the 2-D case, the 
analysishynthesis system takes a more complicated form 
[16], [29], [30] with zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAM N  (rather than M )  branches. The 
(m,  n)th branch is shown in Fig. 12, where Hmn(zl, z 2 )  
and Fmn(zI, z2 )  are analysis and synthesis filters, respec- 
tively. The downgoing arrow represents decimation by the 
factor M in the horizontal direction and by the factor N in 
the vertical direction. The upgoing arrows represent the 
insertion of M - 1 zero-valued pixels between adjacent 
pixels in the horizontal direction, followed by the inser- 
tion of N - 1 zero-valued pixels between adjacent pixels 
in the vertical direction. The signals p m n ( n t ,  n 2 )  are 
merely added to obtain the reconstructed signal R ( n1 , n2 ). 

In the one-dimensional case, the simple filter bank 
shown in Fig. 11 has the perfect reconstruction property, 
and this fact was used in Section 111-A to obtain Theorem 
3.1. Our first task now will be to find the equivalent of 
Fig. 11 in the 2-D case. Essentially, we would like the 
set the analysis filters to be all possible combinations of 
the delays z;" and z;". To be more specific, if we let 
Hmn(zI, z2)  = Z:"Z;" f o r0  5 m I M - 1, 0 5 n 5 N 
- 1, then the synthesis filters can be easily chosen to en- 
sure perfect reconstruction. The following result has been 
shown in [16]. 

Lemma 3.2:  In the filter bank of Fig. 12, if we let 
Hmn(zl, z 2 )  = zlmz2", then the choice of synthesis filters 
according to Fmn(zI ,  z2)  = z ; ( ~ - ' - ~ )  z 2  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- ( N - l - n )  results 
in perfect reconstruction, and we have R ( n , ,  n 2 )  = x ( n l  
- M + 1, n2 - N + 1).  

Consider a simple example with M = N = 2. Let 
HW(ZI,  ~ 2 )  = 1, HIO(ZI, ~ 2 )  = 1 - z:', HOI(ZI, ~ 2 )  = 1 
- z;', HII(ZI ,  z 2 )  = ( 1  - z ; ' ) (  1 - z ; ' )  so that 

Pm,(n+.n2 I 

Fig. 12. The ( m ,  n )  th branch of the two-dimensional analysis/synthesis 
system. 

We can redraw the system as in Fig. 13, with the matrix 
A representing the 4 x 4 matrix in (28). If the matrix B 
in the figure can now be chosen to be A-',  then the re- 
sulting system has the perfect reconstruction property ac- 
cording to Lemma 3.2. It can be verified in this example 
that A-'  = A so that the synthesis filters for perfect re- 
construction become FW(z I ,  z2)  = 1 + 2;' + z;' + 

z;', and FI1(z1, z 2 )  = 1. These are multiplierless FIR 
filters. 

General Definition of Higher Order Di'erences: How 
do we generalize this result to the case of arbitrary M 
and N? The first step is to define 2-D differences appro- 
priately; the second step is to identify the A matrix, and 
invert it. Let us begin by reconsidering analysis and 
synthesis filters of the form ' Z;~Z;", and 

, respectively. Let e(z l ,  z2)  denote 
the MN x 1 vector of these analysis filters, i.e., 

z;'zz', F l O ( Z 1 ,  z 2 )  = -1 - z;', F, , (Z l ,  z2) = - 1  - 

Z;(M- 1 - m )  - (N-  I - n )  
z2 

[e(zl, z ~ ) ] , + ~ ~  = z;"z;", o 5 m c: M - 1, 

0 i n  I N  - 1, 

(29) 

and let r ( z I ,  z2 )  be the M N  x 1 vector of synthesis filters 
with components 

0 I m I M -  1 ,  

O S n I N - 1 .  (30) 

If we now insert the M N  X M N  matrices A and B in a 
manner analogous to Fig. 13, then the new set of analysis 
and synthesis filters can be expressed in terms of e(z l ,  
z2), r (z l ,  z2),  A and B. Defining the MN x 1 vectors 
h(z l ,  z 2 )  and f ( z l ,  z2)  of analysis and synthesis filters as 

[ h ( z 1 2  z 2 ) ] m + ~ n  = H m n ( z I ?  z 2 ) ?  

[ f (z l ,  ~ 2 ) ] , + ~ ~  = F m n ( z I ,  ~ 2 )  

(31) 

for 0 5 m 5 M - 1, 0 I n I N - 1, we have 

~ ( z I ,  z2 )  = Ae(zl, z 2 ) ,  fT(z l ,  z2)  = rr(zI,  z2)B. 

(32) 

In fact, given any set of analysis and synthesis filters with 
degrees in z;' and 22' not exceeding M - 1 and N - 1, 
respectively, we can always represent them in the form 
(32) by appropriate definitions of A and B. Let us define 
two vectors of delay elements e,(z l )  = [ 1 z l l  

- I  
7 e2(z2) = 11 z 2  

z;2 . . . Z ; ( M - I ) ] T  
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-1 0 0  0 0  0 0  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 0 -  

1 - 1 0  0 0  0 0  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 0  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
1 - 2 1  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 0  0 0  0 0  

1 0 0 - 1 0  0 0  0 0  

A =  1 - 1  0 -1 1 0 0 0 0 

1 - 2  1 - 1  2 -1 0 0 0  

1 0 0 - 2 0  0 1  0 0  

1 - 1 0 - 2 2  0 1 - 1 0  

-1 -2 1 -2 4 -2 1 -2 1- 

Fig. 13. The two-dimensional difference-based analysis/synthesis system 
redrawn. Here zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAM = N = 2. 

. (42) 

z;2 . . . z p v  3 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT . Then it is easy to see that e(z l ,  z 2 )  

e(z1, z 2 )  = e2(z2) (8 edz1). (33) 

is the Kronecker product 

For example, the vector [ 1 z;' zT1 z;'z;'ITin (28) 
can be written as 

(34) 

We now make the observation that the set of analysis fil- 
ters in (28) can also be written as a Kronecker product 

- Z Z ' )  1 
In analogy with this, we define the vector of MN analysis 
filters h ( z1 , z 2 )  for the general case, as a Kronecker prod- 
uct 

h(z1, z 2 )  = h2(z2) (8 hI(Zl) (36) 

where 

hl(zl) = [l ( 1  - z l ' )  (1 - z;'? (37) 
. . . (1 - z;')"-']' (38)  

Now define E, to be an M x M binomial matrix of the 
form (21), and E2 to be the corresponding N X N matrix. 
It is then clear that we can write hl (z l )  = Elel(z l ) ,  h2(z2) 

= E2e2(z2), so that (36) gives h(z l ,  z 2 )  = { E2e2(z2)} 
(8 { Elel( z1 ) } . By making use of the identity (2) for Kro- 
neckkr products, we obtain 

h(z1, z 2 )  = (E2 (8 E,)(e2(z2) (8 edZ.1)). (39) 

h(zi, z2) = Ae(z19 z2) (40) 

In other words, we have 

where A = E2 (8 El .  As an example, let N = M = 3. 
The binomial matrices El and E2 are 

-: "I 
-2 1 
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[;io;] = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[;I. (47) 

IV. NONUNIFORM SAMPLING THEOREMS FOR 

SEQUENCES zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Consider a sequence zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx(n)  with transform as shown in 

Fig. 2(a). As mentioned in Section I ,  it is possible to re- 
duce the data rate by the factor 3/2 without losing infor- 
mation about x(n). Three methods were mentioned in 
Section I to accomplish this goal. The third method, which 
was the least conventional (and the least complicated as 
far as the transmitter is concerned) will now be elabo- 
rated. 

The general problem we wish to consider here is this: 
let x(n)  be a sequence band-limited to 1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAw I < zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( L / M )  n, 
where L and M are integers with L I M .  Imagine that the 
time axis is divided into intervals of length M .  We wish 
to retain an arbitrary subset of L samples (out of M )  in 
each of these intervals, and discard the rest. (This subset, 
although arbitrary, is fixed for all intervals.) From the re- 
sulting sequence, how does the receiver recover the orig- 
inal sequence x ( n ) ?  In view of the "folk theorem," we 
expect this to be possible, and indeed, the key ingredients 
for obtaining such reconstruction can be inferred from the 
results of [5] (bunched sampling of continuous time sig- 
nals). In this section we give an independent, detailed 
presentation directly in terms of the sequences involved, 
by using a polyphase filter bank framework. Design ex- 
amples based on FIR reconstruction filters at the receiver 
end are also included. 

A.  The M = 3 ,  L = 2 Case 
It is most convenient to consider the special case of M 

= 3, L = 2 in sufficient detail, and then take up the gen- 
eral situation. In Fig. 1, let us assume M = 3, and con- 
sider the following peculiar choice for the three analysis 
filters: 

Ho(z) = 1, H,(z) = z-l, H,(Z) = 0. (45) 

Fig. 14 shows such an analysis bank. The sequences zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAxo( n )  
and x , ( n )  contain subsets of samples of x ( n )  as shown 
separately in Fig. 15. The effect of the analysis bank is 
merely to retain two out of three successive samples of 
x( n )  and discard the rest. Clearly, the following samples 
of x ( n  ) are transmitted by the analysis bank: 

- x( -4) x( -3) x( - 1 )  x(0) 4 2 )  x(3) 

x ( 5 )  x ( 6 )  x(8) x(9) * - * . (46 1 
Assuming that x (n )  is band-limited as in Fig. 2, we wish 
to obtain the two synthesis filters F k ( z ) ,  k = 0, 1 such 
that the reconstructed sequence f ( n  ) is equal to x ( n ) [or 
at least approximates a delayed version of x ( n ) ] .  From 
(8) in Section I1 we know that we will have f ( n )  = x ( n )  
( i .e.,  T(z) = 1)  if and only if the following equations 
are satisfied for all z: 

L -I 

Fig. 14. The analysis bank, which retains two out of three samples from 
the sequence x ( n ) .  

I 1 0  1 2 3 4 5 6 7  

Fig. 15. Example o f x ( n ) ,  and the subsequencex,(n) andx , (n ) .  

We have to solve for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAF o ( z )  and F l ( z )  from here. Recall 
that the set of equations (8) came from (5) and that m 
represents the row index of the AC matrix. Accordingly, 
the mth equation in (8) is the necessary condition for can- 
celling off X( z W") from X( z). For stead -state frequen- 
cies, we have X(zW") = X(e i" e - , 2 T m J ) ,  since w = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
e-J2r/3 for M = 3. Fig. 16 shows sketches of X(zW) and 

Let us assume that F k ( e i " )  = 0 for 1 w I 2 2n/3, SO 

that any aliased component of X( z) in this frequency range 
gets eliminated. It then remains only to adjust the re- 
sponses of Fk( e J " )  in the band 1 w I < 2n/3 such that the 
aliased components X( zW) and X( zW2) are cancelled. 
Because of the band-limited nature of X(z), the quantity 
X(zW) occupies only the region 0 I w < 4a/3 while 
X(zW2) = X(zW-') occupies the region -4a/3 < w 
I 0. Accordingly, we have to satisfy only two equations 
in each of these two frequency regions: 

X(ZW2 1. 

(48 1 
and 

, - 2 ~ / 3  < w I 0. 

(49 1 
Solving these, and multiplying the solutions with e-'* to 
avoid noncausality , we get 

c + j s ) ,  0 I w < 2n/3 

c - j s ) ,  -2n/3 < w I 0 

otherwise 

( 5 0 )  
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B . 
- 2 X  -2X13 0 2x13 2 X  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

0 . 
-2X zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-2X/3 0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAZi'tci3 2X 

x/zw 2 ,  

w . 
-2X -2Ri3 0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2x13 2X 

Fig. 16. The sketches of X ( z )  and the two alias components, for A4 = 3. 

and 

1 - c - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAj s ,  

1 - c + j s ,  

0 5 w < 2 a / 3  

-2a/3 < w 5 0 

otherwise, 

Fl(e'") = 

(51) 

io, 
where we use the notations c = cos (2n /3 )  and s = -sin 
( 2 ~ / 3 ) ,  so that W = e-J2=I3 = c + js. Let GL(z) rep- 
resent an ideal low-pass filter with GL( e'") = 1 for 1 w \ 
< 2a/3 and G,(e'") = 0 for ( 0 1  1 2a/3.  Let GH(z) 
represent an ideal Hilbert transformer, Le., GH( e'") = j 
sgn [w] .  We can then write the solutions (50) and (51) as 

F , ( z )  = { 1 - c - SG~(Z))  G~(z). (52) 

In summary, given the sequences xo(n) and x , ( n ) ,  if we 
pass them through the ideal filters F,,(z) and F , ( z ) ,  re- 
spectively, and add the results, we get back the delayed 
sequence x ( n  - 1 )! 

In practice, of course, we have to approximate the ideal 
responses of GH(z) and GL(z). This can be done most 
conveniently with linear-phase FIR filters [32], so as to 
avoid phase distortion completely. The low-pass filter 
should have a symmetric impulse response, whereas the 
Hilbert transformer should have an antisymmetric im- 
pulse response [32]. The specifications for the approxi- 
mations are typically as shown in Fig. 18, with the band- 
edges located according to reconstruction accuracy 
desired. Let NL and NH denote the lengths of the FIR fil- 
ters used for GL(z) and G&). Fig. 17 shows a structure 
for the complete analysis/synthesis system, where K = 

The Hilbert transformer in practice has zero gain for w 
= 0, so that perfect reconstruction of X( e'") is possibly 
only at frequencies excluding the neighborhood of w = 0. 
With the specifications of Fig. 18, the region -0,. I w 
I 0, cannot be reconstructed. However, by making 0, 
smaller, we can reduce this nonreconstructible neighbor- 
hood to any desired extent. Since the response of the Hil- 
bert transformer for 1 w 1 > w, is immaterial (because the 
low-pass filter cuts it off anyway), it can be chosen to 

( N H  - 1 w .  

Fig. 17. The complete analysis/synthesis system for the L = 2, M = 3 
example. 

/Tr lf'.;/. 
f f  

WP 0 5  e!? 8s 

(a) (b) 

Fig. 18. Specifications of band edges for (a) the low-pass filter and (b) the 
Hilbert transformer, to be used with the synthesis bank. 

minimize design complexity. For example, if we choose 
8, = ?r - 8, and design 1 GH(eJ") 1 to be symmetric with 
respect to w = a / 2 ,  then approximately 50 percent of its 
impulse response coefficients are equal to zero (provided 
NH is odd [32]). 

Design Example 4.1: For an example of this kind of 
reconstruction, consider a finite-length real sequence x( n )  
of length 71. Due to finiteness of the length, x ( n )  cannot 
be band-limited, but we can make it approximately so; the 
magnitude of X( e'") is shown in Fig. 19(a), showing that 
x ( n )  is essentially band-limited to the region 1 w I < 2 a / 3  
(the normalized frequency in the plot is defined to bef = 
w/2n, which equals 0.5 at w = a). The sequences x o ( n )  
and xl( n )  defined in Fig. 14 have transforms as shown in 
Fig. 19(b), and contain in-band aliasing terms (region 1 w [ 
< 2n /3 )  and out-of-band aliasing terms (region 1 w 1 2 
2 a  /3  ) . In order to reconstruct x ( n  ) using the scheme of 
Fig. 17, a linear phase low-pass filter GL (z)  with param- 
eters w,, = 0.58a, w, = 0.70?r, and NL = 73, which has 
a stopband attenuation exceeding 55 dB, was used along 
with a linear-phase FIR Hilbert transformer GH( z )  with 
0, = 0.04a, 0, = 0 . 9 6 ~ ,  and NH ,= 51. Fig. 20 shows 
the magnitude of the transform X(e'") of the recon- 
structed signal, which is seen to be very close to that of 
X(e'"). The responses of the filters used are shown in 
Fig. 21. Th: linear nature of their phase responses guar- 
antees that X(z) is free from phase distortion. The total 
group delay caused by the analysis/synthesis system is 
equal to 1 + ( N L  - 1 + NH - 1) /2  = 62 samples. The 
time domain plots of x ( n  ) and f ( n  + 62) are shown in 
Fig. 22, demonstrating the almost perfect nature of the 
reconstruction. Notice that it is necessary cor the pass- 
bands of the two filters to be good, so that X(ej") is re- 
constructed accurately. 

The effect of the low-pass filter in Fig. 17 is to elimi- 
nate the out-of-band aliasing terms, whereas the Hilbert 
transformer cancels the in-band aliasi?g terms. As a dem- 
onstration, Fig. 23 shows a plot of I X( e'") 1 with a poor 
Hilbert transformer ( NH = 11, and 0, is larger). The ef- 
fect of residual in-band aliasing is evident here. 
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Fig. 19. (a) The quantity zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( X ( e l U )  I for Example 4 .1 .  (b) The transforms 
of the decimated sequences x o ( n ) ,  x l ( n ) .  
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Fig. 20. The quantity Id(eJ'") l  for the reconstructed sequence i ( n )  in 
Example 4 .1 .  

Because of the use of nonideal filters GL ( z  ) and GH ( z  ), 
in practice, aliasing is not completely cancelled. Assum- 
ing that it has been reduced to the desired extent, the over- 
all distortion transfer function T ( z )  of (9) can be written 
as T ( z )  = : [ H o ( z )  F o ( z )  + H , ( z )  F l ( z ) ]  which reduces 

0 .  
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Fig. 21. Magnitude responses for the filters used in Example 4 .1 .  
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Fig. 22. (a) The sequence x ( n ) ,  for 69 5 n I 128. (b) The reconstructed 
sequencei (n)  for69 + 62 5 n 5 128 + 62, for Example 4.1. 

to (1  - c ) z - ' G L ( z ) .  We therefore see that the imperfec- 
tion of the Hilbert transformer does not affect T ( z )  at all. 
It affects only the alias-component appearing around w = 
0. 

B. The General Case of Arbitrary M ,  L with L < M 
Assume next that x(  n )  is band-limited to 1 w I < L n / M ,  

where L c M .  If L < M / 2 ,  then we can decimate x (  n )  
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Fig. 24. The analysis-bank model for retaining L out of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAM samples, and 
the corresponding synthesis bank. 
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Fig. 23. The transform of the reconstructed sequence in Example 4.1, with 
a poor Hilbert transformer. 

Fig. 25. The L frequency regions involved. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
quency range -L?r/M I o I L?r/M is divided into L 
consecutive regions of equal length zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 a / M .  For 0 I i 5 

L - 1, let region i represent the interval [ -L?r/M + 
2 a i / M ,  -L?r/M + 27r( i + 1 )/MI. It can then be ver- 
ified that the subset of L equations in (54) ,  which should 
be satisfied in region i ,  are the first L - i equations, and 
the last i equations. With some algebra these equations 

by an integer factor and convert the problem to one where 
L > M / 2 .  Accordingly, we assume L > M / 2  here. Re- 
ferring back to the M-channel analysis/synthesis system, 
consider the choice of analysis filters 

(53) 
Z-"', 0 I k I L - 1 

0, L I k S M - 1 .  can be rearranged into 

( z  W i )  -"OFflo ( z )  

- (ZW') - " R , ( Z )  - i d  ( z  W ' )  -nL - IFflL- z )  

(55) 

~ ~~ ~ 

The integers nk are such that 0 5 no < nl < - * < 
nL- I M - 1. Fig. 24 depicts the situation. The analysis 
bank therefore retains L out of a set of M samples; for 
example, in the region - (M  - 1 )  I n s 0, the samples 
numbered -nL- 1 ,  -nL-2, - * - , -no are retained. This 
pattern of undersampling repeats periodically. Our task 
now is to find the L synthesis filters F,,, ( z )  such that 2 ( n )  
is an accurately reconstructed version of x (n ) .  If perfect 
reconstruction is desired, we have to satisfy (8) with T ( z )  
equal to a constant. Thus, it is necessary and sufficient to 
satisfy the following equation: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAZiLi ( zW" )  -"'F,,,(z) = 
M6(m) for 0 I m I M - 1, and for each z .  Here 6 ( m )  
is the unit pulse function and W = e-J2*/M. After a reor- 
dering of equations, these can be written as 

L -  1 

c Wm"k~-"kFf lk(z)  = M 6 ( m ) ,  0 5 m I M - 1. 
k = O  

(54) 

Because of the band-limited nature of X( ejw) ,  only a sub- 
set of L equations in (54) are required to be satisfied for 
a given frequency o. Fig. 25 explains this, where the fre- 

where the M on the right-hand side occurs at the ith po- 
sition. The L x L matrix on the left-hand side is a Van- 
dermonde matrix with distinct columns and is hence non- 
singular. This establishes the existence of a unique set of 
synthesis filters (not necessarily realizable) for perfect re- 
construction. Denoting the inverse of the L x L matrix in 
(55) by U, we finally arrive at 

f ( z )  = Mui, for region i, ( 5 6 )  

where f ( z )  is a column vector whose kth component is 
(zW'>- " 'F , , (z ) ,  and ui is the ith column of U. Thus, the 
quantity z-"'Fflk ( z )  is equal to a complex constant in each 
of the L frequency regions indicated above. Piecing to- 
gether these constants gives the complete solution for the 
synthesis bank. In practice, however, digital filters should 
be used to approximate this piecewise constant response, 
and discontinuities occur at the junctions of the frequency 
regions, giving rise to reconstruction errors. 

Design Example 4.2: Let L = 3, no = 0 ,  nl = 1, and 
n2 = 2 .  Then the matrix U is 
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w5 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- w4 w2 - w4 w2 - w 
w 2 - w 4  w 4 - 1  1 - W 2 ]  1 w 2 - w  1 - w 2  w - 1  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 

-31114 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-1114 0 n14 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA311i4 

(57) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAFig. 26. The responses of the two ideal low-pass filters involved in the 
M = 4, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAL = 3 case. 

L _1 

W(W4 - 1)  + 2WZ(1 - W') 
U =  . 

Taking for an example M = 4, and solving for the syn- 
thesis filters, we obtain where the matrix P ( z )  is given by 

a 3 
- I w < - a  
4 4 

a 3 
( 1 + j ,  - 5 w C - n  4 4 

and Fo(e'") = F l ( e i " )  = F2(eJ")  = 0 for I w I > 3a/4. 
These filters can be expressed in terms of ideal low-pass 
filters and Hilbert transformers as follows. Let GL,(z)  and 
GLz( z )  be ideal low-pass filters with responses as shown 
in Fig. 26, and let G H ( z )  be the ideal Hilbert transformer 
defined earlier. Then 

Fo(z )  = (1  + GL,(z) - [1 - GL~(Z) ]GH(Z) )GL , (Z ) ,  

Fl(z)  = 2z{ 1 - G L ~ ( z ) }  GL, (z ) ,  

F ~ ( z )  = z'( 1 + G L ~ ( z )  + [1 - GLZ(Z)]GH(Z)) GLI(Z)- 

(61) 

With causal linear-phase FIR filters of lengths N L I ,  NL2,  
NH for GL,(z) ,  GLz(z) ,  and G H ( z ) ,  respectively, we fi- 
nally obtain a causal implementation of the system. For 
example, 1 - GL,(z) in (61) must be replaced with z - ~ '  
- GL2(z)  where K2 = (NLz  - 1)/2. After working out 
the details, the complete synthesis bank can be expressed 
as zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

[ F O M  F l ( 4  F2(41 

= GLI(Z) [ 1 GL2(4 GH(4 GLZ(4 GH(Z)]P(Z) 

(62) 

with K = ( N H  - 1) /2  and K2 = (NLz  - 1)/2. The re- 
sulting synthesis bank structure is as shown in Fig. 27. 

C. Relation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAto Continuous-Time Sampling 

In Fig. 24, L samples are retained out of every M sam- 
ples. Let mk, 0 5 k I L - 1 denote the sample numbers 
for the samples retained in the region 0 I n 5 M - 1. 
Clearly, 0 I mo < ml - < m L P 1  I M - 1. Lety(k)  
be the sequence obtained by undersampling x ( n  ) in this 
manner. Then y ( k )  = x(nko + k l M ) ,  where ko = k mod 
Land k = ko + k,L.  

Suppose that x ( n )  has been obtained by uniform sam- 
pling of a signal x , ( t ) ,  i.e., x ( n )  = x,(nT,)  where T, is 
the sampling period. Then the set of samples y ( k )  can be 
regarded as nonuniformly spaced samples of x, ( t ). More 
specifically, y ( k )  = x, ( tk) ,  where tk = [nko + k l M ] T , .  
In Section IV-B, we saw that x (  n )  can be recovered from 
y ( k )  (as long as the bandwidth requirements are satis- 
fied). In other words, by knowing the nonuniformly 
spaced samples of x, ( t), the corresponding uniformly 
spaced samples x, (nT, ) can be recovered. Since x, ( nT, ) 
represents an oversampled version of x, ( t )  (for L < M ), 
we can recover x, ( t ) from x, (nT, ) in the traditional way 
(low-pass filtering). This proves the "nonuniform sam- 
pling theorem" for continuous time signals, under the as- 
sumptions that 1) sampling times are integer multiples of 
a real number T,, and 2) the sampling pattern repeats pe- 
riodically with period MT,. The first assumption is equiv- 
alent to saying that the ratio of any two sampling times tk 
and t,, is rational. This is not a serious loss of generality 
in practice. The second assumption may not always be 
valid. However, by letting the integer M in Fig. 24 to get 
arbirarily large, one can make an asymptotic argument in 
this case, to understand more general versions of the "folk 
theorem. " 
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Fig. 27. A causal implementation of the complete linear-phase synthesis 
bank for the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAM = 4, L = 3 example. 

V. CONCLUDING REMARKS 

The main emphasis of this paper has been to apply the 
structural framework of Fig. 1 in order to enhance the 
understanding of several sampling theorems for se- 
quences. Unlike in the continuous-time world, it is pos- 
sible to reconstruct a sequence exactly from generalized 
subsamples, and such reconstruction can sometimes be 
done with no multiplication operations. Indeed, there ex- 
ists a whole family of perfect reconstruction systems with 
FIR filters for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAHk (z ) and Fk (z ), all of which in principle 
lead to a family of sampling theorems. The polyphase for- 
mulations (Figs. 9 and 10) are found to be particularly 
useful in obtaining most of these theorems in a simple 
manner. These same formulations have been used in the 
past for the design of the analysis filters with optimal 
stopband attenuation, under the constraint of perfect re- 
constructibility of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx ( n  ). 
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