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0. Introduction. With respect to the boundaries of the Schottky
spaces many results were obtained by Chuckrow, Marden, Bers, Sato,
Rodriguez, and others. Chuckrow [2] studied the boundary groups of the
space as limits of sequences of Schottky groups, and Marden [6] showed
by studying the boundary groups of the Schottky space and the classical
Schottky space that not every Schottky group is classical. On the other
hand, Bers [1] and Sato [12], [13] studied the augmented Schottky space
obtained by adding points representing compact Riemann surfaces with
nodes to the Schottky space. Sato [14] obtained a uniformization theorem
of compact Riemann surfaces with nodes. The boundary of the Schottky
space congists of the boundary points due to Chuckrow, namely some
diserete groups, and the boundary points due to Bers-Sato, namely points
representing compact Riemann surfaces with nodes (Rodriguez [11]).

In this paper we will consider a subspace of the classical Schottky
space of genus two, which is called the classical Schottky space of real
type of genus two, and we will determine the structure of the boundary
of the subspace. The space consists of all equivalence classes of marked
classical Schottky groups generated by the following Mobius transforma-
tions A, and A,: A;(2) = (a;z + b)/(c;z + dy) (a;, by, ¢;, d; € R, a;d; — bje; # 0;
i=1,2). We will divide the space into eight subspaces according to
type (see §1). The space of the fourth type corresponds to the
Teichmiiller space for tori with a hole, with respect to which beautiful
results were obtained by Keen [3].

This is the first part of a series of papers entitled “Classical Schottky
groups of real type of genus two”. In the first part, we will only
consider the spaces of the first and fourth types. The first part has the
following three aims: (1) to represent the shape of the spaces of the first
and fourth types by using the coordinates introduced in Sato [12], [13]
(Theorems 1 and 4); (2) to determine fundamental regions for the Schottky
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modular group of genus two acting on the above spaces (Theorems 2
and 5); (8) to consider which Riemann surface a point on the closure of
the spaces represents. By combining our results (Theorems 1 and 4)
with Purzitsky [9, Theorems 2 and 3], we see that the Schottky spaces
of the first and fourth types coincide with the classical Schottky spaces
of the same types, respectively.

In §1 we will state definitions and divide the Schottky space of real
type into eight subspaces according to type. In §2 we will consider
automorphisms of the free group on two generators and list properties
of the automorphisms in a series of lemmas. In §3 we will represent
the shape of the classical Schottky space of the first type by using the
coordinates introduced in Sato [12], [13]. In §4 we will determine a
fundamental region for the Schottky modular group acting on the space.
In §5 we will consider which Riemann surface a point on the closure
of the space represents. In §6 we will treat the classical Schottky space
of the fourth type. In §7 we will consider the relationship between the
Teichmiiller space in Keen [3] for tori with a hole and the space of the

fourth type.
Thanks are due to the referees for their careful reading and valuable

suggestions.

1. Definitions.

1.1. DerFINITION 1.1. Let C,C,.;-+-;C, C,, be a set of 29, 9=1,
mutually disjoint Jordan curves on the Riemann sphere which comprise
the boundary of a 2g-ply connected region w. Suppose there are g
Mobius transformations A,, ---, A, which have the property that A; maps
C; onto C,,; and Ajw)Nw =@, 1 =j=<g. Then the g necessarily
loxodromic transformations A; generate a marked Schottky group G =
(A, -+, A,) of genus g with w as a fundamental region. In particular,
if all C; (y=1,2, ---,2g) are circles, then we call 4,, ---, A, a set of
classical generator of G. A classical Schottky group is a Schottky group
for which there exists some set of classical generators.

DEFINITION 1.2. We say two marked Schottky groups G =
(A, +++, A, and G = <ffl, cee, /I,} to be equivalent and denote the fact
by G ~ G if there exists a Mobius transformation 7 such that ff,- = TA; T
for all j=1,2 -+, 9. The Schottky space of genus g, denoted by &,,
is the set of all equivalence classes of marked Schottky groups of genus

g=1.
DEFINITION 1.8. The classical Schottky space, denoted by &, is
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defined to consist of all elements of &, for which there exists some
set of classical generators. We denote by &P the set of all equivalence
classes of marked Schottky groups G = (4,, .-+, A,>) of genus g such
that A, ---, 4, is a set of classical generators.

1.2. In this paper, we only consider the spaces &, &}, and & of
genus g = 2. Let G = {4, A,) be a marked Schottky group. Let »;
(In;1 > 1), p; and p,; (J = 1, 2) be the multiplier, the repelling and the
attracting fixed points of A;, respectively. We define t; by setting ¢; =
1\ (7 =1,2). Thus t;eD* = {2]0 < |z] < 1}. We determine a MGcbius
transformation T by T(p,) = 0, T(p,) = « and T(p, = 1 and define p by
e = T(p,). Thus peC — {0, 1}.

REMARKS. (1) Let G,=<{4,, 4,>) be a fixed marked Schottky
group. Let C,, C; C,, C, be mutually disjoint Jordan curves and w,
a fundamental region as in Definition 1. Let C,, be a Jordan curve in w,
such that C, and C,, (resp. C, and C,) are in the interior (resp. the
exterior) of Cy,. Then 3, = {C,, Cy, Cy, Cu; Cs} is a standard system of
Jordan curves (see [14, p. 558] for the definition).

(2) We can define a mapping ¢ of &, into D**x(C — {0,1}) by
setting #([G]) = (¢, t,, 0), where [G] denotes the equivalence class of G,
that is, a point in &, We denote by &,3,) the image of &, under
the mapping ¢. We call &, the Schottky space associated with X,.
We similarly define the classical Schottky space associated with X,, which
is denoted by ©&%Z,), and we can similarly define the space &X(X,).
Conversely »,, », and p, are uniquely determined from a given point
T = (t, t, 0) € D*X(C — {0, 1}) under the normalization condition p, =0,
Py = c and p,=1; we define n; (j =1,2) and p, by setting \; = 1/¢;
and p, = p, respectively. We determine A7, 2), A,(z, 2z) € Mob from 7 as
follows: The multiplier, the repelling and the attracting fixed points of
Az, z) are \;, p; and p,,;, respectively. Thus we obtain a mapping + of
D*x(C — {0, 1}) into Mob by setting +(r) = {(A,(z, 2), A,(z, 2)). Then we
note that +r¢ = id. (see [13, pp. 28-29] for the detail).

DEFINITION 1.4. A Mobius transformation A(2) = (az + b)/(cz + d) is
called a real Mobius transformation if a,b, ¢, de R and ad — be = 0, If
G = (A, ---, A,) is a marked (classical) Schottky group such that A; is
a real Mobius transformation for each j=1,2, ---, g, (that is, ¢(|G]) ¢ R®
if g =2), then we call G a marked (classical) Schottky group of real
type.

In the case of g = 2, there are eight kinds of marked (classical)
Schottky groups of real type as follows.
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DEFINITION 1.5. Let (¢, t,, 0) be the point in &,%,) corresponding
to the equivalence class [G] of a marked Schottky group G = {4,, 4,>.
(1) G is of the first type (Type I) if ¢, >0, £, > 0 and o > 0.
(2) G is of the second type (Type II) if ¢, >0, ¢, < 0 and o > 0.
(8) G is of the third type (Type III) if ¢, >0, t, <0 and p < 0.
(4) G is of the fourth type (Type IV) if ¢, >0, t,> 0 and o < 0.
(5) G is of the fifth type (Type V) if ¢, <0, £, >0 and o > 0.
(6) G is of the sixth type (Type VI) if £, <0, ¢, < 0 and o > 0.
(7) G is of the seventh typve (Type VII) if £, <0, £, < 0and p < 0.
(8) G is of the eighth type (Type VII) if ¢, < 0, £, > 0 and p < 0.

DEFINITION 1.6. For each k=L II, ..., VIII, we call the set of all
equivalence classes of marked Schottky groups of Type k or the set of

all points (¢, £, o) of Type k the real Schottky space of Type k, and
denoted it by R,S,.

DEFINITION 1.7. For each k = I, II, ..., VIII, the intersection of RS,
with &YJ,) is called the real classical Schotthky space of Type k, and is
denoted by R,©;. We denote by R,&Y the intersection of R,&, with
&3, for each k=1, 1I, -.-, VIII.

2. Automorphisms of a free group on two generators.

2.1. Let G = (A, A, be a free group on two generators. We will
use the following theorem in §§4 and 6.

THEOREM A (Neumann [6]). Then group @, of automorphisms of G
has the following presentation:
0, = {N,, N,, N;|(N,N,N,N,)* =1, N;'N,N,N,N,N,N,N,N, =1,

N,N,N,N, = N,N,N,N,> ,

where

Ni: (A, A)— (A, A7), Ni:(4, A,)— (4, A)

and

N;: (A, A,)— (4, AA) .

Let G = {A,, A,> be a marked Schottky group. Then S = 2(G)/G is
a compact Riemann surface of genus 2, where 2(G) is the region of
discontinuity of G. The homeomorphisms of the Riemann surface S
induced by the elements of @, include orientation preserving as well as
orientation reversing ones. The mapping N, preserves orientation, while
N, and N, reverse orientation.
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2.2, Let E Dbe the space of marked free groups on two generators.
By defining N; (j = 1,2, 3) as in Theorem A for each G = {4, A,y € E,
we can regard N; as automorphisms of E. If G = (4, 4, and G =
{4, AZ> are equivalent marked freg groups on two generators, then
Ni({A, A)) is equivalent to N;({4,, 4,)) for each j =1, 2, 3. Therefore
we can regard N; (=1, 2, 3) as automorphisms of the space of all
equivalence classes of marked free groups on two generators.

DerFINITION 2.1. Let ¢, and 4, be automorphisms of G = {4, A,.
We say ¢, and ¢, are equivalent if ¢,(G) is equivalent to $,(G), and denote
this by ¢, ~ ¢,.

DEFINITION 2.2. Let G = {(A4,, A,) be a marked Schottky group and
@, the group of automorphisms of G. The modular group of the Schottky
space of genus 2 or the Schottky modular group of genus 2, which is
denoted by Mod(&,), is the set of all equivalence classes of orientation
preserving automorphisms in @, We denote by [®,] the set of all
equivalence classes of automorphisms in @,.

Let (¢, t,, 0) be the point in &,(3,) corresponding to a marked Schottky
group G = {4,, Ay. Let (.9, t,(9), 0(5)) be the images of (¢, t,, 0) under
the mappings N; (j =1, 2, 3), that is, (£,(1), £,(1), 0(1)), (£.2), £2), 0(2))
and (£,(3), t.(3), p(3)) are the points in &,(F,) corresponding to marked
Schottky groups (A, A;*, <4, A,> and {A, A, A,>, respectively. Let »
and ¢ be two solutions of the equation

t1(1 — 1,)2" — (10 — t, — Otk + t1)z + P(l - tz) =0.

Weset X=p0—t,—ptt,+¢ and Y =p0 —t, + ptt, — {,. Then by easy
caleulation, we have the following.

LEMMA 2.1. (1) 1) =t, (1) = t, and o(1) = 1/0.
(2) 6(2)=1t, t,(2) =t, and 0(2) = p.
(3) t(3) =t &G + 1/t.3)" = Y/(t:"ti*(0 — 1)),

and for Type 1

X/((@""1 —t) i p>0 and ¢>0

32 1/0(8)2 =
3 + 1/0(3) - X/(p"#*(1 —¢t)) if p<0 and ¢<O0,
and for Type IV,

(=) + 1/(—p(3))"
= (X* — 4,01 — £,))"”/(—0)"8* (1 — t,) .
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2.38. Let A(®) = (az + b)/(cz + d), ad — be = 1, be a loxodromic trans-
formation. We denote by A(A) (|A(4)] > 1), p(A) and ¢(A) the multiplier,
the repelling and the attracting fixed points of A, respectively. We
define t(A) and p(4A) by t(A4A) = 1/x(4) and p(A4) = ¢(A)/p(A), respec-
tively, if p(4) = 0. Let (¢, t, o) be the point in &,(F,) corresponding
to a marked Schottky group G = (4,, 4,>. We can set

Al(z) = z/tl
and

Ay2) = (0 — t)z + p(t, — 1)/(A — t)z + (0 — 1)) .

We note that t; = t(4;) (j =1, 2) and p = p(4,). We denote by Z the
set of all integers. We easily see the following lemmas.

LEMMA 2.2. {A7Y A7Y is equivalent to (A, A,).

PROOF. We set T(2) = p/z. Then TA'T*= A4, and TA;'T™ = A,.
q.e.d.

LEmMMA 2.3. Ifl+m=mn, 1, m neZ, then (A, ATA,) is equivalent
to (4, ArA,Ab.

LEMMA 2.4. Let t, be a real number with 0 < t, < 1. Assume that
1/tk < p < 1/t¥* for an integer k. Let m,necZ. Then
(1) p(ATA4,) > p(ATA) if n > m;
(2) t(A7A,) <tArA) if In+ k| > |m + k| and
t(ATA,) = t(ATA,) of |n + k| = |m + k.

LEMMA 2.5. Let t, be a real number with 0 < t, < 1. Assume that
—1/8 < p < —1/tk for an integer k. Let m, neZ. Then
(1) p(A14,) < p(AT'4,) <0 if n > m;
(2) t(ArA,) < t(ArA) if In + k| > |m + k| and
t(A7A,) = t(ArA,) if |n + k] = |m + k).
We define 7z(A) by z(A) = t(4) + (1/t(A)) + 2 for a Mobius trans-
formation A(z). By noting that

T1 -8B
c(Ard) — oarar) = S S0

b

we have the following lemmas:

LemMMA 2.6. (1) Let p>1 and let n be an integer.
(i) If n> 0, then t(ArA,) < t{ATA7Y) and p(ATA,) > p(ATAY).
(il) If n <0, then t(ATA,) > t(ATASY) and 0(ArA,) > p(ATATY).
(2) Let 0<p <1 and let n be an integer.
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(i) If n >0, then t(ArA,) > t(ATAY) and P(ATA,) < P(ATATY).
(i) If n <0, then §(A1A4,) < H(A1A7") and P(ATA,) < P(ATAT).

LEMMA 2.7. (1) Let p < —1 and let n be an integer.
(i) If n >0, then t(ATA,) < t(ATA;Y) and P(ATA,) < p(AZATY).
(i) If n <0, then t(ATA,) > t(ATAY) and P(ATA,) < p(ATAY).

(2) Let —1<p <0 and let n be an integer.
(i) If n> 0, then t(ATA,) > t(ATAY) and p(ATA,) > p(ATAM).
(ii) If n <0, then t(ATA,) < t(A74A5Y) and p(ATA,) > 0(ATAY).

(8) Let p= —1 and let n be an integer. Then t(ATA,) = t(ATAT")
and P(ATA;) = p(ArAT).

LeMMA 2.8. Letl, m,neZ. Then

(1) #ATATY) = (A4, and p(ATA7)(AT4;) = 1.

(2) t(ArA4,) = t(AT"ATY) and P(ATA)P(AT"AY) = 1.

(3) tATAT) = H(ATAY) and 0(ATAT) = p(ATAD).

(4) t(ArATAD = t(ATHAD) and O(ATATAD) = p(ATT'AD).

3. The first type——The domain of existence.

3.1. In this section we will determine the shape of the real classical
Schottky space R:&; of type I in R®:. Throughout this section let

Al(z) = z/t1
and

Ay2) = (0 — )z + o, — )/(A — t)z + (08, — 1)),

where 0 <t <1, 0<¢t, <1 and p> 0. The following proposition is
fundamental in this section.

ProrosiTION 3.1. Flix ¢, with 0 <t, < 1.

(1) Letl<p<1ft. If&* =1 — t?0")/(0"* — i), then A A" is
a parabolic transformation whose fixed point is 7. Furthermore
G = {4, A) is a discontinuwous group and the region bounded by the
following four circles C,, C,, C, and C, is a fundamental region for G:

C |2| = p"*t",

Co |z — {1 + 0)/2 + p"1%}2| = {1 + p)/2 — p**t1")/2,

Gy |z] = 0%,

Ce |z — {07 + (0 + t)/(t. + 1)}/2] = {07 — (0 + t)/(t, + 1)}/2.

(2) Lett, <p<1l. If

B = (0 — B7)/(L — 70" ,

then A,A, is a parabolic transformation whose fixed point is EY*72.
Furthermore G = {A, A,> 18 a discontinuous group and the region
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bounded by the following four circles C,, C,, C, and C, is a fundamental
region for G:

C: |z| = p"4%,

Ce |z — {0 + (1 + p)/2Y/2] = {057 — (1 + 0)/2}/2,

Co 2] = o,

Co |z —{(0 + )/t + 1) + 0t*Y2] = {(0 + t)/(t. + 1) — 0417}/2.

This proposition is proved by straightforward computations.

For the sake of simplicity, we introduce the following notation:

un(ty 0) = (1 — £70)(0" — )
for each integer =.

PROPOSITION 3.2. Fix ¢, with 0 <t, <1.
(1) Let 1/t < p < 1/tF for a positive integer n. Then the inter-
section poimt of two curves

K(n):t? = —t,,_.(t, 0) and K'(n):ty*=t,,(t, 0)
18 P(n) = (tu t2,’n(t1)7 (on<t1))y where

B — ) — B — )

Lo n(t)? =
2, ( ) (1 . t;n——l)l/Z + (1 — t;»)l/Z

and
02 4] 4 {(1 — ) — )P
tinn(ge D )

(2) Letity < p <t for a positive integer n. Then the intersection
point of two curves
K_(_n): té/z = —tz,n—l(tv (0)-‘1 and K+(—n): téﬂ = tz,n(tu (0)_1
is P(—mn) 1= (, ty,_a(t), O_.(t), where

(L= )" — (1 — g
tf"_l)/z{ti/z(l — t?—1)1/2 + (1 — t;&)l/z}

pn(t1>l/2 =

t2,—n(t1)1/2 =

and
B 41 — {1 — 8T — )
t{"_l)/z(t}/z + 1) )

We have this proposition by elementary calculations.

REMARKS. (1) ¢&,,0) =8,_.(), 0.(t)o_.(t) =1 and P()= P(—1)
(cf. Lemma 2.8).

(2) {o.t)}and {¢,,.(t)} (n=1,2,3, :-+) are monotone increasing and
decreasing sequences, respectively.

p—n(tl)l/z =
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(3) Both {p_,(t)} and {t,_.(t)} (=128, ---) are monotone
decreasing sequences.
ProrosiTION 3.3. FlYz t, with 0 < ¢, < 1.

(1) Letl/ti <o <p,(t) (n=238, ). Ifti* = —t,,.(t, 0), then
ATTTATT s parabolic.

(2) Let lon(tl) <p< 1/tIL (1’1/ = 1’ 2, .- ')' If té/z = tz,n(tly lo)r then
ATAT 1s parabolic.

(3) Let p—'n(tl) <o < it ('n = 2, 37 v ) If té/z = "—t2,n—1(t1: (0)_1:
then A7 A, is parabolic.

(4) Let t7<pop<p_(t) (m=1,2,---). If t* =t,,(t, 0)™', then
AtA, is parabolic.

3.2. We introduce the following sets in R®. For the sake of
simplicity, we write = for a point (¢, t,, o) € R® in the definitions. We

set
Hn)={r][t,=0,tr""" <o <, 0<t, <1} (mz1),
H-n)={c|lt,=0,r<p<t30<t, <1 (n=1),
HlL,n)={r]t,=0, ;""" <o <" 0<t, <1} (n=1),
H-1, —n)={t,=0,<po<tz,0<t, <1} =1,
Fn)=1{t=—t,, (£, 0, 7" <0< 0,(t), 0<t, <1} (mn=2),
F(=n)={r|ti® = —t,,(t, 0)7 0.(8) <0 <EHH0<t, <1} (nz2),
F+(n) = {Tltllz = 2,n(t1! 40): pn(tl) <p <t 0 < t, < 1} (n = 1) ’
Fr(—m)={z|ti* = ,,(t, O T <o < p,), 0<t, <1} (nz1),
Fo={|0<t, <1, 0<t, <1, p=1}.
3.8. We now inductively introduce many surfaces from F*(n) and
F~-(n). Forn,=1,2,8,-.- and m;=2,3, ---, we let
F*(1, n) = N(F*(n)) (resp. F*(—1, —n) = N(F*(—=n,) ,
and

F=(1, my) = N(F~(m,)) (resp. F (-1, —my) = N(F(—mn,),
respectively, where N, is the automorphism defined in §2.
Forn=23, -+, n,=1,2, -+ and m;=2,3, ---, we let
Ft(n, m) = Ng™(F*1, no) , F*(—n, —ny) = Ny " (FH(—1, —n),
F-(n, m,) = N} Y(F-(1, m,)) and F~(—n, —m,) = N; " (F (-1, —m,),

where N, is the automorphism defined in §2.
Inductively, we now define: For n=2,38, ---, we let
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F+(1’ Ny * 00y Ny no) = NZ(F+(nkI cery Ny no)) ’
F+(n’ Ny ** %y Ny ’no) = NS”—l(F+(19 Mgy * 2y Ny no))

for n; 2103 <5k):

F—.(l’ Ny =ty Ny no) = NZ(F_(”LIH fey Ny, no)) ’
F—(ny Mgy * 00y Ny no) = N3n_l(F_(1y Mgy ***y Ny no))

for n,=2 and n; =21 (1=7=5k);

FH (=1, —my, «++, —my, —m) = Ny(F (=14, o+, —my, —my))
FH—=m, —my, «+¢, =0y —ny) = Ny " (FH =1, —ny, =0+, —Ny —Ny))

for m;Z1 (0=j<k);

F_<”'17 Ny *ty, — Ny —no) = NZ(F—(—nk) tery, TNy, —%0))
F_(—'n, Ny * 0y Ny '—no) = Na—(n—l)(F—(_l, Ny *tty — Ny —no))

for n,=22 and n, 21 A=Z55kh).

REMARKS. (1) F*(m,1)=F*(n) and F*(—n, —1)= F*(—n)

forn=1,2,....

(2) F{n,1)=F-(n) and F(—n, —1) = F~(n) for n =2,8, ---.
3.4, We have the following Lemmas 3.1, 3.2, 3.3 and 3.4 by

Proposition 2.1 and straightforward calculations.

+2, .- 0=5=h).

+3, .-

LEMMA 3.1. Let N, be the automorphism defined in §2.

(1) Nl(F+(nk! sy, Ny no)) =F+(—’i’bk, vy, —Ny, ‘—no) fo’r ’)’l,j: il,
(2) NF (Mg, oo, my ) = F(—my, -+0, —my, —my) for m,= %2,
and n; = +1, £2, --- A =5=Zk).

(3) N(F,) = F.,.

LEMMA 3.2. Let N, be the automorphism defined in §2.

(1) Ny(F*(n,)) = F*(n, + 1) for n, =1,
Ny(FH gy Mgy + v 0, M) = FH(my + 1, myy, o0, m)  for n, =1,

n;220=j=k—-1), k=1

(2) N3(F+(——Ink; — Mgy ** %, "—no)) = F+(_nk + 17 Ny * % —'no)

Jor n; =22 (057 2 k).

(3) Ny(F~(m) = F(n, + 1) for n, = 2,
Na(F_(nk’ Ny_yy *° 1?/0)) = F_</nk + 17 i1y *° % /no) fO’I’ Uz = ]-9

n;220=7=k~1),kz=1

(4) N(F~(—my) = F_(_“no + 1) for n, = 3,
N(E(—=Npy =Ny ** 0, =) = F(—my + 1, =y, 00, —1y)

for n; =22 (0255 k), k=1,

LeMMA 3.3. Let N, be automorphism defined in §2.
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(1) N(F* 1) ={(, 1, D|0 < ¢ <1}
(2) N (F~(2) ={t, 1, |0 <¢ <1}
(3) N(F"(—1)) ={, 1, D|0 <t <1}
(4) N(F7(=2)) ={¢, 1, |0 <, <1}
(5) Ni(Fy) = {(t, 0, 1/t)|0 < t, < 1}.
(6) N'(Fo) ={(,0,1)]0<t <1}

LEMMA 3.4. Let N, be the automorphism defined in §2.
(1) N(F*(—1, —2)) = F*(1, 2),
N(FH(—1, —ny)) = F*(1, 2, m, — 1) (m, = 3).
(2) Na(F+(—1’ _2’ Ny * —no)) = F+(17 Mo + 1’ Npzy =, no);
Na(F+(_]-7 T N1y T Np_ay _no)):F+(1, 2’ nk—l—li Mgy *° !no)
(My—y = 3)
(3) Ny(F (-1, -2) ={¢, 1L, D0t <1},
N(F~(=1, —ny) = F~(1, 2, my, — 1) (n, = 8).
(4) Ns(F—(—‘lr _‘2’ Mgy 0y _no)) = F—(ly Np—s + 1: Mgy ***, no)r
Ns(F—(_l, TNty —Npgy ** ——’I’bo))ZF_(l, 2, nk—x“—l: N2y ** 'no)
Jor n,_, =3 (k= 2).

3.5. We denote by M(1) (resp. M(—1)) the three-dimensional manifolds
bounded by HQ), H@3, 1), F*(1) and F, (resp. H(—1), H(—1, —1), F*(—1)
and F,), and denote by M(n) (n = +2, £8, --+) the three-dimensional
manifolds bounded by three surfaces H(n), F*(n) and F~(n). Then we
easily see the following lemmas.

LeMMA 3.5. If (¢, ¢, 0)ERSY, then 1 <o <1/t, or t, < p <1 for
each 0 <t <1.

LEMMA 3.6. Let (t,%, 0)eR:SY. If 0<t; £t and 0 <t £ t, then
(t;; t;y 40) € RI@gO-

From Proposition 3.1 and Lemmas 3.5 and 3.6, we have the following.
PROPOSITION 3.4. R:&Y = M(1)UM(-1).

3.6. We denote by Rj the set {(t,¢t, 0)eR*|0<t, <1, 0<t <1,
0 > 0}. We denote by M(n,, n,_y, *-+, n,) (resp. M{(—n,, —Ny_y, —7,)) the
three-dimensional manifolds in R} bounded by F'(n, 7, **+, %) and
F~ (g My *++, M) (veSD. FH(—my, —My_yy + -+, —1) and F(—ny, —ny,
e, =) form,=land n; =22 0=k —1).

REMARK. M(n) = M(n, 1) and M(—n) = M(—n, —1) for n = 2.

The following proposition follows from Lemmas 3.1, 8.2, 3.3 and 3.4.

PROPOSITION 3.5, Let N; (j =1, 2, 3) be the automorphisms defined
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in §2. Then for either n, =1, ;=22 0=57=k—-1), or n, = —1,
nm=-20=27=k-1),

(1) (i) N(M(1)) = M(—1), N(M(—1)) = M(1),

(1) NM(ng, My <+ 2y M) = M](V—,—(iki — Mgyttt —no)) (k= 1;)&; 1

(2) N(MO, may -, 1) = {gohs "o Mo 2o t) W 7 20

(3) (1) N(Mmy Mgy =+, M) = My, + 1, y_yy ==+, 1) of M =1
or n, = —2,

(ii) N(M(—-1, —2)) = M, 2),

N(M(—1, —mn,)) = M1, 2, n, — 1) for n, = 3,

(111) Ns(M('—‘l, —2, N * —no)) = M(l’ Np—e T+ 1, Np_s =, no) for
N(M(—1, =y, —Mygy =+ +, =) = M1, 2, ny_y—1, Wy_y, =+, M)

for my_ =23, n; =22 (0=j=sk—2), k=2

3.7. Noting that B:&; = Ug(&)) = Ug(M(1)U M(—1)), where ¢ runs
through Mod(&,), we have the following theorem from Proposition 3.5
and Theorem A.

THEOREM 1.

R:&; = f_j U (M mesy =y 1) UM(— 1 =Wy 0y — 1))
=0 e s

PrOBLEM. It is well-known that the classical Schottky space does not
coincide with the Schottky space (Marden [6], Zarrow [16]). Thus we
could ask: Does the real classical Stottky space R,S) of the k-th type
(k=111 ..., VIII) coincide with the real Schottky space R,S, of the k-th
type?

From the above theorem and Purzitsky [9, Theorem 3], the answer
to the problem is affirmative for the first type.

COROLLARY 1. R,&} = R:S,.

REMARK. An example due to Zarrow [16, p. 721] shows that the
answer to the problem is negative for the second type. However, recently,
we showed that the example constructed by Zarrow turns out to be a
classical Schottky group (cf. [16]). We have reasons to believe that
R, Rv&; and Rv;©&) coincide with RS, RvS, and RyuS,, respectively
(ef. [15]).

From Theorem 1, Corollary 1 to Theorem 1 and remarks after
Proposition 3.2 we have the following.

COROLLARY 2. Let G = {A,, A, be a purely loxodromic discrete group
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such that t, >0, t,> 0 and p > 0, where (t, t,, ) is the point in D**X
(C — {0, 1}) corresponding to (A, A;>. Then the following valids.
(1) Ift,=c and t, = ¢, for some positive constants ¢, and c,, then
1l/e £ p £ ¢ for a positive constant ¢ with ¢ > 1 depending on ¢, and c,.
(2) If t, = e, for some positive constant ¢, and if o =c or p = 1/c
for some comnstant ¢ > 1, then 0 <t,=< ¢, for a constant ¢, (0 <e¢, < 1)
depending on ¢, and c.

4. The first type—Fundamental regions.

4.1. In this section we will determine fundamental regions for [@,]
and Mod(&,) acting on R;&. Throughout this section let N; (j =1, 2, 3)
be the automorphisms defined in §2.

We set

Tonlt 0) = (L = pH9)(0 — t=57)
for 1/ 2p21/t7, 0<t, <l (=12, )
and
T, -ty 0) = (0 — tP7VH/(A — ptf17)
for 1=, 0<t, <l (=12, --).
We have the following proposition by straightforward computations.
PROPOSITION 4.1. Fuix t, with 0 <t < 1.
(1) Let 1/ti'=sp=s1/tt (n=1,2,--+). If t,=T,,{1, ), then
(A, A,y 13 equal to {A, A" 'A,> as marked groups. The points P(n) =
(ty ts.(t), P.(L) dfined in §3 and (t, 0, t7°"77) lie on the curve t,=

T, (. 0).

(2) Letti=p=str"(n=12,---). Ift,=T, L, 0), then (A, A;> is
equal to (4, A" 'A,) as marked groups. The points P(—n) = (t, t, _,(t.),
0_.(t)) defined in §3 and (¢, 0, t:™) lie on the curve t, = T, _.(t, ).

By Lemma 3.1 (3), the set of invariant points in R;&, under the
mapping N, is the surface F, defined in §2. By Lemma 2.1 (2) we easily
see the following.

PROPOSITION 4.2. The set of imvariant points in RS, under the
mapping N, is the surface

{(tu Tay p)eRI@ZItI = I, 0< t, < 1’ o> 0} .
We introduce the following sets in Ri: For n=1,2, --+, we set
L(n) = {(t, t @) e Ri|t, = Tt 0), 0.(8) = 0 <1/8, 0 <% <1}
and
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L(—n)={t, t, 0)eRI[t, =T, (¢, ), T S 0 < 0_,(t), 0 < t, < 1},
where R is as defined in §3.6. Then we easily see the following by
Lemma 2.1 (1) and (3).

PROPOSITION 4.3. (1) N,(L(n)) = L(—n) for n = +1, £2, «+.

(2) N(L(n)=L{n+1)forn=1,2, -+ or n = —2, —3, +-.,

(8) N(L(—-1)) = LQ).

REMARK. For a constant ¢, we set

D, ={t,t, eR&|1 <Pp<1/t,0<t, <L t,=c}.

Then the limit as ¢ — 1 of the images of D, under N, is the set F~(2)
defined in §3.

4.2. Now we will determine fundamental regions for [@,] and Mod(&,)
acting on R,&S,. We set

S = N,N,N, and T= N\N,.
Then S and T are elements in Mod(&,). We easily see that T ~ 1 and
(TS =1, where T* ~1 means that 7”7 is equivalent to the identity
mapping {(see Definition 2.1). We introduce p(t, t,) for 0 <¢ <1 and
0 <t, <1 as follows:
(0<t19 tz) = (1 + ti/ztz)/“i/z + tz) .

REMARK. T;,(t, o(t, t.) = t, and o(t, T,.(t, 0) = p.

THEOREM 2. Set
Fi[2.]) = {(t, t, 0) € R, |1 < 0 < 0y, 8, 0 < 2, < 2, 0 < 8, < 1}
Fi(Mod(&,)) = F1([9.]) U N,(F([®.]))

= {(t, t; P)E RS, | 0(t, L) <o <o, b)), 0#1, 0<E, <8, 0<E, <1}

Then F(([®,]) and Fi(Mod(&,)) are fundamental regions for [@,] and
Mod(&,) acting on R:iS,, respectively.

We obtain the proof by combining Theorem 3 and Proposition 4.4
which follow.

4.3. LemMmA 4.1. N}=1, N;=1, N,N,~ N,N,, NNN,N,N, ~1 and
S ~ N;t.

This lemma and the following lemma come from straightforward
calculations.

LEMMA 4.2, N,N/N,=8", NNIN,= 8T, N,N!N,~TS* and
N,N¢N, ~ TS*T for each integer m.
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Let A4, B, C, --- be distinct Mobius transformations. A word W in
A, B, C, --- is a finite sequence

Sifofs o+ foifm s

where each of the f,(k=1,2 -+, m) is one of the transformations
A BC, .-, A B, C? .-.. The length L(W) of W is the integer m.
For convenience we introduce the empty word 1 of length zero. If we
wish to exhibit the transformations involved in W, then we write
W(A, B, C, ---).

By Theorem A in §2, an element + in Mod(&,) is represented in one
of the following seven ways: (1) + = W(WN,) =N, neZ; (2) =
W(N,) = N, neZ; (8) + = W(N,) = N, neZ;, (4) v+ = W(N,, N,) where
L(W(N, N,)) is even and + = W(N,), W(N,); (&) ¢+ = W(N,, N,) where the
number of Ni'in W(N,, N,) is even and 4 = W(N,), W(N,); (6) ¥ = (N,, N;)
where the number of Nif' in W(N, N,) is even and + == W(N,), W(N,);
() v+ = W(N, N,, N,), where the sum of the number of Ni' and Ni' in
W(N,, N,, N;) is even and W(N,, N,, N,)is neither of (1) through (6) above.

THEOREM 3. The Schottky modular group Mod(&,) is generated by S
and T, that s,

Mod(®&,) = (T, S|{T* ~1,(TSy’ =1).

PrROOF. We will show that € Mod(&,) is represented by T and S
in each of the above seven cases.

Case (1). Since ¥+ = N* and N =1, we have + = 1.

Case (2). For the same reason as in Case (1), 4 = 1.

Case (3). Since N, ~ S!, we have v = W(N,) = N} = 8™,

Case (4). From Lemma 4.1, we see that 4+ = NN, = T, 44 = N,N,~ T,
or ¢ = 1.

Case (5). In this case we have four subcases: (i) 4 = N, NMN, .-
N,N*N,, (ii) 4 = N.N*N, - - - NN, (iii) = NN, - -« NJNJEN, (iv) 4 =

N, «-+» N.NP¢, Since the number of N, is even, we have 4 =

W(N,, N;) ~ 8™ for some integer m in each case by Lemmas 4.1 and 4.2.

Case (6). Similarly as in Case (5), we have four subcases:

(i) + = N,NuN, ... N,NixN, ~ (TS*T)S~"(TS"T) - - » S"e~1( TS T,

(ii) o = N,NuN, -+ Nit ~ (TS"T)S™™ .- (TS™*-1T)S~"*,

(iii) 4 = NuN, .+« N, NN, ~ S~(T8T)S~ 2 ... (TS*T), and

(iv) A = NuN,N2 ... NNtk ~ S~™(TS2T)S™ " ... (TS T)S ",

Case (7). We have the following four subcases:

( i )k P = U1N§1U2N§2U3 e UkNgkUHu

(ii)e ¥ = UNiU,Np2Us; - - - U N3#,

(iii), v = N»U,N2U,..- U, N#U,, and
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(iv)y, + = NpUNpU, ... UNp,
where U, (1=1,2, .-+, k + 1) are words W, (N, N,) in N, and N, such
that 3k, L(W/(N, N,)) is even.

By induction we will show that = W(N,, N,, N,) is represented by
S and T. First we note that NN, ~ N,N,. For k=1,

(i), = UNpU, There are three possibilities: + = N.N:N, =
ST o = N,NoN, ~ TS™; 4 ~ N,N,N1N,N, ~ TS ™T.

(ii), 4 = UNj* ~ N\N,N3+ ~ TS™™.

(iii), + = NuU, ~ NuN,N, ~ S™™T,

(iv), + = NuUN» ~ NuN,N,Nz = S~ TS,

We assume that in each of (i); through (v); ( =1,2, -+, k) 4 is
represented by S and T, that is, v+= W,;,(S,T) (j=1,2, -+, k; I =
1, 2, 8, 4), where the latter numbers 1, 2, 8, 4 correspond to i, ii, iii, iv,
respectively. Then we will show that in each of (i),,, through (iv),,,,
o is represented by S and 7.

(1 )ens
_ {< UNgU, -+ UN#Up )Nt Ussy) for Uy = NJN, or NN,
B (UN3U, - - UNi# Uy, )(Upy o Ni#+1U,y,)  otherwise ,
where U, U, = Uy, and L(U,,,,) is odd. In the first case « =
W,.(S, TYW, (S, T) and in the second case v = W, (S, )W, (S, T).
(11 )
— {( U1Ngl Uz e UkNgk)( Uk+1N;k+l) for Uk+1 = N1N2 or N2N1 .
~ (UNpU, «+ « UN3# Uy YUy oN3#+1) - otherwise
where U,.,,U,11. = Upys, and L(U,,, ) =1 and L(U,.,,) = 2. In the first
case =W, (S, T)W, (S, T) and in the second case =W, (S, T)W, (S, T).
(i)
{(N;j1 U, -+« U,_N#xUYNw#+U,,,) for U,,, = NN, or N,N,
(NpU, - +- U,_N3* Uk,l)( U, N3+ U,+:) otherwise,
where U,,U,,= U, and L(U,,) is odd. In the first case «+ =
WS, T)W, (S, T) and in the second case ¢ = W, (S, TH)W, (S, T).
(iV)ers
_ {(Ns"lUl--- U Ng#+) (U N3*#+2)  for U,y = NN, or N,N,
v = (NuU, - -+ UN+U,, )N+ otherwise .

In the first case ¥ = W, (S, T)W, (S, T) and in the second case + =
WS, T)S-™+2, Our proof is now complete.
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4.4. The boundary of Fi(Mod(&,)) consists of the following seven
surfaces B, through B,: We recall the terminology p(t, t,) introduced
in §4.2 and we set

B, ={(t, t, 0)eR |0 =00, ), 0<t,=t,0<t <1},
B2 = {(tv ty 10) eR3||O = p(tu tz)_ly 0< , =&, 0<t, < 1} ’
B, ={(t,t, O)eER|L < pZp(t, t),t,=1,0 <t <1},
B, ={t,ty, 0eR|ot, t)"20<1t,=¢,0<t <1},
B, ={{t,t, 0)cRP|I0<t, £, 0<t, <1, p=1},
B, ={({,t, 0)ce RPI1<p 7, 0<t, <1, t, =0},

and
B, ={t, t, 0eRH"=p<1,0<t <1t =0}.

REMARKS. (1) B, B,, B, and B, are in the interior of R,&,.
(2) B, B, and B, are on the boundary of R,S,.

We easily see the following by Lemma 2.1.

ProrosITION 4.4. (1) S(B) = B, and T(B,) = B,.
(2) S(By) = B..
(3) T(By) = {(tu 12 p)eR3|t1 =t,<L,0<i <L, 0= 1}

5. The first type—Riemann surfaces.

5.1. The boundary of the Schottky space consists of the following
two kinds of points (cf. Rodriguez [11]):

(1) marked Mobius transformation groups which are limits of
marked Schottky groups;

(2) points which represent Riemann surfaces with nodes.
For (1), every boundary group G is discrete (Chuckrow [2]) and either
G is a cusp or XAG) = @ (Rodriguez [11]), where 2(G) is the region of
discontinuity of G. For (2), Bers [1] studied compaet Riemann surfaces
with non-dividing nodes, and Sato [12], [13] studied Riemann surfaces
with non-dividing nodes and dividing nodes corresponding to points
on the augmented Schottky space. Furthermore Rodriguez [10], [11]
studied relationship between Schottky-type groups and Riemann surfaces
with nodes and cusps. In this section we will consider the following
problem: Which Riemann surface does a point on the closure of RS,
represent?

DEFINITION 5.1. A Riemann surface with nodes is a complex space
each point P of which has a neighborhood isomorphic either to a disk
lz] <1 in € (with P corresponding to z=0) or to the set |[2]| <1,
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|lw| <1, 2zw = 0 in C* (with P corresponding to z = w = 0). In the latter
case, P is called a node.

PROPOSITION 5.1. A poini in S,(2F,) represents a compact Riemann
surface of genus two without nodes.

This proposition is well-known,

ProPOSITION 5.2 (cf. Sato [12]). A point on the surface F,=
{tt, t, 1[0 < ¢, < 1,0 < t, <1} represents a compact Riemann surface of
genus two with one dividing node.

ProrosITION 5.3 (ef. [12]). A point on the surfaces H(n), H(—n),
H(1, n) and H(—1, —n) defined in §3.2 represents a compact Riemann
surface of genus two with one non-dividing node.

PrROPOSITION 5.4 (cf. [12]). A point on the set {(¢,0,1)|0 < ¢, <1}
and {0, t, 1)|0 < t, < 1} represents a compact Riemann surface of genus
two with one dividing node and one non-dividing node.

PROPOSITION 5.5 (cf. [12]). A point on the set {(0, 0, 0)|0 < o, p # 1}
represents a compact Riemann surface of genus two with two non-dividing
nodes.

PropoOSITION 5.6 (cf. [12]). A point (0,0, 1) represenis a compact
Riemann surface of genus two with one dividing node and two mon-
dividing nodes.

5.2. Throughout this section, let » > 1 and ¢ > 0. We set
A(z) = {(pe + 1)z — pel/{ez — (pe — 1)} .

Then we have the following Lemmas 5.1, 5.2 and Corollary by straight-
forward computations.

LEMMA 5.1. A4 is a parabolic transformation whose fixed point is
z=7p.

LEMMA 5.2, Let ©>0. (1) The minimum value of A(x)/x 1is
((pe + 1)/(pAc — 1))}, which is attained at the point © = p(pec — 1)/(pe + 1).
(2) A(p(pec — )/(pec + 1)) = p(pe + 1)/(pc — 1).

COROLLARY. Set
C:: |z — p’e/(pec + 1)| = p/(pec + 1)
and
Ci: |z — p’e/(pe ~ 1)| = p/(pc — 1) .
Then the circle C, touches the circle C, at the point z = p, and A(C,) = C,.
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Let A, and A, be the Mobius transformations as in §3.1. Then
AT A 2) = {t(0 — t)z + o, — DY — t)z + pt, — 1} .

LEMMA 5.3. Let t* = (0% — 1)/(0? — t/*) (1 < p £ o,t), where
Ot,) ts as defined in §3.1. Then (1) AT'A, is a parabolic transformation
whose fixed point 1s 20",

(2) The minimum value of A7*A(x)/x for x> 0 1is

(B0 — 2570 + 1)/20" — ot* — &)
which is attained at x = Y20 — oty* — t*)/(0 — 2t1%0"* + 1).

Proor. This follows from Lemmas 5.1 and 5.2 by substituting t?0'*
and (1 — &)/t (0t — 1)(0'* — ti*) for p and ¢, respectively. q.e.d.
LEMMA 5.4. Let p and ¢ be as in the proof of Lemma 5.8. Set
e = (/1 + t)){(pec — 1)/(pe + 1) — t.(pe + 1)/(pc — 1)} .

Then (1) Ap(pc — 1)/(pc + 1) — &) = p(pc + 1)/(pc — 1) + &.

(2) e=0 if and only if

07 = {82 + 1+ (1 — t )1 + t) Yt e + 1) .
This lemma comes from straightforward computations.
COROLLARY. Set

Colz|=p/lpe+1)—¢
and

Cylz|l =p/(pe — 1) t+ ¢,
where ¢ is as in Lemma 5.4. Then A,(C) = C,.

LEMMA 5.5. Let G = {4,, 4,> be a marked discontinuous group. Let
#(G) be the image of G under a mapping ¢ in Mod(S,). Then ¢(G) is a
marked discontinuous group and represents the same Riemann surface as
G does, that is, Qs(G))/6(G) is conformally equivalent to Q2(G)/G.

This lemma is well-known.

PROPOSITION 5.7. A point on the surfaces F*(1) — P(1), F*(—1) —
P(—1) and F~(2) — P(2) represents a Riemann surface of genus one with
two punctures, where P(1), P(—1) and P(2) are the sets defined in §3.1.

Proor. This proposition for F*+(1) — P(1) and F*(—1)— P(—1)
follows from Proposition 38.1. Therefore we will only prove it for
F-(2) — P(2).

First we consider a marked group {4, 47'4,>. Let C, C,, C, and
C, be the circles as in corollaries to Lemmas 5.2 and 5.4, where p and
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¢ are as in the proof of Lemma 5.3, and ¢ is as in Lemma 5.4. Then
by corollaries to Lemmas 5.2 and 5.4 we see that the region bounded by
the four circles is a fundamental region for (A, Ar'4,>, and that the
group (A, A7'A,> represents a Riemann surface of genus one with two
punctures.

Next we consider a marked group <{A4,, A,>. We easily see that
(A, A,) = Ny(KA,, AT'A,)). Hence by N, &Mod(&,), Lemma 5.5 and the
first part of this proof, (4,, A,> represents a Riemann surface of genus
one with two punctures. q.e.d.

From Proposition 5.7 and Lemma 5.5, we have the following:

COROLLARY. Let P(n) (n = x1, +2, --+) be the sets defined in §3.1.
Then a point on the surfaces FT(n, Ny <0+, ny) — P(n,) and
F~(m,, ny_y, +++, n) — P(m,) represents a Riemann surface of genus one
with two punctures.

PROPOSITION 5.8. A point on the set Pin) (n = 2, £8, ---) defined
in §3.1 represents a Riemann surface of genus zero with four pumnctures.

PROOF. We only consider this proposition for n = 2, since the other
cases follow from the case for » = 2 and Lemma 5.5. By Proposition 3.2,
O(t) = (8" + 1 + (1 — t)A + )" + 1)
for n = 2. We easily see that both A;*A, and A %A, are parabolic. Let
C,, C,, C, and C, be the circles in the proof of Proposition 5.7 and let ¢
be the number in Lemma 5.4. Then by Lemma 5.4 we see that ¢ = 0.
Therefore the cirele C, touches the circles C, and C,, and the circle C,
touches the circle C,. Hence (A4, A['4,> represents a Riemann surface
of genus zero with four punctures. By Lemma 5.5, {4, 4,> represents
the same Riemann surface as {A4,, A7'4,> does. Our proof is now com-

plete.

5.3. We will consider which Riemann surfaces the other boundary
points of RS, represent. In our coordinates (¢, ¢, p), it is natural to
consider for the problem as follows:

(1) A point (,1,1) 0 <t <1) or (1,¢,1) (0 <t <1) represents
a Riemann surface of genus one with two punctures and one dividing
node.

(2) The points (0,1, 1) and (1, 0, 1) represent Riemann surfaces of
genus one with two punetures, one dividing node and one non-dividing
node.

(3) The point (1, 1, 1) represents a Riemann surface of genus zero
with four punctures and one dividing node.
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(4) A point (¢,0,1/t) (0 <t <1) or (0,8, 1/t,) (0 <t, <1) repre-
sents a Riemann surface of genus one with one puncture.

6. The real classical Schottky space of the fourth type.

6.1. In this section we will determine the shape of the real classical
Schottky space of the fourth type R;+&: and fundamental regions for
[@.] and Mod(&,) acting on R;y&;, and consider the relationship between
points on the closure of R;v&) and Riemann surfaces. We denote by Riv
the set {({, ¢, 0)eR*|0 <t, <1,0<t, <1, o <0}

PROPOSITION 6.1. Let (¢, t, 0) correspond to G = (A, A). If
(%) 2671 — 0) = (—)" (L — )1 — t,) ,
then AAATATY is a parabolic transformation. Furthermore G s a
discontinuous group and the union of two open sets bounded by the
Jour circles Cy:lz — a;| =r; (J =1, 2, 3, 4) is a fundamental region for G,
where

a, = —o(1 + )1 — &,)’A + t)/4d — pt,)E, — o) ,
= —p1 + )1 — )1 — )/41 — pt)E, — o),
2 (0(1 + t1)2(t2 - 1)/4t1(t2 - P) ’
7y = (1 — )&, — D/4t(t. — 0) ,
as = a.ft,, rs=nrft,, a, = o1+ t)A —t,)/4,(1 — pt,) ,
1y = p(1 — &EXE, — D/4t,(1 — pt,) .
For given 0 < t, <1 and p < 0, we write £, o) for ¢, (0 <t,<1)

satisfying the above equation (x). As in the proofs of Lemmas 3.5 and
3.6 and Proposition 3.4, we have the following.

i

ProrOSITION 6.2.
RIV go - {(tl’ tz» p)eRngO < tz < t;(tn p)y O < t1 < 1’ 40 < 0} .

THEOREM B (Nielsen [8]). Let G = (A, A,y and let 4, and A, be the
images of A, and A, under any element of ®,. Then A7A7'AA =
UA7 AT AA)E U, where U is a word in A, and A,.

From Theorem B, we have the following.
PROPOSITION 6.3. Rv&; = RS

The following theorem follows from Proposition 6.3 and a résult of
Purzitsky [9, Theorem 2].

THEOREM 4. RIV@2 = Rlv@g = RIV@go. )
6.2. Throughout this section let N; ( = 1, 2, 3) be the automorphisms
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defined in §2.1. The following Propositions 6.4 through 6.7 follow from
Lemma 2.1.

PrROPOSITION 6.4. The set of invariant points in Ry under the
mapping N, is {(t, t, 0)e R0 <t <1, 0<¢, <1, p=—1}L

PrOPOSITION 6.5. The set of invariant points in Rv&, under the
mapping N, is {(¢,, t,, 10) €R1v®2IP <0,6L=%,0<t< 1}

We set p*(t, t,) = (1 — t1%,)/(t, — t7*) for 0 < ¢, <1 and 0 < ¢, < 1.

PROPOSITION 6.6. The set of invariant points in RS, under the
mapping N, is By = {(tu to P) GRIV®2110 = p*(tv ), 0<0,0<¢t<1,0<
t, < 1}.

PROPOSITION 6.7. The set of invariant points in RS, under the
mappi'ng (Au Az)""(Av A1—1A2) 18 Bs = {(tu t, P) GRIV®2IIO = p*(tv tz)_ly 40<0:
0<t<1,0<t <1},

Now we will determine fundamental regions for [®,] and Mod(&,)
acting on Rv&,. As in §4, we set S = N.N,N, and T = N,N,. We set

By={{tyty 0)€RS,| -1 < o< p*(t, t) 7t =1,0<t <1},
and
B, = {(ty ty P) € RS, | 0%t t) < o< —L t,=1¢,0<t, <1}.
PrOPOSITION 6.8. S(B,) = B; and T(B,,) = B,,.
From Proposition 6.8, we have the following.
THEOREM 5. Set
Fry(Mod(&,)) = {(t, t 0) € Rv®, | 0*(8y L) < 0 < 0%y t)7
t, <t, 0 <t, <t¥(t, 0),0 <t <1}
and
Fiy([0,])) = {(t,, t, 0) € Biv&, | 0*(t, t) < 0 < —1, ¢, < &y,
0<t, <txit, 0),0< ¢, <1},

respectively. Then F;v(Mod(&,)) and F(®,]) are fundamental regions
for Mod(&,) and [D,], respectively, acting on RS,

6.3. Finally, we will consider the following problem: Which Riemann
surface does a point on the closure of R;+&, represent?

PROPOSITION 6.9. A point in RS, represents a compact Riemann
surface of genus two without nodes.

This proposition is well-known.
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PRrOPOSITION 6.10. A point in the set {(t, t, P)€ Riv|t, = t¥(t, 0),

0<t <1, 0<0} represents two Riemann surfaces each of which is of
genus one with one puncture.

This proposition comes from Proposition 6.1.

PROPOSITION 6.11 (ef. [12]). A point on the sets {(t, t, o) € R*|t, = 0,
0<t, <1, p<0} or {(t, t, P)eR*|t,=0,0 <t <1, o <0} represents a
compact Riemann surface of genus two with one non-dividing node.

PROPOSITION 6.12 (cf. [12]). A point on the set {(t, t, o) R*|t, =

t,=0, 0 <0} represents a compact Riemann surface of genus two with
two non-dividing nodes.

7. Trace moduli. In this section we will consider the relationship
between Keen’s results in [3] and our results in §6. In [3] keen sets
x = trace A,, y = trace A,, 2 = trace A, A,, and k& = trace A;'A;*4A,A,. Then
the equation kb = a2* + ¢* + 22 — ayz — 2 is always satisfied. Keen con-
sidered Fuchsian groups representing Riemann surfaces of genus one with

one hole or one puncture. In our terminology, she considered the real
Schottky groups of the fourth type.

THEOREM C (Keen [3]). (1) The moduli space for tori with a hole
1s the three-dimensional manifold M described by the equations x* + y* +
Z2—wyz —2—-k=0,2>2,y>2,2>2, k< -2.

(2) The intersection of M with the half spaces x Zy, Yy <z, 2=
2y/2 18 a fundamental region with respect to the action of @, on M. The
intersection of M with the half spaces x Ly, ¥y < 2, 2y = 22, ©2 = 2y 1is
a fundamental region with respect to the action of Mod(&,) on M.

Let us represent the equation z* + ¥* + 2* — zyz = 0, and the in-
equalities x > 2, ¥ > 2 and z > 2 in our coordinates (¢, t,, ©). We easily
seethat * =¢, +1/6, + 2, ¥* =6, + 1/t,+ 2 and 2° = (§t,0 — t, + 0 — )Y
(tltz(p - 1)2)

It is now straightforward to verify the following three propositions.
We recall the notation p0*(t, t,) = (1 — t¥%,)/(t, — t¥?) and &, = t}(¢, Q) in-
troduced in §6. We set 0**(¢, t,) = (1 — t2/2)/(¢, — t52).

PropoSITION 7.1. (1) 2z <zy if and only if p = —1.
(2) 2y Zxz if and only if o < (&, — t)/(1 — L.t,).

(3) 2=y if and only if t, = t,.

(4) 2=z if and only if p < 0**(t, to)7".

(5) y=z1if and only if p < 0*(t, ).

(6) z>ylxe — 1) if and only if o > 0*(, t.).
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(7) 2*+9y* + 22 —wxyz = 0 if and only if &, = t¥ (L, P).

Let N; (7 =1, 2, 3) be the automorphisms defined in §2. We set S =
N,N,N, and T = N,N,.

PROPOSITION 7.2. The images of the sets {(x, ¥, 2) € R*|xz = 2y} and
{(x, ¥, 2) € R*|y = 2} under the mapping S are {(x, ¥, 2) € R*|ay = 22} and
{(z, ¥, 2) € R*|z = y(x ~ 1)}, respectively.

PROPOSITION 7.3. The image of the set {(z, ¥, z) € R®|z* + y* + z* —
xyz = 0, 22 < oy, ¥ < z} under the mapping T is {(x, ¥, 2) € R*|x* + y* +-
22 —xyz =0, 2z > 2y, z > yle — 1)}.

From Theorem C and Propositions 7.2 and 7.3, we have the following.

PROPOSITION 7.4. The three-dimensional manifold
{@,9,20eRPly <z 2>yl — 1,z <yinM
18 a fundamental region for Mod(S,) acting on M.

REMARK. The above fundamental region coincides with the set
Fv(Mod(&,)) in §6.
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