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The classical shadows protocol, recently introduced by Huang, Kueng, and
Preskill [Nat. Phys. 16, 1050 (2020)], is a quantum-classical protocol to estimate
properties of an unknown quantum state. Unlike full quantum state tomography,
the protocol can be implemented on near-term quantum hardware and requires few
quantum measurements to make many predictions with a high success probability.

In this paper, we study the effects of noise on the classical shadows protocol.
In particular, we consider the scenario in which the quantum circuits involved in
the protocol are subject to various known noise channels and derive an analytical
upper bound for the sample complexity in terms of a shadow seminorm for both
local and global noise. Additionally, by modifying the classical post-processing
step of the noiseless protocol, we define a new estimator that remains unbiased in
the presence of noise. As applications, we show that our results can be used to
prove rigorous sample complexity upper bounds in the cases of depolarizing noise
and amplitude damping.
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1 Introduction
Estimating the expectation values of quantum observables with respect to preparable quantum
states is an important subroutine in many NISQ1-era quantum algorithms that are of potential
practical importance [1,2]. These algorithms, which include variational quantum algorithms [3]
like the variational quantum eigensolver (VQE) [4] and the quantum approximate optimization
algorithm (QAOA) [5], promise wide-ranging applications in, inter alia, quantum chemistry
[6], quantum metrology [7], and optimization [8]. However, estimation is often the major
bottleneck in many of these applications, where the number of measurements required is often
too large for the algorithms to achieve the desired accuracy on useful instances using near-
term quantum hardware [9, 10]. Thus, developing efficient estimation protocols that can be
implemented on near-term quantum hardware is critical to developing applications for NISQ
devices.

In a recent breakthrough, Huang, Kueng, and Preskill introduced the classical shadows
protocol [11], a protocol for estimating many properties of a quantum state with few quantum
measurements. The classical shadows protocol is based on the following idea: instead of
recovering a full classical description of a quantum state like in full quantum state tomography
[12,13], the protocol aims to learn only a minimal classical sketch—the classical shadow2—of
the state, which can then later be used to predict functions of the state (e.g., expectation
values of observables).

Classical shadows requires minimal quantum resources, yet can efficiently perform useful
estimation tasks, making it amenable for use in the NISQ era. For example, classical shadows
can efficiently estimate the energy of local Hamiltonians, verify entanglement, and estimate
the fidelity between an unknown quantum state and a known quantum pure state (see [11]
for more applications). Additionally, rigorous performance guarantees on the protocol—in the
form of upper bounds on the required number of samples in terms of error and confidence
parameters—have been proved.

An assumption made in the original work by Huang, Kueng, and Preskill (and in some
subsequent works by others) is that the unitary operators involved in the protocol can be
executed perfectly. In real-world experiments with actual quantum hardware, however, this
assumption will almost never hold due to the effects of noise on the quantum systems involved.
Hence, for an accurate description of how the classical shadows protocol will perform in prac-
tice, it is important to take into account the effects of noise. The main contribution of this
work is theoretically addressing how noise affects classical shadows. We derive rigorous sample
complexity upper bounds for the most general noise channel, assuming only that the noise is
described by a completely positive and trace-preserving linear superoperator. We also show
how our results specialize in specific examples, e.g., when the noise is local, or when the noise
is described by a depolarizing channel or an amplitude damping channel.

1NISQ—coined by Preskill [1]—stands for noisy intermediate-scale quantum.
2The term ‘shadow’ comes from Aaronson’s work on shadow tomography [14].
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1.1 Main Ideas
1.1.1 Review of Classical Shadows

Classical shadows require the ability to perform computational basis measurements and apply
a collection of unitary transformations, called the unitary ensemble. The choice of unitary
ensemble affects both the time complexity and the number of measurements needed (the
sample complexity) for the protocol to succeed with small error. For classical shadows to be
time efficient, the unitary ensemble must be efficiently classically simulable on computational
basis states (which is why considerable focus is given to the Clifford group in this work and
in the original work [11]).

Consider the following random process: sample (with respect to some fixed probability
distribution) a unitary transformation U from the unitary ensemble U . Apply U to a quantum
state ρ, and measure the resulting state UρU † in the computational basis to get outcome state
|b〉〈b|. Finally, classically simulate |b〉〈b| 7→ U †|b〉〈b|U . For any unitary ensemble, this process
is a quantum channel in expectation, which we call the noiseless shadow channel :

M : ρ 7→ E
U∼U

∑
b∈{0,1}n

〈b|UρU †|b〉U †|b〉〈b|U, (1)

where E denotes the expectation value. A sufficient condition for the noiseless shadow channel
to be invertible is that the unitary ensemble is tomographically complete [11].

Definition 1.1 (tomographically complete). A unitary ensemble U is tomographically complete
if for each pair of quantum states σ 6= ρ, there exists a U ∈ U and b ∈ {0, 1}n such that
〈b|UσU †|b〉 6= 〈b|UρU †|b〉.

The classical shadows protocol works as follows: run the random process above to produce
a classical description of U †|b〉〈b|U (which involves quantum and classical computation) and
then apply the inverse shadow channelM−1 (which involves only classical computation). The
output ρ̂ def= M−1(U †|b〉〈b|U) is called the noiseless classical shadow, which is an unbiased
estimator of ρ, i.e., E[ρ̂] = ρ. Repeat this process to produce many classical shadows, a
classical data set that can be used to estimate linear functions of the unknown state ρ.

To estimate a linear function tr(Oρ), one must classically compute tr(Oρ̂) (an unbiased
estimator of tr(Oρ)) for each classical shadow from which a median-of-means estimator is
constructed (see Algorithm 1 for details). The power of the median-of-means estimator is
captured in the following concentration inequality.

Fact 1.2 (Jerrum et al. [15]). Let X be a random variable with variance σ2. Then K

independent sample means of size N = 34σ2

ε2 suffice to construct a median-of-means estimator
µ̂(N,K) that obeys

Pr[|µ̂(N,K)− E[X]| ≥ ε] ≤ 2 e−K/2, ∀ ε > 0. (2)

At this point, we have an unbiased estimator of tr(Oρ) which has nice concentration
properties. However, the sample complexity depends on the variance Var[tr(Oρ̂)] (a function
of the input state). To prove a priori bounds on the sample complexity of classical shadows
(i.e., bounds that do not depend on the input state), the authors introduce the shadow norm
‖·‖shadow, whose square is always an upper bound on the variance of tr(Oρ̂) (i.e., Var[tr(Oρ̂)] ≤
‖O‖2shadow). Combining this upper bound with Fact 1.2 yields the main result of [11]:
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Theorem 1.3 (Informal version of Theorem 1 in Huang, Kueng, and Preskill [11]). Classical
shadows of size N suffice to estimate M arbitrary linear functions tr(O1ρ), . . . , tr(OMρ) up to
additive error ε given that

N ∈ O
( log(M)

ε2 max
1≤i≤M

‖Oi‖2shadow

)
.

The definition of the shadow norm depends on the unitary ensemble used to create the
classical shadows. As examples, Huang, Kueng, and Preskill prove that if the unitary ensemble
is the Clifford group, then ‖O‖2shadow ≤ 3 tr(O2). In this case, the sample complexity is

N ∈ O
( log(M)

ε2 max
1≤i≤M

tr(O2
i )
)
. (3)

They also prove that if the unitary ensemble is the n-fold tensor product of the single-qubit
Clifford group and the observable is a Pauli operator P = P1⊗· · ·⊗Pn, then ‖P‖2shadow = 3wt(P ),
where wt(P ) = |{i : Pi 6= I}|. In this case, the sample complexity is

N ∈ O
( log(M)

ε2 max
1≤i≤M

3wt(Pi)
)
. (4)

To prove these bounds, Huang, Kueng, and Preskill use the fact that the Clifford group is
a 3-design (Definition 2.5) [16,17]. They first express the shadow norm in terms of expectation
values taken over the Clifford group, before replacing these expectations by integrals over the
Haar measure by using the fact that the Clifford group forms a 3-design. Roughly speaking,
this means that the uniform distribution over the Clifford group can duplicate properties of
the probability distribution over the Haar measure for polynomials of degree not more than 3.
These integrals have simple closed-form expressions, which can then be shown to be bounded
by the expressions found in Eq. (3) and Eq. (4).

1.1.2 Our Contributions

In this paper, we consider the scenario in which the unitary operators involved in the classical
shadows protocol are subject to noise. Specifically, we assume that an error channel E acts
after the unitary operation is performed in the classical shadows protocol.3

The randomized measurement process remains the same as the noiseless protocol with the
caveat that the system is subject to noise and continues to describe a quantum channel in
expectation that we call the shadow channel with noise E :

MU ,E(ρ) = E
U∼U

∑
b∈{0,1}n

〈b|E(UρU †)|b〉U †|b〉〈b|U.

Note that since the shadow channel depends on noise, so does its inverse M−1
U ,E (assuming

it exists4). Therefore, while the classical shadows protocol remains similar — produce a

3This assumption on the noise model is sometimes referred to as the GTM noise assumption, where GTM
stands for gate-independent, time-stationary, and Markovian [18–20]. See Section 6 for remarks on the scope
and limitations of this assumption.

4We prove sufficient conditions for the invertibility of the shadow channel in the noisy setting (see Claim 4.2).
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classical description of U †|b〉〈b|U and apply the inverse shadow channel — there is a necessary
algorithmic change to the protocol when noise is present. Namely, in order for the classical
shadow to remain an unbiased estimator, the classical post-processing step (i.e., when the
inverse shadow channel is applied) must be modified to account for the noise. (We show this
formally in Section 3.)

Noise also affects the sample complexity of the classical shadows shadows protocol. With
noise present in the system, we prove the following sample complexity bounds, which generalize
the main results of [11]. The key high-level takeaway is that the number of samples increases
by only polynomial factors, suggesting that, even with noise, classical shadows can be run
efficiently. The bounds below are expressed in terms of the completely dephasing channel
diag : L(Cd)→ L(Cd), which sends all the non-diagonal entries of its input to zero: diag(A) =∑d
i=1 |i〉〈i|A|i〉〈i|.

Theorem 1.4 (Informal version of Corollary 4.7). Classical shadows of size N suffice to
estimate M arbitrary linear functions tr(O1ρ), . . . , tr(OMρ) to additive error ε when the
quantum circuits used in the protocol are subject to the error channel E given that

N ∈ O
(

22n log(M)
β2ε2 max

1≤i≤M
tr(O2

i )
)
,

where β = tr(E ◦ diag).

Here, β is the trace (which we define in Section 2) of the quantum channel E ◦ diag, whose
explicit form is given by β =

∑d
i=1 〈i|E(|i〉〈i|)|i〉; but, roughly speaking, one can think of β

as the “severity of the noise” on the quantum device. For instance, if we choose E to be the
identity channel (i.e., we model our device as noiseless), then β2 = 22n, which recovers the
noiseless sample complexity in Eq. (3). Note that β cannot be 0, and so the upper bound in
Theorem 1.4 is finite. We discuss this when we prove sufficient conditions for the invertibility
of the shadow channel (Section 4.1).

We also generalize the sample complexity bounds when the observables of interest are all
Pauli operators.

Theorem 1.5 (Informal version of Corollary 5.5). Let {Pi}Mi=1 be a collection of M Pauli
operators. Classical shadows of size N suffice to estimate linear functions tr(P1ρ), . . . , tr(PMρ)
to additive error ε when the quantum circuits used in the protocol are subject to quantum
channel E⊗n given that

N ∈ O
(

log(M)
ε2 max

1≤i≤M

( 3
β2

)wt(Pi)
)
,

where β = tr(E ◦ diag) and wt(P ) = |{i : Pi 6= I}|.

It is easy to verify that if we choose E to be the identity channel, then we recover the
noiseless bound (Eq. (4)) proved in [11]. It is important to note that, for this result, we assume
that noise can be modelled on the device as a tensor product of single-qubit quantum channels.
For simplicity, we have assumed that these single-qubit channels are identical (i.e. each qubit
is subject to the same noise model); we note, however, that it is straightforward to generalize
this to the case where each single-qubit noise channel is different.

In addition to the sample complexity bounds above, we prove several new results. Among
these are:

Accepted in Quantum 2022-08-07, click title to verify. Published under CC-BY 4.0. 6



• Tensor product noise cannot affect nice factorization properties of classical shadows with
tensor product structure (Section 3.3).

• We prove a simple sufficient condition for the noisy shadow channel to be invertible
(Section 4.1).

• If the unitary ensemble is a 2-design, then the shadow channel is a depolarizing channel
(even in the presence of a general quantum channel). (Section 4.1).

• We prove nontrivial generalizations of shadow norm upper bounds presented in [11]
(Section 4.3 and Section 5.3). For general noise models, the shadow norm ceases to be a
norm. It, however, retains the properties of a seminorm. To this end, we shall refer to
the ‘generalized shadow norm’ as the shadow seminorm.

• As applications, we show that our results can be used to prove rigorous sample complexity
upper bounds in the cases of depolarizing noise and amplitude damping (Section 4.4 and
Section 5.4). We consider these noise models as they are good approximate models for
quantum noise occurring in real quantum systems [21].

1.2 Related Work
1.2.1 Property Estimation and Quantum Tomography

There have been numerous works in the literature that can be cast as algorithms for estimating
properties of quantum states. These include the following:

• General algorithms, such as quantum state tomography, where the goal is to recover a
classical description of an unknown quantum state ρ, given copies of ρ [22–26]. Amongst
these algorithms are sample-optimal protocols that use an asymptotically optimal num-
ber of samples but which require entangled measurements that act simultaneously on
all the samples [12, 13], and more experimentally friendly protocols that require only
single-sample measurements [27–31].

• Matrix product state tomography, where it is assumed that the unknown quantum state
is well-approximated by a matrix product state with low bond dimensions [32,33].

• Multi-scale entanglement renormalization ansatz (MERA) tomography, for which a method
for reconstructing multi-scale entangled states using a small number of efficiently imple-
mentable measurements and fast post-processing was developed [34].

• Neural network tomography, which trains a classical deep neural network to represent
quantum systems [35,36].

• Overlapping quantum tomography, which uses single-qubit measurements performed in
parallel and the theory of perfect hash families to reconstruct k-qubit reduced density
matrices of an n-qubit state with at most eO(k) log2(n) rounds of parallel measurements
[37].
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• Shadow tomography [14, 38, 39], where the goal is to estimate tr(O1ρ), . . . , tr(OMρ) to
±ε accuracy, given a list of observables O1, . . . , OM and copies ρ. Classical shadows can
be viewed as an efficient algorithm for shadow tomography in the special case that the
shadow norm of the observables is small (e.g., observables with low rank).

1.2.2 Solving the Measurement Problem

There have been a number of results which focus on reducing the number of measurements
required in near-term quantum algorithms (i.e., solving the so-called “measurement problem”).
Recently, several methods have been proposed, for example, Pauli grouping [40, 41], unitary
partitioning [42, 43], engineered likelihood functions [44, 45], and deep learning models [35].
See Section 3 of [11] for details on how classical shadows compares with other methods. See
also [2,44,46] for more details on the “measurement problem” in near-term quantum algorithms.

1.2.3 Classical Shadows

A number of works based on classical shadows have appeared since its introduction in [11].
These include a generalization of classical shadows to the fermionic setting [47–49] and the
use of classical shadows to estimate expectation values of molecular Hamiltonians [50] and
to detect bipartite entanglement in a many-body mixed state by estimating moments of the
partially transposed density matrix [51]. In addition, the first experimental implementation
of classical shadows was carried out by Struchalin et al. in a quantum optical experiment with
high-dimensional spatial states of photons [52].

During the final stages of preparing version 1 [53] of our manuscript, we became aware
of recent independent work by Chen, Yu, Zeng, and Flammia [18], who also study ways to
counteract noise in the classical shadows protocol. A key difference between their work and
ours is that they do not assume that the noise model is known beforehand. Due to this, their
strategy involves first learning the noise as a simple stochastic model before compensating for
these errors using robust classical post-processing. In our manuscript, we have assumed that
the user has modelled the noise on the device before implementing our protocol. This noise
characterization can be carried out using efficient learning methods such as [19,54].

Subsequent to version 1 [53] of our manuscript, several new extensions and applications
of classical shadows have been developed [48, 49, 55–90]. Amongst these are extensions of
the classical shadows framework to quantum channels [71, 72] and to more general ensem-
bles, like locally scrambled unitary ensembles [69] and Pauli-invariant unitary ensembles [77].
Additional applications of classical shadows include avoiding barren plateaus in variational
quantum algorithms [76], quantifying information scrambling [78], and estimating gate set
properties [73].

1.2.4 Quantum Error Mitigation

The last few years have seen the invention of several quantum error mitigation techniques [91]
to suppress errors in NISQ devices, which are prone to errors but yet are not large enough
for quantum error correction [1, 92, 93] to be implemented. Among these techniques are ex-
trapolation methods [94–96] (e.g., Richardson extrapolation and exponential extrapolation),
Clifford data regression [97], quantum subspace expansion [98], and probabilistic error can-
cellation (also known as the quasi-probability method) [95, 99]. Like classical shadows, these
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techniques involve repeated measurements and classical post-processing to obtain an estimator
of the desired result. Unlike these techniques, though, our noisy classical shadows protocol
incorporates error mitigation directly into the classical post-processing step, without requiring
any additional quantum resources in the measurement process.

Some additional comparisons may be drawn between our noisy classical shadows protocol
and the quasi-probability method, first proposed by Temme et al. for special channels [95]
and then extended by Endo et al. to practical Markovian noise [99]. The central idea behind
the quasi-probability method is that for any (invertible) noise channel, its effects can be
reversed by probabilistically implementing its inverse, by using the fact that while the inverse
of a quantum channel may not be a quantum channel (and hence cannot be implemented
physically by applying unitary operations to quantum states), it may be written as a linear
combination of quantum channels (called basis operations). Like the quasi-probability method,
our noisy classical shadows protocol reverses the effects of noise by effectively implementing
the inverse of the noise channel (as part of implementing the inverse of the shadow channel).
Unlike the quasi-probability method where the inverse of the noise channel is applied only
probabilistically, our noisy classical shadows protocol applies the inverse of the noise channel
deterministically. This is possible since the inverse is applied not as a physical operation on a
quantum state, but as a mathematical operation on a classical description of a quantum state.

2 Mathematical Preliminaries
Throughout this paper, we denote the set of linear operators on a vector space V by L(V ).
The sets of Hermitian operators, unitary operators, and density operators on Cd are denoted
by Hd, Ud, and Dd respectively. We denote the Haar measure on the d-dimensional unitary
group by η.

For a linear operator A, the spectral norm of A is defined as

‖A‖sp = max
x∈Cn,‖x‖=1

‖Ax‖ . (5)

When A is Hermitian, the spectral norm may be written as

‖A‖sp = max
σ∈Dd

|tr(σA)| . (6)

The set of positive integers is denoted by Z+. The set of integers from 1 to d is denoted
as [d] = {1, 2, . . . , d}. The Kronecker delta is denoted by δxy. We will also use the following
generalization of the Kronecker delta:

δx1x2...xn =
{

1 if x1 = x2 = · · · = xn

0 otherwise.
(7)

2.1 Linear Superoperators and Quantum Channels
We briefly review some properties of linear superoperators and quantum channels that will be
used in this paper. For a more comprehensive introduction to quantum channels, see [21,100].

Let E : L(Cd) → L(Cd) be a linear superoperator. We say that E is a quantum channel
if it is both completely positive and trace-preserving. We say that E is unital if the identity
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operator is a fixed point of E , i.e. E(I) = I. Every linear superoperator E admits a Kraus
representation:

E(A) =
∑
a

JaAK
†
a. (8)

In the special case when E is also a quantum channel, E can be written as

E(A) =
∑
a

KaAK
†
a, (9)

where ∑
a

K†aKa = I. (10)

The vector space of linear operators L(Cd) is equipped with the Hilbert-Schmidt inner
product 〈A,B〉 = tr(A†B), which is the default inner product on L(Cd) that we will use in
the rest of the paper. We denote the superoperator adjoint of a superoperator A as A∗, and
reserve the dagger ()† for the operator adjoint: ()† = ()T , where ()T and () denote the operator
transpose and complex conjugate with respect to the computational basis.

Next, we define the quantum channels we consider in this work.

Definition 2.1 (completely dephasing channel). A ∈ L(Cd). diag : L(Cd)→ L(Cd) denotes
the completely dephasing channel:

diag(A) =
d∑
i=1
|i〉〈i|A|i〉〈i|. (11)

Definition 2.2 (depolarizing channel). A ∈ L(Cd). The qudit depolarizing channel with
depolarizing parameter f ∈ R is defined by

Dn,f (A) = fA+ (1− f) tr(A) I
d
. (12)

In the definition above, we have allowed the depolarizing parameter to take any arbitrary
value f ∈ R. We note here however that it is typical to restrict the depolarizing parameter
to satisfy f ∈ [0, 1], especially when Dn,f is viewed as an error channel; for f in this range,
one could view Dn,f as a quantum channel that leaves density operators ρ unchanged with
probability f and replaces ρ with the maximally mixed state I/d with probability 1 − f . It
is interesting to note, though, that it is not necessary for f ∈ [0, 1] in order for Dn,f to
be a quantum channel (i.e. a completely positive and trace preserving map). While Dn,f is
trace-preserving for all f ∈ R, it is easy to show that Dn,f is completely positive if and only
if5

− 1
d2 − 1 ≤ f ≤ 1. (13)

It then follows that Dn,f is a quantum channel if and only if Eq. (13) is satisfied. This property
will be used later in the discussion of Claim 4.3.

5This follows directly from the fact that the eigenvalues of the Choi matrix J(Dn,f ) corresponding to the
depolarizing channel [100] are 1+f(d2−1)

d
and 1−f

d
.
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Definition 2.3 (amplitude damping channel). The n-qubit amplitude damping channel with
parameter p ∈ [0, 1] is defined by

ADn,p = AD⊗n1,p (14)

where

AD1,p :
(
ρ00 ρ01
ρ10 ρ11

)
7→
(
ρ00 + (1− p)ρ11

√
pρ01√

pρ10 pρ11

)
(15)

is the amplitude damping channel on a single qubit, defined by the Kraus operators

KAD0 =
(

1 0
0 √

p

)
, KAD1 =

(
0
√

1− p
0 0

)
. (16)

The trace of a linear superoperator E : L(Cd)→ L(Cd) is

tr(E) =
∑
ij

〈Eij , E(Eij)〉, (17)

where Eij = |i〉〈j| and 〈·, ·〉 is the Hilbert-Schmidt inner product. Explicitly,

tr(E) =
∑
ij

tr(E†ijE(Eij))

=
∑
ij

〈i|E(|i〉〈j|)|j〉. (18)

It is straightforward to check that tr(E ◦ diag) =
∑
i 〈i|E(|i〉〈i|)|i〉, which is a quantity that

appears often throughout this work.

2.2 t-Fold Twirls and t-Designs
t-designs are an important concept in quantum information processing with wide-ranging
applications ranging from tensor networks [101] and quantum speedup [102–104], to decoupling
[105] and quantum state encryption [106]. In this subsection, we shall review the definitions
and some properties of t-fold twirls and t-designs that we will use in this paper. Throughout
this subsection, we fix d ∈ Z≥2 to be an integer greater than or equal to 2.

Definition 2.4 (Twirl). Let U ⊆ Ud be a set of unitaries and let t ∈ Z+. The t-fold twirl by
U is the map ΨU ,t : L(Cdt)→ L(Cdt) defined by

ΨU ,t(A) = E
U∼U

U⊗tA
(
U †
)⊗t

. (19)

We denote the t-fold twirl by the Haar-random unitaries by T (d)
t : L(Cdt)→ L(Cdt), i.e. for

all A ∈ L(Cdt),

T
(d)
t (A) = ΨU(Cd),t(A) =

∫
dη(U) U⊗tA

(
U †
)⊗t

. (20)
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When t = 2, the Haar integral in Eq. (20) may be evaluated as

T
(d)
2 (A) = 1

d2 − 1

[
tr(A)

(
I − W

d

)
+ tr(WA)

(
W − I

d

)]
. (21)

where

W =
d∑

i,j=1
|ij〉〈ji| (22)

is the swap operator on Cd ⊗ Cd. For a derivation of Eq. (21), see [100, Eq. (7.179)].
The unitary ensembles considered in Section 4 and Section 5 of this paper are t-designs,

collections of unitaries that reproduce the t-fold twirl by the Haar-random unitaries.

Definition 2.5 (t-design). Let U ⊆ Ud be a finite set of unitaries, and let t ∈ Z+. We say
that U is a t-design if ΨU ,t = T

(d)
t , i.e.

E
U∼U

U⊗tA
(
U †
)⊗t

=
∫

dη(U) U⊗tA
(
U †
)⊗t

. (23)

Note that if U is a t-design, then it is also an s-design for all s ≤ t ∈ Z+. An important
example of a 3-design that fails to be a 4-design is the n-qubit Clifford group, denoted by
Cn [16, 17,107].

We now state a useful identity that we will use later in the paper.

Lemma 2.6. Let U be a qudit 3-design and E : L(Cd)→ L(Cd) be a linear superoperator. Let
A,B,C ∈ L(Cd) be linear operators. Then

E
U∼U

∑
b∈[d]
〈b|E(UAU †)|b〉〈b|UBU †|b〉〈b|UCU †|b〉

= (1 + d)α− 2β
(d− 1)d(d+ 1)(d+ 2) (tr(A) tr(BC) + tr(A) tr(B) tr(C))

+ dβ − α
(d− 1)d(d+ 1)(d+ 2) (tr(AB) tr(C) + tr(AC) tr(B) + tr(ABC) + tr(ACB)) ,

(24)

where α = tr(E(I)) and β = tr(E ◦ diag).

We present a proof of Lemma 2.6 in Appendix A.1.

3 Noisy Classical Shadows
3.1 Generating the Classical Shadow
We study the setting where an error channel E acts on the input state right after some U
from the unitary ensemble U is applied. We assume access to a noisy measurement primitive,
slightly altered from [11].
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Definition 3.1 (noisy measurement primitive). We can apply a restricted set of unitary
transformations ρ 7→ UρU †, where U is chosen uniformly at random from a unitary ensemble
U . Subsequently, an error channel E acts on the state UρU † 7→ E(UρU †). Finally, we can
measure the state in the computational basis {|b〉 : b ∈ {0, 1}n}.

The randomized measurement procedure remains the same as [11] with the caveat that the
transformed state is subject to an error channel. The randomized measurement procedure is
as follows. Given copies of an input state ρ, perform the following on each copy: transform
ρ 7→ E(UρU †), measure in the computational basis, and apply U † to the post-measurement
state. The output of this procedure is

U †|b̂〉〈b̂|U with probability Pb(b̂)
def= 〈b̂|E(UρU †)|b̂〉 where b̂ ∈ {0, 1}n. (25)

In expectation, this procedure describes a quantum channel.

Definition 3.2 (shadow channel). LetMU ,E : L(C2n)→ L(C2n) be defined by

MU ,E(ρ) def= E
U∼U

∑
b∈{0,1}n

〈b|E(UρU †)|b〉U †|b〉〈b|U = E
U∼U
b̂∼Pb

U †|b̂〉〈b̂|U. (26)

We callMU ,E the shadow channel with noise E .

One can view MU ,E as the expected output of the random measurement procedure de-
scribed above. Note that when we take the channel E to be the identity channel, we recover
the noiseless shadow channel M given by Eq. (1).

Claim 3.3. For all unitary ensembles U and quantum channels E,MU ,E is a quantum channel.

Proof. MU ,E = D◦C◦B◦A is a composition of quantum channels, where A(X) = EU∼U UXU †

(mixed unitary channel), B(X) = E(X) (error channel), C(X) =
∑
b |b〉〈b|X|b〉〈b| (quantum-to-

classical channel), and D(X) = U †XU (unitary channel).

In the noiseless case, it is known that if the unitary ensemble is tomographically complete,
then the shadow channel is invertible [11]. Similarly, we prove sufficient conditions for the
shadow channel to be invertible in the noisy case (see Claim 4.2). Assuming the shadow
channel is invertible, we can define the classical shadow.

Definition 3.4 (classical shadow). Assuming the shadow channel is invertible with inverse
M−1
U ,E , define the classical shadow ρ̂ as

ρ̂ = ρ̂(U , E , Û , b̂) def= M−1
U ,E(Û

†|b̂〉〈b̂|Û). (27)

The classical shadow is a random matrix with unit trace6 and reproduces ρ in expectation:
E[ρ̂] = ρ.7 Repeating this process N times produces a classical shadow with size N .

6tr(ρ̂) = tr(M−1
U,E(Û†|b̂〉〈b̂|Û)) = tr(Û†|b̂〉〈b̂|Û) = 1. We use the fact that the inverse shadow channel is trace

preserving because the shadow channel is trace preserving.
7E[ρ̂] = E[M−1

U,E(Û†|b̂〉〈b̂|Û)] = M−1
U,E(E[Û†|b̂〉〈b̂|Û ]) = M−1

U,E(MU,E(ρ)) = ρ.
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Definition 3.5 (size-N classical shadow). The size-N classical shadow corresponding to pairs
(U1, b̂1), . . . , (UN , b̂N ) is

S(ρ;N) = {ρ̂1, . . . , ρ̂N} where ρ̂i =M−1
U ,E(U

†
i |b̂i〉〈b̂i|Ui). (28)

3.2 Noisy Classical Shadows Protocol
The classical shadow is a classical dataset that can be used to predict many linear functions
in the unknown state ρ. Recall that a linear function in a quantum state ρ is a function of the
form ρ 7→ tr(Oρ) for some linear operator O. It is easy to confirm that the random variable
tr(Oρ̂) reproduces tr(Oρ) in expectation: E[tr(Oρ̂)] = tr(O E[ρ̂]) = tr(Oρ). Therefore, we
can use the classical shadow to produce unbiased estimates of tr(O1ρ), . . . , tr(OMρ) for any
observables O1, . . . , OM . We continue to use median-of-means estimation, as was done in the
noiseless protocol:

Algorithm 1 Median-of-means estimation based on a classical shadow.
Input: a list of observables O1, . . . , OM , size-L classical shadow S(ρ;L), K ∈ Z+.
1: Set ρ̂(k) = 1

bL/Kc
∑kbL/Kc
i=(k−1)bL/Kc+1 ρ̂i, for k = 1, . . . ,K

2: Output ôi(bL/Kc,K) = median
{

tr(Oiρ̂(1)), . . . , tr(Oiρ̂(K))
}
, for i = 1, . . . ,M

Using the concentration properties of median-of-means estimators (see Fact 1.2), we un-
derstand how estimates tr(Oρ̂) concentrate around the true value as a function of Var[tr(Oρ̂)].
However, we are interested in bounds that are independent of the input state ρ, which moti-
vates the following lemma.

Lemma 3.6. Let U be a set of n-qubit unitary transformations and let E be an n-qubit
quantum channel. Assume that the shadow channelMU ,E (Eq. (26)) is invertible. Let O ∈ H2n

and ρ ∈ D2n be an unknown n-qubit state. Let ô = tr(Oρ̂), where ρ̂ is the classical shadow
(Eq. (27)). Then,

Var
U∼U
b∼Pb

[ô] ≤
∥∥∥∥O − tr(O) I

2n

∥∥∥∥2

shadow,U ,E
, (29)

where

‖O‖shadow,U ,E = max
σ∈D2n

√
E

U∼U

∑
b∈{0,1}n

〈b|E(UσU †)|b〉〈b|UM−1,†
U ,E (O)U †|b〉2. (30)

We call the function ‖·‖shadow,U ,E , which depends on only the unitary ensemble and the
error channel, the shadow seminorm. As we show in Appendix B, the shadow seminorm is
indeed a seminorm, i.e., it satisfies absolute homogeneity and the triangle inequality. However,
unlike the noiseless case [11], the noisy shadow seminorm is not necessarily a norm: there exist
noise channels E for which ‖·‖shadow,U ,E fails to satisfy the point-separating property required
of a norm. In Appendix B, we also explore the question about when the shadow seminorm
is a norm. In particular, we prove that a sufficient condition for it to be a norm is that E
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satisfies the following property: for all b ∈ {0, 1}n, there exists a density operator σ ∈ D(C2n)
such that 〈b|E(σ)|b〉 6= 0.

Again, the motivation for introducing the shadow seminorm is to get an upper bound
on Var[ô] that does not depend on the unknown state ρ. The proof is a straightforward
generalization of Lemma S1 in [11], which we defer to Appendix A.2.

Thus far, we have shown that the noisy classical shadow is an unbiased estimator of linear
functions in ρ and have proved an upper bound on the variance of the estimator. This is
enough to prove the following performance guarantee on the noisy classical shadows protocol.

Theorem 3.7. Fix an n-qubit unitary ensemble U , a collection of n-qubit observables O1, . . . , OM ,
an n-qubit quantum channel E, and accuracy parameters ε, δ ∈ [0, 1]. Assume that MU ,E
(Eq. (26)) is invertible. Set

K = 2 log 2M
δ

and N = 34
ε2 max

1≤i≤M

∥∥∥∥Oi − 1
2n tr(Oi)I

∥∥∥∥2

shadow,U ,E
.

Then, a size-(NK) classical shadow S(ρ;NK) is sufficient to estimate ô1, . . . , ôM with the
following performance guarantee:

Pr
[
|ôi(N,K)− tr(Oiρ)| ≤ ε ∀i = 1, . . . ,M

]
≥ 1− δ. (31)

Hence, the sample complexity to estimate a collection of M linear target functions tr(Oiρ)
within error ε and failure probability δ is

NK = O

( log(M/δ)
ε2 max

1≤i≤M

∥∥∥∥Oi − 1
2n tr(Oi)I

∥∥∥∥2

shadow,U ,E

)
.

Proof. Run Algorithm 1 with O1, . . . , OM , S(ρ;NK), N , and K to obtain estimates

ôi(N,K) = median
{

tr(Oiρ̂(1), . . . , tr(Oiρ̂(K))
}
, for i = 1, . . . ,M . (32)

Then,

Pr
[
|ôi(N,K)− tr(Oiρ)| ≤ ε ∀i = 1, . . . ,M

]
= 1−Pr

[
∃i = 1, . . . ,M : |ôi(N,K)− tr(Oiρ)| ≤ ε

]
≥ 1−

M∑
i=1

Pr
[
|ôi(N,K)− tr(Oiρ)| > ε

]

≥ 1− 2 e−K/2
M∑
i=1

1

= 1− δ. (33)

The inequality on the second line follows from the union bound and the inequality on the third
line follows from Fact 1.2.

The noisy classical shadows protocol is summarized next.
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Summary: Classical Shadows With Noise

Hyperparameters
Let U be a set of n-qubit unitary transformations. Let E be an n-qubit quantum channel.

Definitions
Let

MU ,E : ρ 7→ E
U∼U

∑
b∈{0,1}n

〈b|E(UρU †)|b〉U †|b〉〈b|U,

and assume thatMU ,E is invertible. Let

‖O‖shadow,U ,E = max
σ∈D2n

√
E

U∼U

∑
b∈{0,1}n

〈b|E(UσU †)|b〉〈b|UM−1,†
U ,E (O)U †|b〉2.

Algorithm 2 Classical Shadows With Noise
Input
ρ ∈ C2n (an unknown n-qubit state, given as multiple copies of a black box). ε, δ ∈ (0, 1)
(accuracy parameters). O1, . . . , OM (a list of observables).

Output
Estimators ô1, . . . , ôM such that

Pr
[
|ôi − tr(Oiρ)| ≤ ε ∀i = 1, . . . ,M

]
≥ 1− δ.

Initialization
1: Set K = 2 log 2M

δ

2: Set N = 34
ε2 max

1≤i≤M

∥∥∥Oi − 1
2n tr(Oi)I

∥∥∥2

shadow,U ,E

Classical shadow generation
3: for i = 1, . . . , NK do
4: Randomly choose Ûi ∈ U
5: Apply ρ 7→ E(UρU †) to (a fresh copy of) ρ to get ρ1
6: Perform a computational basis measurement on ρ1 to get outcome b̂i ∈ {0, 1}n
7: Save a classical description of Û †i |b̂i〉〈b̂i|Ûi in classical memory
8: ApplyM−1

U ,E to Û †i |b̂i〉〈b̂i|Ûi to get ρ̂i =M−1
U ,E(Û

†
i |b̂i〉〈b̂i|Ûi)

9: Set S(ρ;NK) = {ρ̂1, . . . , ρ̂NK}

Median-of-means estimation
10: Set ρ̂(k) = 1

N

∑kN
i=(k−1)N+1 ρ̂i, for k = 1, . . . ,K

11: Output ôi
def= ôi(N,K) = median

{
tr(Oiρ̂(1)), . . . , tr(Oiρ̂(K))

}
, for i = 1, . . . ,M
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3.3 Product Ensembles with Product Noise
We conclude this section by showing some nice factorization properties for classical shadows
when the unitary ensemble is a product ensemble and the quantum channel is a product
channel.

Definition 3.8 (product channel). An n-qubit product channel is a quantum channel E of
the form E = E1 ⊗ . . .⊗ En : L(C2n)→ L(C2n), where each Ei : L(C2)→ L(C2).

Definition 3.9 (product ensemble). An n-qubit product ensemble is a collection of unitary
transformations of the form U =

⊗n
i=1 Ui = {U1 ⊗ . . .⊗ Un : U1 ∈ U1, . . . , Un ∈ Un}.

First, we show that the shadow channel, the inverse shadow channel, and the classical
shadow all factorize into tensor products when the unitary ensemble is a product ensemble
and the quantum channel is a product channel.

Claim 3.10. Let U =
⊗n
i=1 Ui be a product ensemble, and let E = E1 ⊗ . . .⊗ En be a product

channel. Then, the shadow channel factorizes as follows:

MU ,E =
n⊗
i=1
MUi,Ei .

Assume that MUi,Ei is invertible ∀i ∈ {1, . . . , n}. Then, MU ,E is invertible and the inverse
shadow channel factorizes as follows:

M−1
U ,E =

n⊗
i=1
M−1
Ui,Ei

.

Finally, let Û = Û1 ⊗ . . .⊗ Ûn ∈ U and b̂ = b̂1 . . . b̂n ∈ {0, 1}n. Then,

ρ̂(U , E , Û , b̂) =
n⊗
i=1

ρ̂(Ui, Ei, Ûi, b̂1). (34)

Proof. The first part of the claim follows from two basic facts: Tensor products of quantum
channels factorize when applied to elementary tensor products, and the n-th order tensor
product is the linear hull of all elementary tensor products. The second part of the claim
follows from the fact that (A⊗B)−1 = A−1 ⊗B−1.

The third part of the claim follows from the following chain of equalities:

ρ̂(U , E , Û , b̂) =M−1
U ,E(Û

†|b̂〉〈b̂|Û) =
n⊗
i=1
M−1
Ui,Ei

(Û †i |b̂i〉〈b̂i|Ûi) =
n⊗
i=1

ρ̂(Ui, Ei, Ûi, b̂1). (35)

Claim 3.11. Let U =
⊗n
i=1 Ui be a product ensemble, and let E = E1 ⊗ . . .⊗ En be a product

channel. Assume that MUi,Ei is invertible ∀i ∈ {1, . . . , n}. Let Û = Û1 ⊗ . . . ⊗ Ûn ∈ U and
b̂ = b̂1 . . . b̂n ∈ {0, 1}n. Then,

ρ̂(U , E , Û , b̂) =
n⊗
i=1

ρ̂(Ui, Ei, Ûi, b̂1). (36)
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Proof. By Claim 3.10, given a product ensemble and product channel, the shadow channel is
MU ,E =

⊗n
i=1MUi,Ei , andM−1

U ,E =
⊗n
i=1M−1

Ui,Ei
.

ρ̂(U , E , Û , b̂) =M−1
U ,E(Û

†|b̂〉〈b̂|Û)

=
n⊗
i=1
M−1
Ui,Ei

(Û †i |b̂i〉〈b̂i|Ûi)

=
n⊗
i=1

ρ̂(Ui, Ei, Ûi, b̂1). (37)

We conclude this section with a nontrivial generalization of Proposition S2 in [11], which
shows that tensor product noise cannot affect the nice factorization properties of classical
shadows with tensor product structure.

Lemma 3.12. Let 0 ≤ k ≤ n. Let O ∈ H⊗n2 be an n-qubit operator that acts nontrivially as
Õ ∈ H⊗k2 on k qubits i1, . . . , ik. Let U =

⊗n
i=1 Ui be a product ensemble, and let E = E1⊗. . .⊗En

be a product channel. Assume that MU ,E is invertible. If k = 0, then ‖O‖shadow,U ,E = 1.
Otherwise, if k ≥ 1, then

‖O‖shadow,U ,E =
∥∥∥Õ∥∥∥

shadow,Ui1⊗···⊗Uik
,Ei1⊗···⊗Eik

.
(38)

Proof. By Claim 3.10, given a product ensemble and product channel, the shadow channel
and inverse shadow channel factorize. It follows that thatM−1,†

U ,E =
⊗n
i=1M

−1,†
Ui,Ei

. Additionally,
the trace preserving property ofMUi,Ei implies thatM−1

Ui,Ei
is trace preserving. The complex

conjugate of a trace-preserving quantum channel is unital (see [100], Theorem 2.26). Therefore,
M−1,†
Ui,Ei

is unital.
If k = 0, then O = I. It follows from Footnote 6 that ‖I‖2shadow,U ,E = 1. Without loss of

generality, take O = Õ ⊗ I⊗(n−k).

‖O‖2shadow,U ,E =
∥∥∥Õ ⊗ I⊗(n−k)

∥∥∥2

shadow,U ,E

= max
σ∈D2n

E
U∼U

∑
b∈{0,1}n

〈b|E(UσU †)|b〉〈b|UM−1,†
U ,E (Õ ⊗ I⊗(n−k))U †|b〉2

= max
σ∈D2n

E
U∼U

∑
b∈{0,1}n

〈b|E(UσU †)|b〉〈b|U
(

k⊗
i=1
M−1,†
Ui,Ei

(Õ)⊗ I

)
U †|b〉2. (39)

The last equality follows from the fact that M−1,†
U ,E factorizes and is unital. We write

U ∈ U = U1⊗ . . .⊗Un as V ⊗W , with V = U1⊗ . . .⊗Uk,W = Uk+1⊗ . . .⊗Un. We also write
U1 ⊗ . . .⊗ Uk and Uk+1 ⊗ . . .⊗ Un as U1...k and Uk+1...n, respectively. The expression becomes

= max
σ∈D2n

E
V∼U1...k

E
W∼Uk+1...n

∑
c∈{0,1}k

∑
d∈{0,1}(n−k)

〈c|〈d|E(V ⊗WσV † ⊗W †)|c〉|d〉

· 〈c|〈d|(V ⊗W )
(

k⊗
i=1
M−1,†
Ui,Ei

(Õ)⊗ I

)
(V † ⊗W †)|c〉|d〉2
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= max
σ∈D2n

E
V∼U1...k

E
W∼Uk+1...n

∑
c∈{0,1}k

∑
d∈{0,1}(n−k)

〈c|〈d|E(V ⊗WσV † ⊗W †)|c〉|d〉

· 〈c|V
k⊗
i=1
M−1,†
Ui,Ei

(Õ)V †|c〉2

= max
σ∈D2n

E
V∼U1...k

∑
c∈{0,1}k

〈c|V
k⊗
i=1
M−1,†
Ui,Ei

(Õ)V †|c〉2

· 〈c|

 E
W∼Uk+1...n

∑
d∈{0,1}(n−k)

〈d|E(V ⊗WσV † ⊗W †)|d〉

 |c〉.
(40)

To simplify the expression further, we focus on the summation over d ∈ {0, 1}n−k, which is
exactly the partial trace over the last n− k qubits. We denote the partial trace over the last
n− k qubits as trk+1...n. We write σ =

∑
aEa ⊗ Fa, where Ea ∈ L(C2n), Fa ∈ L(C2n−k), and

E = E1 ⊗ . . .⊗ En = E1...k ⊗ Ek+1...n, where E1...k = E1 ⊗ . . .⊗ Ek, Ek+1...n = Ek+1 ⊗ . . .⊗ En.

∑
d∈{0,1}(n−k)

〈d|E(V ⊗WσV † ⊗W †)|d〉 = trk+1...n E(V ⊗WσV † ⊗W †)

=
∑
a

trk+1...n
(
E1...k(V EaV †)⊗ Ek+1...n(WFaW

†)
)

=
∑
a

E1...k(V EaV †) tr
(
Ek+1...n(WFaW

†)
)

=
∑
a

E1...k(V EaV †) tr(WFaW
†)

=
∑
a

E1...k(V EaV †) tr(Fa)

= E1...k(V
∑
a

Ea tr(Fa)V †)

= E1...k(V trk+1(σ)V †). (41)

Plugging into the expression for the shadow seminorm, we get

= max
σ∈D2n

E
V∼U1...k

∑
c∈{0,1}k

〈c|V
k⊗
i=1
M−1,†
Ui,Ei

(Õ)V †|c〉2〈c|
(

E
W∼Uk+1...n

E1...k(V trk+1(σ)V †)
)
|c〉

= max
σ∈D2n

E
V∼U1...k

∑
c∈{0,1}k

〈c|E1...k(V trk+1(σ)V †)|c〉〈c|VM−1,†
U1...k,E1...k

(Õ)V †|c〉2. (42)

Because the partial trace preserves the space of quantum states,

‖O‖2shadow,U ,E = max
τ∈D2k

E
V∼U1...k

∑
c∈{0,1}k

〈c|E1...k(V τV †)|c〉〈c|VM−1,†
U1...k,E1...k

(Õ)V †|c〉2

=
∥∥∥Õ∥∥∥2

shadow,U1...k,E1...k

. (43)
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4 Global Clifford Ensemble with Noise
In this section we prove that if U is the Clifford group and E is an arbitrary quantum channel,
the shadow channel can be expressed as a depolarizing channel (Definition 2.2). In this setting,
we derive the expression for the classical shadow and the sample complexity of the classical
shadows protocol.

4.1 Derivation of Shadow Channel
We begin with a technical lemma involving 2-design ensembles.

Lemma 4.1. Let U be an n-qubit 2-design and E : L(C2n)→ L(C2n) be a linear superoperator.
Then,

MU ,E(A) = f(E)A+
( 1

2n tr(E(I))− f(E)
)

tr(A) I
2n , (44)

where

f(E) = 1
22n − 1

(
tr(E ◦ diag)− 1

2n tr(E(I))
)
. (45)

Also, if E is trace-preserving or unital, then,

MU ,E = Dn,f(E), where f(E) = tr(E ◦ diag)− 1
22n − 1 . (46)

Proof. We first introduce the following notation: let E : L(Cd)→ L(Cd) be a linear superoper-
ator. Define the unary operator ()‡ as follows:

E‡(A) = (E∗(A†))†. (47)

Say that E has Kraus representation

E : B 7→
∑
i

JiBK
†
i . (48)

Then, the shadow channel may be evaluated as

MU ,E(A) = E
U∼U

∑
b∈{0,1}n

〈b|E(UAU †)|b〉U †|b〉〈b|U

= E
U∼U

∑
b∈{0,1}n

〈b|
(∑

i

JiUAU
†K†i

)
|b〉U †|b〉〈b|U

=
∑

b∈{0,1}n

E
U∼U

tr
(
U †
∑
i

K†i |b〉〈b|JiUA
)
U †|b〉〈b|U

=
∑

b∈{0,1}n

E
U∼U

tr1
(
U †E‡(|b〉〈b|)UA⊗ U †|b〉〈b|U

)
=

∑
b∈{0,1}n

tr1

{
E

U∼U
(U † ⊗ U †)(E‡(|b〉〈b|)⊗ |b〉〈b|)(U ⊗ U)(A⊗ I)

}
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=
∑

b∈{0,1}n

tr1

{
E

U∼U†
(U ⊗ U)(E‡(|b〉〈b|)⊗ |b〉〈b|)(U † ⊗ U †)(A⊗ I)

}

=
∑

b∈{0,1}n

tr1

{
T

(2n)
2

(
E‡(|b〉〈b|)⊗ |b〉〈b|

)
︸ ︷︷ ︸

1

(A⊗ I)
}
, (49)

since U is a 2-design. In the above equations, tr1 denotes the partial trace over the first
subsystem.

Applying Eq. (21) to the 2-fold twirl 1 gives

1 =
∫

dη(U) (U ⊗ U)
[
E‡(|b〉〈b|)⊗ |b〉〈b|

]
(U † ⊗ U †)

= 1
22n − 1

[
tr
(
E‡(|b〉〈b|)⊗ |b〉〈b|

)(
I − W

2n
)

+ tr
(
WE‡(|b〉〈b|)⊗ |b〉〈b|

)(
W − I

2n
)]

, (50)

where the traces in the above equations simplify as

tr
(
E‡(|b〉〈b|)⊗ |b〉〈b|

)
= tr(E‡(|b〉〈b|)), (51)

tr
(
WE‡(|b〉〈b|)⊗ |b〉〈b|

)
= 〈b|E‡(|b〉〈b|)|b〉. (52)

Therefore,

MU ,E(A) =
∑

b∈{0,1}n

tr1

{ 1
22n − 1

(
tr(E‡(|b〉〈b|))

(
I − W

2n
)

+ 〈b|E‡(|b〉〈b|)|b〉
(
W − I

2n
))

(A⊗ I)
}

= 1
22n − 1

[
tr(E‡(I))︸ ︷︷ ︸

2

tr1

{(
I − W

2n
)

(A⊗ I)
}

︸ ︷︷ ︸
3

+
∑

b∈{0,1}n

〈b|E‡(|b〉〈b|)|b〉

︸ ︷︷ ︸
4

tr1

{(
W − I

2n
)

(A⊗ I)
}

︸ ︷︷ ︸
5

]
. (53)

Then, by simple calculation,

2 = tr(E‡(I)) = tr(E(I)), (54)

and

4 = tr(E‡ ◦ diag) = tr(E ◦ diag). (55)

To evaluate 3 and 5 , we use the fact that

tr1(W (A⊗ I)) = A. (56)
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Hence,

3 = tr1(A⊗ I)− 1
2n tr1(W (A⊗ I))

= tr(A)I − 1
2nA (57)

and

5 = tr1(W (A⊗ I))− 1
2n tr1(A⊗ I)

= A− 1
2n tr(A)I. (58)

Plugging these back into Eq. (53),

MU ,E(A) = 1
22n − 1

[
tr(E(I))(tr(A)I − 1

2nA) + tr(E ◦ diag)(A− 1
2n tr(A)I)

]
= f(E)A+

( 1
2n tr(E(I))− f(E)

)
tr(A) I

2n , (59)

where

f(E) = 1
22n − 1

(
tr(E ◦ diag)− 1

2n tr(E(I))
)
, (60)

which completes the first part of the proof. The second part of the proof follows from the
fact that, if E is trace-preserving or unital, then tr(E(I)) = tr(I) = 2n. Substituting this into
Eq. (44) and Eq. (45) gives the result.

Since the Clifford group forms a 2-design, Lemma 4.1 immediately implies that if E is an
arbitrary quantum channel (and is hence trace-preserving), then the shadow channel is given
by

MCn,E = Dn,f(E), where f(E) = tr(E ◦ diag)− 1
22n − 1 . (61)

Moreover, if the shadow channel is invertible, its inverse is given byM−1
Cn,E = Dn,f(E)−1 .

An important fact can be deduced from Lemma 4.1, namely, that if the unitary ensemble
is a 2-design, then the shadow channel is invertible if and only if the error channel obeys the
simple condition tr(E ◦ diag) 6= 1:

Claim 4.2. Let U be an n-qubit 2-design, and let E be a linear superoperator. MU ,E is
invertible if and only if tr(E ◦ diag) 6= 1. In this case,M−1

U ,E = Dn,1/f(E).

Proof. By Lemma 4.1, the shadow channel with noise is a depolarizing channel. Therefore,

MU ,E = Dn,f(E) is invertible ⇐⇒ f(E) 6= 0 ⇐⇒ tr(E ◦ diag) 6= 1, (62)

and

M−1
U ,E = D−1

n,f(E) = Dn,1/f(E). (63)
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Next, we prove bounds on the depolarizing parameter f(E):

Claim 4.3. Let E : L(C2n)→ L(C2n) be a quantum channel. Then,

− 1
22n − 1 ≤ f(E) ≤ 1

2n + 1 . (64)

Proof.

E is a quantum channel =⇒ tr(E ◦ diag) ∈ [0, 2n]

=⇒ f(E) = tr(E ◦ diag)− 1
22n − 1 ∈

[
− 1

22n − 1 ,
1

2n + 1
]
. (65)

A few remarks are in order. First, note that the bounds in Claim 4.3 have appeared in
work on randomized benchmarking (e.g., Lemma 1 in [108]).

Second, note that the depolarizing parameter f(E) is upper bounded by 1
2n+1 = f(I),

which is the depolarizing parameter of the noiseless shadow channelMU . In other words, as
expected, noise necessarily decreases the depolarizing parameter of the shadow channel (i.e.,
it is not possible to use noise to improve the performance of classical shadows).

Finally, note from Eq. (64) that f(E) can take negative values. As discussed in Section 2.1,
while it is typical to consider depolarizing channels with depolarizing parameter f ∈ [0, 1],
Dn,f remains a quantum channel for some negative values of f . We note here that the lower
bound in Eq. (64) matches exactly the lower bound in Eq. (13) when d = 2n.

4.2 Classical Shadow
We now give an expression for the classical shadow whenMU ,E = Dn,f(E). Recall that the clas-
sical shadow corresponding to a unitary ensemble U , noise channel E , unitary transformation
Û ∈ U , and bit string b̂ ∈ {0, 1}n is ρ̂(U , E , Û , b̂) =M−1

U ,E(Û †|b̂〉〈b̂|Û).

Claim 4.4. Let U be an n-qubit 2-design, and let E be a quantum channel. AssumeMU ,E is
invertible. Then, for some Û ∈ U and b̂ ∈ {0, 1}n, the classical shadow is

ρ̂(U , E , Û , b̂) = 1
f(E) Û |b̂〉〈b̂|+

(
1− 1

f(E)
) I

2n , (66)

where f(E) = tr(E◦diag)−1
22n−1 .

Proof.

ρ̂(U , E , Û , b̂) =M−1
U ,E(Û

†|b̂〉〈b̂|Û)

= D−1
n,f(E)(Û

†|b̂〉〈b̂|Û)

= Dn,1/f(E)(Û †|b̂〉〈b̂|Û)

= 1
f(E) Û |b̂〉〈b̂|Û +

(
1− 1

f(E)
) I

2n . (67)
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4.3 Derivation of Shadow Seminorm
We derive an expression for the shadow seminorm of a traceless observable. Recall that the
sample complexity to estimate tr(Oρ) for some observable O is upper bounded by the shadow
seminorm of the traceless part of O (Lemma 3.6), which we write as Oo.

Proposition 4.5. Let U be an n-qubit 3-design, and let E be a linear superoperator, and let
Oo be a traceless observable. Then,

‖Oo‖2shadow,U ,E = d(d2 − 1)
(d+ 2)(dβ − α)

((1 + d)α− 2β
dβ − α

tr(O2
o) + 2

∥∥∥O2
o

∥∥∥
sp

)
(68)

where

d = 2n, α = tr(E(I)), β = tr(E ◦ diag). (69)

Also, if E be a trace-preserving or unital linear superoperator, then the expression simplifies to

‖Oo‖2shadow,U ,E = d2 − 1
(d+ 2)(β − 1)

(
d+ d2 − 2β
d(β − 1) tr(O2

o) + 2
∥∥∥O2

o

∥∥∥
sp

)
(70)

where

d = 2n, β = tr(E ◦ diag). (71)

Proof.

‖Oo‖2shadow,U ,E = max
σ∈D2n

E
U∼U

∑
b∈{0,1}n

〈b|E(UσU †)|b〉〈b|UM−1,†
U ,E (Oo)U †|b〉2

= max
σ∈D2n

E
U∼U

∑
b∈{0,1}n

〈b|E(UσU †)|b〉〈b|UDn,1/f(E)(Oo)U †|b〉2

= 1
f(E)2 max

σ∈D2n
E

U∼U

∑
b∈{0,1}n

〈b|E(UσU †)|b〉〈b|UOoU †|b〉2

= 1
f(E)2

( (1 + d)α− 2β
(d− 1)d(d+ 1)(d+ 2) tr(O2

o) + 2(dβ − α)
(d− 1)d(d+ 1)(d+ 2)

∥∥∥O2
o

∥∥∥
sp

)
.

(72)

The final equality follows from Lemma 2.6. To simplify further, we get an expression for
1/f(E)2.

f(E) = 1
22n − 1

(
tr(E ◦ diag)− 1

2n tr(E(I))
)

= dβ − α
(d− 1)d(d+ 1)

=⇒ 1
f(E)2 = (d− 1)2d2(d+ 1)2

(dβ − α)2 . (73)

Plugging into the expression above, we get
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‖Oo‖2shadow,U ,E

= (d− 1)2d2(d+ 1)2

(dβ − α)2

( (1 + d)α− 2β
(d− 1)d(d+ 1)(d+ 2) tr(O2

o) + 2(dβ − α)
(d− 1)d(d+ 1)(d+ 2)

∥∥∥O2
o

∥∥∥
sp

)
= d(d2 − 1)

d+ 2 · (1 + d)α− 2β
(dβ − α)2 tr(O2

o) + d(d2 − 1)
d+ 2 · 2

dβ − α

∥∥∥O2
o

∥∥∥
sp

= d(d2 − 1)
(d+ 2)(dβ − α)

((1 + d)α− 2β
dβ − α

tr(O2
o) + 2

∥∥∥O2
o

∥∥∥
sp

)
. (74)

Finally, if E is trace-preserving or unital, then α = tr(E(I)) = d. The second part of the
proposition follows from substituting α = d.

Building from Proposition 4.5, one can get looser bounds that are more convenient to work
with.

Corollary 4.6. Let U be an n-qubit 3-design, let E be a trace-preserving or unital linear
superoperator, and let Oo be a traceless observable. Then,

(2n − 1)2

(β − 1)2 tr(O2
o) ≤ ‖Oo‖shadow,U ,E ≤

3(2n − 1)2

(β − 1)2 tr(O2
o) ≤

3(2n − 1)2

(β − 1)2 tr(O2). (75)

where β = tr(E ◦ diag).

The proof is straightforward. We include it in Appendix A.3 for completeness.
Combining Theorem 3.7 and Corollary 4.6 yields sample complexity bounds on the classical

shadows protocol when the unitary ensemble is the Clifford group (or, any unitary 3-design).

Corollary 4.7. Let {Oi}Mi=1 be a collection of M observables. Let U be a unitary 3-design (e.g.,
the Clifford group). Let E : L(C2n)→ L(C2n) be a quantum channel such that tr(E ◦ diag) 6= 1.
The sample complexity Ntot to estimate the linear target functions {tr(Oiρ)}Mi=1 of an n-qubit
state ρ within error ε and failure probability δ when the unitary ensemble U is subject to the
error channel E is

Ntot ≤
204(2n − 1)2 log(2M/δ)

(β − 1)2ε2 max
1≤i≤M

tr(O2
i ),

where β = tr(E ◦ diag).

4.4 Examples
Eq. (61) establishes that if U is the Clifford group and E is an arbitrary quantum channel, then
the resulting shadow channel MCn,E is always a depolarizing channel (Definition 2.2) with a
depolarizing parameter that depends on the quantum channel E . Corollary 4.7 establishes
the sample complexity in this scenario. We now apply our results to derive expressions for
the shadow channel, inverse shadow channel, classical shadow, shadow seminorm, and sample
complexity for the classical shadows protocol with the Clifford group and specific quantum
channels.
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4.4.1 Noiseless Case

We begin with a basic example, the case where the quantum channel is the identity channel,
to show that the results from [11] can be recovered. For reference, see Eqs. (S37) through
(S43) in [11]).

Claim 4.8. In the noiseless case,

1. f(I) = 1
2n+1 .

2. MCn,I = Dn,1/2n+1.

3. M−1
Cn,I = Dn,2n+1.

4. The classical shadow can be written as ρ̂(Cn, I, Û , b̂) = (2n + 1)Û †|b̂〉〈b̂|Û − I.

5. ‖Oo‖2shadow,Cn,I = 2n+1
2n+2

(
tr(O2

o) + 2
∥∥O2

o

∥∥
sp
)
.

Proof. (1) follows from a simple calculation:

f(I) = tr(I ◦ diag)− 1
22n − 1 = 2n − 1

22n − 1 = 1
2n + 1 . (76)

(2) and (3) follow from Eq. (61). To prove (4), apply Claim 4.4:

ρ̂(Cn, I, Û , b̂) = (2n + 1)Û †|b̂〉〈b̂|Û + (1− 2n + 1) I
2n

= (2n + 1)Û †|b̂〉〈b̂|Û − I. (77)

To prove (5), apply Proposition 4.5 with β = tr(I ◦ diag) = 2n = d. Then,

‖Oo‖2shadow,Cn,I = d2 − 1
(d+ 2)(d− 1)

(
d+ d2 − 2d
d(d− 1) tr(O2

o) + 2
∥∥∥O2

o

∥∥∥
sp

)

= 2n + 1
2n + 2

(
tr(O2

o) + 2
∥∥∥O2

o

∥∥∥
sp

)
. (78)

Remark 4.9. One can verify that the dephasing channel is an inconsequential noise channel (see
Claim C.1 of Appendix C). As such, these results also hold when E is the dephasing channel.

4.4.2 Depolarizing Channel

We derive expressions for the shadow channel, inverse shadow channel, the classical shadow,
and the shadow seminorm when the Clifford group Cn is subject to depolarizing noise with
depolarizing parameter f (Definition 2.2).

Claim 4.10. If the unitary ensemble used in the classical shadows protocol is the Clifford
group and is subject to depolarizing noise with depolarizing parameter f ∈ [0, 1], then

1. f(Dn,f ) = f
2n+1 .

Accepted in Quantum 2022-08-07, click title to verify. Published under CC-BY 4.0. 26



2. MCn,Dn,f
= Dn,f/2n+1.

3. M−1
Cn,Dn,f

= Dn,2n+1/f .

4. The classical shadow can be written as ρ̂(Cn,Dn,f , Û , b̂) = 2n+1
f Û †|b̂〉〈b̂|Û − (1− 2n+1

f ) I
2n .

5. Let O ∈ H2n. Then,
∥∥∥O − 1

2n tr(O)I
∥∥∥2

shadow,Cn,Dn,f

≤ 3
f2 tr(O2).

Proof. First we prove (1):

tr(Dn,f ◦ diag) =
∑

b∈{0,1}n

〈b|Dn,f (|b〉〈b|)|b〉

=
∑

b∈{0,1}n

〈b|
(
f |b〉〈b|+ (1− f) I

2n
)
|b〉

=
∑

b∈{0,1}n

f + (1− f) 1
2n

= 2nf + 1− f. (79)

Then,

f(E) = tr(Dn,f ◦ diag)− 1
22n − 1

= 2nf + 1− f − 1
22n − 1

= f(2n − 1)
22n − 1

= f

2n + 1 . (80)

(2) and (3) follow from Eq. (61), and (5) follows from Corollary 4.6. To prove (4), apply
Claim 4.4:

ρ̂(Cn, I, Û , b̂) = 2n + 1
f

Û †|b̂〉〈b̂|Û −
(
1− 2n + 1

f

) I
2n . (81)

With a bound on the shadow seminorm in this setting, the sample complexity of the
protocol follows.

Corollary 4.11. The sample complexity Ntot to estimate a collection of M linear target
functions tr(Oiρ) within error ε and failure probability δ when the unitary ensemble U is
subject to depolarizing noise Dn,f : A 7→ fA+ (1− f) I

2n is

Ntot ≤
204 log(2M/δ)

f2ε2 max
1≤i≤M

tr(O2
i ).
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4.4.3 Amplitude Damping Channel

We derive expressions for the shadow channel, inverse shadow channel, the classical shadow,
and the shadow seminorm when the Clifford group Cn is subject to the amplitude damping
channel (Definition 2.3).

Claim 4.12. If the unitary ensemble used in the classical shadows protocol is the Clifford
group and is subject to amplitude damping noise with parameter p ∈ [0, 1], then

1. f(ADn,p) = (1+p)n−1
22n+1 .

2. MCn,ADn,p = Dn,((1+p)n−1)/(22n−1).

3. M−1
Cn,ADn,p

= Dn,(22n−1)/((1+p)n−1).

4. The classical shadow can be written as ρ̂(Cn,ADn,p, Û , b̂) = 2n+1
f Û †|b̂〉〈b̂|Û− (1− 2n+1

f ) I
2n .

5. Let O ∈ H2n. Then,
∥∥∥O − 1

2n tr(O)I
∥∥∥2

shadow,Cn,ADn,p

≤ 3(2n−1)2

((1+p)n−1)2 tr(O2).

Proof. To prove (1), we use the fact that 〈0|AD1,p(|0〉〈0|)|0〉 = 1 and 〈1|AD1,p(|1〉〈1|)|1〉 = p.
We denote the Hamming weight of a bit string b as `1(b).

tr(ADn,p ◦ diag) =
∑

b∈{0,1}n

〈b|ADn,p(|b〉〈b|)|b〉

=
∑

b∈{0,1}n

n∏
i=1
〈bi|AD1,p(|bi〉〈bi|)|bi〉

=
∑

b∈{0,1}n

p`1(b)

=
n∑
i=0

(
n

i

)
pi

= (1 + p)n. (82)

Then,

f(ADn,p) = tr(ADn,p ◦ diag)− 1
22n − 1

= (1 + p)n − 1
22n − 1 . (83)

(2) and (3) follow from Eq. (61), and (5) follows from Corollary 4.6. To prove (4), apply
Claim 4.4,

ρ̂(Cn,ADn,p, Û , b̂) = Dn,(22n−1)/((1+p)n−1)(Û †|b̂〉〈b̂|Û)

= 22n − 1
(1 + p)n − 1 Û

†|b̂〉〈b̂|Û −
(
1− 22n − 1

(1 + p)n − 1
) I

2n . (84)
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A bound on the sample complexity follows from the bound on the shadow seminorm.

Corollary 4.13. The sample complexity Ntot to estimate a collection of M linear target
functions tr(Oiρ) within error ε and failure probability δ when the unitary ensemble U is
subject to the amplitude damping channel ADn,p is

Ntot ≤
204(2n − 1)2 log(2M/δ)

((1 + p)n − 1)2ε2 max
1≤i≤M

tr(O2
i ).

5 Product Clifford Ensemble with Product Noise
In this section we analyze the setting in which the quantum channel is a product channel
(Definition 3.8) and the unitary ensemble is a product ensemble (Definition 3.9). Our results
hold for any product ensemble in which each ensemble is a 3-design, which the product Clifford
ensemble is an example. We write the product Clifford ensemble as C⊗n1 = {U1 ⊗ . . . ⊗ Un :
U1, . . . , Un ∈ C1} and the quantum channel as E⊗n, where E acts on a single qubit.

5.1 Derivation of Shadow Channel
We derive expressions for the shadow channel and its inverse by building on the work in
Section 3.3 and Section 4.

Claim 5.1. Let U = U1 ⊗ . . .⊗ Un be a product ensemble such that U†i is a 2-design for all
i ∈ [n]. Let E : L(C2n)→ L(C2n) be a single-qubit quantum channel. Then,

MU ,E⊗n = D⊗n1, 1
3 (tr(E◦diag)−1). (85)

Also, if tr(E ◦ diag) 6= 1, then

M−1
U ,E⊗n = D⊗n1,3/(tr(E◦diag)−1). (86)

Proof. The first part follows from Claim 3.10 and Lemma 4.1. The second part follows from
the fact that if tr(E ◦ diag) 6= 1, then the shadow channelMU ,E⊗n is invertible (see Claim 4.2).
Therefore,M−1

U ,E⊗n = (D−1
1,(1/3)·(tr(E◦diag)−1))

⊗n = D1,3/(tr(E◦diag)−1).

5.2 Classical Shadow
We derive an expression for the classical shadow for the product Clifford ensemble and a
product channel.

Claim 5.2. Let U = U1 ⊗ . . .⊗ Un be a product ensemble such that U†i is a 2-design for all
i ∈ [n]. Let E : L(C2n)→ L(C2n) be a single-qubit quantum channel such that tr(E ◦ diag) 6= 1.
Let Û = Û1 ⊗ . . .⊗ Ûn ∈ U and b̂ = b̂1 . . . b̂n ∈ {0, 1}n. Then,

ρ̂(U , E⊗n, Û , b̂) =
n⊗
i=1

( 1
f(E) Û |b̂〉〈b̂|Û +

(
1− 1

f(E)
) I
2
)
. (87)

Proof. Follows from Claim 4.4 by setting n = 1.
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5.3 Derivation of Shadow Seminorm
We derive an expression for the shadow seminorm when the observable is a k-local Pauli
observable, which non-trivially generalizes the Lemma S3 in [11]. Denote the set of Pauli
operators by Pn = {P1 ⊗ . . .⊗ Pn : Pi ∈ {I, X, Y, Z} ∀i ∈ {1, . . . , n}}.

Definition 5.3 (weight of Pauli operator). The weight of the Pauli operator P = P1⊗. . .⊗Pn ∈
Pn is wt(P ) = |{i : Pi 6= I}|.

Proposition 5.4. Let U = U1⊗. . .⊗Un be a product ensemble such that Ui is a 3-design for all
i ∈ [n]. Let E : L(C2n)→ L(C2n) be a single-qubit quantum channel such that tr(E ◦ diag) 6= 1.
Let P ∈ Pn. Then,

‖P‖shadow,U ,E⊗n =
( 1√

3f(E)

)wt(P )
. (88)

where f(E) = 1
3(tr(E ◦ diag)− 1).

Proof. Without loss of generality, write P = P1 ⊗ . . .⊗ Pk ⊗ I⊗(n−k). Then,

‖P‖2shadow,U ,E⊗n =
∥∥∥P1 ⊗ . . .⊗ Pk ⊗ I⊗(n−k)

∥∥∥2

shadow,U ,E⊗n

= ‖P1 ⊗ . . .⊗ Pk‖2shadow,U ,E⊗n

= max
σ∈D2n

E
U∼C⊗k

1

∑
b∈{0,1}k

〈b|E⊗k(UσU †)|b〉〈b|U
k⊗
i=1
D1,f(E)−1(Pi)U †|b〉2

= max
σ∈D2n

E
U∼C⊗k

1

∑
b∈{0,1}k

〈b|E⊗k(UσU †)|b〉〈b|U
k⊗
i=1

( 1
f(E)Pi

)
U †|b〉2

= 1
f(E)2k max

σ∈D2n
E

U∼C⊗k
1

∑
b∈{0,1}k

〈b|E⊗k(UσU †)|b〉〈b|U
k⊗
i=1

PiU
†|b〉2. (89)

The second equality follows from Lemma 3.12. To simplify the expression further, we write
σ =

∑
α,β∈{0,1}k σαβ|α〉〈β| =

∑
α,β∈{0,1}k σαβEα1β1 ⊗ . . . ⊗ Eαkβk

, where Eαiβi
= |αi〉〈βi|. We

simplify the expectation value first.

E
U∼C⊗k

1

∑
b∈{0,1}k

〈b|E⊗k(UσU †)|b〉〈b|U
k⊗
i=1

PiU
†|b〉2

= E
U∼C⊗k

1

∑
b∈{0,1}k

〈b|E⊗k(U(
∑

α,β∈{0,1}k

σαβEα1β1 ⊗ . . .⊗ Eαkβk
)U †)|b〉〈b|U

k⊗
i=1

PiU
†|b〉2

=
∑

α,β∈{0,1}k

σαβ

k∏
i=1

E
Uj∼C1

∑
bj∈{0,1}

〈bj |E(UjEαjβj
U †)|bj〉〈bj |UjPjU †j |bj〉

2

=
∑

α,β∈{0,1}k

σαβ

k∏
i=1

1
4!
(
2(6− 2 tr(E ◦ diag)) + 2(2 tr(E ◦ diag)− 2)

)
tr(Eαjβj

)
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=
∑

α,β∈{0,1}k

σαβ

k∏
i=1

1
3δαjβj

= 1
3k . (90)

The third equality follows from Lemma 2.6 with B = C = Pj , d = 2 and A = Eαjβj
. Plugging

into the original expression, we get

‖P‖2shadow,U ,E⊗n = 1
f(E)2k max

σ∈D2n
E

U∼C⊗k
1

∑
b∈{0,1}k

〈b|E⊗k(UσU †)|b〉〈b|U
k⊗
i=1

PiU
†|b〉2

=
( 1√

3f(E)

)2k
(91)

=⇒ ‖P‖shadow,U ,E⊗n =
( 1√

3f(E)

)wt(P )
. (92)

Since we have a bound on the shadow seminorm, we can bound the sample complexity of
classical shadows protocol when the unitary ensemble is the product Clifford group and when
all the observables are k-local Pauli operators.

Corollary 5.5. Let {Pi}Mi=1 be a collection of M Pauli operators. Let U = U1 ⊗ . . . ⊗ Un
be a product ensemble such that U†i is a 3-design for all i ∈ [n]. Let E : L(C2) → L(C2) be
a single-qubit quantum channel such that tr(E ◦ diag) 6= 1. The sample complexity Ntot to
estimate the linear target functions {tr(Piρ)}Mi=1 of an n-qubit state ρ within error ε and failure
probability δ when unitary ensemble U is subject to quantum channel E⊗n is

Ntot ≤
68 log(2M/δ)

ε2 max
1≤i≤M

( 1
3f(E)2

)wt(Pi)
,

where f(E) = 1
3(tr(E ◦ diag)− 1) and wt(P ) = |{i : Pi 6= I}|.

Remark 5.6. We also studied the shadow seminorm of a general k-local observable in the
presence of a general product channel. However, we could not derive a simple expression. In
Appendix D, we derive a bound on the shadow seminorm of a k-local observable when the
error channel is depolarizing noise (rather than a general product channel).

5.4 Examples
We apply the results of this section to derive expressions for the shadow channel, inverse shadow
channel, and the classical shadow when the unitary ensemble is the product Clifford ensemble
and we fix the quantum channel. Specifically, we study the identity channel, depolarizing
channel, and amplitude damping channel. For each quantum channel, we also bound the
shadow seminorm for k-local Pauli observables, which imply sample complexity bounds for
the classical shadows protocol with the product Clifford ensemble in the presence of noise.
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5.4.1 Noiseless Channel

We start with the noiseless case to show that our results can be used to recover Eq. (S44)
through (S50) in [11]. Recall from Section 4.4.1, we show f(I) = 1/(2n + 1). Hence, for the
local case (n = 1), f(I) = 1/3. It follows from Claim 5.1 and Claim 5.2, that

MC⊗n
1 ,I = D⊗n1,1/3, M−1

C⊗n
1 ,I

= D⊗n1,3 , and ρ̂(C⊗n1 , I, Û , b̂) =
k⊗
i=1

(3Û |b̂i〉〈b̂i|Û − I).

Similarly, by using f(I) = 1/3, the shadow seminorm of a k-local Pauli operator can be
computed from Proposition 5.4.

‖P‖2shadow,C⊗n
1 ,I = 3wt(P ).

Finally, the sample complexity in this setting follows from Corollary 5.5.

Ntot ≤
68 log(2M/δ)

ε2 max
1≤i≤M

3wt(Pi).

5.4.2 Depolarizing Channel

Now we study the case where the quantum channel is D⊗n1,f (see Definition 2.2). In Section 4.4.2,
we showed that f(Dn,f ) = f/(2n + 1), and so, for n = 1, we get f(D1,f ) = f/3. By applying
Claim 5.1 and Claim 5.2, we get the following expressions for the shadow channel, inverse
shadow channel, and classical shadow.

MC⊗n
1 ,D⊗n

1,f
= D⊗n1,f/3, M

−1
C⊗n

1 ,D⊗n
1,f

= D⊗n1,3/f , and

ρ̂(C⊗n1 ,D⊗n1,f , Û , b̂) =
k⊗
i=1

( 3
f
Û |b̂i〉〈b̂i|Û −

(1
2 −

3
2f

)
I
)
.

Applying Proposition 5.4 with f(D1,f ) = f/3, we get

‖P‖2shadow,C⊗n
1 ,D⊗n

1,f
=
( 3
f2

)wt(P )
.

The sample complexity in this setting follows from Corollary 5.5.

Ntot ≤
68 log(2M/δ)

ε2 max
1≤i≤M

( 3
f2

)wt(P )
.

5.4.3 Amplitude Damping Channel

The last example we consider is the case where the quantum channel is a product of local
amplitude damping channels, denoted by AD⊗n1,p (see Definition 2.3). In Section 4.4.3, we show
that f(ADn,p) = (1+p)n−1

22n−1 . For n = 1, f(AD1,p) = p/3. We get expressions for the shadow
channel and inverse shadow channel by applying Claim 5.1.

MC⊗n
1 ,AD⊗n

1,p
= D⊗n1,p/3 and M−1

C⊗n
1 ,AD⊗n

1,p

= D⊗n1,3/p.
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Similarly, we apply Claim 5.2 to get an expression for the classical shadow.

ρ̂(C⊗n1 ,AD⊗n1,p , Û , b̂) =
k⊗
i=1

(3
p
Û |b̂i〉〈b̂i|Û −

(1
2 −

3
2p

)
I
)
.

Applying Proposition 5.4 with f(AD1,p) = p/3, we get

‖P‖2shadow,C⊗n
1 ,D⊗n

1,f
=
( 3
p2

)wt(P )
.

The sample complexity in this setting follows from Corollary 5.5.

Ntot ≤
68 log(2M/δ)

ε2 max
1≤i≤M

( 3
p2

)wt(P )
.

6 Concluding Remarks and Open Problems
In this paper, we generalized the Huang-Kueng-Preskill classical shadows protocol [11] to
take into account the effects of noise. We studied scenarios in which the quantum computer
implementing the classical shadows protocol is subject to various noise channels. The noise
models we considered include depolarizing noise, dephasing noise and amplitude damping
noise.

For each of these noise models, we derived upper bounds for the number of samples needed
to achieve expecatation value estimates with a given accuracy. These upper bounds are spec-
ified in terms of a shadow seminorm that we introduce in this paper. The shadow seminorm
generalizes the shadow norm used to bound the sample complexity in the noiseless classical
shadows protocol [11]. By modifying the classical post-processing step of the noiseless protocol,
we introduced a new estimator that remains unbiased in the presence of noise. A high-level
takeaway of our work is that the classical shadows protocol is still efficient for certain estima-
tion tasks, even in the presence of noise.

We conclude by listing a few open questions and future directions that could build on this
work.

1. Comparison of our work with [18]. What if the true noise channel is given by E , but the
user thinks that the noise channel is given by F 6= E? This will result in the application
of the inverse shadow channelM−1

U ,F instead ofM−1
U ,E , which will likely lead to a classical

shadow that is not an unbiased estimator of ρ. We leave it as an open problem to analyze
this setting and give bounds on the bias of the estimator. Furthermore, how does our
work compare with the approach given in [18]? If F and E are “close” enough, is our
approach preferred to [18]?

2. Scope and limitations of our noise model. As noted in Section 1.1.2, the assumption on
our noise model is sometimes referred to as the GTM noise assumption8, which allows

8 For the GTM noise assumption, there is some freedom involved in whether the Markovian noise acts before
or after the perfect application of the unitary operation. Indeed, some references (like [19,20]) have chosen to
put the noise before the unitary and others (like [18] and this manuscript) have chosen to put the noise after
the unitary. More generally, one could consider the case where known noise channels act both before and after
the unitary; in Appendix E, we discuss this case and show that this leads to only a minor modification of the
quantities involved in Algorithm 2.
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the noisy channel Ũ to be written as Ũ = N ◦ U , where U = U(·)U † is the ideal unitary
channel and N is a quantum channel that is independent of both U and of the physical
time at which the computation is performed. While this assumption is common in the
literature (see [18–20] and references therein), it is likely too simplistic to represent noise
on real devices [109]. If one can give empirical evidence that our algorithm achieves
higher accuracy than the original classical shadows protocol, then that would serve as
evidence that the GTM assumption is not too simplistic for classical shadows. However,
it is still possible that a more realistic noise model could lead to an algorithm that
produces higher-accuracy estimates. We leave it as an open problem to analyze classical
shadows with more realistic noise models, e.g., noise that is gate-dependent and/or non-
Markovian.

3. Experimental demonstration of the classical shadows protocol, where our work is used to
improve the accuracy of the estimation. Specifically, this demonstration would involve
running experiments for which the estimation accuracy is improved by inverting the
noisy shadow channel (rather than the noiseless shadow channel). This would build on
some experimental work on classical shadows that have been performed recently, for
example, [52,66,79].

4. Invertibility of the noisy shadow channel. Are there nice and simple necessary and
sufficient conditions for invertibility of the noisy shadow channel? This would generalize
the result stated in Section 1.1.1 that a sufficient condition for the noiseless shadow
channel to be invertible is that the unitary ensemble is tomographically complete; and
would generalize Claim 4.2, which states that if the unitary ensemble is a 2-design and
the noise channel is denoted by E , then tr(E ◦diag) 6= 1 if and only if the shadow channel
is invertible.

5. Comparison of classical shadows with competing methods for estimating properties of
quantum states on noisy quantum devices. When should one use classical shadows over
other methods? This can be investigated theoretically, where one establishes theoretical
performance guarantees for these methods; or numerically or experimentally, where one
performs empirical comparisons between the performance of different methods.
Examples of competing methods include those that we mentioned in Section 1.2.1 and
Section 1.2.2. We note here that there has been some recent work along this direction.
For example, recent work by Hadfield et al. have compared a non-uniform version of
classical shadows (called locally-biased classical shadows) with competing methods like
grouping and `1-sampling, and have shown that it outperforms these other methods for
the task of estimating expectation values of molecular Hamiltonians [50]. An important
next step would be to investigate if these advantages continue to hold in the presence of
noise.
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A Deferred Proofs
A.1 Proof of Lemma 2.6
To prove Lemma 2.6, we first introduce some notation. For a qudit linear superoperator
Λ : L(Cd)→ L(Cd) and x ∈ [d], define

tΛ,x
def= tr(Λ(|x〉〈x|)), (93)

Λxxxx
def= 〈x|Λ(|x〉〈x|)|x〉. (94)

These functions satisfy the following properties:

Claim A.1. Consider the unary operator ()‡ defined in Eq. (47). Then,

1. ∑
x∈[d]

tΛ,x =
∑
x∈[d]

tΛ‡,x = tr(Λ(I)). (95)

If Λ is trace-preserving or unital, then∑
x∈[d]

tΛ,x = d. (96)

2.

(Λ‡)xxxx = Λxxxx. (97)

3. ∑
x∈[d]

Λxxxx =
∑
x∈[d]

(Λ‡)xxxx = tr(Λ ◦ diag). (98)

Proof. By straightforward calculation.

We also need to evaluate the Haar integral in Eq. (20) when t = 3. To evaluate the Haar
integral, we first introduce some notation. Let S3 = {1, (12), (13), (23), (123), (132)} denote
the symmetric group on three elements (where we have written its elements in cycle notation).
For each π ∈ S3, define the permutation operator Wπ ∈ U((Cd)⊗n) to be the unique linear
operator satisfying

Wπ(x1 ⊗ x2 ⊗ x3) = xπ−1(1) ⊗ xπ−1(2) ⊗ xπ−1(3) (99)

for all x1, x2, x3 ∈ C3. Equivalently,

Wπ =
∑
x∈Zn

d

|x〉〈π(x)|, (100)

where |π(x)〉 =
∣∣∣xπ(1), . . . , xπ(n)

〉
.
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Following [110], define the following linear combinations of permutation operators:

R+ = 1
6
∑
π∈S3

Wπ = 1
6(I +W12 +W13 +W23 +W123 +W132), (101)

R− = 1
6
∑
π∈S3

sgn(π)Wπ = 1
6(I −W12 −W13 −W23 +W123 +W132), (102)

R0 = 1
3(2I −W123 −W132), (103)

R1 = 1
3(2W23 −W13 −W12), (104)

R2 = 1√
3

(W12 −W13), (105)

R3 = i√
3

(W123 −W132), (106)

where we have dropped the parentheses in the notation for the permutation operators: W12 =
W(12),W13 = W(13), etc.

When t = 3, the Haar integral in Eq. (20) may be expressed in terms of the operators Ri
as follows [111, Eq. (A3)]:

T
(d)
3 (A) = 6 tr(R+A)

d(d+ 1)(d+ 2)R+ + 6 tr(R−A)
d(d− 1)(d− 2)R− + 3

2d(d2 − 1)

3∑
i=0

tr(RiA)Ri. (107)

We now state and prove the following identities.

Lemma A.2. Let d ∈ Z+ and x ∈ Zd. Let Λ : L(Cd)→ L(Cd) be a linear superoperator, and
let A,B,Γ ∈ L(Cd) be linear operators. Then,

T
(d)
3 (|zxx〉〈yxx|) = 2

d(d+ 1)(d+ 2)(δyz + 2δxyz)R+ + 1
d(d+ 1)(d− 1)(δyz − δxyz)(R0 +R1).

(108)

T
(d)
3 (Γ⊗ |xx〉〈xx|) = 2

d(d+ 1)(d+ 2)(tr Γ + 2〈x|Γ|x〉)R+

+ 1
d(d+ 1)(d− 1)(tr Γ− 〈x|Γ|x〉)(R0 +R1). (109)

tr23{T (d)
3 (Λ(|x〉〈x|)⊗ |xx〉〈xx|)(I ⊗B ⊗ C)}

= 1
(d− 1)d(d+ 1)(d+ 2)

{ (
(1 + d)tΛ,x − 2Λxxxx

)
[tr(BC) + tr(B) tr(C)]

+ (dΛxxxx − tΛ,x [B tr(C) + C tr(B) +BC + CB]
}
. (110)

Proof.

• To prove Eq. (108), let A = |zxx〉〈yxx|. Using the definitions of Ri from Eqs. (101)–(106),
we can calculate that

tr(R+A) = 1
3(δyz + 2δxyz), (111)

Accepted in Quantum 2022-08-07, click title to verify. Published under CC-BY 4.0. 36



tr(R−A) = tr(R2A) = tr(R3A) = 0, (112)

tr(R0A) = tr(R1A) = 2
3(δyz − δxyz). (113)

Substituting these into Eq. (107) gives Eq. (108).

• To prove Eq. (109), we decompose

Γ =
∑
yz

γyz|z〉〈y|. (114)

Then, by linearity,

T
(d)
3 (Γ⊗ |xx〉〈xx|) =

∑
yz

γyzT
(d)
3 (|zxx〉〈yxx|). (115)

Eq. (109) follows from Eq. (108) and the facts that∑
yz

γyzδyz = tr Γ, (116)
∑
yz

γyzδxyz = γxx = 〈x|Γ|x〉. (117)

• To prove Eq. (110), set Γ = Λ(|x〉〈x|). Then, tr Γ = tΛ,x and 〈x|Γ|x〉 = Λxxxx.
Using Eq. (109),

T
(d)
3 (Λ(|x〉〈x|)⊗ |xx〉〈xx|) = 2

d(d+ 1)(d+ 2)(tΛ,x + 2Λxxxx)R+

+ 1
d(d+ 1)(d− 1)(tΛ,x − Λxxxx)(R0 +R1). (118)

Substituting this into the left-hand-side of Eq. (110) gives

LHS =
2(tΛ,x + 2Λxxxx)
d(d+ 1)(d+ 2) tr23[R+(I ⊗B ⊗ C)]︸ ︷︷ ︸

1

+
tΛ,x − Λxxxx
d(d+ 1)(d− 1) tr23[(R0 +R1)(I ⊗B ⊗ C)]︸ ︷︷ ︸

2

.

(119)

Let

ξπ = tr23(Wπ(I ⊗B ⊗ C)). (120)

Expanding R+, R0 and R1, we obtain

1 = 1
6
∑
π∈S3

ξπ

= 1
6(tr(B) tr(C) + tr(BC) +B tr(C) + C tr(B) +BC + CB), (121)

2 = tr23{[1
3(2I −W123 −W132) + 1

3(2W23 −W13 −W12)](I ⊗B ⊗ C)}

Accepted in Quantum 2022-08-07, click title to verify. Published under CC-BY 4.0. 37



= 1
3(2ξ1 − ξ(12) − ξ(13) + 2ξ(23) − ξ(123) − ξ132)

= 1
3(2 tr(B) tr(C) + 2 tr(BC)−B tr(C)− C tr(B)−BC − CB), (122)

where we used the following identities

ξ1 = tr(B) tr(C) (123)
ξ(12) = B tr(C) (124)
ξ(13) = C tr(B) (125)
ξ(23) = tr(BC) (126)
ξ(123) = CB (127)
ξ(132) = BC. (128)

Substituting Eq. (121) and Eq. (122) into Eq. (119) and rearranging terms gives Eq. (110).

We are now ready to prove Lemma 2.6. Let U be a qudit 3-design and E : L(Cd)→ L(Cd)
be a linear superoperator. Let b ∈ [d] and let A,B,C ∈ L(Cd) be linear operators. First, we
consider the function

ΞE(b) : = E
U∼U

U †E(|b〉〈b|)U〈b|UBU †|b〉〈b|UCU †|b〉

= E
U∼U

U †E(|b〉〈b|)U〈bb|(U ⊗ U)(B ⊗ C)(U † ⊗ U †)|bb〉

= tr23 E
U∼U

{
U †E(|b〉〈b|)U ⊗ (U † ⊗ U †)|bb〉〈bb|(U ⊗ U)(B ⊗ C)

}
= tr23

[
E

U∈U
(U † ⊗ U † ⊗ U †)E(|b〉〈b|)⊗ |bb〉〈bb|(U ⊗ U ⊗ U)(I ⊗B ⊗ C)

]
= tr23

[
E

U∈U†
(U ⊗ U ⊗ U)E(|b〉〈b|)⊗ |bb〉〈bb|(U † ⊗ U † ⊗ U †)(I ⊗B ⊗ C)

]
= tr23

[
T

(d)
3 (E(|b〉〈b|)⊗ |bb〉〈bb|)(I ⊗B ⊗ C)

]
= 1

(d− 1)d(d+ 1)(d+ 2)
{

[(1 + d)tE,b − 2Ebbbb] [tr(BC) + tr(B) tr(C)]

+ (dEbbbb − tE,b) [B tr(C) + C tr(B) +BC + CB]
}

(129)

where the sixth line follows from the assumption that U† = {U : U † ∈ U} is a 3-design, and
the last line follows from Eq. (110).

Summing ΞE(b) over all b, we obtain∑
b∈[d]

ΞE(b) =
∑
b∈[d]

ΞE‡(b)

= 1
(d− 1)d(d+ 1)(d+ 2)

{
[(1 + d) tr(E(I))− 2 tr(E ◦ diag)] [tr(BC) + tr(B) tr(C)]

+ (d tr(E ◦ diag)− tr(E(I)) [B tr(C) + C tr(B) +BC + CB]
}
, (130)
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where E‡(A) = (E∗(A†))†. We use the (easy-to-verify) fact that E is trace-preserving iff E‡ is
unital, which implies that tr(E(I)) = tr(E‡(I)) and tr(E ◦ diag) = tr(E‡ ◦ diag).

Hence,

E
U∼U

∑
b∈[d]
〈b|E(UAU †)|b〉〈b|UBU †|b〉〈b|UCU †|b〉

= E
U∼U

∑
b∈[d]

tr{E(UAU †)|b〉〈b|}〈b|UBU †|b〉〈b|UCU †|b〉

= E
U∼U

∑
b∈[d]

tr{UAU †E‡(|b〉〈b|)}〈b|UBU †|b〉〈b|UCU †|b〉

= E
U∼U

∑
b∈[d]

tr{AU †E‡(|b〉〈b|)U}〈b|UBU †|b〉〈b|UCU †|b〉

= tr

A ∑
b∈[d]

E
U∼U

U †E‡(|b〉〈b|)U〈b|UBU †|b〉〈b|UCU †|b〉


= tr

A ∑
b∈[d]

ΞE‡(b)


= (1 + d)α− 2β

(d− 1)d(d+ 1)(d+ 2) (tr(A) tr(BC) + tr(A) tr(B) tr(C))

+ dβ − α
(d− 1)d(d+ 1)(d+ 2) (tr(AB) tr(C) + tr(AC) tr(B) + tr(ABC) + tr(ACB)) ,

(131)

where α = tr(E(I)) and β = tr(E ◦ diag), and where the last line follows from applying
Eq. (130).

A.2 Proof of Lemma 3.6
Below we give the proof of Lemma 3.6.

Proof. By definition, the variance of ô is

Var
U∼U
b∼Pb

[ô] = E
U∼U
b∼Pb

[(
ô− E

U∼U
b∼Pb

[ô]
)2]
.

Let Oo = O − tr(O) I
2n be the traceless part of O. Because tr(ρ) = tr(ρ̂) = 1, it follows that

ô− E[ô] = tr(Ooρ̂) = tr(Ooρ). Therefore, the variance depends only on Oo:

Var
U∼U
b∼Pb

[ô] = E
U∼U
b∼Pb

[(
tr(Ooρ̂)− tr(Ooρ)

)2]
. (132)

Simplifying further, we get

Var
U∼U
b∼Pb

[ô] = E
U∼U
b∼Pb

[(
tr(Ooρ̂)− tr(Ooρ)

)2]
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= E
U∼U
b∼Pb

[
tr(Ooρ̂)2 + tr(Ooρ)2 − 2 tr(Ooρ) tr(Ooρ̂)

]
= E

U∼U
b∼Pb

[(
tr(Ooρ̂)2

]
+ tr(Ooρ)2 − 2 tr(Ooρ) E

U∼U
b∼Pb

[
tr(Ooρ̂)

]
= E

U∼U
b∼Pb

[
tr(Ooρ̂)2

]
− tr(Ooρ)2, (133)

where

tr(Ooρ̂) = tr
(
OoM−1

U ,E(U
†|b〉〈b|U)

)
= tr(M−1,†

U ,E (Oo)U †|b〉〈b|U)

= 〈b|UM−1,†
U ,E (Oo)U †|b〉. (134)

To get a priori bounds on the variance, we must remove the dependence on the input state
ρ, which we do by maximizing over all quantum states.

Var
U∼U
b∼Pb

[ô] = E
U∼U
b∼Pb

[
〈b|UM−1,†

U ,E (Oo)U †|b〉2
]
− tr(Ooρ)2

= E
U∼U

∑
b∈{0,1}n

Pb(b;U, E , ρ)〈b|UM−1,†
U ,E (Oo)U †|b〉2 − tr(Ooρ)2

= E
U∼U

∑
b∈{0,1}n

〈b|E(UρU †)|b〉〈b|UM−1,†
U ,E (Oo)U †|b〉2 − tr(Ooρ)2

≤ max
σ∈D2n

E
U∼U

∑
b∈{0,1}n

〈b|E(UσU †)|b〉〈b|UM−1,†
U ,E (Oo)U †|b〉2 − tr(Ooρ)2

=
(

max
σ∈D2n

√
E

U∼U

∑
b∈{0,1}n

〈b|E(UσU †)|b〉〈b|UM−1,†
U ,E (Oo)U †|b〉2

)2
− tr(Ooρ)2

= ‖Oo‖2shadow,U ,E − tr(Ooρ)2

≤
∥∥∥∥O − tr(O) I

2n

∥∥∥∥2

shadow,U ,E
.

A.3 Proof of Corollary 4.6
Proof. We use the fact that if A ∈ H2n , then 2−n tr(A) ≤ ‖A‖sp ≤ tr(A). First, we prove the
lower bound.

∥∥∥O2
o

∥∥∥
sp
≥ 1

2n tr(O2
o) =⇒ ‖Oo‖2shadow,U ,E ≥

22n − 1
(2n + 2)(β − 1)

(2n + 22n − 2β
2n(β − 1) + 2

2n
)

tr(O2
o)

= (22n − 1)(2n − 1)
2n(β − 1)2 tr(O2

o)
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= (2n − 1)2(2n + 1)
2n(β − 1)2 tr(O2

o)

≥ (2n − 1)2

(β − 1)2 tr(O2
o). (135)

Now, the first upper bound.

∥∥∥O2
o

∥∥∥
sp
≤ tr(O2

o) =⇒ ‖Oo‖2shadow,U ,E ≤
22n − 1

(2n + 2)(β − 1)
(2n + 22n − 2β

2n(β − 1) + 2
)

tr(O2
o)

= (2n − 1)2(2n + 1)(2β + 2n)
2n(2n + 2)(β − 1)2 tr(O2

o)

≤ (2n − 1)2(2β + 2n)
2n(β − 1)2 tr(O2

o)

≤ (2n − 1)2(2 · 2n + 2n)
2n(β − 1)2 tr(O2

o)

= 3(2n − 1)2

(β − 1)2 tr(O2
o). (136)

Finally, the second upper bound.

‖Oo‖2shadow,U ,E ≤
3(2n − 1)2

(β − 1)2 tr(O2
o)

= 3(2n − 1)2

(β − 1)2 tr
(
(O − 1

2n tr(O)I)2)
= 3(2n − 1)2

(β − 1)2
(

tr(O2)− 1
2n tr(O)2)

≤ 3(2n − 1)2

(β − 1)2 tr(O2). (137)

B When is the Shadow Seminorm a Norm?
In this appendix, we prove that the shadow seminorm is indeed a seminorm. In addition, we
prove sufficient conditions for the shadow seminorm ‖·‖shadow,U ,E to be a norm. The paradig-
matic quantum channels studied in this work—namely the depolarizing channel, dephasing
channel and amplitude damping channel—satisfy these conditions, and hence yield shadow
seminorms which are also norms. We begin by stating the main result of this section.

Definition B.1. Let Λn be the set of n-qubit quantum channels Θ satisfying the following:

∀b ∈ {0, 1}n, ∃σ ∈ D2n : 〈b|Θ(σ)|b〉 6= 0.

Proposition B.2. Let U be an n-qubit unitary ensemble and E an n-qubit quantum channel
such that the shadow channelMU ,E is invertible. Then,
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1. The shadow seminorm ‖·‖shadow,U ,E is a seminorm.

2. If E ∈ Λn, then the shadow seminorm ‖·‖shadow,U ,E is a norm.

The rest of this appendix is dedicated to proving this statement (which amounts to ex-
plicitly verifying that the shadow seminorm satisfies the properties of being a seminorm or
norm).

First, we show that the condition above doesn’t trivially include all channels (i.e., there
are channels that are not in Λn). We also show that all unital channels are in Λn.

Claim B.3.

1. There exist quantum channels which are not in Λn.

2. If a quantum channel Θ is unital, then Θ ∈ Λn.

Proof. To prove (1), choose Θ to be the following map: A 7→ tr(A)|0n〉〈0n| (|0n〉 denotes the
n-qubit state where all qubits are in the state |0〉). From the following Kraus representation
of Θ, we see that Θ is a quantum channel:

Θ(A) = tr(A)|0n〉〈0n| =
∑
i

〈i|A|i〉|0n〉〈0n| =
∑
i

|0n〉〈i|A|0n〉〈i|†.

Now take b = 1n = 11 . . . 1 (that is, |b〉 = |1n〉 is the n-qubit state where all qubits are in the
state |1〉). Then, ∀σ ∈ D2n , 〈b|Θ(σ)|b〉 = 0. Thus, Θ 6∈ Λn.

To prove (2), assume that the quantum channel Θ is unital. Let b ∈ {0, 1}n and choose σ
to be the maximally mixed state. Then,

〈b|Θ(σ)|b〉 = 1
2n 〈b|Θ(I)|b〉 = 1

2n 6= 0.

Proof of Proposition B.2.

1. To show that the shadow seminorm is a seminorm, we shall explicitly verify that it
satisfies the triangle inequality and absolute homogeneity.
First, the triangle inequality.

‖S + T‖shadow,U ,E = max
σ∈D2n

√
E

U∼U

∑
b∈{0,1}n

〈b|E(UσU †|b〉〈b|UM−1,†
U ,E (S + T )U †|b〉2

︸ ︷︷ ︸
1

. (138)

Then,

1 = E
U∼U

∑
b∈{0,1}n

〈b|E(UσU †|b〉〈b|UM−1,†
U ,E (S + T )U †|b〉2

= E
U∼U

∑
b∈{0,1}n

〈b|E(UσU †|b〉
(
〈b|UM−1,†

U ,E (S)U †|b〉2 + |b〉〈b|UM−1,†
U ,E (T )U †|b〉2

)
= E

U∼U

∑
b∈{0,1}n

(αb,U + βb,U )2
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= E
U∼U

∑
b∈{0,1}n

α2
b,U + E

U∼U

∑
b∈{0,1}n

β2
b,U + 2 E

U∼U

∑
b∈{0,1}n

αb,Uβb,U , (139)

where we define
αb,U

def=
√
〈b|E(UσU †)|b〉〈b|UM−1,†

U ,E (S)U †|b〉,

βb,U
def=
√
〈b|E(UσU †)|b〉〈b|UM−1,†

U ,E (T )U †|b〉.

Then, by the Cauchy-Schwarz inequality,

1 ≤ E
U∼U

∑
b∈{0,1}n

α2
b,U + E

U∼U

∑
b∈{0,1}n

β2
b,U + 2

√
E

U∼U

∑
b∈{0,1}n

α2
b,U

√
E

U∼U

∑
b∈{0,1}n

β2
b,U

=

√ E
U∼U

∑
b∈{0,1}n

α2
b,U +

√
E

U∼U

∑
b∈{0,1}n

β2
b,U

2

. (140)

Plugging this back into the original expression gives

‖S + T‖shadow,U ,E = max
σ∈D2n

√
E

U∼U

∑
b∈{0,1}n

α2
b,U +

√
E

U∼U

∑
b∈{0,1}n

β2
b,U

≤ max
σ∈D2n

√
E

U∼U

∑
b∈{0,1}n

α2
b,U + max

σ∈D2n

√
E

U∼U

∑
b∈{0,1}n

β2
b,U

= ‖S‖shadow,U ,E + ‖T‖shadow,U ,E . (141)

Secondly, observe that absolute homogeneity follows immediately by linearity.

2. We shall verify that if E ∈ Λn is satisfied, then the shadow seminorm is point-
separating/positive semi-definite, which implies that it is also a norm.
Suppose that ‖T‖shadow,U ,E = 0. Then

max
σ∈D2n

√
E

U∼U

∑
b∈{0,1}n

〈b|E(UσU †|b〉〈b|UM−1,†
U ,E (T )U †|b〉2 = 0

=⇒ 〈b|E(UσU †|b〉〈b|UM−1,†
U ,E (T )U †|b〉2 = 0, ∀σ ∈ D2n , U ∈ U , b ∈ {0, 1}n. (142)

Without loss of generality, choose U = I. Since E ∈ Λn, we know that ∀σ ∈ D2n , there is
a b such that 〈b|E(σ)|b〉 6= 0. Therefore, we can conclude that

〈b|M−1,†
U ,E (T )|b〉2 = 0, ∀b ∈ {0, 1}n =⇒ M−1,†

U ,E (T ) = 0 =⇒ T = 0,

which completes the proof of our proposition.
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C Inconsequential Noise
Recall from Lemma 4.1 that when the unitary ensemble is a 2-design, the shadow channel is
a depolarizing channel with depolarizing parameter f(E) = 1

22n−1

(
tr(E ◦ diag)− 1

2n tr(E(I))
)
.

In this setting, we characterize inconsequential noise (i.e., the quantum channels that do not
affect the classical shadows protocol).

Claim C.1. Let U be an n-qubit 2-design and let E be a linear superoperator. E has no effect
onMU (i.e.,MU ,E =MU) if and only if tr(E ◦ diag) = 2n. Also, E has no effect onMU (i.e.,
MU ,E =MU) if and only if 〈b|E(|b〉〈b|)|b〉 = 1, ∀ b ∈ {0, 1}n.

Proof.

MU ,E =MU ⇐⇒ Dn,f(E) = Dn,f(I) ⇐⇒ f(E) = f(I) ⇐⇒ tr(E ◦ diag) = 2n. (143)

Also,

MU ,E =MU ⇐⇒ tr(E ◦ diag) = 2n ⇐⇒ 〈b|E(|b〉〈b|)|b〉 = 1, ∀ b ∈ {0, 1}n. (144)

D Shadow Seminorm of k-Local Observable with Product Clifford Ensemble
In this section we bound the shadow seminorm of a k-local observable when the product
Clifford ensemble is subject to depolarizing noise (rather than a general quantum channel).

Proposition D.1. Let O ∈ H2n be a k-local observable with nontrivial part Õ. Let Õ =∑
p∈Zk

4
αpPp be the expansion of Õ in the Pauli basis. Let 0 ≤ f ≤ 1. Then,

‖O‖2shadow,C⊗n
1 ,D⊗n

1,f
=

∥∥∥∥∥∥∥
∑

p,q∈Zk
4

αpαqF̃(p,q)PpPq

∥∥∥∥∥∥∥
sp

, (145)

where

F̃(p,q) =
k∏
j=1

f̃(pj ,qj), (146)

with

f̃(p, q) =


1/f if p = q = 0.
1 if (p = 0)⊕ (q = 0).
3/f2 if p = q 6= 0.
0 otherwise.

(147)
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Proof. Without loss of generality, we write O = Õ ⊗ I, where Õ =
∑

p∈Zk
4
αpPp. Then,

‖O‖2shadow,C⊗n
1 ,D⊗n

1,f

=
∥∥∥Õ∥∥∥2

shadow,C⊗k
1 ,D⊗k

1,f

= max
σ∈D2k

E
U∼C⊗k

1

∑
b∈{0,1}k

〈b|D⊗k1,f (UσU †)|b〉〈b|UD⊗k1,3/f (Õ)U †|b〉2

= max
σ∈D2k

E
U∼C⊗k

1

∑
b∈{0,1}k

〈b|D⊗k1,f (UσU †)|b〉〈b|UD⊗k1,3/f

∑
p∈Zk

4

αpPp

U †|b〉2
= max

σ∈D2k

∑
p,q∈Zk

4

αpαq E
U∼C⊗k

1

∑
b∈{0,1}k

〈b|D⊗k1,f (UσU †)|b〉〈b|UD⊗k1,3/f (Pp)U †|b〉〈b|UD⊗k1,3/f (Pq)U †|b〉

︸ ︷︷ ︸
1

.

(148)

To evaluate 1 , write σ =
∑
i1...ik

σi1...ikei1 ⊗ . . .⊗ eik . Then,

1 = E
U∼C⊗k

1

∑
b∈{0,1}k

〈b|D⊗k1,f (U
∑
i1...ik

σi1...ikei1 ⊗ . . .⊗ eikU
†)|b〉

· 〈b|UD⊗k1,3/f (Pp)U †|b〉〈b|UD⊗k1,3/f (Pq)U †|b〉

=
∑
i1...ik

σi1...ik

k⊗
j=1

E
Uj∼C1

∑
bj∈{0,1}

〈bj |D1,f (UjeijU
†
j )|bj〉

· 〈bj |UjD1,3/f (Ppj )U †j |bj〉〈bj |UjD1,3/f (Pqj )U †j |bj〉

=
∑
i1...ik

σi1...ik

k∏
j=1

E
Uj∼C1

∑
bj∈{0,1}

〈bj |(fUjeijU
†
j + (1− f) tr(UjeijU

†
j ) I

2)|bj〉

· 〈bj |UjD1,3/f (Ppj )U †j |bj〉〈bj |UjD1,3/f (Pqj )U †j |bj〉

=
∑
i1...ik

σi1...ik

k∏
j=1

E
Uj∼C1

∑
bj∈{0,1}

{
f〈bj |UjeijU

†
j |bj〉+ 1− f

2 tr(eij )
}

· 〈bj |UjD1,3/f (Ppj )U †j |bj〉〈bj |UjD1,3/f (Pqj )U †j |bj〉

=
∑
i1...ik

σi1...ik

k∏
j=1

{
f E
Uj∼C1

∑
bj∈{0,1}

〈bj |UjeijU
†
j |bj〉〈bj |UjD1,3/f (Ppj )U †j |bj〉〈bj |UjD1,3/f (Pqj )U †j |bj〉︸ ︷︷ ︸

2

+ 1− f
2 tr(eij ) E

Uj∼C1

∑
bj∈{0,1}

〈bj |UjD1,3/f (Ppj )U †j |bj〉〈bj |UjD1,3/f (Pqj )U †j |bj〉︸ ︷︷ ︸
3

}
. (149)
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To evaluate 2 and 3 , define ξ[A](p, q) as

ξ[A](p, q) def= E
U∼C1

∑
b∈{0,1}

〈b|UAU †|b〉〈b|UD1,3/f (Pp)U †|b〉〈b|UD1,3/f (Pq)U †|b〉.

Hence, 2 = ξ[eij ](pj ,qj) and 3 = ξ[I](pj ,qj). We will now find an expression for ξ[A](p, q).

Case 1: p = q = 0.
ξ[A](0, 0) = E

U∼C1

∑
b∈{0,1}

〈b|UAU †|b〉〈b|UD1,3/f (I)U †|b〉〈b|UD1,3/f (I)U †|b〉

= E
U∼C1

∑
b∈{0,1}

〈b|UAU †|b〉

= tr(A). (150)

Case 2: p 6= 0, q = 0.
ξ[A](p, 0) = E

U∼C1

∑
b∈{0,1}

〈b|UAU †|b〉〈b|UD1,3/f (Pp)U †|b〉〈b|UD1,3/f (I)U †|b〉

= 3
f

E
U∼C1

∑
b∈{0,1}

〈b|UAU †|b〉〈b|UPpU †|b〉

= 3
f

tr
{
A E
U∼C1

∑
b∈{0,1}

U †|b〉〈b|U〈b|UPpU †|b〉
}

= 3
f

tr
{
AMC1,I(Pp)

}
= 1
f

tr(APp). (151)

Case 3: p = 0, q 6= 0. By symmetry,

ξ[A](0, q) = 1
f

tr(APq). (152)

Case 4: p 6= 0, q 6= 0.
ξ[A](p, q) = E

U∼C1

∑
b∈{0,1}

〈b|UAU †|b〉〈b|UD1,3/f (Pp)U †|b〉〈b|UD1,3/f (Pq)U †|b〉

= 9
f2 tr

{
A E
U∼C1

∑
b∈{0,1}

U †|b〉〈b|U〈b|UPpU †|b〉〈b|UPqU †|b〉
}

= 9
f2 tr

{
A

1
3δpqI

}
= 3
f2 δpq tr(A). (153)

The third equality follows from Eq. (S36) of [11], which itself follows from Eq. (129) by setting
E = I, d = 2, and tr(B) = tr(C) = 0. Combining the four cases gives
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ξ[A](p, q) =



tr(A) if p = q = 0.
1
f tr(APp) if p 6= 0, q = 0.
1
f tr(APq) if p = 0, q 6= 0.

3
f2 tr(A) if p = q 6= 0.

0 if p 6= q, p 6= 0, q 6= 0.

= ζ(p, q) tr(APpPq), (154)

where

ζ(p, q) =


1/f if p = 0 or q = 0.
3/f2 if p = q 6= 0.
0 otherwise.

(155)

Applying this to 2 and 3 gives

2 = ξ[eij ](pj ,qj) = ζ(pj ,qj) tr(eijPpjPqj )

and
3 = ξ[I](pj ,qj) = ζ(pj ,qj) tr(PpjPqj ) = 2ζ(pj ,qj)δpjqj .

Plugging these expressions into 1 gives

1 =
∑
i1...ik

σi1...ik

k∏
j=1

{
fζ(pj ,qj) tr(eijPpjPqj ) + 1− f

2 tr(eij )2ζ(pj ,qj)δpjqj

}

=
∑
i1...ik

σi1...ik

( k∏
j=1

ζ(pj ,qj)
) k∏
j=1

{
f tr(eijPpjPqj ) + (1− f) tr(eij )δpjqj︸ ︷︷ ︸

4

}
. (156)

When pj 6= qj , 4 = f tr(eijPpjPqj ). When pj = qj , 4 = f tr(eijP 2
pj

) + (1 − f) tr(eij ) =
tr(eij ). Hence,

4 = f
1pj 6=qj tr(eijPpjPqj ).

1 =
∑
i1...ik

σi1...ik

( k∏
j=1

ζ(pj ,qj)
) k∏
j=1

{
f
1pj 6=qj tr(eijPpjPqj )

}

=
k∏
j=1

f
1pj 6=qj ζ(pj ,qj)︸ ︷︷ ︸

5

∑
i1...ik

σi1...ik tr((ei1 ⊗ . . .⊗ eik)(Pp1 ⊗ . . .⊗ Ppk
)(Pq1 ⊗ . . .⊗ Pqk

)).

(157)

Let f̃(p, q) = f
1pj 6=qj ζ(pj ,qj). Then,

f̃(p, q) =
{
f if p 6= q.
1 if p = q.

×


1/f if p = 0 or q = 0.
3/f2 if p = q 6= 0.
0 otherwise.

=


1/f if p = q = 0.
1 if (p = 0)⊕ (q = 0).
3/f2 if p = q 6= 0.
0 otherwise.

(158)
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and 5 = f̃(pj ,qj). Let F̃(p,q) =
∏k
j=1 f̃(pj ,qj). Then,

1 = F̃(p,q)
∑
i1...ik

σi1...ik tr((ei1 ⊗ . . .⊗ eik)PpPq)

= F̃(p,q) tr(σPpPq). (159)

Plugging the expression for 1 into Eq. (148) completes the proof.

‖O‖2shadow,C⊗n
1 ,D⊗n

1,f
= max

σ∈D2k

∑
p,q∈Zk

4

αpαqF̃(p,q) tr(σPpPq)

= max
σ∈D2k

tr
{
σ
∑

p,q∈Zk
4

αpαqF̃(p,q)PpPq
}

=

∥∥∥∥∥∥∥
∑

p,q∈Zk
4

αpαqF̃(p,q)PpPq

∥∥∥∥∥∥∥
sp

. (160)

E Noisy Input States
Throughout the main text, our assumption has been that the input state ρ is prepared without
any errors. But what if the input state given is itself noisy? In this appendix, we consider
the case where in addition to the noise described in the noisy measurement primitive of Defi-
nition 3.1, the input state ρ is subject to the noise channel K. In other words, instead of the
intended transformation ρ 7→ UρU †, the input state transforms as ρ 7→ E(UK(ρ)U †). This
scenario is equivalent to a noise model where the unitary operation U is replaced by one where
a noise channel acts both before and after the perfect implementation of U (see Footnote 8).

With this change, Eq. (25) becomes

U †|b̂〉〈b̂|U with probability Pb(b̂)
def= 〈b̂|E(UK(ρ)U †)|b̂〉 where b̂ ∈ {0, 1}n. (161)

The noisy shadow channel in Eq. (26) is modified to

MU ,E,K(ρ) def= E
U∼U

∑
b∈{0,1}n

〈b|E(UK(ρ)U †)|b〉U †|b〉〈b|U = (MU ,E ◦ K) (ρ). (162)

and the noisy classical shadow of Eq. (27) becomes

ρ̂ = ρ̂(U , E ,K, Û , b̂) def= M−1
U ,E,K(Û †|b̂〉〈b̂|Û)

= (K−1 ◦M−1
U ,E)(Û

†|b̂〉〈b̂|Û), (163)

where we have assumed that both the shadow channel and the noise channel K are invertible
linear superoperators. As before, we do not assume that the inverses are themselves quantum
channels.
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Next, the shadow seminorm of Eq. (30) becomes modified to

‖O‖shadow,U ,E,K = max
σ∈D2n

√
E

U∼U

∑
b∈{0,1}n

〈b|E(UσU †)|b〉〈b|UM−1,†
U ,E,K(O)U †|b〉2

= max
σ∈D2n

√
E

U∼U

∑
b∈{0,1}n

〈b|E(UσU †)|b〉〈b|UK−1,†(M−1,†
U ,E (O))U †|b〉2. (164)

Hence, by following the same argument as in the main text, we arrive at Theorem 3.7, but
with the shadow seminorm ‖·‖shadow,U ,E replaced by ‖·‖shadow,U ,E,K. Consequently, the only
changes needed to adapt Algorithm 2 to this case are

1. In step 2 of Algorithm 2, replace the shadow seminorm with Eq. (164).

2. In step 5 of Algorithm 2, replace E(UρU †) with E(UK(ρ)U †).

3. In step 8 of Algorithm 2, replace each occurrence ofM−1
U ,E with K−1 ◦M−1

U ,E .
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