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Abstract

We consider quantum computations comprising only commuting gates, known as IQP computa-
tions, and provide compelling evidence that the task of sampling their output probability distributions
is unlikely to be achievable by any efficient classical means. More specifically we introduce the class
post-IQP of languages decided with bounded error by uniform families of IQP circuits with post-
selection, and prove first that post-IQP equals the classical class PP. Using this result we show that
if the output distributions of uniform IQP circuit families could be classically efficiently sampled,
either exactly in total variation distance or even approximately up to 41% multiplicative error in the
probabilities, then the infinite tower of classical complexity classes known as the polynomial hier-
archy, would collapse to its third level. We mention some further results on the classical simulation
properties of IQP circuit families, in particular showing that if the output distribution results from
measurements on only O(log n) lines then it may in fact, be classically efficiently sampled.

See [ 1] (arXiv:1005.1407) for the technical version and [2 ] (arXiv:1005.1744) for closely related
work.

From a pragmatic point of view the field of quantum computing is driven by the expectation that
quantum algorithms can offer some computational complexity benefits transcending the possibilities of
classical computing. But this expectation can be challenged both theoretically and experimentally: (a)
there is yet no theoretical proof that any quantum algorithm outperforms the best classical algorithm
for the task, in the standard computational setting of polynomial vs. exponential running time (without
inclusion of further constructs, such as use of oracles, or consideration of distributed computing and
the role of communication; in both these scenarios there are indeed proofs of exponential complexity
benefits); (b) experimentally there are well documented difficulties associated with building a quantum
computer that is suitably fault tolerant and sufficiently scalable to manifestly demonstrate a complexity
benefit.

However both (a) and (b) can, to some extent, be redressed by further examination: the criticism
in (a) can be attributed to limitations of classical complexity theory — we do have interesting quantum
algorithms (such as Shor’s factoring algorithm) for problems widely believed to be classically hard but
there is no proof of the latter. Proof of classical hardness is a notoriously difficult issue (cf the famous
P vs. NP question) and it has become popular to resort to providing only evidence of hardness, as
follows: we prove that if a certain problem were classically easy then this would entail consequences
that are highly implausible (although also generally unproven) e.g. collapse of an entire complexity
class (such as entailing that P = NP). For (b) we could seek to devise a computational task that, on
the one hand is expected to be classically hard (as above) yet on the other hand, can be implemented
using suitably simple (sub-universal) quantum computational elements that are especially easily or fault-
tolerantly implementable within some specific experimental scheme. In this paper we develop a family
of such computational tasks (that amount to sampling from suitably prescribed probability distributions).



Recently Aaronson and Arkhipov have built a compelling alternate approach to similar issues [3, 4].
More generally there has been increasing interest in physically restricted forms of quantum computing
and a study of associated complexity classes [5, 0, 7, 8, 9]. interesting

We consider so-called temporally unstructured quantum computations (also known as IQP or “instan-
taneous” quantum computation) introduced in [10, 7]. Our main result is to demonstrate that if quantum
circuits comprising 2-qubit commuting gates could be simulated classically (even up to a generous mul-
tiplicative error tolerance as described below and in [1]) then the infinite tower of complexity classes
known as the polynomial hierarchy (PH), would collapse to its third level (see theorem 2 and corollary 1
in [1]). While not implying that P=NP, such a collapse is nevertheless widely regarded as being similarly
implausible. Apart from their tantalising theoretical simplicity, such circuits of only commuting gates
are known to be of significance for super- and semi-conductor qubit implementations, where it has re-
cently been shown [1 1] that they are much simpler to implement fault-tolerantly than gates drawn from a
fully universal set. IQP computations can can also be implemented as non-adaptive measurement-based
quantum computations [7] .

A significant ingredient in our derivations will be the notion of a post-selected quantum computation.
Aaronson [12] has shown that if post-selection is included with universal polynomial time quantum
computation then the computational power is boosted from BQP to the classical class PP. We will show
that, somewhat surprisingly, post-selection boosts the power of the much weaker class of polynomial
time IQP computations to PP too. It is worth noting that the methods used to prove our main result
can be applied to any class of circuits that similarly goes to PP under post-selection in order to show
analogous simulation hardness results.

While our main theorem holds equivalently for IQP circuits as well as generic polynomial time
quantum circuits, we see a clear deviation in complexity emerge if the size of the output register is
restricted. We prove that if the output register of a polynomial time IQP computation (with O(poly(n))
qubits) is restricted to O(log n) qubits then it is always efficiently classically simulable (see theorem 3 in
[1] also theorems 4, 5, 6 and 7 in [2] for alternate, and stronger, proofs which utilize connections between
IQP computations and the evaluation of Tutte polynomials). This is in stark contrast to the corresponding
situation for generic polynomial time quantum circuits where such a result would imply that BQP=BPP.
Put together, our results suggest a distinction between the classical simulability of IQP bounded error
decision problems versus IQP sampling problems which is unlikely to occur for more powerful classes
(for instance BQP versus SampBQP).

The notion of classical simulation that applies in our main result is an especially weak one — broadly
speaking (cf precise definitions in [ 1]) given a description of a quantum circuit we ask for a classical pro-
cess that can provide a sample of a probability distribution, that approximates the output distribution of
the quantum process to a suitable multiplicative accuracy. A more commonly used notion of approxima-
tion for probability distributions is that of an additive approximation (or approximation in total variation
distance) which often features in the analysis of imperfections in physical implementations. However
there appears to be no useful relationship between additive and multiplicative tolerances, and the proof
of our main result remains valid in the context of additive approximations only if the classical simulation
is required to be exact. The admissability of multiplicative, in contrast to additive, approximation arises
from our use of post-selection cf. theorem 2 in [1]. By alternately focusing on counting problems instead
of decision problems Aaronson and Arkhipov have recently given a persuasive argument that the efficient
classical simulation of sampling from linear (quantum) optical circuits to within an additive bound would
lead to a similar collapse in the polynomial hierarchy as presented here, providing two conjectures hold
true [3, 4].



A very much stronger notion of simulation sometimes used in the literature (which we shall call a
strong simulation) is to ask for a classical efficient computation of the value of any marginal or total
output probability, to exponential precision. Previously it was known [13, 14] that the existence of such
strong simulations for some classes of quantum computations would imply the collapse of the polynomial
hierarchy. Our result contrasts with these works in the striking simplicity of the quantum processes being
considered and in the very much weaker requirements in the classical simulation.
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