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1 Introduction

Three-point scattering amplitudes are the atoms in our modern approach to computing
interactions between particles in quantum field theory. Using BCFW [1] and generalised
unitarity [2, 3], it is possible to construct the complete S-matrix for Yang-Mills theory and
(up to ultraviolet divergences) for general relativity from their respective three-point am-
plitudes. These amplitudes are gauge invariant and beautifully simple objects, completely
specified by the helicities of the massless gluons and gravitons [4]. This basic simplicity
carries over to the case of massive particles, for any spin [5]. But in spite of all these
virtues, three-point amplitudes have one big defect: they do not exist in Minkowski space.
As for any n-point amplitude, the external particles involved in a three-point amplitude
must all be on shell. But there is no solution to the on-shell conditions in Minkowski space
for three particles with different momenta.

Recent years have seen a surprising new application of scattering amplitudes in classical
physics, motivated especially by gravitational wave physics [6–39]. This classical applica-
tion has motivated a renewed interest in the wider applications of amplitudes [40–71]. It is
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now evident that the tools of quantum field theory — for example, the double copy — have
interesting implications for classical physics. Certain amplitudes are closely connected with
specific classical concepts: for example, the four-point amplitude between massive particles
in gravity is closely related to the classical potential [72, 73]. But the three-point amplitude
has so far received no classical interpretation, because it is not present in Minkowski space.

Of course, the fact that the three-point amplitude vanishes in Minkowski space is no
obstacle for the programme of determining more complicated amplitudes. BCFW taught
us a simple trick: we analytically continue the momenta so that the on-shell conditions
do have a solution. We can take the momenta to be complex-valued, or else continue to
a spacetime with metric signature (+,+,−,−).1 This second option has some conceptual
virtues: we can choose real momenta and polarisation vectors; the spinor variables we
frequently use exist and are real; the chirality properties in a four-dimensional manifold
with this split signature mean that the two types of spinors are independent. For related
discussions of field theory in split signature, see [74–76].

Another virtue of a real spacetime with signature (+,+,−,−) is that real classical
equations exist in this spacetime and their solutions can be studied. In this paper, we find
a classical interpretation for the three-point amplitude in a split-signature spacetime: it
computes the Newman-Penrose scalars [77] (a spinorial version of the curvature of the field)
for the classical solution that is generated by the massive particle in the amplitude. For
example, the three-point amplitude between a massive scalar and a gauge boson computes
the electromagnetic field strength of a static point charge in split signature. In gravity, the
three-point amplitude between a massive scalar and a graviton computes the Weyl spinor
of the split-signature analogue of the Schwarzschild solution. Solutions in split signature
which are determined by three-point amplitudes are, from the perspective of scattering
amplitudes, the simplest non-trivial classical solutions.

The Newman-Penrose (NP) formalism can be illuminated by taking a spinorial ap-
proach to field theory. The Lorentz group in split signature is locally isomorphic to
SL(2,R) ⊗ SL(2,R), and the spinorial representations of SO(2, 2) are the (real) two-
dimensional fundamental representations of each SL(2,R) factor. In electrodynamics, for
example, we can pass from the tensorial field strength Fµν(x) to a spinorial equivalent
known as the Maxwell spinor φαβ(x). This is obtained by contracting the Lorentz indices
of Fµν(x) with matrices σµναβ which are proportional to the Lorentz generators in the
spinor representation (that is, the σµναβ generate one of the SL(2,R) subgroups of the
Lorentz group). We have

φαβ(x) = σµναβFµν(x) . (1.1)

In split signature, the Maxwell spinor is a real quantity, symmetric in its spinor in-
dices. There is a second Maxwell spinor associated with the spinor representation of the
other chirality:

φ̃α̇β̇(x) = σ̃µνα̇β̇Fµν(x) , (1.2)

where σ̃µνα̇β̇ are again proportional to the Lorentz generators, but now of the other “an-
tichiral” SL(2,R) subgroup.

1In our conventions, the (+)-directions are timelike and the (−)-directions are spacelike.
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To obtain Newman-Penrose scalars, we expand the Maxwell spinor (and its antichiral
friend) on a basis of spinors. Let us consider the Maxwell spinor due to some localised
source, such as a point-like charge. Solving the field equations with a retarded boundary
condition, we can introduce spinors at any spacetime point by taking the light-cone direc-
tion k from the charge to the point. Using the notation of spinor-helicity, the vector k is
also the bispinor |k〉[k|. To complete the basis of (chiral) spinors, we choose another spinor
|n〉. Now we may write out the Maxwell spinor in this basis:2

φαβ(x) = φ0(x)|n〉α|n〉β − φ1(x)|k〉(α|n〉β) + φ2(x)|k〉α|k〉β . (1.3)

The three scalar fields φi(x) are Newman-Penrose scalars. There are three more NP scalars
in the antichiral field strength: these are the six different components of the field strength.
In split signature, all the quantities in (1.3) are real, and the chiral quantities are indepen-
dent from the antichiral ones.

In gravity, the story is very similar. We pass from the Weyl curvature Wµνρσ(x) (via
a frame) to a Weyl spinor Ψαβγδ(x), which is real and completely symmetric in its four
spinor indices. Expanding the Weyl spinor on our basis of spinors, we encounter five real
NP scalars, namely

Ψαβγδ(x) = Ψ0(x)|n〉α|n〉β |n〉γ |n〉δ −
1
6 Ψ1(x)|k〉(α|n〉β |n〉γ |n〉δ)

+ 1
4 Ψ2(x)|k〉(α|k〉β |n〉γ |n〉δ) −

1
6 Ψ3(x)|k〉(α|k〉β |k〉γ |n〉δ)

+ Ψ4(x)|k〉α|k〉β |k〉γ |k〉δ .

(1.4)

Together with their compatriots in the antichiral Weyl spinor Ψ̃, these are the ten real
components of the Weyl tensor.

In Minkowski space, the NP scalars have an important property known as peeling [77,
78]. This is a hierarchy in their fall-off with large distance r between the observer and the
localised source. In electrodynamics, we have

φ0(x) = φ0
0(x̄) 1

r3 +O(1/r4) ,

φ1(x) = φ0
1(x̄) 1

r2 +O(1/r3) ,

φ2(x) = φ0
2(x̄) 1

r1 +O(1/r2) ,

(1.5)

where x̄ denotes non-radial dependence. Thus, the scalar φ2(x) is the dominant component
of the field at large distances: it describes the asymptotic radiation field. Meanwhile,φ1(x)
is Coulombic. In gravity, the situation is very similar:

Ψ0(x) = Ψ0
0(x̄) 1

r5 +O(1/r6) ,

Ψ1(x) = Ψ0
1(x̄) 1

r4 +O(1/r5) ,

2Details of our notation can be found in appendix A. For later convenience, our (anti)symmetrisation
symbols do not include the 1/n! factor.
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Ψ2(x) = Ψ0
2(x̄) 1

r3 +O(1/r4) ,

Ψ3(x) = Ψ0
3(x̄) 1

r2 +O(1/r3) ,

Ψ4(x) = Ψ0
4(x̄) 1

r1 +O(1/r2) . (1.6)

Asymptotic gravitational radiation is described by Ψ4(x), while Ψ2(x) describes a potential-
type contribution, as in Schwarzschild. We will see aspects of this structure in our split-
signature examples.

The double copy relation between scattering amplitudes in gravity and in Yang-Mills
theory [79–82] is quite a surprise from the classical geometric perspective on general rela-
tivity: geometrically, there seems to be little hint that gravity is some kind of “square” of
Yang-Mills theory. But it has always been clear that some aspects of gravity are analogues
of aspects of gauge theory (or, in simple settings, of electrodynamics), and the application
of the double copy to classical solutions in recent years has provided a unified understanding
to several such analogies [8, 10, 12, 16, 83–126]. For instance, the structure of the gravi-
tational Newman-Penrose scalars is evidently analogous to that of the electromagnetic NP
scalars. This is particularly clear for special classes of solutions, such as the Petrov type
N class, which has only Ψ4 6= 0 for an appropriate choice of spinor basis. Then the Weyl
spinor is simply

Ψαβγδ(x) = Ψ4(x)|k〉α|k〉β |k〉γ |k〉δ . (1.7)

In electrodynamics, we can consider a similar situation where the Maxwell spinor is simply

φαβ(x) = φ2(x)|k〉α|k〉β . (1.8)

Roughly speaking, type N spacetimes look like two copies of purely radiative electromag-
netic solutions. A more careful analysis led to a sharp proposal of an exact “Weyl” double
copy for special classes of solutions [96], where the Maxwell and Weyl spinors are related by

Ψαβγδ(x) = 1
S(x)φ(αβ(x)φγδ)(x) . (1.9)

Here, S(x) is a scalar field satisfying the (flat space) wave equation. The proposal was
first proven for vacuum solutions of type D, which have only Ψ2 6= 0, but has also been
studied for vacuum solutions of type N [120]; see [122] for the relation to the twistor
correspondence in the linearised case. In split signature, we will show that the double copy
relation between the three-point amplitudes in gauge theory and gravity directly relates
the Newman-Penrose scalars of the Coulomb charge and the Schwarzschild solution at
linearised level. This relation between the Newman-Penrose scalars in gauge theory and
gravity is directly expressed in the on-shell momentum space formalism of [21], but the
translation to position space for these particular solutions precisely reproduces the Weyl
double copy (1.9).

At the quantum level, it is natural to expect that the Coulomb field or the
Schwarzschild field should be described by a coherent state. For instance, in the
Schwarzschild case, the metric would be given by the expectation value of the all-order
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metric quantum operator on the coherent state (this operator would include all higher-
order perturbative terms). We show that the coherent state is uniquely described by the
relevant three-point amplitude. This is a gauge-invariant characterisation of the classical
field. Thus, both the field strengths and the coherent state are determined by the same
data. This is satisfying: classically, knowledge of the field strength is complete knowl-
edge of the field, so it should be that one can determine the coherent state from the field
strength. Indeed, this is the case. The structure of the coherent state we encounter is
strongly reminiscent of the eikonal exponentiation which is receiving renewed attention in
the context of the dialog between scattering amplitudes and classical physics.

Our results concerning the classical double copy have direct implications for Lorentzian
signature. Indeed, as we will see, the Newman-Penrose scalars we construct have a close
Lorentzian analogue. The Coulombic φ1(x) and the Schwarzschild-like Ψ2(x) that we com-
pute from our coherent states in split signature are essentially trivial analytic continuations
of their Minkowski-space counterparts.

The double copy between Coulomb and Schwarzschild is expected to be exact, but
our methods based on amplitudes are perturbative. To go beyond perturbation theory,
we use the Kerr-Schild double copy [8] to find the exact classical metric set up by our
static particle, subject to the precise boundary conditions we impose in split signature.
We believe that this example is the first time that the double copy has been used to find
an exact solution in gravity. While we could in principle obtain the exact solution using
analytic continuation followed by the identification of an appropriate real slice, some care
would be required to ensure that the correct boundary conditions are imposed on this real
slice at non-linear level. Using the Kerr-Schild double copy, the boundary conditions in
gravity are trivially imported from those of the ‘single copy’ gauge theory solution.

This paper focuses on amplitudes and the Newman-Penrose formalism in split signa-
ture, and on implications for Lorentzian signature. Two companion papers [127, 128] will
appear shortly, discussing similar ideas in purely Minkowski space and an application to
the effective dynamics of the Kerr black hole.

Our paper is organised as follows. In section 2, we explain how to compute electromag-
netic and gravitational field strengths using the methods of quantum field theory, making
direct contact with three-point amplitudes. We also discuss the corresponding coherent
states. We point out a double copy between the Maxwell and Weyl spinors in momentum
space, induced directly by the corresponding amplitudes. Building on this observation in
section 3, we determine the nature of the double copy in position space by performing
integrals over on-shell momentum space. We recover the Weyl double copy, thereby di-
rectly connecting the Weyl form of the classical double copy to scattering amplitudes. In
section 4, we use a Kerr-Schild Ansatz to determine the exact spacetime metric in the
gravitational context. The implications of our split-signature results for Minkowski space
are described in section 5. Finally, section 6 contains a summary of our results with an
overview of some of their implications. We describe our conventions in appendix A, and
provide a detailed exposition of our choice of retarded Green’s function for split signature
in appendix B.

– 5 –



J
H
E
P
0
5
(
2
0
2
1
)
2
6
8

2 Classical solutions from three-point amplitudes

To connect three-point amplitudes to Newman-Penrose scalars, all that is needed is a direct
computation using the methods of quantum field theory. The first order of business, then,
is to define the quantum fields we use in split signature.

Given that our spacetime has two time directions, which we will denote as t1 and t2,
there are two notions of energy. Correspondingly, the choice of vacuum is not unique.
Much of the interesting physics we exploit actually arises from this non-uniqueness. For
our force-carrying “messenger” particles (photons or gravitons), we impose the condition
that the fields are in a vacuum state for t1 → −∞. The corresponding mode expansion of
the field operator in the electromagnetic case is then3

Aµ(x) =
∑
η=±

∫
dΦ(k) ~−

1
2
(
aη(k)εµη (k)e−i

k·x
~ + a†η(k)εµη (k)ei

k·x
~
)
, (2.1)

where the position and momentum are given by x = (t1, t2,x) and k = (E1, E2,k), while
the measure is

dΦ(k) = d̂4k δ̂(k2)Θ(E1) . (2.2)

Details of our notation can be found in appendix A. The sum is over the helicity η. Notice
that we have retained factors of ~; it will be reassuring to check that these factors drop
out for classical quantities. The theta function ensures that quanta created around the
vacuum have momenta directed into the future with respect to t1; in other words, they
have positive energy with respect to this choice of time direction.

We also introduce a scalar particle which will be our source. In order for our calculation
to be in the regime of validity of the classical approximation, we place our particle in a
wave packet of the type discussed in detail in reference [21]. We will discuss the properties
of these wave packets in more detail shortly. For now, note simply that the wave packet is
such that the uncertainties in the position and the momentum of our source are small. We
will treat this scalar particle as a probe.

To benefit from the unusual possibilities of a split-signature spacetime, we choose the
expectation value of the probe’s momentum to be 〈pµ〉 = muµ = m (0, 1, 0, 0). Thus, the
particle’s worldline can be chosen to be the t2 axis. As a probe particle, we will not need
a field operator for this state. It is enough to define the state itself:

|ψ〉 =
∫

dΦ(p)ϕ(p) |p〉, dΦ(p) = d̂4p δ̂(p2 −m2)Θ(E2) , (2.3)

where the wave function ϕ(p) is sharply-peaked around the momentum pµ = muµ. Note
that in this case the theta function4 enforces positive energy along t2. For brevity of
notation, we left it implied that a measure dΦ(p) involves a factor Θ(E2) while a measure
dΦ(k) involves Θ(E1) = Θ(E1).

3The notation is that (aη(k))† ≡ a†η(k). Notice that the helicity polarisation vectors are real in split
signature.

4We write Θ(E2) rather than Θ(E2) to emphasise that the second component of the momentum vector
is constrained, avoiding confusion with a squared energy. Recall that E2 = E2 in our conventions.
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2.1 The electromagnetic case

Now, let us investigate the electromagnetic field set up by endowing our probe with a charge
Q. For large negative t1 we have chosen a trivial electromagnetic field. To characterise
the field for other times t1 we must perform a computation. As we will see, the result is
non-trivial.

We evolve the state along t1 with

|ψout〉 = lim
t1→∞

U(−t1, t1)|ψ〉 = S|ψ〉, (2.4)

and we measure the expectation value of the quantum operator

Fµν(x) = −i
∑
η=±

∫
dΦ(k)~−

3
2
(
aη(k)k[µεν]

η e
−i k·x~ − a†η(k)k[µεν]

η e
i k·x~

)
. (2.5)

While the scattering picture may suggest that we reproduce the electromagnetic field only
for large positive t1, in fact we reproduce the field for any time t1 much larger than any time
scale characteristic of the scattering. In our case, the largest spacetime length associated
with the scattering is the size of the wave packet of the source particle (the Compton
wavelength of the particle is very small compared to the size of the wave packet [21]). We
will discuss these scales in more detail momentarily.

Defining the T matrix via S = 1 + iT , we find that this expectation value is

〈Fµν〉 ≡ 〈ψ|S†FµνS|ψ〉 = 2Re i〈ψ|FµνT |ψ〉+ 〈ψ|T †FµνT |ψ〉 . (2.6)

Notice that we imposed
〈ψ|Fµν |ψ〉 = 0 , (2.7)

which holds because of our boundary conditions (there are no photons in the initial state).
In the Minkowski case, the expectation value of the field of a static massive charge is

of course the Coulomb field, and can be computed exactly. In our split-signature case the
expectation value, although less familiar, is evidently some sort of analytic continuation of
Coulomb. We will determine the field to all orders of perturbation theory below. Before
doing so, however, it is instructive to compute the leading order field strength, closely
following the methods of KMOC [21].

At leading order in perturbation theory, we can approximate

〈Fµν(x)〉 ' 2Re i〈ψ|Fµν(x)T |ψ〉. (2.8)

Inserting the explicit initial state of equation (2.3), the expectation value becomes

〈Fµν(x)〉 = 2~−
3
2 Re

∑
η

∫
dΦ(k) 〈ψ|aη(k)T |ψ〉 k[µεν]

η e
−i k·x~

= 2~−
3
2 Re

∑
η

∫
dΦ(k)dΦ(p′)dΦ(p)ϕ∗(p′)ϕ(p) 〈p′|aη(k)T |p〉 k[µεν]

η e
−i k·x~ .

(2.9)
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Expanding the matrix element 〈p′|aη(k)T |p〉 appearing in equation (2.9) in terms of a
three-point amplitude and the momentum-conserving delta function, we can equivalently
write

〈Fµν(x)〉 = 2~−
3
2 Re

∑
η

∫
dΦ(k)dΦ(p) Θ(E2 + k2)δ̂(2p · k + k2)

× ϕ∗(p)ϕ(p+ k)A(3)
−η(k) k[µεν]

η e
−ik·x/~ .

(2.10)

where A(3)
η (k) is the three-point scattering amplitude for the process shown in figure 1.

The helicity labels of our amplitudes are for incoming messengers; since our photons are
outgoing, we encounter the amplitude for the opposite helicity −η.

This expression for the field strength simplifies in the classical approximation. As
argued by KMOC [21], the classical approximation is valid when the scales in our problem
satisfy x � `w � `c, where `w is the length scale associated with the finite size of the
spatial wave packet, which controls the quantum uncertainty in the position of our source
particle, while `c = ~/m is the (reduced) Compton wavelength of the particle.5 Working
in Fourier space, we require that k � 1/`w � m (where k is a messenger momentum).
It is only when these inequalities are satisfied that our classical expressions are valid. We
assume that the integrals appearing in equation (2.10) are defined (e.g. with cutoffs) so
that these inequalities are satisfied.

Taking advantage of the classical approximation, we can ignore the explicit theta
function in equation (2.10), since k2 is a small momentum component compared to the
large, positive classical energy E2 of the massive particle, which is of order m. Similarly,
we can ignore the shift k in the wave function ϕ(p+ k) ' ϕ(p), because this shift is small
on the scale 1/`w of the wave function. It is also useful to introduce a wavenumber k̄
associated with the momentum k by k = ~k̄, so that we have

〈Fµν(x)〉 = 2 Re
∑
η

∫
dΦ(k̄)dΦ(p) |ϕ(p)|2 δ̂(2p · k̄ + ~k̄2)

√
~A(3)
−η(k̄) k̄[µεν]

η e
−ik̄·x . (2.11)

Now, the wave function is sharply-peaked about an average (classical) momentum muµ.
The integral of this sharply-peaked function over the amplitude, which is smooth near the
peak momentum, sets the momenta appearing in the amplitude to muµ, and at the same
time will broaden the explicit delta function. We can therefore drop the ~k̄2 shift in the
delta function [21], arriving at

〈Fµν(x)〉 = 1
m

Re
∑
η

∫
dΦ(k̄) δ̂`w(u · k̄)

√
~A(3)
−η(k̄) k̄[µεν]

η e
−ik̄·x , (2.12)

where δ`w is a sharply-peaked function of width `w. Below, we assume that this length `w is
negligible, so that we may think of our source particle as being point-like. Since this is the
largest spacetime scale involved in the scattering calculation, our results for the behaviour
of the field are valid (in the classical point-source approximation) at all points away from
the source worldline. For example, neglecting `w, the classical field strength is

〈Fµν(x)〉 = 1
m

Re
∑
η

∫
dΦ(k̄) δ̂(u · k̄)

√
~A(3)
−η(k̄) k̄[µεν]

η e
−ik̄·x . (2.13)

5In KMOC, the role of the observer position x was played by an impact parameter b.
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p− k

p

k, η

Figure 1. The three-point electromagnetic amplitude. Notice that the photon with polarization η
is incoming.

Notice that the field strength is given by the scattering amplitude, up to a universal (theory
independent) integration and essential kinematic factors.

For our static charge in electromagnetism, the amplitude is the three-point scalar QED
vertex,

A(3)
− (k) = −2 Q√

~
p · ε−(k) =

√
2m Q√

~
1
X
,

1
X

:= −
√

2u · ε−,

A(3)
+ (k) = −2 Q√

~
p · ε+(k) = −

√
2m Q√

~
X, X :=

√
2u · ε+,

(2.14)

where we have written A in terms of the kinematics-dependent X-factor introduced in [5].6

Notice that the amplitude depends on k only through the polarisation vector εη(k): it
therefore does not depend on whether we treat k as a momentum or as a wave vector.

Taking the factor 1/
√
~ in the amplitude into account, we see that the ~ dependence of

equation (2.13) reassuringly drops out. This is obviously consistent with the computation
of a classical quantity. Since all factors of ~ will similarly disappear for classical quantities
in the remainder of the paper, we will henceforth set ~ = 1, restoring it only when necessary.

Our expressions simplify further if we pass from the field strength tensor to the associ-
ated spinorial quantity, the Maxwell spinor defined in equation (1.1), which we reproduce
here for convenience:

φαβ(x) = σµναβFµν(x) . (2.15)

The σµν matrices are symmetric on their spinor indices α and β. These matrices project
two-forms onto their self-dual parts,7 and are proportional to the generators of SL(2,R).
(Details of our spinor conventions are given in appendix A.) In view of the fact that the σµν

matrices are real (as are their antichiral counterparts σ̃µν), we can write the expectation
value of the Maxwell spinor as

〈φαβ(x)〉 = 1
m

Re
∑
η

∫
dΦ(k) δ̂(u · k)σµν αβ k[µεν]

η e
−ik·xA(3)

−η(k)

= −
√

2
m

Re
∫

dΦ(k) δ̂(u · k) |k〉α|k〉β e−ik·xA
(3)
+ (k) ,

(2.16)

where we have used the fact that a negative helicity plane wave has a self-dual field strength
(equation (A.14)), while a positive helicity plane wave has an anti-self-dual field strength

6We use the notation X for this factor rather than x to avoid confusion with the position x.
7In our nomenclature, a two-form F is self-dual if ∗F = F , and anti-self-dual if ∗F = −F .
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p′ p′

p p

kπ(1)

kπ(2)

kπ(3)

kπ(n−1)

kπ(n)

kπ(1)

kπ(2)

kπ(3)

kπ(n−1)

kπ(n)

Figure 2. Diagrams of the form shown on the left contribute to the radiation field to all orders in
the coupling, but leading classical order. Loop effects, as shown in the diagram on the right, are
quantum corrections.

(equation (A.15)). For the other chirality, we similarly find

〈φ̃α̇β̇(x)〉 = +
√

2
m

Re
∫

dΦ(k) δ̂(u · k) [k|α̇[k|β̇ e
−ik·xA(3)

− (k) . (2.17)

Thus, the two helicity amplitudes correspond directly to the two different chiralities of
Maxwell spinor. In split signature, these spinorial field strengths are real (as is evident in
the particular case of our expressions) and independent. We will focus on the chiral case
of φαβ below, though the story for φ̃α̇β̇ is completely parallel.

More concretely, we can evaluate the field strength by inserting the standard expres-
sions (2.14) for the amplitude. The Maxwell spinor becomes simply

〈φαβ(x)〉 = 2QRe
∫

dΦ(k) δ̂(u · k) |k〉α|k〉β e−ik·xX . (2.18)

In other words, the spinorial field strength is in essence an on-shell Fourier transform of
the unique kinematic factor X.

2.2 The coherent state

In the previous section, we found the classical electromagnetic field produced by a static
source. Even in split signature, it is reasonable to expect that this field should be very
simple, so it is a little unsatisfying that we performed a perturbative approximation along
the way, at equation (2.8). Fortunately, it is not hard to determine the final quantum state
to all orders in the perturbative coupling Q. We only compute the classical approximation
to the field, which (in this particular electromagnetic case) means that we should restrict
to tree-level amplitudes. The diagrams are shown in figure 2.

In fact, the final state of the electromagnetic field is coherent:

S|ψ〉 = 1
N

∫
dΦ(p)ϕ(p) exp

[∑
η

∫
dΦ(k) δ̂(2p · k) iA(3)

−η(k) a†η(k)
]
|p〉 , (2.19)

where N is a normalisation factor ensuring that 〈ψ|S†S|ψ〉 = 1. The exponential structure
of the state captures the intuition that the outgoing field contains a great many photons.
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It is also consistent with the intuition that coherent states are the natural description of
classical wave phenomena in quantum field theory.8 The coherence of the state could also
be demonstrated by taking advantage of the linear coupling between the gauge field Aµ
and a massive probe source worldline, so it comes as no surprise. However, it is satisfying
to see that the state is completely controlled by the on-shell three-point amplitude.

To see how the exponentiation in (2.19) comes about in our approach, we expand the
S matrix acting on our initial state as

S|ψ〉 = 1
N

(1 + iT3 + iT4 + · · · )|ψ〉 , (2.20)

where the Tn are defined by

Tn+2 = 1
n!

∑
η1,...,ηn

∫
dΦ(p′)dΦ(p)

n∏
i=1

dΦ(ki)A(n+2)
−η1,...,−ηn(p→ p′, k1 · · · kn)

× δ̂4
(
p− p′ −

∑
ki

)
a†η1(k1) · · · a†ηn(kn) a†(p′)a(p) .

(2.21)

That is, the Tn+2 are projections of the transition matrix T onto final states with n photons,
in addition to the massive particle. We denote the creation and annihilation operators for
the massive scalar state by a†(p′) and a(p), respectively, as opposed to the photon creation
operators a†ηi(ki). Note that we include precisely one creation and one annihilation operator
for our scalar, which is consistent with treating it as a probe source. We omit all terms
in Tn+2 containing photon annihilation operators since these would annihilate the initial
state |ψ〉. The factor n! in equation (2.21) is a symmetry factor associated with n identical
photons in the final state.

We begin by computing the action of T3 and T4 on |ψ〉 explicitly. It will then be
a small step to the general case and the exponential structure. First, the case of T3 is
straightforward:

iT3|ψ〉 =
∑
η

∫
dΦ(p′)dΦ(p)dΦ(k)ϕ(p) iA(3)

−η(k)|p′, kη〉 δ̂4 (p− p′ − k)
=
∑
η

∫
dΦ(p)dΦ(k)ϕ(p+ k) Θ(E2 + k2)δ̂(2p · k) iA(3)

−η(k)|p, kη〉 ,
(2.22)

where, in the second line, we integrated over p with the help of a four-fold delta function,
and we relabelled p′ to p. As we saw for the field strength, this expression simplifies when
we compute in the domain of validity of the classical approximation. Following the analysis
of KMOC [21], the shift k in the wave function is negligible: ϕ(p+k) ' ϕ(p) in the classical
region. We again ignore the small photon momentum in the Θ function compared to the
large, positive energy of the scalar. Thus, we find

iT3|ψ〉 =
∑
η

∫
dΦ(p)dΦ(k)ϕ(p) δ̂(2p · k) iA(3)

−η(k) a†η(k)|p〉 . (2.23)

Comparing to the form for the coherent state we advertised in equation (2.19), we now see
how the exponent can begin to emerge.

8More discussion of coherent states, amplitudes and classical limits will appear in a forthcoming publi-
cation [127].
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p′

p

k1, η1

k2, η2

+

p′

p

k2, η2

k1, η1

+

p′

p

k1, η1

k2, η2

Figure 3. The familiar Feynman diagrams for the four point scalar QED amplitude. In this figure,
the photons are outgoing.

The four-point case requires a little more work on the actual amplitude. Working at
the textbook level of Feynman diagrams (using the notation in figure 3), we find

iA(4) = − iQ2 4p · ε−η1(k1) p′ · ε−η2(k2)
2k1 · p+ iε

+ iQ2 4p · ε−η2(k2) p′ · ε−η1(k1)
2k1 · p′ − iε

+ 2iQ2ε−η1(k1) · ε−η2(k2) .
(2.24)

Now, of these three terms the last is suppressed relative to the other two in the classical
approximation. The suppression factor is of order p · k/m2, which is of order the energy of
a single photon in units of the mass of the particle. (Equivalently, the suppression factor
is ~k̄/m, where k̄ is a typical component of the wave vector of the photon. From this
perspective, the contact term is explicitly down by a factor ~.) We therefore neglect the
contact diagram. In terms of a more modern unitarity-based construction of the amplitude,
this means that we can simply “sew” three-point amplitudes to compute the dominant part
of the four-point amplitude relevant for this computation.9

We can make this sewing completely manifest in our four-point amplitude by writing

k1 · p′ = k1 · p+O(~) , p′ · ε(k) = p · ε(k) +O(~) , (2.25)

and neglecting the ~ corrections. (In dimensionless terms, these corrections are again
suppressed by factors of the photon energy over the particle mass.) It is then a matter of
algebra to see that

iA(4) = δ̂(2p · k1) (−2iQ p · ε−η1(k1))(−2iQ p · ε−η2(k2))

= δ̂(2p · k1) iA(3)
−η1(k1) iA(3)

−η2(k2) .
(2.26)

We picked up a delta function from the sum of two propagators. It is perhaps worth pausing
to note that the two photon emissions are completely uncorrelated from one another.

Now we can compute the action of T4 on our initial state. Using the definition (2.21)
of T4 and the fact that

a(p)|ψ〉 = ϕ(p)|0〉 , (2.27)
9It may be worth emphasising that a one-loop computation of a classical observable such as the impulse

also involves the four-point tree amplitude. But in that case the contact term is absolutely necessary to
recover the correct classical result, and in fact the terms we are concentrating on cancel.
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we find

iT4|ψ〉 = 1
2
∑
η1,η2

∫
dΦ(p′)dΦ(p)dΦ(k1)dΦ(k2)ϕ(p) iA(4)

−η1,−η2(p→ p′, kη1
1 k

η2
2 )

× δ̂4(p− p′ − k1 − k2)|p′ kη1
1 k

η2
2 〉 .

(2.28)

The integration over the momentum p is trivial using the explicit four-fold delta function.
The measure dΦ(p) contains a theta function, requiring that the E2 component of p′+k1+k2
is positive. Since the dΦ(p′) measure already requires the relevant energy of p′ to be
positive, and the photon energies are small compared to the mass, we can ignore this
theta function. We also encounter the wave function evaluated at p′ + k1 + k2; since the
photon energies are small compared to the width of the wave function, we may approximate
ϕ(p′ + k1 + k2) ' ϕ(p′). Finally, dΦ(p) contains a delta function requiring

p2 = (p′ + k1 + k2)2 = m2 . (2.29)

Since p′2 = m2, this becomes a factor

δ̂(2p′ · (k1 + k2) + (k1 + k2)2)

in T4|ψ〉. Once again, we may neglect this shift of the delta function, as it is small compared
to the width of the broadened δ`w function resulting from integrating against the wave
function [21]. Neglecting this width `w, we find

iT4|ψ〉 = 1
2
∑
η1,η2

∫
dΦ(p)dΦ(k1)dΦ(k2)ϕ(p) iA(4)

−η1,−η2(p+ k1 + k2 → p, k1k2)

× δ̂(2p · (k1 + k2))|p kη1
1 k

η2
2 〉 ,

(2.30)

where we relabelled the momentum p′ to p. Now we may use our result (2.26) for the
four-point amplitude, arriving at

iT4|ψ〉 = 1
2
∑
η1,η2

∫
dΦ(p)dΦ(k1)dΦ(k2)ϕ(p) δ̂(2p · k1)δ̂(2p · k2)

× iA(3)
−η1(k1) iA(3)

−η2(k2)|p kη1
1 k

η2
2 〉

= 1
2

∫
dΦ(p)ϕ(p)

(∑
η

∫
dΦ(k)δ̂(2p · k)iA(3)

−η(k)a†η(k)
)2

|p〉 ,

(2.31)

consistent with the exponential structure of the coherent state in equation (2.19).
Now we turn to the general term, evaluating Tn+2|ψ〉. We can make use of the knowl-

edge gained from the four-point example, including the fact that the leading term in the
(n + 2)-point amplitude can be obtained by sewing n three-point amplitudes. We must
nevertheless sum over permutations of the external photon momenta as shown in figure 4.
The dominant term in the amplitude is

iA(n+2) =
(

n∏
i=1

iA(3)
−ηi(ki)

)∑
π

i

2p · kπ(1) + iε

i

2p · (kπ(1) + kπ(2)) + iε
· · ·

× i

2p · (kπ(1) + kπ(2) + · · · kπ(n−1)) + iε
.

(2.32)

The sum is over permutations π of the n final-state photons.

– 13 –



J
H
E
P
0
5
(
2
0
2
1
)
2
6
8

p

p′

k1, η1

kn−1, ηn−1

kn, ηn

kπ(1), ηπ(1)

kπ(n−1), ηπ(n−1)

kπ(n), ηπ(n)

=
∑
π

p

p′

Figure 4. The dominant term in the n + 2 point amplitude can be obtained by sewing n three-
point amplitudes. The full amplitude is obtained by summing over permutations π of the n outgoing
photon lines.

At four points, the sum over sewings led to a delta function, and the same happens
here. We can state the result most simply at the level of Tn+2|ψ〉, which can be written as

iTn+2|ψ〉 = 1
n!

∑
η1,...,ηn

∫
dΦ(p)

n∏
i=1

dΦ(ki)ϕ(p) δ̂
(

2p ·
n∑
j=1

kj

)
iA(n+2) |p kη1

1 · · · k
ηn
n 〉 ,

(2.33)
using the properties of the wave function, and neglecting terms suppressed in the classical
region. We may now simplify the sum in equation (2.32) using the result

δ̂

(
n∑
i=1

ωi

)∑
π

i

ωπ(1) + iε

i

ωπ(1) + ωπ(2) + iε
· · · i

ωπ(1) + ωπ(2) + · · ·ωπ(n−1) + iε

= δ̂(ω1)δ̂(ω2) · · · δ̂(ωn) .
(2.34)

This result, which is an on-shell analogue of the eikonal identity, is proven (for example)
in appendix A of reference [84]. We find that

iTn+2|ψ〉 = 1
n!

∫
dΦ(p)ϕ(p)

(∑
η

∫
dΦ(k) δ̂(2p · k) iA(3)

−η(k) a†η(k)
)n
|p〉 . (2.35)

Performing the sum over n, we confirm the exponential structure of the state in equa-
tion (2.19).

What about the normalisation factor of the coherent state (2.19)? As usual, to ensure
a correct normalisation we need to include disconnected vacuum bubble diagrams. It is
simpler to demand that the factor N appearing in equation (2.19) is such that S†S = 1,
and this is the procedure we adopt.

Now that we have seen that the final state is indeed given by equation (2.19), let us
return to the evaluation of the expectation value of the field strength. The computation
is simplified when we recall that (as usual for a coherent state) the annihilation operator
acts as a derivative on the state:

aη(k)S|ψ〉 = δ̂(2p · k) iA(3)
−η(k)S|ψ〉

= δ

δa†η(k)
S|ψ〉 .

(2.36)
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The field strength is therefore

〈ψ|S† Fµν(x)S|ψ〉 = −2 Re i
∑
η

∫
dΦ(k) 〈ψ|S† aη(k)S|ψ〉 k[µεν]

η e
−ik·x

= 1
m

Re
∑
η

∫
dΦ(k) δ̂(u · k)A(3)

−η(k) k[µεν]
η e
−ik·x .

(2.37)

Notice that this agrees with our previous expression, equation (2.13), which we now see is
correct to all orders in the classical limit. Similarly, the Maxwell spinor is

〈ψ|S† φαβ(x)S|ψ〉 = −
√

2
m

Re
∫

dΦ(k) δ̂(u · k) |k〉α|k〉β e−ik·xA
(3)
+ (k)

= 2QRe
∫

dΦ(k) δ̂(u · k) |k〉α|k〉β e−ik·xX ,

(2.38)

in agreement with our earlier equations (2.16) and (2.18).
It is worth pausing to comment on this agreement. Classically, the field strength fully

characterises the (electromagnetic) radiation field. We are using a quantum-mechanical
formalism, but we now see that it is still true that knowledge of the field strength is
also knowledge of the full state of the electromagnetic field, once we add the extra piece
of information that this state is coherent. Mathematically, the field strength operator
essentially differentiates the exponential form of the coherent state once, pulling down the
parameter of the state. The structure of this computation is strongly reminiscent of eikonal
methods which have also been of interest as a method of connecting classical field theory
to scattering amplitudes [32, 37, 40, 48, 54, 55, 129–145].

2.3 The gravitational case and the momentum-space Weyl double copy

We have seen that a coherent state, equation (2.19), beautifully captures the radiation field
in the electromagnetic case. What about gravity?

Graviton self-interactions could spoil the exponentiation present in electromagnetism.
Clearly there are additional diagrams in gravity, for example at four points we could en-
counter the diagram

which involves a graviton three-point interaction. However, self-interactions of gravitons
are suppressed compared to the dominant diagram
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where the gravitons connect directly to the massive line. The reason is simply that the
graviton self-interaction involves powers of the momenta of the gravitons, while the coupling
to the massive line involves the particle mass. Since the particle mass is large compared
to the graviton momenta, we may neglect graviton self-interactions. We may also neglect
contact vertices (as in electromagnetism) for the same reason.

This does not mean that all self-interactions of the gravitational field are eliminated.
The metric quantum operator has a perturbative expansion which includes these self-
interactions. The expectation value of this all-order operator on our coherent state re-
produces the classical metric. Notice that the coherent state is gauge invariant, while the
quantum operator may not be (in quantum gravity, only asymptotic observables may be as-
sociated with gauge-invariant operators). This procedure would allow us to perturbatively
construct the Schwarzschild metric, along the lines of [66, 146, 147] but in a manifestly
on-shell formalism; see also [6] for an alternative approach based on an intermediate match-
ing with an effective theory of sources coupled to gravitons. We leave this programme for
future work.

The computation of the final state S|ψ〉 proceeds in the gravitational case precisely as
in the electromagnetic case. Writing the gravitational three-point amplitude as M(3), we
find that

S|ψ〉 = 1
N

∫
dΦ(p)ϕ(p) exp

[∑
η

∫
dΦ(k) δ̂(2p · k) iM(3)

−η(k) a†η(k)
]
|p〉 , (2.39)

where once more N is a normalisation factor.
We can now compute the gravitational field strength in the classical limit. We place

an observer far from the source; then the gravitational field is weak, and we can work in
the formalism of linearised quantum gravity. The graviton field operator is

hµν(x) = 2 Re
∑
η

∫
dΦ(k) aη(k)εµη (k)ενη(k) e−ik·x , (2.40)

where we have written the polarisation tensor of a graviton as the outer product of polar-
isation vectors εµη (k). The Weyl tensor Wµνρσ(x) in vacuum equals the curvature tensor
Rµνρσ(x), which in linearized gravity is

Rµνρσ(x) = κ

2
(
∂σ∂[µhν]ρ + ∂ρ∂[νhµ]σ

)
, (2.41)

where κ =
√

32πG. Thus, the Weyl tensor operator is

Wµνρσ(x) = κRe
∑
η

∫
dΦ(k) aη(k)ε[µ

η (k)kν]ε[ρ
η (k)kσ] e−ik·x . (2.42)

It is now very easy to compute the expectation value of the Weyl tensor, taking advantage
once again of the fact that the action of aη(k) on the coherent state is the same as a
functional derivative with respect to the creation operator:

〈Wµνρσ(x)〉 ≡ 〈ψ|S†Wµνρσ(x)S|ψ〉

= κRe
∑
η

∫
dΦ(k) δ̂(2p · k) iM(3)

−η(k) ε[µ
η (k)kν]ε[ρ

η (k)kσ] e−ik·x .
(2.43)
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The expectation value of the Weyl spinor is obtained by contracting with σµν matrices,
leading to

〈ψ|S†Ψαβγδ(x)S|ψ〉 = 2κRe
∫

dΦ(k) δ̂(2p · k) iM(3)
+ (k) |k〉α|k〉β |k〉γ |k〉δ e−ik·x . (2.44)

This expression for the Weyl tensor is very interesting from the perspective of the
double copy. Comparing to the Maxwell spinor (2.38), note that the amplitudes A(3)

+ (k)
and M(3)

+ (k) are related by the double copy. Let us define momentum-space versions of
the Maxwell and Weyl spinors by

〈φαβ(x)〉 = −Re
∫

dΦ(k) δ̂(2p · k)φαβ(k) e−ik·x ,

〈Ψαβγδ(x)〉 = κRe
∫

dΦ(k) δ̂(2p · k) Ψαβγδ(k) e−ik·x ,
(2.45)

so that
φαβ(k) = 2

√
2 |k〉α|k〉β A

(3)
+ (k) ,

Ψαβγδ(k) = 2|k〉α|k〉β |k〉γ |k〉δ iM
(3)
+ (k) .

(2.46)

Let us also consider the scalar field theory analogue,

〈S(x)〉 = Re
∫

dΦ(k) δ̂(2p · k)S(k) e−ik·x , (2.47)

where the three-point amplitude iS(k) is a real constant. Notice that 〈S(x)〉 manifestly
satisfies the wave equation; more precisely, it is the Green’s function, as we shall see later.
With this scalar counterpart in hand, we obtain an on-shell momentum-space analogue of
the position-space Weyl double copy (1.9),

Ψαβγδ(k) = 1
S(k)φ(αβ(k)φγδ)(k) , (2.48)

which follows from the double copy relating the three-point amplitudes in gauge theory
and in gravity.

We will verify in the next section the position-space version of the expression above,
i.e. after performing the on-shell momentum integrals in (2.45). These integrals affect the
algebraic structure of the spinors. Notice that the momentum-space Weyl and Maxwell
spinors are of type N, if we use the analogue of the position-space characterisation of
Weyl spinors. This is consistent with the intuition that the on-shell three-point amplitudes
describe radiation of messengers. However, there is something of a puzzle: the field strength
of a point charge should have a Coulomb term, and a point mass should have a type D
Schwarzschild term. In fact, these terms are present in the Weyl (2.44) and Maxwell (2.38)
spinors. They emerge when we perform the Fourier integrals to determine the position-
space form of the field strength spinors, as we now show.

3 The position-space fields and Weyl double copy

In the previous section, we saw that quantum field theory relates the Maxwell and Weyl
spinors for a static charge and mass, respectively, by the double copy, at least in Fourier
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space. We would like to express these quantities in position space. In fact, it is not hard
to perform the Fourier integrals to arrive at explicit expressions in position space, where
the double copy will still be manifest.

3.1 The Maxwell spinor in position space

We will discuss the case of electrodynamics explicitly. Starting from the field strength
expectation, equation (2.37), we insert the explicit scalar QED three-point amplitudes
to find

〈Fµν(x)〉 ≡ 〈ψ|S† Fµν(x)S|ψ〉

= −2QRe
∑
η

∫
dΦ(k) δ̂(k · u) e−ik·x k[µεν]

η ε−η · u .
(3.1)

This expression simplifies if we resolve the proper velocity onto a Newman-Penrose-like
basis of vectors given by kµ, εµ± and a gauge choice nµ, such that k ·n 6= 0 while n · ε± = 0.
Since k · u = 0 on the support of the integration, the velocity is

uµ = u · n
k · n

kµ − ε− · u εµ+ − ε+ · u εµ− . (3.2)

Consequently, the field strength is given by the simple formula

〈Fµν(x)〉 = 2QRe
∫

dΦ(k) δ̂(k · u) e−ik·x k[µuν] . (3.3)

Before we perform any integrations, let us pause to interpret this formula. Note that
we may write

〈Fµν(x)〉 = 2Q∂[µuν] Re i
∫

dΦ(k) δ̂(k · u) e−ik·x . (3.4)

We recognise the definition of the field strength as the (antisymmetrised) derivative of the
gauge potential,

〈Aµ(x)〉 = Re 2iQuµ
∫

dΦ(k) δ̂(k · u) e−ik·x . (3.5)

To interpret this formula, it’s worth briefly digressing to discuss our situation from a
classical perspective.

Consider solving the Maxwell equation with a static point charge

∂µF
µν(x) =

∫
dτ Quν δ4(x− uτ) , (3.6)

where uµ = (0, 1, 0, 0), with the boundary condition that the electromagnetic field vanishes
for t1 < 0. Choosing Lorenz gauge, we can write the solution as a familiar Fourier integral:

Aµ(x) = −
∫

d̂4k δ̂(k · u) e−ik·x 1
k2Qu

µ . (3.7)

As usual, we need to define the k integral taking our boundary conditions into account.
These boundary conditions are also familiar: they are just traditional retarded boundary
conditions. The only novelty lies the signature of the metric. But even the unfamiliar
pattern of signs in split signature disappears for the problem at hand, because of the factor

δ̂(k · u) = δ̂(k2)
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in the measure. Consequently, the second component of the wave vector kµ is guaranteed
to be zero. We end up with an integral of Minkowskian type, but in 1+2 dimensions. This
is a consequence of translation invariance in the t2 direction.

Treating the k integration as a contour integral, the only poles in the integration of
equation (3.7) occur when

(k1)2 = k2 , (3.8)

where k = (k3, k4) are the spatial components of the wave vector. Taking the sign of the
exponent in equation (3.7) into account, retarded boundary conditions are obtained by
displacing the poles below the real axis:

1
k2 →

1
k2

ret
= 1

(k1 + iε)2 + (k2)2 − (k3)2 − (k4)2 , (3.9)

while advanced boundary conditions correspond to

1
k2 →

1
k2

adv
= 1

(k1 − iε)2 + (k2)2 − (k3)2 − (k4)2 . (3.10)

Notice that
1
k2

ret
− 1
k2

adv
= 1
k2 + i(k1)ε −

1
k2 − i(k1)ε = −i sign(k1)δ̂(k2) , (3.11)

where, in the first equality, we have written (k1) for the first component of the 4-vector k
and have freely rescaled ε by positive quantities (as is conventional, we take ε → 0 from
above at the end of our calculation).

Returning to the gauge field of equation (3.7), we have

Aµ(x) = −
∫

d̂4k δ̂(k · u) e−ik·x
(
−i sign(k1)δ̂(k2) + 1

k2
adv

)
Quµ

= i

∫
d̂4k δ̂(k · u) e−ik·x sign(k1)δ̂(k2)Quµ

= i

∫
dΦ(k) δ̂(k · u)Quµ

(
e−ik·x − eik·x

)
.

(3.12)

We dropped the advanced term because, with our boundary conditions, the position x has
positive t1. But equation (3.12) is just the result we found from the quantum expecta-
tion (3.5). Thus, our quantum mechanical methods are computing the complete gauge
field, as expected.

Given that we have made contact with a classical situation, we can use classical in-
tuition to perform the Fourier integrals. The integrals to be performed in equation (3.7)
are the same as the integrals in the computation of the retarded Green’s function in 1 + 2
dimensions. We discuss this Green’s function in appendix B. We find

Aµ(x) = Quµ

2π Θ(t1)Θ(x2 − (x · u)2)√
x2 − (x · u)2 . (3.13)

In many respects, this result is familiar: it is just the usual 1/‘distance’ fall-off. There is
no other possibility: the dimensional analysis requires this behaviour with distance. The
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key new feature in split signature is the theta function Θ(x2 − (x · u)2). To see why, let’s
differentiate to compute the field strength, which is10

Fµν(x) = − QΘ(t1)x[µuν]

2π(x2 − (x · u)2)1/2

(
Θ(x2 − (x · u)2)
x2 − (x · u)2 − 2 δ

(
x2 − (x · u)2)) . (3.14)

The term involving the Θ(x2− (x · u)2) is the familiar Coulomb field. However, there is an
additional δ function describing the impulsive radiation field when the charge “appears”
from the point of view of the observer. Although the radiation field looks very singular
classically, this should not really trouble us: the delta function distribution is only present
in the approximation that the source wave function is treated as of zero size. In reality,
this wave function must have some spatial size `w, and the delta function will be broadened
into a smooth function when this width is taken into account.

It will also be interesting to investigate the Maxwell spinor generated by our set up,
especially when comparing to the Weyl spinor in the gravitational case. First, let’s break
up our field strength into two terms,

Fµν(x) = F (1)
µν (x) + F (2)

µν (x) , (3.15)

where
F (1)
µν (x) = −

QΘ(t1)x[µuν]

2π(x2 − (x · u)2)3/2 Θ(x2 − (x · u)2) ,

F (2)
µν (x) =

QΘ(t1)x[µuν]

π(x2 − (x · u)2)1/2 δ(x
2 − (x · u)2) .

(3.16)

It’s natural to define the “radial distance” (i.e. its analogue under analytic continuation)

ρ2 = x2 − (x · u)2 (3.17)

and the associated vector
Kµ = xµ − (x · u)uµ . (3.18)

The Maxwell spinor φ(1)
αβ(x) associated with the Coulombic field strength F (1) is11

φ
(1)
αβ(x) = −QΘ(t1)

2πρ3 σµναβK[µuν]Θ(ρ2) . (3.19)

Meanwhile, on the support of the delta function factor in F (2), the vector Kµ becomes null.
Furthermore, a simple computation shows that, in general,

K · u = 0 . (3.20)

Therefore, we may erect a Newman-Penrose basis using the vector K, an arbitrary gauge
choice, and two “polarisation” vectors ε±(K) which can be taken to be the standard spinor-
helicity vectors associated with the “on-shell momentum” K; these are defined explicitly

10We assume that the point x is not on the worldline of the source particle, so we drop a term in the field
strength involving δ(t1)Θ(x2 − (x · u)2), which is only non-vanishing on this worldline.

11Here, φ(1)
αβ corresponds to the middle term on the right-hand side of (1.3). Note that the vector K has

dimension of length, so φ(1) scales like 1/ρ2 in total. Likewise, φ(2)
αβ further below corresponds to the last

term in (1.3).
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in equation (A.12). In this basis we may once again decompose the proper velocity using
the obvious analogue of equation (3.2). It follows that the Maxwell spinor is

φ
(2)
αβ(x) = Q

π ρ
Θ(t1)X |K〉α|K〉β δ(ρ2) . (3.21)

Evidently, φ(2)
αβ(x) has the structure expected for the radiative part of the field strength.

We will encounter an analogous situation in gravity.

3.2 The Weyl spinor and the double copy in position space

We can perform the Fourier integrals for gravity in exact analogy with the electromagnetic
case. Beginning from the Weyl tensor (2.43), we insert the explicit amplitudes

M(3)
η (k) = −κm2(u · εη(k))2 (3.22)

to find that

〈Wµνρσ(x)〉 = − Re iκ2m2
∫

dΦ(k) δ̂(2k · p) e−ik·x

×
[
(ε+ · u)2k[µε

ν]
−k

[ρε
σ]
− + (ε− · u)2k[µε

ν]
+k

[ρε
σ]
+

]
.

(3.23)

Again, this expression is easily interpreted in the classical theory. We define the metric
perturbation by

gµν = ηµν + κhµν . (3.24)

By solving the linearised Einstein equation in De Donder gauge, we find that the metric
perturbation is

hµν(x) = −2 Re iκm2
∫

dΦ(k) δ̂(2k · p) e−ik·x
(
uµuν −

1
2ηµν

)
. (3.25)

The Riemann tensor (2.41) is explicitly

Rµνρσ(x) = Re iκ2m2
∫

dΦ(k) δ̂(2k · p) e−ik·x
(
k[µuν]k[σuρ] − 1

2k
[µην][ρkσ]

)
. (3.26)

It is not obvious in this form that the traces of the Riemann tensor vanish. Of course,
they must do so since our observer at x is in empty space. In fact, it is possible to simplify
the tensor structure of this Riemann tensor by resolving the vector u onto the Newman-
Penrose-like basis of k, ε±(k) and n as in equation (3.2). The flat metric tensor in this
basis is

ηµν = 1
k · n

k(µnν) − ε(µ
+ ε

ν)
− . (3.27)

It follows that
k[µην][ρkσ] = −k[µε

ν]
+ε

[ρ
−k

σ] − k[µε
ν]
−ε

[ρ
+k

σ] , (3.28)

while the other tensor structure in the Riemann tensor simplifies to

k[µuν]k[σuρ] = (ε+ · u)2k[µε
ν]
−k

[σε
ρ]
− + (ε− · u)2k[µε

ν]
+k

[σε
ρ]
+

− 1
2k

[µε
ν]
−k

[σε
ρ]
+ −

1
2k

[µε
ν]
+k

[σε
ρ]
− .

(3.29)
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Combining, the Riemann tensor manifestly has no traces and we recover the Weyl tensor
of equation (3.23).

Now it is easy to perform the Fourier integrals, for example at the level of the metric
perturbation, which yields

hµν(x) = −κm4π Θ(t1)Θ(x2 − (x · u)2)√
x2 − (x · u)2

(
uµuν −

1
2ηµν

)
. (3.30)

The expectation value of the (linearised) Weyl tensor can be computed by differentiation.
There are various terms, depending on whether derivatives act on the delta functions or
the 1/ρ fall-off factors. Analogously to (3.15), we can write the Weyl tensor as

Wµνρσ = W (2)
µνρσ +W (3)

µνρσ +W (4)
µνρσ , (3.31)

with

W (2)
µνρσ = 3κ2mΘ(t1) Θ(ρ2)

32π ρ5 wµνρσ , (3.32)

W (3)
µνρσ = −κ

2mΘ(t1) δ(ρ2)
8π ρ3 wµνρσ , (3.33)

W (4)
µνρσ = κ2mΘ(t1) δ′(ρ2)

8πρ wµνρσ , (3.34)

where

w µν
ρσ = 4K [µuν]K[ρuσ] + 2K [µδ

ν]
[ρKσ] + 2 ρ2 u[µδ

ν]
[ρuσ] + 2ρ2

3 δ
[µ
[ρ δ

ν]
σ] . (3.35)

The corresponding Weyl spinor is

Ψαβγδ = Ψ(2)
αβγδ + Ψ(3)

αβγδ + Ψ(4)
αβγδ , with Ψ(i)

αβγδ = W (i)
µνρσσ

µν
αβσ

µν
γδ . (3.36)

If we now compare these expressions with the ones for the Maxwell spinor obtained in the
previous subsection, we find the position-space double copy relations

Θ(ρ2) Θ(t1)
2π ρ Ψ(2)

αβγδ = 3κ2m

4 · 4!Q2 φ
(1)
(αβφ

(1)
γδ) , (3.37)

Θ(ρ2) Θ(t1)
2π ρ Ψ(3)

αβγδ = κ2m

2 · 4!Q2φ
(1)
(αβφ

(2)
γδ) , (3.38)

δ2(ρ2) Θ(t1)
2π ρ Ψ(4)

αβγδ = κ2mδ′(ρ2)
4 · 4!Q2 φ

(2)
(αβφ

(2)
γδ) . (3.39)

Notice that, in the first two lines, the relation (1.9) is satisfied with

S(x) = Θ(t1)Θ(ρ2)
2π ρ ,

up to numerical factors. The clearest example is that of Ψ(2)
αβγδ, which is the only one that

has support in the interior of the future light-cone, as opposed to just the future light-cone
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itself. Hence, it satisfies on its own the Bianchi identity in that region. Indeed, its analytic
continuation is the linearised Weyl tensor of the Lorentzian Schwarzschild solution, in the
same way that the term F

(1)
µν in (3.15) is associated to the Coulomb solution. Therefore, the

terms corresponding to the interior of the light-cone satisfy the position space Weyl double
copy for type D solutions, equation (1.9), as discussed for the Lorentzian solutions in [96].

The spinors Ψ(3)
αβγδ and Ψ(4)

αβγδ are distributional, and supported only on the fu-
ture light-cone, where Kµ is null. Analogously to (3.21), they are both proportional to
|K〉α|K〉β |K〉γ |K〉δ.12 They look very singular, and they do not satisfy the Bianchi iden-
tity on their own on the light-cone, since this identity receives contributions from the
three terms. Nevertheless, a type of double copy is still evident in position space, sat-
isfying the expectation of the type N position-space Weyl double copy [120]. In fact,
this follows from (2.48), when the on-shell momentum integrands of (2.45) are evaluated
only at kµ ∝ Kµ.

4 The Kerr-Schild double copy and the exact metric

In the previous sections, we computed the linearised metric and curvature generated by a
massive particle. It is actually straightforward for us to compute the exact metric. To do
so, we exploit the Kerr-Schild double copy. As a reminder of the Kerr-Schild double copy,
recall that, in the case of Lorentzian (1, 3) signature, we start with a Green’s function

Φ(L) = 1
4π
√
x2 + y2 + z2 , (4.1)

satisfying
− (∂2

x + ∂2
y + ∂2

z ) Φ(L) = δ(x)δ(y)δ(z) . (4.2)

The Coulomb solution is
A(L) = QΦ(L) dt , (4.3)

or in “Kerr-Schild” gauge,

A(L,KS) = QΦ(L) dt− Q

4π d log
√
x2 + y2 + z2

r0
= QΦ(L) L(L) ,

L(L) = dt− xdx+ ydy + zdz√
x2 + y2 + z2 , (4.4)

where K(L) is null and r0 is a constant needed for dimensional purposes.
The (vacuum) double copy of this solution is the Schwarzschild solution, which can be

written in Kerr-Schild coordinates as

ds2
(L) = dt2 − dx2 − dy2 − dz2 − κ2m

4 Φ(L) L(L)L(L) . (4.5)

12Notice that φ(1)
αβ degenerates on the light-cone (its principal rank-1 spinors coincide), and it becomes

proportional to φ(2)
αβ .
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It can also be written in static coordinates as

ds2
(L) =

(
1− κ2m

4 Φ(L)
)

dt′2−dx2−dy2−dz2−
κ2m

4 Φ(L)

1− κ2m
4 Φ(L)

(xdx+ ydy + zdz)2

x2 + y2 + z2 , (4.6)

with

dt′ = dt+
κ2m

4 Φ(L)

1− κ2m
4 Φ(L)

xdx+ ydy + zdz√
x2 + y2 + z2 . (4.7)

The commonly-seen Schwarzschild coordinates are obtained by changing from rectangular
to spherical coordinates,

ds2
(L) =

(
1− κ2m

4 Φ(L)
)

dt′2 − dr2

1− κ2m
4 Φ(L)

− r2(dθ2 + sin2 θ dφ2) , (4.8)

with r =
√
x2 + y2 + z2 and Φ(L) = (4πr)−1.

Following the same steps as in the Lorentzian case, let us consider the case of split sig-
nature discussed in previous sections. As we saw earlier (and as is discussed in appendix B),
the retarded Green’s function is

Φ = Θ(t1 −
√
x2 + y2)

2π
√
t21 − x2 − y2

= Θ(t1 −
√
x2 + y2) Φ̂ , (4.9)

satisfying
(∂2
t1 − ∂

2
x − ∂2

y) Φ = δ(t1)δ(x)δ(y) . (4.10)

The causal boundary condition breaks the t1 parity. There are major differences with
respect to the Lorentzian Green’s function, including the singularity structure. The
Lorentzian Green’s function is singular only at the origin — the locus of the delta-function
source. The split-signature Green’s function is singular along the future light-cone, even
though it is only sourced at the origin of the light-cone. This singularity, both via the
denominator and via the discontinuity of the step function, requires some care but, as was
seen previously, presents no difficulty in Fourier space.

The associated gauge field is
A = QΦ dt2 . (4.11)

We can now try to proceed to obtain the “Kerr-Schild” gauge, but two apparent difficulties
arise. The first is that a complex gauge transformation is required for the gauge field to
be null. This is acceptable as a means to obtain a gravity solution in complex Kerr-Schild
form, but which can be made real by a complex diffeomorphism.13 The second difference
is more subtle and is related to the breaking of t1 time reversal symmetry: the Green’s
function is not solely a function of t21−x2−y2. Let us proceed in the region t1 >

√
x2 + y2,

strictly inside the future (3D) light-cone, since the subtlety only affects the light-cone.

13In what regards complexification, this situation is analogous to the double copy interpretation of the
Taub-NUT solution from the dyon, and more generally of generic type D vacuum solutions.
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Then we can obtain the complex ‘Kerr-Schild’ gauge,

t1 >
√
x2 + y2 : A(KS) = Q Φ̂ dt2 −

Q

2πi d log

√
t21 − x2 − y2

r0
= Q Φ̂L ,

L = dt2 + i
t1dt1 − xdx− ydy√

t21 − x2 − y2
. (4.12)

The exact gravity solution, in complex Kerr-Schild coordinates, is then given as

t1 >
√
x2 + y2 : ds2 = dt22 + dt21 − dx2 − dy2 − κ2m

4 Φ̂LL . (4.13)

It can be expressed in terms of real coordinates as

t1 >
√
x2 + y2 :

ds2 =
(

1− κ2m

4 Φ̂
)

dt′22 + dt21 − dx2 − dy2 +
κ2m

4 Φ̂
1− κ2m

4 Φ̂
(t1dt1 − xdx− ydy)2

t21 − x2 − y2 ,
(4.14)

using

dt′2 = dt2 − i
κ2m

4 Φ̂
1− κ2m

4 Φ̂
t1dt1 − xdx− ydy√

t21 − x2 − y2
. (4.15)

Now it is clear how to extend the solution beyond t1 >
√
x2 + y2 ,

ds2 =
(

1− κ2m

4 Φ
)

dt′22 + dt21 − dx2 − dy2

+
κ2m

4 Φ
1− κ2m

4 Φ
(t1dt1 − xdx− ydy)2

t21 − x2 − y2 . (4.16)

This gives us the final answer of the exact gravity solution.14 To check its consistency with
the previous linearised result, we can put (4.14) in de Donder gauge. This can be done by
applying the diffeomorphism generated by

ξ = κ2m

16π d log

√
t21 − x2 − y2

r0
= κ2m

8 Φ̂ (t1dt1 − x dx− y dy) . (4.17)

14We could also write the line element in coordinates analogous to the Schwarzschild spherical coordinates,
but would have to split into spacetime regions. Inside the light-cone, with χ =

√
t21 − x2 − y2 and Φ̂ =

(2πχ)−1, we pick t1 = χ coshψ inside the future light-cone and t1 = −χ coshψ inside the past light-cone,
obtaining

t21 > x2 + y2 : ds2 =
(

1 − κ2m

4 Θ(t1)Φ̂
)

dt′22 + dχ2

1 − κ2m
4 Θ(t1)Φ̂

− χ2(dψ2 + sinh2 ψ dφ2) .

Outside the light-cone, with χ̃ =
√
x2 + y2 − t21, we can write

t21 < x2 + y2 : ds2 = dt′22 − dχ̃2 + χ̃2(−dψ̃2 + sin2 ψ̃ dφ2) .
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Figure 5. The left image shows the 4D light-cone in split signature. The “inner” part of the cone
contains all the events that are not causally connected to the vertex, whereas the events in the
“exterior” can be reached by causal curves. On the right, the diagram shows the support of the
Green’s function for our choice of t1-retarded boundary conditions. The point particle trajectory
is represented by the thick line moving along the t2 axis. The shaded surface is t1 − |x| = 0, which
contains the radiation. The dashed lines enclose the region where the retarded Green’s function is
non-zero, i.e. the t1-future of the particle. The dotted volume is the t1-past of the particle.

The resulting linearised metric is

hµν = −κm2 Φ̂
(
uµuν −

1
2ηµν

)
. (4.18)

Once again, this result is valid inside the lightcone. If we wish to extend it outside, we can
replace Φ̂ by Φ, recovering (3.30).

5 Analytic continuation to Lorentzian signature

The discussions above focus on split signature, but there are direct implications for
Lorentzian signature, via analytic continuation.

Let us compare again the Green’s functions. In the split-signature case, we chose
boundary conditions such that the Green’s function is

Φ = Θ(t1 −
√
x2 + y2)

2π
√
t21 − x2 − y2

, (5.1)

satisfying
(∂2
t1 − ∂

2
x − ∂2

y) Φ = δ(t1)δ(x)δ(y) . (5.2)
Since we have the 3D wave operator, we made a choice that exhibits causality in the
subspace {t1, x, y} by picking the retarded Green’s function. This is shown in figure 5,
where the support of the retarded Green’s function is represented as a dashed volume.

We could have picked a t1-symmetric Green’s function, which is perhaps more natural
from the point of view of analytic continuation to Lorentzian spacetime. With the latter
choice, we would have

Φt1sym = Θ(t21 − x2 − y2)

4π
√
t21 − x2 − y2

. (5.3)
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This follows from the fact that equation (5.2) is satisfied by both the retarded Green’s
function (5.1), which is supported on the future light cone, and the advanced Green’s
function, obtained from (5.1) by the substitution t1 −

√
x2 + y2 → t1 +

√
x2 + y2 in the

argument of the theta function. Then Φt1sym is the average of the retarded and advanced
Green’s functions and has support on the dashed and dotted volumes in figure 5.15

Now, if we perform an analytic continuation to the Lorentzian case via t1 → iz, we
obtain −iΦ(L), with

Φ(L) = 1
4π
√
x2 + y2 + z2 (5.4)

satisfying
− (∂2

x + ∂2
y + ∂2

z ) Φ(L) = δ(x)δ(y)δ(z) . (5.5)

From this Green’s function, we can construct solutions in electromagnetism and in gravity,
and they obviously correspond to the Coulomb and Schwarzschild solutions, respectively.
Therefore, the discussions above concerning the description of solutions in terms of scatter-
ing amplitudes and the origin of the classical double copy from the double copy of scattering
amplitudes extend to the Lorentzian case. The three-point scattering amplitudes that un-
derlie those discussions would then be supported on complex kinematics.

6 Discussion

Let us summarise our results. We used the building block of the on-shell approach to scat-
tering amplitudes, the three-point amplitude, to study classical solutions in electromag-
netism and in gravity. The three-point amplitudes studied correspond to the emission of a
messenger (photon or graviton) by a charged/massive particle, and the classical solutions
are precisely the solutions sourced by the massive particle. In order for the three-point
amplitude to be non-trivial, we worked with a split-signature spacetime. The alterna-
tive would have been to consider complexified momenta in Lorentzian signature, as often
done in the scattering amplitudes literature, but we found the split-signature choice more
straightforward, given that relevant quantities like spinors are real. Moreover, split sig-
nature is interesting in its own right, particularly regarding boundary conditions and the
meaning of causality. We discussed how our results are related via analytic continuation
to Lorentzian signature.

Building on the KMOC formalism [21], we used the three-point amplitude to determine
the coherent state generated by the massive particle, which is associated to the split-
signature versions of the Coulomb and Schwarzschild solutions, for electromagnetism and
gravity respectively. We described how to extract from that a classical field, namely via
the expectation value of a quantum operator on the coherent state, in the classical limit.
As operators, we considered the ‘curvatures’: the field strength in electromagnetism and
the spacetime curvature in vacuum (Weyl or Riemann, as they match in vacuum). These
are gauge-invariant quantities (for gravity, in the linearised approximation). We found

15We could also have chosen the Green’s function to be Θ(x2+y2−t21)/(4π
√
x2 + y2 − t21), which is acausal

from the 3D perspective, but for which the analytic continuation below seems perhaps more straightforward.
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that the vacuum expectation value of these curvatures is an on-shell Fourier transform of
the corresponding three-point amplitudes. This is easier to verify when we express the
curvatures in terms of spinors, namely the Maxwell and Weyl spinors.

The expressions we obtained for the Maxwell and Weyl spinors exhibit a Weyl-type
classical double copy in on-shell momentum space, which follows directly from the dou-
ble copy of the three-point scattering amplitudes. We then showed that this leads to
the previously known Weyl double copy in position space, which applies to certain alge-
braically special classes of solutions [96, 120], here in the simplest case of the Coulomb and
Schwarzschild solutions. We emphasise, however, that we expect the structure of the dou-
ble copy in on-shell momentum space to be much more general. We see it as being formally
equivalent to the convolutional double copy [85, 106, 109], but with the advantage, from
our perspective, of being supported on on-shell momentum space, with a direct connection
to scattering amplitudes.

Finally, we also used the Kerr-Schild-type classical double copy to obtain the exact
gravity solution, rather than the linearised one. This is, to our knowledge, the first use of
the classical double copy to write down an exact solution: the split-signature version of
Schwarzschild, with appropriate boundary conditions. Although this could also have been
achieved by analytic continuation of the Lorentzian Schwarzschild solution, with due atten-
tion paid to the split-signature boundary conditions, it was easier for us to use the classical
double copy given that the split-signature boundary conditions were directly related to
those in gauge theory.

There are several obvious and exciting avenues for future research. The most obvious
one is that of other three-point amplitudes, namely related to the Kerr-Taub-NUT exten-
sion of the Schwarzschild solution [64]. Another obvious direction is the consideration of
self-interactions in gravity, i.e. going beyond linear order, using the on-shell formalism of the
coherent state. We described how to proceed, but it is worth it to make it more concrete.

The domain of applicability of the classical double copy is a natural question. Although
many previous results support these ideas, we have provided here the ultimate connection
to the double copy of scattering amplitudes. The Weyl double copy in on-shell momentum
space is the amplitudes double copy. It will be interesting to explore this result better in
position space, beyond linearised order, and to also connect it with the Kerr-Schild version
of the classical double copy.

We hope to address these questions in the near future.
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A Conventions

A.1 Spinors in split signature

In coordinates (t1, t2, x1, x2), we work with a metric of signature (+1,+1,−1,−1). Since
this signature may be unfamiliar, we gather here a list of spinor-helicity conventions ap-
propriate for working in this signature. Our conventions are designed to follow those of
reference [148] (see appendix A) as closely as possible, while taking advantage of the dif-
ferent reality properties available in split signature.

The Clifford algebra is
σµσ̃ν + σν σ̃µ = 2ηµν1 . (A.1)

In our signature, it is possible to choose a real basis of σµ matrices. Our choice is

σµ = (1, iσy, σz, σx) (A.2)

where σx,y,z are the usual Pauli matrices. The σ̃µ are obtained by raising spinor indices,
as usual:

σ̃µα̇α = εαβεα̇β̇σµ
ββ̇
. (A.3)

We define ε12 = +1, while ε12 = −1, so that

εαβε
βγ = δγα , (A.4)

and choose the same Levi-Civita sign for the opposite chirality,

εα̇β̇ = εαβ , εα̇β̇ = εαβ . (A.5)

We raise and lower all spinor indices (of either chirality) by acting from the left:

λα = εαβλ
β = εαβ(εβγλγ) . (A.6)

It is often helpful to note that

σαα̇ · σββ̇ = 2εαβεα̇β̇ ,

σαα̇ · σ̃β̇β = 2δβαδ
β̇
α̇ .

(A.7)

The chiral structure of spinors in split signature is important in our work. This struc-
ture is clarified by introducing the σµν matrices which are proportional to the Lorentz
generators in the spinor representations. In particular, we define

σµν = 1
4(σµσ̃ν − σµσ̃ν) ,

σ̃µν = 1
4(σ̃µσν − σ̃µσν) .

(A.8)

Since these matrices are antisymmetric in µ and ν, there are at most six independent σµν

(and at most six independent σ̃µν). However, the matrices enjoy the duality properties

σµν = 1
2εµνρσ σ

ρσ ,

σ̃µν = −1
2εµνρσ σ̃

ρσ .
(A.9)
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Consequently, there are only three independent σµν matrices, which generate the
group SL(2,R).

To pass between momenta k and spinors λ, λ̃, we define

k · σαα̇ = λαλ̃α̇ . (A.10)

We use the symbols |k〉, 〈k|, [k|, and |k] to indicate the spinors with the indices in various
positions as follows:

|k〉 ↔ λα , 〈k| ↔ λα , |k]↔ λ̃α̇ , [k| ↔ λ̃α̇ . (A.11)

As usual, we choose a basis of polarisation vectors of definite helicity η = ±. Unlike
the Minkowski case, these vectors can be chosen to be real, and we make such a choice.
Given a momentum k and gauge choice q satisfying k · q 6= 0, k2 = 0 = q2, we define

εµ− = −〈k|σ
µ|q]√

2[kq]
, εµ+ = [k|σ̃µ|q〉√

2〈kq〉
. (A.12)

These polarisation vectors have the properties:

(εµh(k))∗ = εµh(k) ,
ε2
±(k) = 0 ,

ε+(k) · ε−(k) = −1 ,
(A.13)

assuming that both k and q are real.
A plane wave with negative polarisation has a self-dual field strength in our conven-

tions:
σµν k

[µε
ν]
− = −

√
2 |k〉〈k| ,

σ̃µν k
[µε

ν]
− = 0 .

(A.14)

Meanwhile, a positive helicity plane wave has anti-self dual field strength given by

σµν k
[µε

ν]
+ = 0 ,

σ̃µν k
[µε

ν]
+ =

√
2 |k][k| .

(A.15)

A.2 Miscellaneous conventions

We define our Fourier transforms by

f(x) =
∫

d̂4k e−ik·x f̃(k) ,

f̃(k) =
∫
d4x eik·x f(x) .

(A.16)

To tidy up factors of 2π, we define

d̂nk = dnk
(2π)n , δ̂n(k) = (2π)nδn(k) . (A.17)

We define
v[µwν] = vµwν − vνwµ, v(µwν) = vµwν + vνwµ. (A.18)
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We have also used
X :=

√
2u · ε+ ,

1
X

:= −
√

2u · ε− , (A.19)

so that X 1
X = −2εµ+εν−uµuν = −2

(
−1
2 η

µν
)
uµuν = 1. Note that then (Xh)∗ = Xh, since

everything is real.

B The retarded Green’s function in 1 + 2 dimensions

Because of the translation symmetry in the t2 direction, much of our discussion really takes
place in a three-dimensional space with signature (+,−,−). In this appendix, we compute
the retarded Green’s function (for the wave operator) in this space. We use the familiar
notation x = (t,x) for points in this spacetime, and write wave vectors as k = (E,k).

The Green’s function is defined to satisfy

∂2G(x) = δ(3)(x) , (B.1)

with the boundary condition that

G(x) = 0 , t < 0 . (B.2)

It is easy to express the Green’s function in Fourier space as

G(x) = −
∫

d̂3k e−ik·x
1
k2

ret
. (B.3)

The instruction ‘ret’ indicates that we must define the integral to enforce the retarded
boundary condition (B.2). As usual, we interpret the integral over the first component E
of kµ as a contour integral, and (as in the main text) we impose the boundary condition
by displacing the poles below the real E axis. It is easy to compute the value of the E
integral using the residue theorem, with the result that

G(x) = −i
8π2 Θ(t)

∫
d2k eik·x

ei|k|t − e−i|k|t

|k|

= −i
8π2 Θ(t)

∫ ∞
0

dk
∫ 2π

0
dθ eikr cos θ

(
eikt − e−ikt

)
,

(B.4)

where, in the second equality, we defined r = |x| and introduced polar coordinates for the
k integration.

Our integral is still not completely well-defined. Notice that if we perform the k integral
in equation (B.4) first, we encounter oscillatory factors which do not converge. The solution
is again familiar: we introduce ikε convergence factors in the exponents, adjusting the signs
to make the integrals well-defined. The result is

G(x) = −i
8π2 Θ(t)

∫ ∞
0

dk
∫ 2π

0
dθ eikr cos θ

(
eik(t+iε) − e−ik(t−iε)

)
. (B.5)

Recognising the definition of the Bessel function, it is easy to perform the θ integration
next, yielding

G(x) = −i4πΘ(t)
∫ ∞

0
dk J0(kr)

(
eik(t+iε) − e−ik(t−iε)

)
. (B.6)
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We can perform the final integral using the result∫ ∞
0

duJ0(u)eiuv = 1√
1− v2

, (B.7)

so that
G(x) = i

4πΘ(t)
( 1√

r2 − t2 + iε
− 1√

r2 − t2 − iε

)
. (B.8)

At this point, the iε factors come into their own. Evidently, the Green’s function vanishes
when we can ignore the ε’s: this occurs when r2− t2 is positive. But when r2− t2 < 0, then
the ε’s control which side of the branch cut in the square root function we must choose.
We have

G(x) = i

4πΘ(t)Θ(t2 − r2)
(

1√
−|t2 − r2|+ iε

− 1√
−|t2 − r2| − iε

)

= i

4πΘ(t)Θ(t2 − r2)
(

1
i
√
|t2 − r2|

− 1
(−i)

√
|t2 − r2|

)

= 1
2πΘ(t)Θ(t2 − r2) 1√

t2 − r2
.

(B.9)

As discussed in more detail in section 5, this Green’s function is a Lorentzian version of
the familiar Euclidean Green’s function ∼ 1/r. The theta functions are a result of our
boundary conditions.16

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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