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CLASSICAL SOLUTIONS OF

THE HAMILTON-JACOBI-BELLMAN EQUATION FOR

UNIFORMLY ELLIPTIC OPERATORS

BY

LAWRENCE C. EVANS

Abstract. We prove under appropriate hypotheses that the Hamilton-Jacobi-

Bellman dynamic programming equation with uniformly elliptic operators,

max¡^k<m{Lku —/*} = 0, has a classical solution u E C2,ß, for some (small)

Holder exponent ß > 0.

1. Introduction. This paper extends some methods developed in [4] to prove the

existence and uniqueness of a classical solution u of the Hamilton-Jacobi-Bellman

equation:

Í   max  (Lku(x)-fk(x)}=0,    x G Q,
(1.1) \ i<*«« l

[w(x) = 0 xEdti.

Here fi denotes a bounded, smooth domain in R" (n > 1), the/* are given smooth

functions, and the Lk are second order, uniformly elliptic operators of the form

(1.2) Lku = akj(x)uXiXj + bk{x)ux¡ + ck(x)u,

with smooth coefficients satisfying

.ck(x)<0, xeß,

(1-3) 2 2 -
\0\i\  «**(*)£,.£,<e|¿r,    xEÖ,i£R-,

for constants 0 <f?<0<oo,/r;= \,...,m.

Problem (1.1) is the equation of dynamic programming arising in the study of the

optimal control of certain diffusion processes. For an explanation of its formal

derivation from control theory principles see Krylov [9], Bensoussan-J. L. Lions [2],

Fleming-Rishel [7], or Kushner [13]. In this interpretation Lk describes in some sense

the response of the stochastic system under control to the constant control k, fk

denotes the running cost of control k, and u(x) is the value function, i.e., the

(expected) payoff for the optimally controlled system starting in state x.
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246 L. C. EVANS

The references just mentioned all provide calculations showing that should the

value function u be smooth enough (say C2), then it satisfies (1.1); and—conversely

—if (1.1) has a smooth enough solution it must be the value function. This second

fact motivates a direct study of (1.1), in analogy with the indirect methods of the

calculus of variations. Many papers in the last few years have made rigorous the

formal calculations of dynamic programming theory by demonstrating under as-

sorted hypotheses the existence of a (unique) solution with various regularity

properties: see Krylov [9-10], Nisio [19], Brezis-Evans [3], Evans-Friedman [5], P. L.

Lions-Menaldi [18], P. L. Lions [16-17], Evans-P. L. Lions [6], Belbas [1], etc. Under

the assumption (1.3) of uniform ellipticity the best results to date were in [6], where

we proved (1.1) has a unique solution u G W2'°°(Ü), solving (1.1) for a.e. x G ß.

In this work we will show that the solution of (1.1) is in fact a classical solution,

lying in the space C2£ for some perhaps very small Holder exponent ß > 0. (This

was proved in [3] for the case m = 2 by other, much simpler methods.) The main

ideas for the proof are taken from a recent paper [4], where we in fact already

obtained this result for the (unrealistic) situation that the operators Lk have constant

coefficients, with no lower order terms. The key observation there was that any pure

second derivative v = w4i (£ a unit vector) is a supersolution of a certain linear

elliptic p.d.e., to which some recent estimates of Krylov-Safonov [11] apply. In the

general situation that the coefficients of the Lk depend on x, v — u^ is unfortunately

no longer a supersolution.

Happily it turns out, as we will show in this paper, that a relatively small

modification of v = u^ in fact does act like a supersolution; this technique we

borrow from the proof of Ladyzenskaja-Ural'ceva [14, p. 340] (see also Gilbarg-

Trudinger [8,p. 270]) concerning Cla estimates for quasilinear elliptic equations.

With these calculations in hand it is then relatively routine to modify the methods of

[4] to obtain an interior a priori estimate on the Holder modulus of continuity of

D2u.

And once we have such bounds it is then straightforward to prove:

Theorem 1. Under the hypotheses described above (1.1) has a unique solution

u G C(ñ) n C2-ß(il) for some ß > 0.

Note carefully we do not assert u G C2'^(S2). Indeed it is an interesting open

problem to extend the techniques of [4] to yield boundary estimates for the Holder

continuity of D2u. Such bounds would also be useful for studying the Monge-Ampere

equation.

The paper is organized so that the proof of Theorem 1 appears in §4, after a

derivation in §§2,3 of the key estimate (Lemma 3.3) concerning the oscillation of

ö2«on concentric balls in ñ. As noted previously the principal new ideas concern

adapting the methods of [4] to cover the variable coefficient case: as such we will

devote most of our attention to the new essential difficulties and will continually

refer the reader back to [4] for those aspects of the proof which are not much

changed. (See the "Note added in proof at the end of §4.)
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SOLUTIONS OF THE HAMILTON-JACOBI-BELLMAN EQUATION 247

Notation.

Du=(uXi,...,ux),       D2u=(uXíXi,...,ux¡x.,...),

D3u =(..., ux¡XjXk,...),

B(x0, R)={ye R"| |jc0 -^|<ä},       B(R) = B(0, R),

e¡ = j'th unit vector in R",

1/Jc'(jt) = max —■-—.
x,yeK      \x — yr

x¥=y ' '

We employ the summation convention throughout this paper; the letter "C"

denotes various constants depending only on known quantities.

2. Approximation; construction of supersolutions. The key to everything else in the

proof of Theorem 1 is an a priori bound on the oscillation of D2u in fi', fi' C C Í2.

We present in this section the necessary major modifications of the argument in [4],

and will in fact derive the estimates for a sequence of approximating problems

defined as follows.

According to [4, Lemma 7.3] there exist smooth functions ße: Rm — R (e > 0)

satisfying

(i)      ße(■ ) is smooth and convex (e > 0),
m

(ii)     0 <&«(/■)<!,  2^(r)=l(e>0,i=l,...,m,rGR"1),

(2.1)
i=i

(üi)     ß'(r) = ß'(rlt...,rm) ->  max rAaseS,0,

uniformly on compact subsets of Rm,

(iv)     ßc(r0,... ,r0) = r0 for each r0 G R1.

Let us therefore approximate (1.1) by the problem

(2 2) ¡ßiLlue(x)-f\x),...,Lmue(x)-f"'(x))=0,    x G £2,

{«e(x) = 0, JCG9Ö.

For the remainder of this section we will suppose that (2.2)e has a smooth solution

ue and then derive estimates on the oscillation of D2ue, provided

(2.3) max|wE|, \Due\, \D2ue\< M
xeQ

for some constant M, independent of e. Later, in §4, we will make use of these

bounds to prove the existence of a solution of (2.2)e and then to pass to limits as

£\0 to solve (1.1).

So now let £ denote some unit vector in R" and set

(2.4) v'^uli-r,  2   (u>    -n2M9tJ)\

7) denoting here some fixed positive number, which will be selected later (in §3).
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248 L. C. EVANS

Define also

(2.5) «î/(*)sAtf-••)<(*)       (Ki,j<n),

and notice that according to (2.1)(ii) and (1.3),

(2.6) 0|£|2«a;;(jc)£.£,«e|E|2   for all ¿ G R",x G ß.

Lemma 2.1. There exists a constant C(t/) such that

-akl»Xkx>-cW «o;

C(t() depends only on tj, M, «, ffte coefficients of the Lk, the fk, and not on e or £.

Proof. To simplify the notation we drop the superscript "e". Let us compute

(2-7) vXk = u(iXt - 2ri(ux¡Xj - n2M8u)ux¡XjXk,

v*kx, = umxtX¡ - 2VuX:XjXuXiXjXt - 2ri(ux¡Xj - n2M8ij)uXXjXkXi.

Next differentiate (2.2)t with respect to xi and * , and also twice with respect to £:

(2.8) ßri-){L°u-f>)XlXj + ßrJ-)(Uu -r)x,{L'u -f')Xj = 0,

ßri-){uu -/•)« + &.,,(•)(£'«-/•)«(£'«-/')« = o.

In view of the convexity of ß, the last equation implies

(2.9) -ßl)(L°u-r)((»0.

Now observe that (2.3), (2.8) and (2.9) yield

(2.10) -ßrl)alluXiXjXtX>ßrJ)(L'u-f%XL'u-f%-C-C\D3u\,

and

(2-11) -ß,i)ai,uHxiiXi*-C-C\D3u\.

Finally let us calculate

(2.12)    -aklvXtXi = -ßr{-)asklvXkXi = -ßr{-)a*k,uilXkXi + 2^¿-)asklux¡XjXuXXjXk

-Hux,x, - n2M*tJ)(-ß,l')alaUxw)

>-C- C|D3M|+2tj0|D3w|2;

the last estimate results from (2.11), (2.6) and (2.10), respectively. Notice also that we

have used here the inequality

-2n(uXlXj - n2mtJ)ßrsri(-)(Uu -/%(£'«-/% > 0,

resulting from the convexity of ß and the matrix inequality

((uXXj-n2MSu))<0.

The lemma is an immediate consequence of (2.12).    D

Lemma 2.1 will be useful because of the following important estimate of Krylov-

Safonov [11]. Let us assume now that the ball B(R0) lies in ß for some R0 > 0.
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SOLUTIONS OF THE HAMILTON-JACOBI-BELLMAN EQUATION 249

Define for 0 < R < R0

me{R)=mnvc,   MC(R) =maxue,     osc ve = Me(R) - me(R).
B(R) B(R) B(R)

Lemma 2.2. There exist a constant C^îj) = Cx(n,Q, 0, M,C(r\)) and, for each

0 < a < 1, a constant y = y(n, 0, 0, a) > 0 such that

(a) if Y C B(R) is closed and

meas T > ameas B(R),

then

Cx{i\)R2 + mei j) >y minuE + (l - y)mc(R).

(b) In particular,

meas{x G B(R)\ve > \me(R) + (1 - X)Me(R)} >ameasB(R)

implies

C,(7j)Ä2 + »i'(4) >V(1 ~X) oscüE +we(Ä)

/or all 0<\ < 1. 77ie various constants here do not depend on e, £ or Ä, a«J o«/>> C,

depends on tj.

This lemma follows from Lemma 2.1 and [11]: see [4, §3] for details.

3. The main estimate. We are now ready to prove

Proposition 3.1. Let uc be a smooth solution of (2.2)E, and assume that the estimate

(2.3) holds. Then there exist a constant ß > 0 and, for each £2' C C Q, a constant C(O')

such that

[D2u°]Cß(a1<C(Q').

The constant ß depends on n, 6, 0, the coefficients of the operators Lk, and the fk;

C(ß') depends only on these quantities and dist(ñ', 3ñ): neither depends on e.

The proof will follow several preparatory lemmas:

Lemma 3.2. There exist an integer N > n, unit vectors £,(/ = l,...,N) and con-

stants 0 < 6' < 0' < oo such that

(3.1) &(LV -f\...,Lmu' -/"O = G<(u¡i(i,...,u¡ií(k,x) = 0

where Ge: R" X Í1 -» R ¡s a smooth function, with

(3.2) e'<Gek()^@'       (k=\,2,...,N).

This lemma follows from considerations in [4, §5]. In particular we demonstrated

there (following Kurtz [12]) that each operator Lk can be rewritten in the form

N n

(3.3) Lku' = 2 */*(*)«!,«, + 2 of(*K,(*) + ck(x)u\x)
i=\ i=\
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250 L. C. EVANS

where the {£,} are some collection {independent of k) of unit vectors in R", and the

ak(x) are smooth functions,

9'<af(x)<B'      (i=\,...,N;k=l,...,m;xEQ).

Now insert the representation (3.3) into the ßc, recall (2.1)(ii) to check (3.2), and note

that the lower order terms in (3.3) are Lipschitz according to (2.3).    □

Let us also note that we may arrange things so that the collection of unit vectors

{£,} includes

(3.4) fu=^JT¿       0 < i./"«»)-
V2

To see this fix 8 > 0 so small that

n

Lku = Lku-8  Y   (uf+ f++ a,- ,-)
**   v  jij'jij       jij'jij'

'J=i

is uniformly elliptic and then apply the representation (3.3) to Lk instead of Lk.

In light of all this there is a constant C2 = C2(n, m, N, M) such that if B(R0) C ß

for some R0 > 0, then

" 2

(3.5) ose    Y   (uxx - n2M8:\   < C2 max    oscm|£
B(R) ¡~tyy      •' '' Ki<N B(R)   "*'

foreachO<7? < R0.

Then (3.5) implies

(3.6) max    osc u\, < C3 max    ose ve¡
ISKiV   B(R) \<i<N  B(R)

for some C3 = C3(C2, n, m, N), provided tj > 0 is small enough; here

(3.7) *>,—«U-"  2  [u'XiXj-n2M8u)2.
'.7 = 1

Our principal estimate is this (cf. [4, Lemma 4.3]):

Lemma 3.3. Assume that the ball B(R0) C ß for some Ro>0. If rj > 0 ¿s jwa//

enough, there exist constants 8, < 1 aW C4 íuc/¡ that ifO<R<R0, then

(3.8) ose  ü,e < 5, osc uj + QR
B(R/4) B(R)

for some index i G {1,...,N}. These constants do not depend on R or e.

Proof. As before we suppress the superscript "e" for notational simplicity;

»!,-(/?)= min u-,       Mj(R) =max€,.
B(R) B(R)

There are two possibilities to consider:

Case I. Suppose

meas(x G B(R)\v,■> \m¡(R) + (1 - \)M¡(R)} >measB(R)/2N
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for some index i G {l,...,N}, say i = 1, where 0 < X < 1 is a constant to be

selected later. Then applying Lemma 2.2(b) to v, we find

C,(ii)*2 + »J,(4) ^yO -a)oscü, +mt(R)
\ 4 I B(R)

for some fixed y > 0. Thus

«, = ".(£)-«,(£) <*,(*) ,i —
B(*/4)

< (1 - y(l - À)) ose o. 4- C,(rj)Ä2.
B(R)

This proves (3.8) with Ô, = (1 - yO - a)) < 1.

Case II. Assume now that (3.9) fails for each i = 1,2,... ,7V. Then

(3.9) measT, > {-meas B(R),

where

(3.10) r,={*e B(R)\v, <\mi(R) + (\-\)Mi(R),i=l,...,N}.

Let us suppose with no loss of generality

(3.11) osc  vN—  max     ose  v¡.
B(R/4) 1«/<AT   B(R/4)

Now (3.1) and (3.2) together imply that we can solve for u( f   in terms of the other

derivatives and x:

uM» = g(utiSi---utK-itm-t>x)'

where g: R^- ' X ß -» R is smooth,

-¿■<8"-"g<~W       (k=l,2,...,N-\).

The function g is thus strictly decreasing in its first N — 1 arguments; and so for

x G r, we may estimate

"«„(*) =*("«,«,(*)■• ••>"{„-,{„_,(*)>*)

= g(«i(x) + 7}w(x),...,uw_,(x) + i)iv(x),x),

where

(3.12) »-  2   («^-«2M«I7)2.
'.7=1

Hence, since x G T,,

ui,J^)^cT(---,Aw,(/?)+(l-X)M,(Ä) + 7,w(x),...^)

3= g(..., Aminu, f + (1 — A)maxwf f ,.. .,x) — Ci\ osc w,
\ £(R)      ' ' 5(K)      ' ' ' B(R)
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because

Am,(Ä) + (1 - X)MAR) + Tjw(x) - ÍAminw,, + (1 - A)max«f » ) < tj
v     B(R)    t,t' fl(Ä)      ,S,'|

osc w.
B(R)

Therefore

M£ f (•*) ** #( •••> rnin«, > ,...,* ) — C(r/ + (1 — A)) max    oscwif    (see(3.5))

> maxMt t   — CR — C(tj + (1 — A)) max    osc v,
B(R)      " " \<,i*íN  B(R)

by (3.6).

Hence for* G T,,

°n(x) = utNtN(x) -w(x)

2* MN(R) - CR- C(r¡ + (1 - A)) max    osc v..
\*Si*íN  B(R)

Next apply Lemma 2.2(a) to vN:

C(t,)R2 + «„(4) >y(^(*) - CÄ-C(t)+ (1 -A)) max    oscc,.)
V 4 / V Ki<AT  fi(Ä)      7

+ (1 - y)m„(Ä).

From this we calculate

BOSC4)VN = MN(^)-mN(^)

< (1 - y + C(tj + (1 - A))) max    ose v¡ + CR + C(t))R2
i<i<N  B(R)

<8,  max    ose v + C(r})R,
1<H<N  B(R)

with 5, < 1, provided A < 1 is now fixed close enough to 1 and tj is small enough.

In view of (3.11), (3.8) is now proved for Case II.    D

The next lemma extends Lemma 3.3 by showing that if we pass from B(R) to a

(much) smaller ball, the sum of the oscillations of all the v' diminishes by a fraction

less than one, except for a correction term of order R.

Lemma 3.4. There exist an integer kN and constants 8N < 1, C5 such that

N N

(3.13) 2     ose   ü,e <8N%   osc v* + C5R.
,= 1 B(R/4k«) i-x B(R)

These constants do not depend on R or e.

Proof. The argument is very similar to the proofs of [4, Lemmas 4.4,4.5] and so

we only outline here the principal ideas. Once more the superscripts "e" are omitted.

First, owing to Lemma 3.3, the oscillation of at least one of the o¡, say u,,

diminishes by a fraction 5, < 1 (and there is a correction term CR) if we pass from

B(R) to B(R/4):

(3.14) osc  v, < 8, osc v, + CR.
B(R/4) B(R)
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Now consider B{R/4) and B(R/42). Again the oscillation of at least one of the u

decreases by the fraction fi,, and so there are two possibilities:

(a) If we can take y G (2,.. .,7V}, say y = 2, then a statement analogous to (3.14)

obtains for v2 and we may add this inequality to (3.14) to obtain an inequality of the

type (3.13), but with the summation only from 1 to 2.

(b) If on the other hand the oscillation of only t>, diminishes in moving from

B(R/4) to B(R/42), we may combine (3.14) and the same statement for the smaller

ball to find

(3.15) osc   u, <(5,)2 oscü, + CR.
B(R/42) B(R)

Now consider B(R/42) and B(R/43). If case (a) holds here we have (3.13) for t>,

and v2; and case (b) on the other hand implies

(3.16) osc   u, « (S,)3 ose ü, + CR.
B(R/4}) B(R)

Continuing this way, after finitely many steps we reach a ball B(R/4k2~l) by which

either (3.13) obtains for TV = 2 or else inequalities like (3.15), (3.16) are valid, the

latter possibility implying the oscillation of u, over B{R/4kl~x) is so negligible that

an argument like that establishing Lemma 3.3 shows at the next step that the

oscillation of some other vt (i 6 {2,... ,N}) must diminish. See [4, Lemma 4.4] for

details.

Having so far proved (3.13) with 2 in place of TV, we continue the process by

induction eventually to arrive at (3.13) for TV itself: again we refer to [4, Lemma 4.5]

for more explanation.    D

Proof of Proposition 3.1. A standard lemma in elliptic theory (cf. Gilbarg-

Trudinger [8, p. 191]) states that Lemma 3.4 implies

osc»¿<c(-£-) (/=1,...,TV)
B(R) \«o/

for certain numbers C> 0, 0 < ß < 1 ; these constants depend only on known

quantities. We apply this calculation to any ball B(x0, R0), r0eß'CCSi,Ä0<

dist(x0, 3ß) to complete the proof.    D

4. Proof of Theorem 1. It is now fairly easy to exploit the a priori estimates from

§3 in proving an existence, regularity, and uniqueness theorem for the Hamilton-

Jacobi-Bellman equation. First we solve (2.2)E and will then pass to limits as e\0.

As previously noted we do not have a priori Holder estimates for D2u near 9ß,

and so first we must modify the operators Lk to be identical near the boundary.

Define for 8 > 0

SijE{re ß|disU>,8ß)><5},

and next choose a smooth cutoff function f = fs such that

(4.1) 0<{<1,       f=lonßa,   f = 0near3ß.

Now define

(4.2) Lku=(\-$)0bu + SLku       (k=\,2,...,m);
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254 L. C.EVANS

these operators are uniformly elliptic, with smooth coefficients. We also set

hk = tfk        (k=\,2,...,m).

In view of (4.1) and (2.1)(iv)

ße{...,Lksu-fsk,...) = 0Aw   forx near 9ß.

Hence Proposition 3.1 and the standard boundary Schauder estimates provide the a

priori estimate

(4.3) [£»24]c,(ñ)< Const.

(for some ß > 0), where u$ is a smooth solution of

(/*•(,^-//,...) = 0   „ft
I ues = 0 on 3ß.

The bound in (4.3) requires a previous estimate (cf. (2.3))

(4.5) max\u¡\,\Dues\,\D2u¡\<Ms,

but this follows from fairly straightforward modifications of the techniques in

Evans-Lions [6].

It is now routine to prove the existence of a unique, smooth solution of (4.4) e s

using a standard continuation argument. The solution belongs to C2'^(ß) and so

customary bootstrap-type arguments demonstrate that use is in fact smooth.

Next we send 6\0 to solve (2.2)E. For this it suffices to note that

(4.6) j8'(...,L*ii?-/*,...) = 0   inß8.

Now an estimate like that used for [4, Lemma 2.2] proves

(4.7) max|Uf|*£C6,

the constant independent of e and 8. From this bound and interior estimates (cf.

Lenhart [15]) of the form

(4.8) max|£>w£Ä|, |Z>2Mf| =e C7(ß')

(for ß' C C ßs C C ß; C7(ß') independent of e, 8), we may recall Proposition 3.1

and extract a subsequence of the use converging in C2a(ß) (0 < a < ß) as 5\0 to a

function ue solving

&(..., Lkue -/*,...) = 0    inß.

Furthermore

ueGC(Q),       wE = 0   on3ß;

this follows since we can find (as in [4, Lemma 2.2]) a smooth barrier function $

such that

-$<«?<$    in ß,
(4.9)

.$ = 0 on 3ß,
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for all e, 8. Hence uB solves (2.2)e and—from (4,7)-(4.9)—we have

max|we| < C6,
ß

' max|£>uE|,|£>V|<C7(ß'),

-$<Me<0   inß.

Recalling Proposition 3.1 once more we pass to limits as e\0 to construct a solution

u G C(ß) n C2'^(ß) of the Hamilton-Jacobi-Bellman equation. Uniqueness is a

consequence of the maximum principle.    D

Note added in proof. N. S. Trudinger has recently greatly simplified the proofs

in this paper and in [4]: see the forthcoming second edition of [8] for this.
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