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1 INTRODUCTION 

Classical spin models bridge the gap between a full electronic 

description of a magnetic material and conventional micro­

magnetism where magnetic properties are calculated on the 

basis of a continuum theory for the energy of a system. While 

quantum effects are obviously neglected, classical spin mod­

els take into account thc discrete nature of matter, so that 

they allow for an investigation of magnetic particles in the 

nanometer regime where a continuum theory would faiL The 

fact that magnetic structures are described on an atomic level 

makes it possible to investigate ferromagnets (FMs) as well 

as antiferromagnets (AFMs) or even heterostructures com­

posed of both of them. Methods exist for the calculation 

of thermal equilibrium properties and, to some extent, also 

for nonequilibrium properties. Classical spin models are thus 

particularly suited to the study of thermal effects. On the 

other hand, numerical calculations with an atomic resolution 

are restricted to system sizes of the order of 107 spins so that 

only systems sizes of the order of some 10 nm can be treated 

numerically (at the moment). However, magnetic materials 

are controllable down to the nanometer scale, leading to a 

fundamental interest in the understanding of the magnetism 

of small ferromagnetic particles or heterostructures (Schnei­

der and Blligel, 2005). This interest is even amplified by the 

broad variety of industrial applications in pure magnetic as 

well as spin electronic devices. For theoretical investigations 

numerical mcthods are thus desirable, especially methods 

that are capable of treating realistic magnetic model sys­

tems including heterostructures and the effects of thermal 

activation. 

This chapter focuses on classical spin models, phys­

ical principles as well as numerical methods. Section 2 

deals with the basics of classical spin Hamiltonians, ther­

mal averages, and the equation of motion - the Lan­

dau-Lifshitz-Gilbert (LLG) equation. In Section 3 the two 

most established numerical methods in this context are dis­

cussed, namely Monte Carlo methods (Binder and Heer­

mann, 1997) and Langevin dynamics simulations (Lyber­

atos and Chantrell, 1993). Special emphasis is laid on the 

relation between these different methods, which leads to 

time-quantified Monte Carlo methods (Nowak, Chantrell 

and Kennedy, 2000). Sections 4 and 5 are an introduc­

tion to two topics which are typical for a modeling 

within the framework of classical spin models, namely 

thermally activated switching in nanoparticles (Nowak, 

2001) and exchange bias (EB) (Nogues and Schuller, 

1999), an effeet arising in compound systems of ferro­

and antiferromagnetic materials. Section 6 concludes this 

article. 
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2 THEORETICAL CONCEPTS 

2.1 Classical spin models 

A classical spin model is the classical limit of a quantum 

mechanical, localized spin model - the Heisenberg model 

(Heisenberg, 1928) (see Steevens, 1963; Anderson, 1963; 

Levy, 2000, for the theoretical background). The Hamiltonian 

of a classical spin model describing a magnetic system may 

contain contributions from exehange interactions, crystalline 

anisotropies, the external magnetie field, and dipole-dipole 

interactions. There might also be other contributions (e.g., a 

magnetovolume eoupling) which, for the sake of simplicity, 

will not be considered in the following. An appropriate 

Hamiltonian may then be written in the form 

1i = 1iexc + 1iaois + 1ifield + 1idipol (l) 

Within the framework of the classical Heisenberg model the 

exchange energy is expressed as 

1iexc LlijSi,Sj 

(ij) 

(2) 

where the Si JLd fJ." are three-dimensional magnetic 

moments redueed to unit length. This part represents the 

exchange of the magnetic moments and it is often (but not 

necessarily) restricted two nearest-neighbor interactions with 

a unique exchange coupling constant 1. For 1 > 0 this part 

of the Hamiltonian leads to ferromagnetic order while for 

1 < 0 it can lead to antiferromagnetic order if the lattice 

structure allows for antiferromagnetic order without frustra­

tion effects. 

The simplest example for a crystalline anisotropy is 

(3) 

which is a uniaxial anisotropy favoring the z axis as easy axis 

of the system for positive anisotropy constant dz. Of course, 

other anisotropy terms describing any crystalline, stress, or 

surface anisotropies could also be considered. 

The Zeeman energy is 

(4) 

describing the coupling of the moments to an external 

magnetic field with b = fJ.,sB. Here, fJ.,s is the absolute value 

of the magnetic moment which for an atomic moment is of 

the order of a Bohr magneton. 
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The dipole-dipole coupling of the magnetic moments 

leads to an energy 

(5) 

with w = fJ.,; fJ.,o/4n a3 when the spins are on a regular lattice 

with spacing a. The atomic magnetic moments are handled 

in a point dipole approximation. The rij are the normalized 

distances between moments i and j and the cij are unit 

vectors in the direction of rij' Since the dipole-dipole 

interaction of two moments depends on their distance vector, 

the dipolar energy contribution will depend on the shape of 

the sample. Dipoles try to be aligned, minimizing free surface 

charges, which leads to shape anisotropy and to the fact that 

domain structures may minimize the energy of the system. 

Hence, dipole-dipole coupling is the microscopic origin of 

the magnetostatic stray field energy. 

Classical spin models are in some sense 'between' a full 

quantum mechanical first-principles description and a micro­

magnetic continuum approach. But they ean also be inter­

preted as the discretized version of a micromagnetic contin­

uum model, where the charge distribution for a single cell 

of the discretized lattice is approximated by a point dipole 

(Berkov, RamstOck and Hubert, 1993; Hubert and Schafer, 

1998). Also, for certain magnetic systems their description in 

terms of a lattice of magnetic moments is based on the me so­

scopic structure of the material, especially when a particulate 

medium is described (Chantrell, Lyberatos and Wohlfarth, 

1986; Nowak, Rtidiger, Fumagalli and Gtintherodt, 1996; 

Nowak, 1997; Nowak, Heimel, Kleinefeld and WeIler, 1997; 

ChantrelI, Walmsley, Gore and Maylin, 2000; Verdes et aI., 

2002). In this case it is assumed that one grain or particle 

can be described by a single magnetic moment. Therefore, 

the size of the particles and the temperature must be small 

enough so that internal degrees of freedom are not relevant 

for the special problem under consideration. 

When compared, the use of elassical spin models for the 

description of magnetic materials has advantages as well 

as disadvantages. The main disadvantage is that owing to 

the atomic resolution the system size is clearly restricted 

to a nanoseale (at the moment to the order of, say, 107 

spins, steadily increasing with computational power). But the 

advantages are (i) realistic lattice structures and interactions 

can be taken into account without assuming a continuous 

magnetization (Vedmedenko et al., 2004), (ii) finite tempera­

tures can be taken into account without cutting the spin-wave 

spectra because of the discretization (Berkov, 2007), (iii) the 

form and the parameters of the Hamiltonian can be derived 

from first-principles calculations (see e.g., Mryasov, Nowak, 

Guslienko and Chantrell, 2005), and (iv) the modeling of 
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para-, ferri-, ferro- or antiferromagnets, and even heterostruc­

tures composed of several of these different materials is 

straightforward. 

Hence typical magnetic systems for a description using 

classical spin models are nanostructures or systems with very 

narrow domain walls (Garanin, 1991; Kazantseva, Wieser 

and Nowak, 2005), especially when thermal excitations are 

relevant (Garanin, 1997; Nowak, 2001), and magnetic het­

erostructures including antiferromagnetic components (Mal­

ozemoff, 1987; Nowak et al., 2002b). 

2.2 Thermodynamics and the equation of motion 

In order to calculate thermodynamic equilibrium proper­

ties one has to calculate thermal averages for the proper­

ties of interest. For instance, in a canonical ensemble the 

temperature-dependent reduced magnetization becomes 

meT) = ~(I:Si) 
i 

1 1 
N Tr ze-1i

/
ksT I:S; (6) 

where ( ... } denotes a thermal average and Z = Tr e-1i/ ksT 

is the canonical partition function (see, e.g., Reif, 1965). 

For N classical spins the calculation of the trace would 

involve an integral over phase space, that is, integrals over 

N unit spheres. This high-dimensional integral can usually 

not be calculated exactly for realistic magnetic systems. 

Instead either approximations have to be used, the most 

famous one being the mean-field approximation (Wagner, 

1972; Levy, 2000) or numerical techniques like Monte Carlo 

methods. 

Moreover, one often is interested in nonequilibrium prop­

erties. Then, the basic equation of motion for magnetic 

moments coupled to a heat bath is the LLG equation (Lan­

dau and Lifshitz, 1935; Gilbert, 1955; Brown, 1963a) with 

Langevin dynamics. For electronic magnetic moments it can 

be written in the form 

Si = (l +:2)J.ls Si x (Hi(t) +a Si x Hi(t)) (7) 

where y = 1.76 X 101I(Ts)-1 

gyro magnetic ratio and Hi (t) 

mal noise ~i(t) obeys 

is the absolute value of the 

~i(t) - afijaSi . The ther-

(~i(t») = 0 (8) 

(l; iT/(t)l; jlJ (t'») = 0;'/)'1,90(t t')2akBT J.lsiY (9) 

i and j denote once again the sites of the lattice and TJ and 

() the Cartesian components. The first part of equation (7) 

describes the spin precession, which can be derived from 

Heisenberg's equation of motion in the classical limit, while 

the second part includes the relaxation of the moments. a is a 

dimensionless parameter describing phenomenologically the 

strength of the coupling to the heat bath. Note, that this 

microscopic coupling parameter is not necessarily identical 

with the usual macroscopic damping parameter (Chubykalo, 

Nowak, Chantrell and Garanin, 2006) but we will, never­

theless, refer to a as damping parameter in the following. 

As a consequence of the fluctuation dissipation theorem, a 

governs the relaxation aspect of the coupling to the heat 

bath as well as the fluctuations via the strength of the ther­

mal noise (Lyberatos and Chantrell, 1993; Chubykalo et aI., 

2oo3b; Berkov, 2007). The assumption of uncorrelated noise 

on an atomic level is a simplification reflecting the lack 

of knowledge regarding the fundamental physical mecha­

nisms involved in the coupling between spins and heat bath. 

The microscopic understanding of damping is an outstand­

ing challenge for current research (Smith and Arnett, 200 I; 

Safonov and Bertram, 2002; Rebei and Parker, 2003). How­

ever, the strength of the noise in equation (9) ensures correct 

thermal averages. 

One can solve the LLG equation easily for an isolated 

spin coupled to an external field B, neglecting the thermal 

fluctuations. Then the first term in equation (7) leads to a spin 

precession with the precession time r p = 2rr(l + ( 2)j(y B). 

The second part describes a relaxation of the spin from an 

initial state into local equilibrium on the relaxation timescale 

r r = r p j a. In other words, a sets the relation between the 

time scales of precession and relaxation. In the high damping 

limit, which in the following will turn out to be important in 

connection with Monte Carlo simulations, mainly the second 

term of the LLG equation is relevant and the time can be 

rescaled by the factor (1 +(2
)J.lsj(ay). Hence, this factor 

should completely describe the a and y dependence of any 

timescale in the high damping limit. 

The LLG equation is a stochastic equation of motion. 

Starting repeatedly from identical initial conditions will 

lead to different trajectories in phase space because of the 

influence of noise. Hence, averages have to be taken in 

order to describe the system appropriately. The basis for the 

statistical description of an ensemble of systems where each 

one is described by a Langevin equation is the corresponding 

Fokker-Planck (FP) equation. This is a differential equation 

for the time evolution of the probability distribution in phase 

space (Coffey, 1996). In his pioneering work Brown (1963b) 

developed a formalism for the description of thennally 

activated magnetization reversal on the basis of the FP 

equation which led to a low-temperature asymptotic formula 

for the escape rates in simple magnetic systems (for an 

overview see Coffey, 1996). The solution of the FP equation 

will converge to equilibrium properties, that is to the same 

values defined by equation (6). 



However, realistic calculations for systems with many 

degrees of freedom need computational approaches. The two 

basic methods for the simulation of classical spin systems 

are Langevin dynamics and Monte Carlo methods. The 

following section is devoted to these methods, especially to 

their relation which will lead to time-quantified Monte Carlo 

methods. 

3 NUMERICAL METHODS 

3.1 Langevin dynamics simulations 

The basic numerical approach for the description of thermally 

activated spin dynamics is the direct numerical integration 

of equation (7). Instead of solving the corresponding FP 

equation, one calculates trajectories in phase space following 

the underlying equation of motion. In order to obtain results 

in the sense of a thermodynamic average one has to calculate 

many of these trajectories starting with the same initial 

conditions, taking an average over these trajectories for the 

quantities of interest. This method is referred to as Langevin 

dynamics simulation (Lyberatos and Chantrell, 1993). 

The LLG equation with Langevin dynamics is a stochastic 

differential equation with multiplicative noise. For this kind 

of differential equation a problem arises which is called the 

Ito-Stratonovich dilemma (Greiner, Strittmatter and Hon­

erkamp, 1988). As a consequence, different time discretiza­

tion schemes may with decreasing time step converge to 

different results (see Wolf, 1998, for a discussion of the 

different discretization schemes from a physical point of 

view). As was pointed out by Garcfa-Palacios and Lazaro 

(1998) the multiplicative noise in the Langevin equation was 

treated in Brown's original work - and also in subsequent 

publications - by means of the Stratonovich interpretation. 

Hence, in order to obtain numerical results that are compa­

rable to these approaches via the FP equation one has to 

use adequate methods. Note, that the simplest method for 

the integration of first-order differential equations, the Euler 

method, converges to an Ito interpretation of the Langevin 

equation. The simplest appropriate discretization scheme 

leading to a Stratonovich interpretation is the Heun method 

(Greiner, Strittmatter and Honerkamp, 1988; Wolf, 1998; 

Garcfa-Palacios and Uizaro, 1998; Nowak, 2001) which is 

described in the following [1]. 

For simplicity, the Heun discretization scheme is intro­

duced here for a one-dimensional problem. We consider a 

first-order differential equation with multiplicative noise, 

i(t) = f(x(t), t) + g(x(t), t)~(t) (10) 
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where ~ (t) represents a noise with a distribution of moments 

(~(t») = 0 and (~(t)~(t'») = Do(t - t ' ). The time variable is 

discretized in intervals !1t so that tn = n!1t and Xn = x (tn). 

Then, owing to Heun's method equation (7) becomes 

Xn+l = Xn + ~(i(Xn' tn) + f(Xn+l, tn+l»)!1t (11) 

+ ~ (g(xn, tn) + g(Xn+l, tn+l) )~n 

This method is a predictor-corrector method where the pre­

dictor Xn+l is calculated from an Euler integration scheme, 

~ n are random numbers with a distribution characterized 

by the two first moments (~n) = 0 and (~n~m) = D!1ton.m, 

which can be achieved by use of random numbers with 

a Gaussian distribution, p(n ~ exp(-~2/2(), with width 

() = D!1t. The generalization of the scheme in the preceding 

text to equation (7) is straightforward. 

3.2 Monte Carlo methods 

Monte Carlo methods are well established in the context of 

equilibrium thermodynamics, where mainly Ising-type mod­

els have been investigated because of the broad variety of 

applications of this class of models in statistical physics 

(Stauffer, Hehl, Winkelmann and Zabolitzky, 1993; Binder 

and Heermann, 1997). However, in the context of mag­

netic materials the use of Ising models is restricted to the 

modeling of materials with a very large uniaxial anisotropy 

(Kirby, Shen, Hardy and Sellmyer, 1994; Lyberatos, Earl 

and Chantrell, 1996; Nowak, Heimel, Kleinefeld and Well er, 

1997), while more realistic models have to include finite 

anisotropies. 

Within a Monte Carlo approach trajectories in phase space 

are calculated following a master equation (Reif, 1965) for 

the time development of the probability distribution Ps (t) in 

phase space, 

(12) 

Here, s and Si denote different states of the system and the w 

are the transition rates from one state to another one which 

have to fulfill the condition (Reif, 1965) 

W S -4S' (E(S) - E(SI») 
-- =exp 
W S '-4S kBT 

(13) 
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The master equation describes exclusively the coupling of 

the system to the heat bath. Hence, only the irreversible part 

of the dynamics of the system is considered including the 

relaxation and the fluctuations, but not the energy conserving 

part of the equation of motion the precession. Instead, only 

a random-walk-like motion due to the coupling to the heat 

bath can appear. We will discuss the connection to Langevin 

dynamics later and continue with a general description of 

Monte Carlo algorithms for vector spin models, as far as 

they are different from algorithms for Ising models due to 

their continuum degrees of freedom. 

Even though for Ising systems (Swendsen and Wang, 

1987) as well as for Heisenberg systems (Wolff, 1989) cluster 

algorithms exist, which depending on the details of the 

problem - can equilibrate a system much faster, we restrict 

ourselves to the simple case of single-spin-flip dynamics 

since here, the connection to a realistic dynamical behavior 

of the system is more straightforward. For the Ising model 

there exists no equation of motion and the master equation in 

connection with a single-spin-flip dynamics govcrns the so­

called Glauber dynamics (Glauber, 1963), which is thought 

to describe a qualitatively realistic dynamic behavior. For 

a system of classical magnetic moments the situation is 

different due to the existence of an equation of motion the 

LLG equation. 

A single-spin-flip algorithm is performed in the following 

way: at the beginning one single spin from the lattice is 

chosen either randomly or in some systematic order and a 

trial step of this selected spin is made (possible choices for 

trial steps will be described in detail in the subsequent text). 

Then the change of the energy of the system is computed 

according to equation (1). Finally the trial step is accepted, 

for instance with the heat bath probability, 

Wo 
(14) 

WS-JoS' = (£(S')-£(S)) 
1 +exp knT 

which is one possible choice among others satisfying the 

condition in equation (13) for any arbitrary constant Wo. 

Scanning the lattice and performing the procedure explained 

in the preceding text once per spin (on average) is called 

one Monte Carlo step (MCS). It defines a quasitime scale of 

the simulation. The connection to real time will be discussed 

later on. 

The way the trial step is chosen is of importance for 

the validity and efficiency of the algorithm as well as for 

the physical interpretation of the dynamic behavior of the 

algorithm (Hinzke and Nowak, 1999). For an Ising system 

the trial step is naturally a spin flip. For a Heisenberg spin 

there are many choices. One possible trial step is a small 

deviation from the former state. For a spin this could be 

a random movement of the spin with uniform probability 

distribution within a given opening angle around the former 

spin direction. Here, each spin can only move by a limited 

step size and hence, in a model with a uniaxial anisotropy, 

it has to overcome the anisotropy energy barrier for a 

complete reversal. This might be a realistic choice for many 

model systems. But if one is, for instance, interested in 

the crossover from Heisenberg to Ising-like behavior with 

increasing anisotropy, one has to allow also for larger steps 

which are able to overcome a given anisotropy energy barrier. 

Otherwise the dynamics of the system would freeze and in 

a system with very large anisotropy (Ising limit) no spin flip 

would occur at all (Hinzke and Nowak, \999). 

Another possible trial step that circumvents this problem is 

a step with a uniform distribution in the entire phase space. 

Here, an arbitrary spin direction that does not depend on 

the initial direction of the spin is chosen at random. This 

step samples the whole phase space efficiently and a single 

spin is not forced to overcome the anisotropy energy barrier. 

Instead it is allowed to change from one direction to any other 

one instantaneously. Both of these trail steps are allowed 

choices in the sense that the corresponding algorithms lead to 

correct equilibrium properties since they fulfill two necessary 

conditions: they are ergodic and symmetric. 

Ergodicity requires that the whole phase space can be 

sampled by an algorithm. An example for an nonergodic 

algorithm is one that performs only Ising-like trial steps, 

s~ -+ -Sv in a Heisenberg model. Here, starting from some 

initial direction the spin can only reach two positions out 

of the whole phase space which would be a unit sphere for 

a Heisenberg spin. Nevertheless, one is allowed to perform 

such reflection steps as long as one uses also other trial steps 

that guarantee ergodicity. These ideas lead to combinational 

algorithms which - depending on the problem can be very 

efficient (Hucht, Moschel and Usadel, 1995; Hinzke and 

Nowak, 1999). 

The second condition that has to be fulfilled by any 

algorithm is a symmetry condition: for the probability to 

do a certain trial step it must be PI (s -+ Si) = Pt (.s' -+ s). 

Otherwise equation (13) is not fulfilled since the probabilities 

to perform certain trial steps contribute to the transition 

rates. The symmetry condition would for instance be violated 

in a Heisenberg system if one chooses new trial spin 

directions by simply generating three random numbers as 

Sx, Sy, and Sz coordinates within a cube and normalizing 

the resultant vector to unit length. Then before normalization 

the random vectors are homogeneously distributed within the 

cube and after the normalization they have some non uniform 

probability distribution on the unit sphere which is higher 

along the diagonal directions of the cube. Hence, trial steps 

from any other direction into the diagonal direction are 

more probable then vice versa and the algorithm yields 

wrong results. A description, how to choose unit vectors 



with random directions and a constant probability distribution 

correctly can be found in the book of Vesely (1993). 

3.3 Time-quantified Monte Carlo simulations 

In general, Monte Carlo methods do not allow for an 

interpretation of the results in terms of a realistic dynamics. 

Only recently, a time-quantified Monte Carlo method was 

introduced (Nowak, Chantrell and Kennedy, 2000; Smimov­

Rueda et al., 2000; Chubykalo et al., 2003a; Cheng, Jalil, 

Lee and Okabe, 2006) and it was shown that at least 

the dynamics of a high damping scenario can indeed be 

'simulated by a Monte Carlo simulation since here the 

exact knowledge of the precessive motion of the spins 

is not necessary. The main idea of time-quantified Monte 

Carlo methods is to compare the fluctuations that are 

established in the Monte Carlo simulation within one MCS 

with the fluctuations that are established within a given 

timescale associated with the linearized stochastic LLG 

equation (Ettelaie and Moore, 1984; Smimov-Rueda et aI., 

1999). 

Following the original work (Nowak, Chantrell and 

Kennedy, 2000), we start with a calculation of the magneti­

zation fluctuations in the Langevin equation. Close to a local 

energy minimum one can expand the energy of a system 

given that first-order terms vanish as 

1 
E ~ Eo+ 2" LAijSiSj (15) 

i,j 

where Si are now variables representing small deviations 

from equilibrium. Let us consider a single spin only with a 

uniaxial anisotropy (anisotropy constant dz, see equation (3)) 

and a field b = ±bzz, which is also aligned with the easy axis 

(a more general calculation can be found in Chubykalo et al., 

2003b). In this system, we find equilibrium along the z axis, 

leading to variables Sx and Sy describing small deviations 

from the eqUilibrium position S = ±i. The energy increase 

/:;.E associated with fluctuation in Sx and Sy is then simply 

(16) 

with Axx = Ayy = 2dz + bz. Rewriting the LLG equation in 

the linearized form without the thermal fluctuations, 

Sx = LxxSx + LxySy 

Sy LyxSx + LyySy 

(17) 
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we can identify the matrix elements 

Lxy = -Lyx 

As shown in Lyberatos, Berkov and Chantrell (1993) the cor­

relation function for the variables describing small deviations 

from equilibrium can be expressed in the form 

(18) 

Here, i and j denote the Cartesian components and Dirac's 

8 function is an approximation for exponentiaJIy decaying 

correlations on timescales t - t' that are larger than the 

timescale of the exponential decay T r' The covariance matrix 

Itu can be calculated from the system matrices Ai} and Lij 

as (Lyberatos, Berkov and Chantrell, 1993) 

For our problem this yields 

It yy (19) 

Itxy = Ityx = 0 

Integrating the fluctuating quantities SAt) and Sy(t) over a 

finite time interval /:;.t, equations (18) and (19) yield 

(20) 

representing the fluctuations of SAt) and Sy(t) respectively, 

averaged over a time interval /:;.t. 

For comparison, we now calculate the fluctuations (S;) 

which are established within one MCS of a Monte Carlo 

simulation (Nowak, Chantrell and Kennedy, 2000). We 

select an algorithm where the trial step of the Monte Carlo 

algorithm is a random deviation of the magnetic moment 

from its former direction up to a certain maximum opening 

angle. In order to achieve this efficiently one first constructs 

a random vector with constant probability distribution within 

a sphere of radius R by use of the rejection method (Vesely, 

1993). This random vector is then added to the initial moment 

and subsequently the resulting vector is again normalized. 

Note that the probability distribution following from this 

trial step is non uniform but isotropic. so that the symmetry 

condition mentioned in the previous subsection is guaranteed. 

For this algorithm the probability distribution for trial 

steps of size r = J S; + S~ is Pt 3J R2 - r2/ (27( R3) for 

o < r < R. The acceptance probability using a heat bath 
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algorithm is w(r) = I/O + exp(~E(r2)/ kBT». Assuming 

that the spin is close to its (local) equilibrium position, as 

before, ~E(r2) for small r can be taken from equation (16). 

In order to calculate the fluctuations within one MCS we 

have to integrate over that part of the phase space that can 

be reached within one MCS, 

1
2rr lR r2 

(S;) = drp r dr - w(r)pt(r) 
o 0 2 

R2 /,,(2dz + bz)R
4

) 
= - - v (21) 

10 kBT 

where the last line is an expansion for small R leading to the 

validity condition 

kBT 

R « (2dz + bz) 
(22) 

By equalizing the fluctuations within a time interval ~t of 

the LLG equation and one MCS we find the relation 

20kB Tay ~t 
R2 = (1 + ( 2)J.Ls 

(23) 

for the trial step width R (Nowak, Chantrell and Kennedy, 

2000). Equation (23) now relates one MCS, performed using 

an algorithm as explained before, with a real time interval of 

the Langevin equation. In this equation (ay /(1 + (2)J.Ls)~t 
is simply the reduced time of the LLG equation, rescaled 

in the high damping limit where only the second part 

of equation (7) is relevant. The more interesting result of 

equation (23) is the temperature dependence since it turns 

out that there is no trivial assignment of one MCS to a fixed 

time interval. Instead, the larger the temperature, the larger 

the trial steps of the Monte Carlo algorithm in order to allow 

for the appropriate fluctuations. 

In principle, equation (23) gives the possibility to choose 

the trial step width for a Monte Carlo simulation in such 

a way that one MCS corresponds to some microscopic 

time interval, but there are of course restrictions for pos­

sible values of the trial step width and also for the valid­

ity of the algorithm: R must be small enough so that the 

truncated expansion in equation (21) is a good approxi­

mation. On the other hand R should not be too small 

since otherwise the Monte Carlo algorithm needs too much 

computation time to sample the phase space. Therefore, 

either one chooses such a value for ~t so that R takes 

on reasonable values or one chooses a reasonable constant 

value for R and uses equation (23) to calculate ~t as the 

real time interval associated with one MCS. Furthermore, 

effects from spin precession are neglected so that in gen­

eral only the high damping limit with a purely diffusive 

spin motion can be simulated. Also, since the derivation 

in the preceding text started from a linearized equation 

of motion (equation (17» and since the energy expression 

(equation (15» is an expansion, equation (23) can only be 

valid close to equilibrium. 

For any numerical method, analytically solvable models 

are important as test tools for the evaluation of the numerical 

techniques. Originally, (Nowak, Chantrell and Kennedy, 

2000) the goal was a comparison of characteristic time scales 

for the thermally activated reversal obtained numerically 

with those following from an analytical treatment of isolated 

Stoner-Wohlfarth particles with a uniaxial anisotropy and 

a field at an oblique angle to the easy axis (Coffey et al., 

1998c). The results are shown in Figure 1. 

Here, an ensemble of isolated single-domain particles is 

considered where each particle is represented by a magnetic 

moment with energy 

E(S) = -dzS; - J.LsB-S (24) 

The material parameters are those for a 20-nm Co particle. 

Both of the simulations, Monte Carlo as well as Langevin 

dynamics, start with the magnetic moments in positive 

z direction. The magnetic field which is well below the 

Stoner-Wohlfarth limit for athermal reversal has a negative 

z component so that the magnetization will reverse after 

some time. The time that is needed for the z component 

of the magnetization to change its sign averaged over a 

large number of runs (N 1000) is the numerically obtained 

characteristic time r. During a simulation for temperatures 

which are low as compared to the energy barrier, the system 

is in the metastable, initial state for a very long time, 

while the time needed for the magnetization reversal itself is 
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Figure 1. Characteristic times versus inverse temperature. Com­

parison of the intermediate to high damping asymptote with results 

from Langevin dynamics and Monte Carlo simulations with time 

quantification. (Reprinted figure with pennission from Physical 

Review Letters, 84, 1, 163,2000. Copyright 2000 by the American 

Physical Society.) 



rather short. In this case the characteristic time T should be 

comparable to the escape time following from an analytical 

calculation via the FP equation. 

The time-quantified Monte Carlo simulations in Figure I 

were done with an algorithm using a trial step according 

to equation (23) with 6.t ~ 6 x 10- 12 s and ex l. The 

magnetic field is IBI 0.2 T with an angle of 27° to the 

easy axis. The results for T(T) are compared with results 

from Langevin dynamics simulations using the Heun method 

as described before and with analytical results obtained in 

the intermediate to high damping (IHD) limit (Coffey et aI., 

1998a,b,c). This asymptote has the general form of a thermal 

activation law, namely 

T = Toe"'ElkBT (25) 

The explicit expressions for TO and 6.E were derived in 

Coffey et al. (1 998a,b,c ). The validity condition for the IHD 

formula is ex 6. E / kB T » 1 which has been satisfied in the 

case presented here. 

From Figure I it is clear that the Langevin dynamics 

data agree very well with the analytical asymptote in the 

preceding text. For higher temperatures, kB T > 6. E, the 

asymptote is no longer appropriate. Here, the numerical 

data for T tend to zero for T -+ 00 as one expects. 

The Monte Carlo data deviate slightly but the agreement 

is remarkable - especially taking into account the simple 

form of equation (23) underlying this algorithm and also 

considering the fact that there is no adjustable parameter in 

all our simulations and formulae. 

Figure 2 shows how the time-quantified Monte Carlo 

methods converges in the high damping limit. The data 

were obtained for the same parameter values as before 

and 6.E / kBT = 3.3. The figure shows that for increasing 

Langevin I-----*--l 

Monte Carlo I--B---l 

1 e OB IHD asymptote 11 

Figure 2. Characteristic time versus damping constant: compari­

son of the intermediate to high damping asymptote with Langevin 

dynamics and Monte Carlo simulations. (Reprinted figure with per­

mission from Physical Review Letters, 84, 1, 163,2000. Copyright 

2000 by the American Physical Society.) 
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damping constant ex the Monte Carlo data converge to 

the IHD formula and to the data from Langevin dynamics 

simulation for large ex. 

Even though the Monte Carlo time step quantification by 

equation (23) was derived originally only for the simple 

system which we considered here (Nowak, Chantrell and 

Kennedy, 2000), it turned out to be successfully applicable 

to more complicated, interacting spin systems also (Hinzke 

and Nowak, 2000a,b; Chubykalo et aI., 2003a,b; Cheng, 

Jalil, Lee and Okabe, 2006). However, one should note 

that the method rests on a comparison with Langevin 

dynamics. Here, the coupling to the heat bath is added 

phenomenologically to the equation of motion leading to a 

damping constant ex, the microscopic evaluation of which is 

still missing. 

4 THERMALLY ACTIVATED 

MAGNETIZATION REVERSAL 

4.1 Introduction 

The understanding of thermally activated spin dynamics is 

a major challenge for the knowledge of magnetic systems 

and devices. The pioneering work of Brown (1963b) repre­

sents the basis for the understanding of thermally activated 

dynamic processes in isolated single-domain particles. The 

basic idea is that the energy barrier 6.E separating two 

(meta)stable magnetic states of a nanoparticle can be over­

come by thermal activation on a certain timescale which can 

be calculated within the framework of Langevin dynamics. 

In the limit of low temperatures the escape time T follows a 

thermal activation law (see equation (25»), where the prefac­

tor as well as the energy barrier depend on the mechanism 

of the reversal. As a solvable example, Brown considered 

an ensemble of isolated magnetic moments with a uniaxial 

anisotropy. Each single particle of the ensemble is described 

as one superspin of constant length. The superspin is thought 

to represent the magnetic moment of a whole particle since 

it was assumed that if the particle is sufficiently small it 

is always homogeneously magnetized and its microscopic, 

internal degrees of freedom can be neglected. After the orig­

inal work of Brown, extensive calculations were performed 

in order to calculate the energy barrier as well as the pref­

actor asymptotically for various model systems (Aharoni, 

1969; Braun, 1993; Coffey et al., 1998a; Garcfa-Palacios 

and Svedlindh, 2000; Chantrell, Walmsley, Gore and Maylin, 

2000). 

Experiments on isolated, magnetic particles have con­

firmed this approach. Wernsdorfer et al. measured the switch­

ing time of isolated nanometer-sized particles (Wernsdorfer 



866 Fundamentals of micromagnetism and discrete computational models 

et al., I 996b, I 997b ), and wires (Wernsdorfer et al., I 996a, 

1997a). For sufficiently small particles (Wernsdorfer et al., 

1997b) agreement was found with the theoretical predic­

tions of Brown (1963b). For larger particles (Wernsdorfer 

et al., 1996b) and wires (Wernsdorfer et al., 1996a, 1997a) 

activation volumes were found which were much smaller 

than the corresponding particle and wire volumes. Obviously, 

different reversal mechanisms can dominate the thermally 

activated switching behavior of nanoparticles depending on 

their geometry and size, such as coherent rotation, nucleation, 

and curling. 

These modes may appear in different limits of a cylindrical 

geometry. Coherent rotation and nucleation can be modeled 

in the one-dimensional limit by a simple spin chain a 

model which is very useful since it was treated analytically 

and asymptotic results for the energy barriers as well as 

for the escape rates are available (Braun, 1993; I 994a,b ). 

We will discuss this model in the following text. A three­

dimensional model for an extended nanowire is discussed in 

the last subsection in connection with curling. 

Let us start with a chain of magnetic moments of length 

L (number of spins) with periodical boundary conditions 

defined by the Hamiltonian 

1i = L [ JSi,Si+l - dz(Sf)2 + dASn2 
fLsBSr] 

i 

(26) 
This is a discretized version of the one-dimensional model 

for a magnetic nanowire considered by Braun (1993). For 

dz , dx > 0 the z axis is the easy axis and the x axis the 

hard axis of the system. These anisotropy terms may contain 

contributions from shape anisotropy as well as crystalline 

anisotropies (Braun, 1994a). In the interpretation as shape 

anisotropy, this single-ion anisotropy is assumed to imitate 

the influence of a dipolar interaction of strength w dz/li 

(Braun, 1993). Nevertheless, an exact numerical treatment 

of the dipolar interactions is possible (Hinzke and Nowak, 

2000b; Nowak, 2001; Nowak et al., 2005; Wieser, Usadel 

and Nowak, 2006). 

4.2 Coherent rotation 

In the case of small chain length the magnetic moments 

rotate coherently, minimizing the exchange energy while 

overcoming the energy barrier due to the anisotropy of the 

system. Owing to the hard-axis anisotropy the rotation is 

mainly in the yz plane. As long as all spins are mostly 

parallel, they can be described as one effective magnetic 

moment which behaves like the one-spin model described 

before. The corresponding energy barrier b.E is the same 

as that of a Stoner-Wohlfarth particle since the additional 

hard axis does not change the energy of the optimal path in 

phase space from one minimum to the other. The escape time 

was calculated from the FP equation in the large damping 

limit (Braun, 1994b). The results is a thermal activation law 

(equation (25» where the energy barrier is now proportional 

to the system size L, 

b.Ecr Ldz(l - h)2 (27) 

while the explicit form of the prefactor transformed into the 

units used here is 

2li(l + a 2
) 

'fcr = 
ayBc 

X~I-_~h~2--~~~~~~~~====~=7 

(28) 

We introduced the coercive field Bc = 2dz/ fLs and the 

reduced quantities h = fLsB/(2dz) and d dx/dz. The first 

term in equation (28) is the microscopic relaxation time 

of one spin in the field Bc (see Section 2.1), while the 

second term includes corrections following from the details 

of the model. The equation in the preceding text should 

hold for low temperatures kBT « b.Ecr and obviously for 

B < Bc since otherwise the energy barrier is zero, leading 

to a spontaneous reversal without thermal activation. Note, 

however, that recently deviations were found for increasing 

system size, suggesting that even for a coherent rotation the 

internal degrees of freedom lead to longitudinal fluctuations 

which are not contained in a single-spin description (Hinzke 

and Nowak, 20ooa; Nowak et al., 2005; Chubykalo, Nowak, 

Chantrell and Garanin, 2006). 

4.3 Soliton-antisoliton nucleation 

With increasing system size nucleation must become energet­

ically favorable since here the energy barrier is a constant, 

while it is proportional to the system size in the case of 

coherent rotation. For the spin chain under consideration, 

switching by soliton-antisoliton nucleation was proposed 

(Braun, 1994a) for sufficiently large system size. Here, the 

nucleation process initiates a pair of domain walls which 

splits the system into domains with opposite directions of 

magnetization parallel to the easy axis (for graphical rep­

resentations see Hinzke, Nowak and Usadel, 2000; Nowak, 

200 I). These two domain walls pass the system in the sub­

sequent reversal process. Owing to the hard-axis anisotropy 

the spin rotation is once again mainly in the yz plane. Since 

these two domain walls necessarily have opposite helicities 

within this easy plane they were called a soliton-antisoliton 

pair. 



The energy barrier ,0,.Enu which has to be overcome during 

this nucleation process is 

,0,.Enu 4J2Jdz(tanhR - hR) (29) 

with R arccosh( JI7h) (Braun, I 994a). For vanishing 

magnetic field this energy barrier has the form ,0,. Enu (h = 

0) 4.J21 dz which represents the well-known energy of 

two Bloch walls (Hubert and Schiifer, 1998). As usual, the 

corresponding escape time obeys a thermal activation law, 

where the prefactor has been calculated for various limits 

(Braun, I 994a). The prefactor obtained in the overdamped 

limit (equation (5.4) in Braun, 1994a) in our units is 

2n(l + ( 2 ) (nkBT)1/2(2J)I/4 

ay Bc 16L d;/4 IEo(R)1 tanh R3/2 sinh R 
(30) 

As in equation (28) the left part is the microscopic relaxation 

time of a spin in the coercive field Bc. The eigenvalue 

Eo(R) has been calculated numerically (Braun, 1994a). In 

the limit h -+ 1 it is I Eo( R) I ~ 3 R2. The 1/ L dependence of 

the prefactor reflects the size dependence of the probability 

of nucleation. The larger the system the more probable is 

the nucleation process and the smaller is the timescale of 

the relaxation. Furthermore, the prefactor has a remarkable 

dependence. 

We should note that all the results in the preceding text 

are for systems with periodic boundary conditions (or rings), 

which restricts the applicability to finite nanowires where 

nucleation processes may start at the ends of the sample. 

Therefore, the case of open boundaries was also considered, 

analytically (Braun, 1999, 2000) as well as numerically 

(Hinzke and Nowak, 2000b). Even though the prefactor of 

the thermal activation law could not be obtained up to now, 

it was shown (Braun, 1999) that the energy barrier is just 

halved in that case, due to the fact that in systems with open 

boundaries the nucleation can set in at only one end. Hence, 

solitons and antisolitons do not necessarily emerge pairwise. 

In the case of two soli tons (or two antisolitons) nucleating 

simultaneously at both ends, these cannot annihilate easily 

in the later stage of the reversal process due to their 

identical helicity. Instead a 360
0 

domain wall remains in the 

system. 

Let us now investigate the intermediate temperature range. 

Owing to the larger thermal fluctuations as compared to 

the sole soliton-antisoliton nucleation several nuclei may 

grow simultaneously, also depending on system size. Obvi­

ously, depending on the nucleation probability many nuclei 

may arise during the time period of the reversal process 

(for graphical representations see again Hinzke, Nowak and 

Usadel, 2000; Nowak, 2001). This mUltiple nucleation pro­

cess was investigated mainly in the context of Ising models 
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where it is called multidroplet nucleation (a review is given 

by Rikvold and Gorman, 1994). 

The characteristic time < mn for the multidroplet nucleation 

can be estimated with respect to the escape time for a single 

nucleation process with the aid of the classical nucleation 

theory (Becker and Doring, 1935). Here, the following 

scenario is assumed: in the first stage many nuclei of critical 

size arise within the same time interval. Later these nuclei 

expand with a certain domain wall velocity v and join each 

other. This leads to a change of magnetization 

lo
t (2vt')D 

6.M(t) -- dt' 
o <nu 

(31) 

after a time t in D dimensions. The characteristic time 

when half of the system (L D /2) is reversed is then given 

by (Rikvold and Gorman, 1994; Hinzke and Nowak, 2000a) 

6.Enu 
exp (D + l)k

B
T (32) 

The domain-wall velocity in a spin chain following the LLG 

equation for small fields is (Wieser, Nowak and Usadel, 

2004) 

yB 
v= (33) 

Hence for the one-dimensional system under consideration 

the characteristic time is given by 

<mn 
/aL<nu ,0,.Enu --exp--

yB 2kBT 
(34) 

This means that the (effective) energy barrier for the mul­

tidroplet nucleation is reduced by a factor 112, and the char­

acteristic time no longer depends on the system size since <~u 

for the soli ton -antisoliton nucleation has a 1/ L dependence 

(see equation (30»). 

All the different reversal mechanisms mentioned in the 

previous sections can occur within the same model sys­

tem the spin chain depending on the system size among 

other parameters. The crossover from coherent rotation to 

soliton-antisoliton nucleation was studied in Braun (2000) 

for a periodic system. Here, the value Le of the chain length 

below which only uniform solutions of the Euler-Lagrange 

equations of the problem exist (coherent rotation) was cal­

culated to be 

(35) 
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For vanishing magnetic field this crossover length scale is 

Le JT J21 /dz, a value that is clearly related to the Bloch 

wall width 8 = J I /2d (Hubert and Schafer, 1998), because 

of the fact that two domains walls have to fit into the 

system during the nucleation process. For a chain with open 

boundary conditions the crossover length scale is halved 

since here only one domain wall has to fit into the system 

(Braun, 2000). One can understand this result from a slightly 

different point of view also, namely by comparing the energy 

barrier of soliton-antisoliton nucleation (equation (29» with 

that of coherent rotation (equation (27». This results in 

a very similar condition for the crossover from coherent 

rotation to nucleation (Hinzke and Nowak, 2000a), which 

can also be generalized to higher dimensions (Hinzke and 

Nowak, 1998). 

For even larger system size, mUltiple nucleation becomes 

probable. Comparing the escape time for soliton-antisoliton 

nucleation with the characteristic time for multiple nucle­

ation, one gets for the intersection of these two times the 

crossover condition (Hinzke and Nowak, 2000a) 

yBTnuLsm 

et 

t:.Enu 
exp 2kBT 

(36) 

The corresponding time Lsm/v is the time that a domain 

wall needs to cross the system. In other words, as long as 

the time needed for the nucleation event itself is large as 

compared to the time needed for the subsequent reversal 

by domain-wall motion, one single nucleus determines the 

characteristic time. In the opposite case many nuclei will 

appear during the time needed for the first soliton-antisoliton 

pair to cross the system, resulting in multi droplet nucleation. 

These considerations are comparable to calculations in Ising 

models (Rikvold, Tomita, Miyashita and Sides, 1994). 

Figure 3 summarizes the system size dependence of the 

reduced characteristic time (Hinzke and Nowak, 2000a). 

Results from Monte Carlo simulations are shown as well as 

the appropriate asymptotes described in the preceding text 

for two different temperatures. For small system sizes the 

spins rotate coherently. Here the energy barrier (equation 

(27» is proportional to the system size leading to an expo­

nential increase of T with system size. Following equation 

(28) the prefactor of the thermal activation law should not 

depend on L but, as already mentioned in the preceding 

text, numerically one finds slight deviations from the asymp­

totic expressions due to longitudinal magnetization fluctua­

tions (Nowak et al., 2005; Chubykalo, Nowak, Chantrell and 

Garanin, 2006). In the region of soliton-antisoliton nucle­

ation the energy barrier does not depend on the system 

size but the prefactor varies as 1/ L (see equations (29) and 

(30». Interestingly, this leads to a decrease of the charac­

teristic time with increasing system size. Therefore, there 
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Figure 3. Reduced characteristic time versus system size for 

kBT = 0.024J (triangles) and kBT 0.016J (circles). h = 0.75. 

Solid lines are piecewise the appropriate asymptotes and the data 

are from Monte Carlo simulations. (Reprinted from Phys. Rev. 8., 

Vo!. 61, 6734, 2000. Copyright 2000 by the American Physical 

Society.) 

is a maximal characteristic time the maximum of the sta­

bility of the particle - close to that system size where the 

crossover from coherent rotation to nucleation occurs. This 

decrease ends where multidroplet nucleation sets in, follow­

ing equation (36). For still larger systems the characteristic 

time has a constant value which is given by equation (34). 

Qualitatively the same behavior can be found in the par­

ticle size dependence of the dynamic coercivity which is 

the coercive field one observes during hysteresis on a given 

timescale T: solving the equation describing the thermal acti­

vation in the three regimes explained in the preceding text 

for heLl at constant T one finds an increase of the dynamic 

coercivity in the coherent rotation regime, a decrease in the 

nucleation regime, and at the end a constant value for multi­

ple nucleation. These findings are qualitatively in agreement 

with measurements of the size dependence for the dynamic 

coercivity of barium ferrite recording particles (Chang, Zhu 

and Judy, 1993). 

4.4 Curling 

In the previous subsections we considered a model which 

even though it is one-dimensional shows properties that are 

far from being trivial since different switching mechanisms 

can occur. Many of the findings obtained from this model 

are relevant for real magnetic nanowires, as long as those are 

thin enough to be etfectively one-dimensional. Nevertheless, 

for a realistic description of magnetic nanoparticles one 

needs three-dimensional models and one has to consider the 

dipole-dipole interaction. In the following we will discuss 

the degree to which the physics of the switching process 

changes when one considers a three-dimensional model 



including dipole-dipole interaction. Only few numerical 

results exist so far, some of them we discuss in the following. 

Considering the mathematical form of the dipole-dipole 

interaction in equation (5) one notes that dipoles tend to 

align, with that trying to build up closed loops or vortices. 

On the other hand, a loop has an enhanced exchange energy. 

Therefore to calculate the spin structure of an extended 

magnetic system is a complicated optimization problem. 

Even a sufficiently small magnetic nanostructure which, in 

equilibrium, is in a single-domain state, could reverse its 

magnetization by more complicated modes than coherent 

rotation or nucleation. A characteristic length scale below 

which it is energetically unfavorable for the system to break: 

the long-range order and split into domains is the so-called 

exchange length Ox (Hubert and Schafer, 1998). Like the 

Bloch wall width ° = J J /2d mentioned earlier, it is a 

characteristic length scale for a given material. For a spin 

model it can be derived in the following way: a twist of the 

direction of the spins by an angle of n: over a length scale I 

(number of spins) costs an exchange energy of 

I 

!:1Ex -J L(l Si,SI--'-I) 

i=! 

(37) 

assuming constant changes of the angle () from one spin to 

the next one (which can also be shown to be the wall profile 

with the minimum energy by a solution of the corresponding 

Euler-Lagrange equations). The dipolar field energy of 

a chain of parallel-oriented dipoles can be expressed via 

Riemann' s ~ function using 

00 I 
{(3) = L ~ 1.202 (38) 

;=1 

Hence, the gain of dipolar energy of a chain of I spins can 

roughly be estimated to be at most 3wl{(3), where w = 

11; llo/4n:a 3 is the strength of the dipole-dipole coupling (see 

equation (5) and also (Hucht, Moschel and Usadel, 1995) for 

a similar calculation in two dimensions). A comparison of the 

energies yields the exchange length (measured as number of 

atoms) 

(39) 

Note that in a continuum theory the dipolar energy is esti­

mated from formulae for the magnetostatic energy of ellip­

soids (Hubert and Schafer, 1998). The results deviate slightly 
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since the factor 3{ (3) is replaced by n:. We prefer the expres­

sion in the preceding text derived directly for a spin model. 

Let us now consider a nanowire, that is either a cylindrical 

system or an extremely elongated ellipsoid. As long as 

the thickness of the particle is smaller than the exchange 

length, the magnetization will be homogeneous in the planes 

perpendicular to the long axis so that the system behaves 

effectively one-dimensionally (Braun, 1999). For thicknesses 

larger than the exchange length, reversal modes may occur 

where the magnetization is nonuniform in the perpendicular 

planes, for example curling (Aharoni, 1996) (for graphical 

representations see Nowak:, 2001). 

The existence of the crossover from nucleation to curl­

ing was investigated by simulations of cylindrical systems 

(Hinzke and Nowak, 2000b; Nowak:, 2001). Here, for the 

first time fast Fourier transformation (FFT) methods for the 

calculation of the dipolar fields were combined with Monte 

Carlo simulations with quantified time step. These methods 

allowed for a statistical investigation of particle sizes of up 

to 32768 spins in three dimensions. A systematic numeri­

cal determination of the corresponding energy barriers and 

characteristic times is nevertheless still missing. 

5 SIMULATION OF 

ANTIFERROMAGNETS: 

EXCHANGE BIAS 

For compound materials consisting of an FM in contact with 

an AFM a shift of the hysteresis loop along the magnetic 

field axis can occur, which is called exchange bias (EB). 

Often, this shift is observed after cooling the entire system 

in an external magnetic field below the Nee! temperature 

TN of the AFM. For reviews on EB the reader is referred 

to the articles by Nogues and Schuller (1999) and Stamps 

(2000). Although EB has been well known since many years 

(Meiklejohn and Bean, 1956, 1957) its microscopic origin is 

still discussed controversially. 

A detailed understanding of EB can only be achieved 

by an understanding of the antiferromagnetic spin structure 

so that classical spin models are the common starting 

point for microscopic models of EB. In an early approach 

by Malozemoff (1987, 1988a,b), EB is attributed to the 

formation of domain walls in the AFM, perpendicular to the 

FM! AFM interface due to interface roughness. These domain 

walls are supposed to occur during cooling in the presence 

of the magnetized FM and to carry a small net magnetization 

at the FM!AFM interface (see Figure 4a). This interface 

magnetization is furthermore supposed to be stable during 

the reversal of the FM, consequently shifting the hysteresis 

loop. However, the formation of domain walls in the AFM 
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Figure 4. (a) Sketch of the model after Malozemoff (1987, 

1988a,b) which shows the FM on top of the AFM in a domain 

configuration. (b) Sketch of the model Mauri, Siegmann, Bagus 

and Kay (1987). During reversal of the FM a spring is wound up 

in the AFM. (Reprinted from Journal oJ Magnetism and Magnetic 

Materials, Vol 240, 2002, Pages 243-247. Copyright 2002, with 

permission from Elsevier.) 

only due to interface roughness is energetically unfavorable 

and its occurrence and stability have never been proved. 

Alternative approaches have been developed. In a model 

introduced by Mauri, Siegmann, Bagus and Kay (1987) EB is 

obtained through a mechanism in which a domain-wall forms 

in the AFM parallel to the interface while the magnetization 

of the FM rotates (see Figure 4b). In contrast to experimen­

tal findings this mechanism works only for uncompensated 

interfaces where the interface layer of the AFM is such that 

is carries a net magnetization. Furthermore the interface is 

assumed to be perfectly flat since otherwise it would be effec­

tively compensated by roughness. An extension by Koon 

(1998) for compensated interfaces where the model of Mauri 

was combined with a spin-flop coupling was later on proved 

to show no EB (Schulthess and Butler, 1998, 1999). To obtain 

EB Schulthess and Butler had to assume uncompensated 

AFM spins at the interface. However, their occurrence and 

stability during a magnetic hysteresis loop was not explained. 

In a recent experiment Miltenyi et al. (2000) showed that 

it is possible to strongly influence EB in Co/CoO bilayers 

by diluting the antiferromagnetic CoO layer, that is by 

inserting nonmagnetic substitutions (Co1.xMgxO) or defects 

(Co1-yO) not at the FM!AFM interface but rather throughout 

the volume part of the AFM. In the same letter in was 

shown that a corresponding theoretical model, the domain­

state (DS) model, investigated by Monte Carlo simulations 

shows a behavior very similar to the experimental results. It 

was argued that EB has its origin in a DS in the AFM which 

triggers the spin arrangement and the FM! AFM exchange 

interaction at the interface. Later it was shown that a variety 

of experimental facts associated with EB can be explained 

within this DS model (Nowak, Misra and Usadel, 2001, 2002; 

Nowak et al., 2002b; Keller et aI., 2002; Misra, Nowak and 

Usadel, 2003, 2004; Beckmann, Nowak and Usadel, 2003, 

2006; Scholten, Usadel and Nowak, 2005; Spray and Nowak, 

2006). The importance of defects for the EB effect was also 

confirmed by experiments on FexZnl-xF2/CO bilayers (Shi, 

Lederman and Fullerton, 2002) and by experiments (Mewes 

et al., 2000; Mougin et al., 2001) where it was shown that 

it is possible to modify EB by means of irradiating an 

FeNilFeMn system by He ions in presence of a magnetic 

field. Depending on the dose of the irradiation and the 

magnetic field present at the time of irradiation, it was 

possible to manipulate both the magnitude and even the 

direction of the EB field. Further support for the relevance 

of domains in EB systems is given by a direct spectroscopic 

observation of AFM domains (Nolting et al., 2000; Ohldag 

et al., 2001). In the following we focus on the DS model. 

5.1 Domain-state model 

The DS model for EB (Miltenyi et al., 2000) consists of tFM 

monolayers of FM and tAFM monolayers of diluted AFM. 

The FM is exchange coupled to the topmost layer of the 

AFM. The geometry of the model is sketched in Figure 5. 

The system is described by a classical Heisenberg model 

with nearest-neighbor exchange on a simple cubic lattice 

with exchange constants JFM and J AFM for the FM and 

the AFM respectively, while JINT stands for the exchange 

constant between FM and AFM. For simplicity we assume 

that the values of the magnetic moments of FM and AFM 

are identical (included in the magnetic field energy B). The 

Hamiltonian of the system is then 

1-l -JFMLSi,Sj L(dzSfz+dxSfx+Si·B) 

(i.i) 

-JAFM" E'E '(T-.(T - "E' (k (T2 + (T.B) L.-; l J I J L.,.; 1 Z lZ l 

(i.i) 

-iINT LEjSi'(Tj (40) 

(i.i) 

where Si denote normalized spins at sites of the FM layer 

and (T i denote normalized spins at sites of the AFM. 

x 

/-~~~--~~~~--~~--~----~z 

y 

.'igure 5. Sketch of the DS model with one FM layer and three 

diluted AFM layers. The dots mark defects. The easy axis of both 

FM and AFM is the z axis. 



The first line of the Hamiltonian describes the energy 

of the FM with the z axis as its ea."y axis (anisotropy 

constant dz > 0). The dipolar interaction is approximated 

in the model by an additional anisotropy term (anisotropy 

constant dx -0.1 lFM in the present case) which includes 

the shape anisotropy, leading to a magnetization whieh is 

preferentially in the y-z plane. The second line is the 

contribution from the AFM also having its easy axis along 

z direction. The AFM is diluted, that is a fraction p of sites 

is left without a magnetic moment (Ei 0) while the other 

sites carry a moment (E i 1). The last term describes the 

interaction of the FM with the interface AFM monolayer. 

Equation (40) suggests a simple ground state argument for 

the strength of the bias field. Assuming that all spins in the 

FM remain parallel during field reversal and that some net 

magnetization of the interface layer of the AFM remains 

constant during the reversal of the FM a simple calculation 

gives the usual estimate for the bias field, 

(41) 

where m INT is the stable part of the interface magnetization 

of the AFM (per spin) which is responsible for the EB. For an 

ideal uncompensated and totally stable interface one would 

expect mh'lT = 1. As is well known, this estimate leads to 

a much too high bias field, while for an ideal compensated 

interface, on the other hand, one would expect miNT = 0 

and, hence, BEB = O. Experimentally, however, often there 

is on the one hand no big difference between compensated 

and uncompensated interfaces and on the other hand, it is 

found that BEB is much smaller than lINT/tpM, rather of the 

order of a few percent of it. The solution of this puzzle is 

that mINT is neither constant during field reversal nor is it 

a simple known quantity (Keller et ai., 2002; Nowak et al., 

2002b) and we discuss this quantity in the following. 

5.2 Results from Monte Carlo simulation 

Apart from the mean-field work by Scholtcn, Usadel and 

Nowak (2005) mainly Monte Carlo methods were used to 

investigate the DS model. Some of them focused on the Ising 

limit for the AFM (Nowak, Misra and Usadel, 2001; Nowak 

et aI., 2002b; Beckmann, Nowak and Usadel, 2003, 2006; 

Spray and Nowak, 2006) while others used the full Heisen­

berg Hamiltonian of the previous subsection (Nowak, Misra 

and Usadel, 2002; Misra, Nowak and Usadel, 2003). In the 

latter case a heat bath algorithm with single-spin-flip dynam­

ics was used where the trial step of the spin update consisted 

of two steps: firstly a small variation within a cone around 

the former spin direction. followed, secondly, by a total spin 

flip. This twofold spin update is ergodic and symmetric and 

can take care of a broad range of anisotropies, from very 
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soft spins up to the high anisotropy (Ising) limit. To observe 

the domain structure of the AFM one has to guarantee that 

typical length scales of the domain structure fit into the sys­

tem and typical system sizes were a lateral extension of 

128 x 128 and a thickness of tFM 1 and tAFtvl ranging from 

3 to 9. Periodical boundary conditions were used within the 

film plane and open boundary conditions perpendicular to it. 

The main quantities monitored were the thermal averages 

of the z component of the magnetic moment for each 

individual monolayer normalized to the magnetic moment 

of the saturated monolayer. In simulations the system is first 

cooled from above to below the ordering temperature of the 

AFM. During cooling the FM is initially magnetized along 

the easy z axis resulting in a nearly constant exchange field 

for the AFM monolayer at the interface. Also. the system 

is cooled in the presence of an external magnetic field, the 

cooling field. In addition to the exchange field from the 

ordered FM this field acts on the AFM also. When the desired 

final temperature is reached, a magnetic field along the easy 

axis is applied and reduced in small steps down to a certain 

minimum value and afterward raised again up to the initial 

value. This corresponds to one cycle of the hysteresis loop. 

A hysteresis loop obtained as described in the preceding text 

is depicted in Figure 6. Results for the magnetization of the 
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Figure 6. Simulated hysteresis loops of the DS model as explained 

in the text. Dilution p = 0.4, kB T = O.IJFM, positive interface 

coupling, JINT IJAFMI. AFM an isotropy k, iFM/2. The cooling 

field was Bc = 0.25J1NT' The magnetic moment of the FM (a) 

and the interface monolayer of the AFM (b) normalized to its 

saturation value is shown. (Reprinted from Journal of Magnetism 

and Magnetic Materials, Vo! 240, 2002, Pages 243-247. Copyright 

2002, with permission from Elsevier.) 
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FM (a) as well as that of the AFM interface monolayer (b) 

are shown. Exchange biasing is clearly observed. 

An analysis of the magnetization curve of the interface 

layer gives an interesting insight into the nature of EB. 

After the field cooling procedure the AFM interface carries 

a magnetization. A part of this AFM interface magnetization 

is stable during hysteresis and leads to the fact that the 

magnetization curve of the interface layer of the AFM 

is shifted upward. This irreversible part of the interface 

magnetization of the AFM acts as an additional effective 

field on the FM, resulting in EB. Note that the interface 

magnetization of the AFM also displays hysteresis as a result 

of the exchange coupling to the FM. This means that the 

whole interface magnetization of the AFM consists of a 

reversible part leading to an enhanced coercivity and an 

irreversible part leading to EB. 

In experiments, usually the magnetization of the whole 

FM! AFM bilayer is measured. The corresponding sample 

magnetization loop might not only be shifted horizontally 

but also vertically. The vertical shift contains contributions 

from the volume part of the AFM as well as from its 

interface. The volume magnetization of the AFM is induced 

by the cooling field and hence not shifted when the cooling 

field is zero and shifted upward when it is finite. The 

interface contribution depends on the sign of the interface 

coupling and may be positive, as in our calculation or 

even negative for negative interface coupling (Nogues, 

(a) 
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Leighton and Schuller, 2000; Keller et al., 2002; Nowak 

et al., 2002b). 

With the following two sketches we wish to illustrate on a 

more microscopic basis where the interface magnetization of 

the AFM comes from, including its partitioning in reversible 

and irreversible parts. Figure 7(a) shows spin configurations 

in a small portion of the interface monolayer of the AFM 

after field cooling. The simulated system size is 64 x 64 x 10 

with only one FM monolayer. For simplicity, this simulation 

was performed in the Ising limit for the AFM (kz ~ (0). 

The dilution n of the AFM is 50%, nevertheless the spins 

are much more connected than it appears from the sketch via 

the third dimension. 

Obviously, the AFM is in a DS, where a domain is 

defined as a region of undisturbed antiferromagnetic order. 

The reason for the domain formation and, consequently, for 

the lack of long-range order is the interface magnetization 

which couples to the exchange field coming from the FM 

and the external field (both pointing up) lowering the energy 

of the system. The interface magnetization follows from 

two contributions. Examples for both are indicated via the 

circles. One contribution comes from parallel spin pairs in 

the domain walls (domain-wall magnetization), all pointing 

up in our example (Figure 7a), that is, into the direction 

of the exchange field of the FM and the external field. 

A second contribution comes from an imbalance of the 

number of defects of the two antiferromagnetic sublattices 
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Figure 7. Snapshots of spin configurations in a small portion of the interface monolayer of the AFM after field cooling with the external 

field and the FM magnetization pointing upward (a) and after reversal of the FM (b). The interface coupling is assumed to be positive. 

The gray shading distinguishes different AFM domains. The circles mark sources of magnetization, wall magnetization .as well as volume 

magnetization. 



(volume magnetization). The imbalance of the number of 

defects of the two antiferromagnetic sublattices also leads 

to a net magnetization within a domain which couples to the 

exchange field of the FM and the external field. The reason 

for the imbalance is that the domain structure is not random. 

Rather, it is an optimized structure arising during the initial 

cooling procedure with as much magnetization as possible 

coupling to the exchange field of the FM and the external 

field, following the energy minimization principle. 

However, an AFM interface magnetization alone cannot 

lead to EB. Only the irreversible part of it (during hysteresis) 

may lead to ER. Figure 7(b) shows, for comparison, spin 

configurations in the same portion of the interface monolayer 

of the AFM after reversal of the FM. Clearly, the major 

part of the domain structure did not change during reversal 

of the FM. However, there are rearrangements on smaller 

length scales, leading mainly to the fact that the domain­

wall magnetization changes its sign. In Figure 7(b) all of the 

spin pairs within domain walls are pointing down following 

the reversed FM and the external field. 

However, the volume magnetization coming from the 

defects remains frozen. The stability of the domain structure 

stems from the fact that the domain walls are pinned at 

defects sites as well as between pairs of spins which are 

aligned with the field. Hence, during a movement of the 

domain-wall energy barriers may have to be overcome by 

thermal activation. This explains why a large domain in 

general will stay in a metastable state on exponentially long 

timescales, while rearrangements on a shorter length scale 

are possible, of course depending on the temperature and the 

material parameters of the AFM. 

Many of the essential properties of diluted AFMs, the 

occurrence of DSs, metastability, remnant magnetization, and 

slow relaxation, among others, have been investigated before, 

even though not in the context of EB (for reviews on diluted 

AFMs see Kleemann, 1993; Belanger, 1998, for a detailed 

discussion of the connection between diluted AFMs and EB 

systems see Nowak et aI., 2002b). 

Important features of EB systems found experimentally 

(Keller et al., 2002) have their counterpart in the simulations 

(Nowak et al., 2002b), such as the order of magnitude of EB 

fields, the shape of hysteresis curves, the dilution dependence 

of EB, its temperature dependence, the training effect, and the 

occurrence of positive EB. Other properties of EB systems, 

which were successfully investigated within the framework 

of the DS model are the dependence of EB on thickness of the 

AFM (Nowak, Misra and Usadel, 2001; Ali et al., 2003), the 

dependence on the anisotropy of the AFM in Nowak, Misra 

and Usadel (2002), the influence of ion irradiation (Misra, 

Nowak and Usadel, 2003) asymmetric reversal modes (Beck­

mann, Nowak and Usadel, 2003), properties of the AFM 

domain structures (Misra, Nowak and Usadel, 2004), the 
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enhanced coercivity (Scholten, Usadel and Nowak, 2005), 

the cooling field dependence (Beckmann, Nowak and UsadeJ, 

2003), and the influence of interface roughness (Spray and 

Nowak, 2006). However, finally one should note that most of 

the AFMs used in EB systems have a polycrystalline struc­

ture (Stiles and McMichael, 1999; Suess et al., 2003), which 

so far was not taken into account by the DS model. Work 

following these lines is still missing and would certainly con­

tribute to the further understanding of ER. 

6 CONCLUSIONS AND OUTLOOK 

Within the framework of classical spin models it is possible 

to investigate magnetic properties of a variety of different 

materials, as for example, ferri-, ferro-, or antiferromag­

nets, and even heterostructures composed of several different 

materials. Simulation techniques for the investigation of ther­

mal equilibrium properties exist and - to some extent - also 

for nonequilibrium situations. 

However, classical spin models neglect quantum effects 

and, furthennore, one expects certain limits for the validity 

of the stochastic LLG equation regarding its short-time 

spin dynamics as well as the form of the damping which 

still suffers from a lack of microscopic understanding. A 

mathematical formulation of damping (Smith and Arnett, 

2001; Safonov and Bertram, 2002; Rebei and Parker, 2003) 

as well as a systematic construction and parameterization 

of classical spin model Hamiltonians (Mryasov, Nowak, 

Guslienko and Chantrell, 2005) for certain given materials 

on the basis of first-principles calculation remain a challenge 

for current research. 

NOTE 

[1] The fact that the noise is multiplicative in the LLG 

equation has been questioned, since the parameter space 

is the unit sphere, so that the relevant random-field term 

(giving rise to a torque) and the magnetization derivative 

are restricted to the tangent plane. The use of a Heun 

scheme might thus not be mandatory. 
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