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Stückelberg interferometry is a phenomenon that has been well established for quantum-mechanical two-level

systems. Here, we present classical two-mode interference of a nanomechanical two-mode system, realizing a

classical analog of Stückelberg interferometry. Our experiment relies on the coherent energy exchange between

two strongly coupled, high-quality factor nanomechanical resonator modes. Furthermore, we discuss an exact

theoretical solution for the double-passage Stückelberg problem by expanding the established finite-time Landau-

Zener single-passage solution. For the parameter regime explored in the experiment, we find that the Stückelberg

return probability in the classical version of the problem formally coincides with the quantum case, which reveals

the analogy of the return probabilities in the quantum-mechanical and the classical version of the problem. This

result qualifies classical two-mode systems at large to simulate quantum-mechanical interferometry.

DOI: 10.1103/PhysRevB.94.245406

I. INTRODUCTION

In 1932, Stückelberg [1] investigated the dynamics of

a quantum two-level system undergoing a double passage

through an avoided crossing. For a given energy splitting, an

interference pattern arises that depends on the transit time and

the rate at which the energy of the system is changed. This

discovery led to the advent of Stückelberg interferometry,

which allows for characterizing the parameters of a two-level

system or for achieving quantum control over the system [2].

Stückelberg interferometry has been studied intensively in a

variety of quantum systems, e.g., Rydberg atoms [3], ultracold

atoms and molecules [4], dopants [5], nanomagnets [6], quan-

tum dots [7–10], and superconducting qubits [11–15], as well

as theoretically in a semiclassical optomechanical approach

[16]. Here, we study experimentally a classical analog of

Stückelberg interferometry, i.e., the coherent energy exchange

of two strongly coupled classical high-Q nanomechanical

resonator modes. We employ the analytical solution [17] of the

Landau-Zener problem describing the single passage through

the avoided crossing [1,18–20] to analyze the Stückelberg

problem, demonstrating that the classical coherent exchange

of energy follows the same dynamics as the coherent tunneling

of a quantum-mechanical two-level system.

The past few years have seen the advent of highly versatile

nanomechanical systems based on strongly coupled, high-

quality factor modes [21–23]. The strong coupling generates

a pronounced avoided crossing of the classical mechanical

modes realizing a nanomechanical two-mode system that can

be employed as a testbed for the dynamics at energy level

crossings [21–24].

In the case of a quantum two-level system, e.g., spin-1/2, a

single passage through the avoided crossing results in Landau-

Zener dynamics originating from the tunneling of a quantum-

mechanical excitation between two quantum states [18]. In

the classical case, the exchange of excitation energy between
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two strongly coupled mechanical modes represents a well-

established analogy to this process [25,26].

During a double passage through the avoided crossing

within the coherence time of the system, phase is accumu-

lated, leading to self-interference. This interference results in

oscillations of the return probability, in a quantum-mechanical

context well-known as Stückelberg oscillations [1], which have

previously been studied in many quantum systems [7–9,15,27].

In the classical case, the return probability is analogous to

the probability that the excitation, namely oscillation energy,

returns coherently to the same mechanical mode.

II. NANOMECHANICAL TWO-MODE SYSTEM

We explore experimentally a purely classical mechanical

two-mode system, consisting of two orthogonally polarized

fundamental flexural modes of a nanomechanical resonator

[Fig. 1(a)]. The flexural modes belong to the in-plane and

out-of-plane vibration of a 50-μm-long, 270-nm-wide, and

100-nm-thick doubly clamped, high-stress silicon nitride (SiN)

string resonator. Dielectric drive and control via electric

gradient fields [28] as well as the microwave cavity en-

hanced heterodyne dielectric detection scheme [22,28,29]

are provided via two adjacent gold electrodes, as detailed

in Appendix A. Applying a dc voltage to the electrodes

induces an electric polarization in the silicon nitride string,

which, in turn, couples to the electric field gradient, resulting

in a quadratic resonance frequency shift with the applied

voltage [28]. The electric field gradients along the in- and

out-of-plane direction have opposing signs, and hence they

have an inverse tuning behavior. Whereas the out-of-plane

oscillation shifts to higher mechanical resonant frequencies,

the in-plane oscillation decreases in frequency with the applied

dc voltage [28]. Hence, the inherent frequency offset of in-

plane and out-of-plane oscillation, induced by the rectangular

cross section of the string, can be compensated. Furthermore,

the applied inhomogeneous electric field induces a strong

coupling between the two modes [24]. Near resonance, they

hybridize into normal modes [22], diagonally polarized along
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FIG. 1. Nanomechanical resonator and measurement scheme.

(a) False color scanning electron micrograph of the 50-μm-long,

270-nm-wide, and 100-nm-thick silicon nitride string (green) flanked

by two adjacent gold electrodes in the oblique view. Arrows indicate

the flexural mode polarizations out-of-plane (Out) and in-plane (In).

The normalized amplitude of the respective mode is denoted c1(t)

for out-of-plane polarization and c2(t) for in-plane polarization,

as explained in the text. (b) Avoided mode crossing of sample A

exhibiting a frequency splitting of �/2π = 22.6 kHz at the avoided

crossing voltage Ua = Ui + 1.47 V = 9.37 V. The lower (out-of-

plane) mode is excited at frequency ω1(Ui)/2π = 7.560 MHz defined

by the initialization voltage Ui. An additional sweep voltage applies

a triangular voltage ramp rising to a maximum of Up and back to

the readout voltage Uf = Ui + 0.2 V = 8.1 V, thus transgressing the

avoided crossing twice. The sweep voltage also decouples the mode

from the fixed-frequency drive, consequently inducing an exponential

decay of the amplitude. (c) Time evolution of the sweep voltage

beginning at t = 0, increasing to Up and returning to Uf after interval

ϑ . The mechanical signal power (green dashed line) is measured

after a delay ε, and a fit (black dotted line) is used to extract its

magnitude at time t = ϑ . The measured return signal is normalized

to the mechanical signal power at t = 0.

±45◦. A pronounced avoided crossing with level splitting

�/2π reflects the strong mutual coupling of the flexural

mechanical modes as depicted in Fig. 1(b).

To study Stückelberg interferometry, we perform a double

passage through the avoided crossing using a fast triangular

voltage ramp. We initialize the system at voltage Ui in the lower

branch of the avoided crossing via a resonant sinusoidal drive

tone at the resonance frequency ω1(Ui)/2π of the out-of-plane

oscillation [cf. Fig. 1(b)]. As illustrated in Fig. 1(c), at time

t = 0, a fast triangular voltage ramp with voltage sweep rate β

up to the peak voltage Up, and back to the readout voltage Uf ,

is applied to tune the system through the avoided crossing.

Note that the ramp detunes the system from the resonant

drive, and the mechanical energy starts to decay exponentially.

At Uf , we measure the exponential decay of the mechanical

oscillation in the lower branch after time t = ϑ + ε, where

ϑ is the duration of the ramp, i.e., the propagation time, and

ε serves as a temporal offset to avoid transient effects. The

signal is extrapolated and evaluated at time ϑ by an exponential

fit and normalized to the signal intensity at the initialization

point (t = 0), consequently yielding a normalized squared

return amplitude. The return signal has to be measured

at the readout voltage Uf at ω1(Uf)/2π since the fixed rf

drive tone at ω1(Ui)/2π cannot be turned off during the

measurement. The presented voltage sequence is analogous

to the one employed in Ref. [27], and it differs from the

frequently performed periodic driving scheme in Stückelberg

interferometry experiments [2].

III. FINITE-TIME STÜCKELBERG THEORY

We follow the work of Novotny [30] to derive the classical

flow (Hamiltonian flow [31]) describing the dynamics of the

system in the vicinity of the avoided crossing. We start with

Newton’s equation of motion for the displacement,

mü1(t) = −k1u1(t) − κ[u1(t) − u2(t)],

mü2(t) = −k2u2(t) + κ[u1(t) − u2(t)],
(1)

with uj (t) (j = 1,2) describing, respectively, the out-of-plane

(j = 1) and in-plane (j = 2) displacement of the center of

mass of the oscillator, kj is the spring constant of mode j ,

κ is the coupling constant between the two modes, and m

is the effective mass of the oscillator. We look for solutions

of the form uj (t) = cj (t) exp(iω̃1t), with cj (t) a normalized

amplitude, i.e., |c1(t)|2 + |c2(t)|2 = 1, and we have defined

ω̃j =
√

(kj + κ)/m as the dressed resonance frequency of

mode j in units of 2π . In the experimentally relevant limit

where κ/k1 ≪ 1, the amplitudes cj (t) are slowly varying in

time as compared to the oscillatory function exp(iω̃1t). As

a consequence, it is possible to neglect the second derivates

c̈j (t) in the equations describing the motion of cj (t), which

are obtained by replacing the ansatz for uj (t) in Eq. (1). Thus,

the system of coupled differential equations describing the

evolution of the normalized amplitudes is

iċ1 =
κ

2ω̃1m
c2,

(2)

iċ2 =
κ

2ω̃1m
c1 −

ω̃2
2 − ω̃2

1

2ω̃1

c2.

In the vicinity of the avoided crossing, where the modes can ex-

change energy, we have ω̃2 ≃ ω̃1 such that (ω̃2
2 − ω̃2

1)/2ω̃1 ≃
ω̃2 − ω̃1. If we further assume ω̃2 − ω̃1 ≃ αt , with α the

frequency sweep rate, and we define � = |λ| = κ/(mω̃1),

Eq. (2) reduces to

iċ(t) = H (t)c(t), (3)

with c(t) = [c1(t) c2(t)]T and

H (t) =
(

0 λ
2

λ
2

−αt

)
. (4)

Since we are interested in multiple passages through the

avoided crossing, we look for the classical flow ϕ(t,ti) defining

the state of the system at time t given that we know its

state at some prior time ti, c(t) = ϕ(t,ti)c(ti). Typically, c(ti)

is the initial condition of the system. One can show that

the classical flow obeys the same differential equation as

c(t), iϕ̇(t,ti) = H (t)ϕ(t,ti). By applying the time-dependent

unitary transformation S(t) = exp(iαt2/4)12 to the classical

flow, i.e., ϕ(t,ti) = S(t)ϕ̃(t,ti)S
†(ti), we find that ϕ̃(t,ti) obeys

the differential equation,

i ˙̃ϕ(t,ti) = (S†(t)H (t)S(t) − iS†(t)Ṡ(t))ϕ̃(t,ti)

= H̃ (t)ϕ̃(t,ti), (5)
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FIG. 2. Classical Stückelberg oscillations. Normalized squared return amplitude (left axis, blue dots) and theoretically calculated return

probability (right axis, red line) vs inverse sweep rate for fixed peak voltages of Up = 2.5 V (a), Up = 3.5 V (b), Up = 4.5 V (c), and

Up = 5.0 V (d) measured on sample A.

with

H̃ (t) =

(
αt
2

λ
2

λ
2

−αt
2

)
, (6)

where 12 denotes the unity operator in two dimensions.

Equation (5) coincides with the Schrödinger equation for the

unitary evolution operator of the Landau-Zener problem, for

which an exact finite-time solution is known [17] (see also

Appendix B). With the help of the classical flow, one can

easily calculate the state of the system after a double passage

through the avoided crossing (Stückelberg problem). We find

c(t) = ϕb(t, − tp)ϕ(tp,ti)c(ti), (7)

with ϕb(t,ti) = σxϕ(t,ti)σx describing the evolution of the

system during the back sweep (see Appendix B) where σx

denotes the Pauli matrix in the x direction, and tp labels the

time at which the forward (backward) sweep stops (starts).

From Eq. (7), one can obtain the return probability to mode 1,

P1→1 = |ϕ11(tp,ti)ϕ
∗
11(t, − tp) + ϕ∗

12(tp,ti)ϕ
∗
12(t, − tp)|2, (8)

with ϕij (t,ti) the matrix elements of ϕ(t,ti). Note that we use

the frequency sweep rate α in the theory, which is converted

to the experimentally accessible voltage sweep rate β via a

conversion factor ζ = 55 kHz/V as elucidated in Appendix C.

The analogy between the unitary evolution operator and the

classical flow, both expressed in the basis of uncoupled states

(modes), allows one to draw the analogy to the quantum-

mechanical return probability in Stückelberg interferometry.

The normalized amplitudes are associated with the normalized

energy in each resonator mode, and they differ conceptually

from the probability that a quantum-mechanical two-level

system is found in either of the two quantum states. Neverthe-

less, the dynamics of the normalized amplitudes in classical

Stückelberg interferometry is analogous to the dynamics of the

quantum-mechanical probabilities since they follow the same

equations. In this sense, the coherent exchange of oscillation

energy between two coupled modes can be associated with the

transfer of population between two quantum states. A more

detailed discussion and comparison of our theoretical approach

to previous models [2,17,25,26] reveals previously uncharted

parameter regimes in Stückelberg interferometry, and it will

be presented elsewhere [32].

IV. CLASSICAL STÜCKELBERG INTERFEROMETRY

Experimentally, we investigate classical Stückelberg os-

cillations with two different samples in a vacuum of

� 10−4 mbar. Sample A is investigated at 10 K in a

temperature-stabilized pulse tube cryostat, which offers a

greatly enhanced stability of the electromechanical system

against temperature fluctuations. Sample B is explored at room

temperature in order to confirm the results and to check their

stability under ambient temperature fluctuations. Note that in

both experiments, the system operates deeply in the classical

regime [22], and it does not exhibit any quantum-mechanical

properties. Sample A exhibits a mechanical quality factor Q =
ω/Ŵ ≈ 2 × 105 and linewidth Ŵ/2π ≈ 40 Hz at resonance

frequency ω1(Ui)/2π = 7.560 MHz of the 50-μm-long string

resonator ensuring classical coherence times in the millisecond

regime [22]. The level splitting �/2π = 22.6 kHz exceeds

the mechanical linewidth by almost three orders of magnitude,

which puts the system deep into the strong-coupling regime.

We initialize the system at Ui = 7.9 V and apply triangular

voltage ramps with different voltage sweep rates β for a set

of peak voltages Up. Figure 2 depicts the normalized squared

return amplitude for different peak voltages and the theoretical

return probabilities calculated without any free parameters.

The normalized squared return amplitude may exceed a value

of unity due to normalization artefacts that arise from the

different signal magnitudes at the initialization and readout

voltages in addition to measurement errors. We observe clear

oscillations in the return signal, in good agreement with

the theoretical predictions for lower peak voltages. As the

number of oscillations increases for higher peak voltages, the
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FIG. 3. Comparison of experimental data and the theoretical model. (a) Color-coded normalized squared return amplitude vs inverse sweep

rate and peak voltage measured on sample B. The dataset is not interpolated. (b) Color-coded theoretical return probability given by Eq. (9) vs

inverse sweep rate and peak voltage for the equivalent data range. The theory is calculated with a single set of parameters, extracted from the

avoided crossing illustrated in Appendix C (Fig. 7), and it contains no free parameters.

deviation from the theoretical prediction is more pronounced.

We attribute this to uncertainties and fluctuations of the

characteristic sweep parameters of the system, which change

under application of the voltage ramp and over time as

discussed in Appendixes D and E. A further deviation arises

from the assumption that a linear change of the voltage leads

to a linear change of the difference in frequency. This is only

an approximation since the mechanical resonance frequencies

tune quadratically with the applied voltage [28]. However,

since most of the energy exchange happens in the vicinity

of the avoided crossing, where the difference in frequency

is linearized, one expects to see noticeable deviations from

theory only for higher peak voltages.

To reproduce the experimental data and to test the stability

of classical Stückelberg interferometry against fluctuations,

we repeat the experiment on a second sample of the same

design at room temperature (sample B, denoted by index “B”).

The now 55-μm-long resonator has a mechanical linewidth of

ŴB/2π ≈ 25 Hz at frequency ωB,1(UB,i)/2π = 6.561 MHz,

which results in a quality factor of QB ≈ 2.6 × 105 at the

initialization voltage UB,i = 10.4 V and hence an improved

mechanical lifetime of 6.21 ms. Furthermore, the sample ex-

hibits a mode splitting of �B/2π = 6.3 kHz and a conversion

factor of ζB = 19 kHz/V.

Figure 3 depicts a color-coded two-dimensional map of

the normalized squared return amplitude as a function of the

inverse voltage sweep rate β and the peak voltage Up alongside

the theoretical return probability of the classical Stückelberg

oscillations, again calculated with no free parameters. We in-

vestigate double passages up to a total propagation time of ϑ =
1.0 ms in the experiments conducted on sample B. To account

for the decay of both modes when tuned away from the drive for

the considerably longer ramps applied to sample B, we model

the mechanical damping by an exponential decay with an

averaged decay time t0 = 5.7 ms. After a measurement time tm,

the probability to measure an excitation of mode j is given by

|cj (tm)|2 = exp(−tm/t0)P1→j , (9)

with P1→1 given by Eq. (8) and P1→2 = 1 − P1→1. The

experimental data show remarkably good agreement with the

theoretical predictions, despite temperature fluctuations of

several degrees kelvin per hour, which shift the mechanical

resonance frequency up to 40 linewidths. To initialize the

system at the same resonance frequency in each measure-

ment, a feedback loop regulates the initialization voltage Ui

(see Appendix D). Consequently, the recording of a single

horizontal scan at a fixed peak voltage in Fig. 3(a) takes

up to 16 hours, incorporating a non-negligible amount of

fluctuations of the system parameters, such as, e.g., the

center voltage of the avoided crossing Ua, which imposes

considerable uncertainties on the parameters used for the

theoretical calculations. To further illustrate the influence of

fluctuations, Figs. 4(a) and 4(b) depict horizontal and vertical
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FIG. 4. Exemplary classical Stückelberg oscillations of sample

B. Line cuts of Figs. 3(a) and 3(b). (a) Normalized squared return

amplitude (left axis, blue dots) and theoretically calculated return

probability given by Eq. (9) (right axis, red line) vs inverse sweep

rate for a fixed peak voltage Up = 3.3 V. (b) The same quantities as

above but plotted as a function of peak voltage for a fixed inverse

sweep rate 1/β = 51.6 μs/V. Blue dots are joined by blue dashed

lines for illustration reasons.
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line cuts of the two-dimensional map in Fig. 3 at Up = 3.3 V

and at inverse sweep rate 1/β = 51.6 μs/V, respectively.

For small inverse sweep rates, i.e., very fast sweeps, the

experimental data in Fig. 4(a) deviate from the theoretical

model due to a flattening of the voltage ramps in the room-

temperature experiment (see Appendix E). For sweeps with

1/β � 50 μs/V, the experimentally observed Stückelberg

oscillations exhibit good agreement with the theoretical predic-

tions even for the line cut along the vertical peak voltage axis

[cf. Fig. 4(b)]. Note that Fig. 4 depicts the best results from all

datasets at room temperature. Further exemplary line cuts are

provided in Appendix E, also exhibiting a clear oscillatory

behavior in the normalized squared return amplitude, but

incorporating larger deviations from theory in certain regions

and therefore revealing fluctuations of system parameters over

time, predominately induced by temperature drifts.

V. CONCLUSION AND OUTLOOK

In conclusion, we have demonstrated classical Stückelberg

oscillations that have previously been experimentally ob-

served exclusively in the framework of quantum mechan-

ics [2,7,8,27]. An exact solution of the Stückelberg prob-

lem [1] based on the finite-time Landau-Zener single-passage

solution [17] describes the return probability in the classical

version of the double-passage problem, which is shown to

follow the same equation as in the case of a quantum two-

level system. In this way, we have demonstrated that in our

experimental parameter limit, the coherent exchange of en-

ergy between two strongly coupled classical nanomechanical

resonator modes follows the same dynamics as the exchange

of excitations in a quantum-mechanical two-level system in

the framework of Stückelberg interferometry.

This analogy might be exploited in future experiments

in order to determine whether a system of coupled me-

chanical modes operates in the classical regime or in the

quantum-mechanical limit. In the general case of two coupled

quantum harmonic oscillators, the effective model describing

the dynamics would resemble that of the multiple-crossing

Landau-Zener problem [33], which leads to a much more

complex dynamics than the provided solution for the classical

case. Hence, if one would be able to design an experiment

in which two strongly coupled mechanical oscillators can be

cooled to their quantum-mechanical limit, it should be possible

to determine if the system operates in the classical or the

quantum regime by means of a simple Stückelberg return

amplitude measurement rather than by probing the Wigner

distribution function [34]. Whereas the presented experimental

setup is still far from operation in the quantum-mechanical

limit, we could imagine this technique to be applied to different

mechanical systems that already demonstrated the quantum

limit of mechanical oscillators [35,36].

Overall, we have found good agreement between ex-

periment and theory. However, parameter regimes yielding

larger deviations are reminiscent of the sensitivity of the

exact Stückelberg solution to the initial system parameters,

such as the position of the avoided crossing, and hence to

fluctuations in the system. This circumstance, in turn, might

be exploited for future investigations in resonator metrology

of decoherence and noise, adapting the approach to employ

Stückelberg interferometry to characterize the coherence of a

qubit [10].

Furthermore, the possibility to create a superposition state

of two mechanical modes may allow for future application

as highly sensitive nanomechanical interferometers [37–39]

analogous to the applications with cold atom and molecule

matter-wave interferometers [4,40–42], whereas the presence

and implications of, e.g., phase noise [43] can be resolved by

a change in resonator population and interference pattern.

Finally, classical Stückelberg interferometry should not be

limited to the presented strongly coupled, high-quality factor

nanomechanical string resonator modes [22], but it can be

observed in principle in every classical two-mode system

exhibiting the possibility of a double passage through an

avoided crossing within the classical coherence time.
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APPENDIX A: THE NANOELECTROMECHANICAL

SYSTEM

The nanomechanical device and experimental setup are

depicted in Fig. 5. The sample investigated at a temperature

of 10 K (sample A) consists of a 50-μm-long, 270-nm-

wide, and 100-nm-thick doubly clamped silicon nitride (SiN)

string resonator. The room-temperature measurements were
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FIG. 5. Nanoelectromechanical system. (a) False color scanning

electron micrograph of the 50-μm-long, 270-nm-wide, and 100-nm-

thick silicon nitride string (green) in the oblique view. The adjacent

1-μm-wide gold electrodes (yellow) are processed on top of the

silicon nitride layer. Arrows indicate the flexural mode polarizations

out-of-plane (Out) and in-plane (In). (b) Electrical transduction

setup. The arbitrary function generator (AFG) ramp voltage and the

dc tuning voltage are added via a summation amplifier and then

combined with the rf drive using a bias tee. The microwave readout

is bypassed by the second capacitor, acting as a ground path for the

microwave cavity.
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FIG. 6. Dielectric frequency tuning. Color-coded frequency spec-

trum of sample B as a function of applied dc tuning voltage. The

resonance frequency of the 55-μm-long resonator’s fundamental

out-of-plane oscillation (Out) increases quadratically as a function of

dc voltage. The resonance frequency of the corresponding in-plane

mode (In) decreases quadratically. Tuning both modes into resonance,

they exhibit a pronounced avoided crossing indicated by the black

dashed rectangle. This particular region is displayed in Fig. 7(a).

The additional resonances in the spectrum originate from a different

mechanical resonator, which is coupled to the same microwave cavity.

conducted on a similar sample (sample B), differing only in

its resonator length of 55 μm. As stated in the main text, the

temperature does not affect the purely classical character of the

system. The string resonators exhibit a high intrinsic tensile

pre-stress of σSiN = 1.46 GPa resulting from the LPCVD

deposition of the SiN film on the fused silica substrate. This

high stress translates into large intrinsic mechanical quality

factors of up to Q ≈ 500 000, which reduce quadratically

with the applied dc tuning voltage in the experiment as a

result of dielectric damping [28]. Dielectric drive, detection,

and control are provided via two adjacent gold electrodes

in an all integrated microwave cavity enhanced transduction

scheme [22,24,28,29]. In the experiment, we consider the

two orthogonally polarized fundamental flexural modes of

the nanomechanical string resonator, namely the oscillation

perpendicular to the sample plane (out-of-plane) and the

oscillation parallel to the sample plane (in-plane). Applying a

dc voltage to one of the two gold electrodes induces an electric

polarization in the silicon nitride string resonator, which

couples to the field gradient of the inhomogeneous electric

field. Consequently, the mechanical resonance frequencies

tune quadratically with the applied dc voltage as depicted

in Fig. 6. Whereas the out-of-plane resonance (Out) tunes

toward higher resonance frequencies as a function of dc

voltage, the resonance frequency of the in-plane mode (In)

decreases [28]. Dielectric tuning of both modes into resonance

reveals a pronounced avoided crossing originating from the

strong mutual coupling induced by the inhomogeneous electric

field. In the coupling region, the mechanical modes hybridize

into diagonally (±45◦) polarized eigenmodes of the strongly

coupled system.

APPENDIX B: THEORETICAL MODEL

In this Appendix, we derive an exact expression for

the classical return probability. A detailed discussion and

comparison of our theoretical approach to previous models

will be published elsewhere [32].

We start by solving the system of first-order differential

equations defined in Eq. (5) of the main text. Since these

equations are formally identical to the Schrödinger equation

for the (quantum) Landau-Zener problem, we can follow

the work of Vitanov et al. [17] to derive the classical flow,

c̃(τ ) = ϕ̃(τ,τi)c̃(τi) with c̃(τ ) = [c̃1(τ ) c̃2(τ )]T. Here, τ =
√

αt

is a dimensionless time and τi is the initial dimensionless

time. Note that we use dimensionless times in this appendix

in order to provide a derivation that is consistent with the

work of Vitanov et al. [17]. The equations in dependence

of times in the main text can be recovered by replacement

of the dimensionless times following the above definition.

In Appendix C, we provide the explicit conversion from

experimentally accessible parameters to the dimensionless

times. We find
(

c̃1(τ )

c̃2(τ )

)
=

(
ϕ̃11(τ,τi) ϕ̃12(τ,τi)

−ϕ̃∗
12(τ,τi) ϕ̃∗

11(τ,τi)

)(
c̃1(τi)

c̃2(τi)

)
(B1)

with

ϕ̃11(τ,τi) =
Ŵ

(
1 + i

η2

4

)
√

2π

[
D−1−i

η2

4

(e−i 3π
4 τi)D−i

η2

4

(ei π
4 τ )

+D−1−i
η2

4

(ei π
4 τi)D−i

η2

4

(e−i 3π
4 τ )

]
(B2)

and

ϕ̃12(τ,τi) =
Ŵ

(
1 + i

η2

4

)
√

2π

2

η
e−i π

4

[
D−i

η2

4

(e−i 3π
4 τi)D−i

η2

4

(ei π
4 τ )

−D−i
η2

4

(ei π
4 τi)D−i

η2

4

(e−i 3π
4 τ )

]
. (B3)

Here, η = λ/
√

α is the dimensionless coupling, Ŵ(z) is the

Gamma function, and Dν(z) is the parabolic cylinder function.

To find the flow describing the evolution of the amplitudes

defined in Eq. (2), we apply the unitary transformation defined

in the main text, ϕ(τ,τi) = S(τ )ϕ̃(τ,τi)S
†(τi), with

S(τ ) = exp

[
i

4
τ 2

]
12. (B4)

We find

ϕ(τ,τi) = exp

[
i

4

(
τ 2 − τ 2

i

)]
ϕ̃(τ,τi). (B5)

The flow ϕ(τ,τi) describes the evolution of the normalized

amplitudes for a forward sweep; the frequency of mode 1

(2) increases (decreases) with time. This implies that the

back sweep cannot be described by ϕ(τ,τi) since during the

evolution the frequency of mode 1 (2) decreases (increases).

Hence, the system of coupled differential equations describing

the dynamics during the backward sweep (denoted by index

“b”) is given by

i

(
˙̃c1,b

˙̃c2,b

)
=

(
−αt

2
λ
2

λ
2

αt
2

)(
c̃1,b

c̃2,b

)
. (B6)

The solutions of Eq. (B6) can be obtained analogously to the

forward flow since the matrices appearing in Eq. (6) of the
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FIG. 7. Calibration of the conversion factor. (a) Avoided crossing region of sample B. A sweep voltage equal to zero corresponds to

the initialization point Ui = 10.4 V. The two modes exhibit a frequency splitting of �B/2π = 6.3 kHz at the avoided crossing voltage

Ua = Ui + 1.96 V = 12.36 V. The gap in the upper branch (red) results from a signal detection efficiency of the particular mode polarization

below the noise level. (b) Frequency difference of the two modes (black) and averaged slope of the linearized frequency tuning illustrated by a

green dash-dotted line.

main text and Eq. (B6) are related by a unitary transformation.

We find

ϕ̃b(τ,τi) = σx ϕ̃(τ,τi)σx =

(
ϕ̃∗

11(τ,τi) −ϕ̃∗
12(τ,τi)

ϕ̃12(τ,τi) ϕ̃11(τ,τi)

)
, (B7)

where σx denotes the Pauli matrix in the x direction. The

flow describing the evolution of the amplitudes c1(t) and c2(t)

during the back sweep is obtained as previously, and we have

ϕb(τ,τi) = exp

[
i

4

(
τ 2 − τ 2

i

)]
ϕ̃b(τ,τi). (B8)

The state of the system after a double sweep is given by

c(τ ) = ϕb(τ, − τp)ϕ(τp,τi)c(τi), (B9)

where τp labels the time at which the first sweep stops and −τp

corresponds to the initial time of the back sweep [cf. Eq. (7)

of the main text]. As stated in Eq. (8) of the main text, the

probability to return to mode 1 is then given by

P1→1(τ,τp,τi)

= |ϕ11(τp,τi)ϕ
∗
11(τ,−τp) + ϕ∗

12(τp,τi)ϕ
∗
12(τ,−τp)|2. (B10)

APPENDIX C: CONVERSION FACTOR CALIBRATION

In the theoretical model, the state of the system after

a double passage through the avoided crossing depends on

the characteristic sweep times. Experimentally, we realize

this double passage by the application of fast triangular

voltage ramps, tuning the resonant frequency of the mechanical

modes [28]. In the following, we focus on sample B to illustrate

how the different times are obtained.

We initialize the resonance in the lower-frequency branch

at the voltage Ui = 10.4 V, where we apply a continuous sinu-

soidal drive tone at ω1(Ui)/2π = 6.561 MHz. We then ramp

the sweep voltage up to the peak voltage Up across the avoided

crossing at voltage Ua = Ui + 1.96 V = 12.36 V and then

back to the readout voltage Uf = Ui + 0.5 V = 10.9 V, where

the oscillation energy is read out again in the lower-frequency

branch. The offset of the readout voltage with respect to the

initialization voltage is necessary since we cannot stop the

sinusoidal drive tone at ω1(Ui)/2π during the experiment. For

a fixed peak voltage Up, the voltage sweep is performed for

different voltage sweep rates β, given in the experimental

units [β] = V/s. In the theoretical model, the frequency

difference of the two modes in units of 2π is approximated

by ω2 − ω1 ≃ αt , where the sweep rate α has the dimensions

[α] = 2π × Hz/s. Consequently, we introduce the conversion

factor ζ from voltage to frequency, defined via the relation

α = 2π × ζβ. (C1)

Figure 7 illustrates the calibration of the conversion factor. As

is conventional in experiments on Stückelberg interferometry,

the frequency difference of the two mechanical modes is

approximated to be linear in time, i.e., linear in sweep voltage.

In our particular system, the resonance frequencies of the

mechanical flexural modes tune quadratically with voltage

outside of the avoided crossing (see Fig. 6). Nevertheless,

for the designated region around the avoided crossing, the

two frequency branches can be linearized as follows. We take

the frequency difference of both modes before and after the

avoided crossing [cf. Fig. 7(b)], respectively, and we extract

the slopes via a linear fit. The two different slopes on the left

and the right-hand side of the avoided crossing are averaged,

yielding an effective conversion factor (dash-dotted green line)

ζ = 19
kHz

V
. (C2)

To estimate the error of the conversion factor, we apply a

quadratic fit to the frequency difference of the two modes,

and we find a fit residual of approximately 2 kHz/V between

the linear and the quadratic fit.

Depending on the specific peak voltage Up, one could take

into account a weighted average of the two slopes in order

to mitigate the deviation of the quadratic frequency tuning

from the linear approximation. Here, one has to point out

deliberately that we neglect any weighted average, but we

take solely the above conversion factor for the calculation of

the theoretical return probabilities. We are well aware of the

fact that this linearization translates into a direct discrepancy

between the theoretical model and the experimental results.

Nevertheless, in our opinion, these discrepancies are prevailed

by the benefits of a closed theoretical calculation using a single

set of parameters that is supported by the remarkably good
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agreement between experiment and theory. Hence, we express

the characteristic sweep times in the theoretical model by the

following parameters extracted from the avoided crossing in

Fig. 7(a):

ti = −
1

β
(Ua − Ui) =

τi√
α

,

tp =
1

β
(Ũp − Ua) =

τp√
α

,

tf =
1

β
(Ua − Uf) =

τf√
α

,

(C3)

where Ũp = Ui + Up. As explained above, the return probabil-

ity is measured at the readout voltage Uf 	= Ui. Consequently,

we replace τ by τf in the back sweep of the theory, which

modifies Eq. (B10) to

P1→1(τf,τp,τi)

= |ϕ11(τp,τi)ϕ
∗
11(τf,−τp) + ϕ∗

12(τp,τi)ϕ
∗
12(τf,−τp)|2. (C4)

APPENDIX D: TEMPERATURE FLUCTUATIONS

As stated in the main text, the measurement of the

normalized squared return amplitude for various voltage sweep

rates β at a particular peak voltage Up takes up to 16 h. During

this time, the ambient temperature undergoes fluctuations of

±2 K per hour due to insufficient air conditioning. Since

the mechanical resonance frequency shifts due to thermal

expansion of the silicon nitride by approximately 500 Hz/K,

both resonances shift by approximately 40 linewidths. To

initialize the system at the same resonance frequency for every

particular measurement, we implement a feedback loop that

regulates the initialization voltage. Therefore, the initialization

voltage shifts slightly from measurement to measurement,

reflecting the temperature fluctuations. Figure 8 depicts the
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FIG. 8. Temperature fluctuations. Initialization voltage shift vs

inverse sweep rate for the dataset depicted in Fig. 4(a) (Up = 3.3 V)

of the main text. Each point corresponds to the measurement of the

normalized squared return amplitude for a given inverse sweep rate.

The first measurement is performed at 1/β = 100 μs/V, representing

the initialization at resonance frequency ωi(Ui)/2π for voltage

Ui = 10.4 V. The implemented feedback loop regulates the initializa-

tion voltage in order to compensate for the temperature fluctuations of

the mechanical resonance. Consequently, the voltage shift illustrates

the fluctuations of the ambient temperature.

initialization voltage shift versus inverse sweep rate for the

dataset of peak voltage Up = 3.3 V, which corresponds to

the measurement depicted in Fig. 4(a) of the main text. Each

point represents a single measurement for a particular sweep

rate. The first measurement is performed at an inverse sweep

rate of 100 μs/V at the initialization voltage Ui = 10.4 V

and therefore corresponds to a shift of zero volts. Clearly,

the temperature fluctuations not only affect the initialization

voltage required to obtain the desired resonance frequency,

but they will also alter other system parameters, such as

the position of the avoided crossing Ua, that greatly affect

the theory (cf. Appendix C). Consequently, the temperature

fluctuations lead to deviations between experiment and theory,

since we calculate the return probability with a single set of

parameters. In turn, these deviations might be used to infer

fluctuations of the system in future applications of Stückelberg

interferometry.

APPENDIX E: EXPERIMENTAL UNCERTAINTIES

In Fig. 9 we provide additional horizontal and vertical line

cuts from Fig. 3 of the main text. We observe pronounced

oscillations in the normalized squared return amplitude (blue

dots) as well as in the theoretically calculated return probability

(red line). Nevertheless, the deviations between experiment

and theory are more apparent, especially for Fig. 9(b), which

depicts a vertical line cut for a fixed inverse sweep rate of

1/β = 60 μs/V, i.e., within the “plateau” in Fig. 3(b) of the

main text. Whereas the normalized squared return amplitude

exhibits destructive interference, with the signal dropping
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FIG. 9. Classical Stückelberg oscillations. (a) Normalized

squared return amplitude (left axis, blue dots) and theoretically

calculated return probability given by Eq. (9) of the main text

(right axis, red line) vs inverse sweep rate for a fixed peak voltage

Up = 3.85 V. (b) Same quantities as above but plotted as a function

of peak voltage for a fixed inverse sweep rate 1/β = 60 μs/V. Blue

dots are joined by blue dashed lines for illustration reasons.
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close to zero, the minima in the return probability saturate

at a value of approximately 0.3. This discrepancy is supposed

to originate from the high sensitivity of the theoretical model to

the input parameters. Experimental uncertainties and fluctua-

tions deter the system from interference with the same constant

parameters throughout all individual measurements. Since the

“plateau” in the theory is characteristic for a particular set of

exact and constant parameters, it cannot be recovered under

the given experimental conditions.

The experimental uncertainties arise not solely from the

temperature fluctuations. The voltage ramp also affects the

characteristic parameters, such as the exact position of

the avoided crossing Ua. As previously stated, the dc volt-

age induces dipoles in the silicon nitride string resonator,

which couple to the electric field gradient. A variation in

dc voltage changes the inhomogeneous electric field at the

same time, to which the nanoelectromechanical system needs

to equilibrate. Consequently, the resonance frequencies of

the mechanical modes drift toward the equilibrium position

of the system. This drift, in turn, alters the characteristic

system parameters, i.e., the characteristic voltages used for

the theoretical calculations, and it depends on the magnitude

of the peak voltage Up. Concerning the initialization voltage,

we simultaneously account for this effect via the initialization

feedback loop (see Sec. IV). Nevertheless, the exact position of

the avoided crossing Ua varies slightly due to this retardation

effect. Experimentally, we mitigate the influence of this drift

by means of a “thermalization” break of 10 s after each voltage

ramp.

Another possible uncertainty arises from the imprecision in

the value of the peak voltage Up at the sample. The output

amplitude uncertainty of the arbitrary function generator

used in the room-temperature experiments is classified by

the manufacturer as ±1% of the nominal output voltage.

Consequently, the maximum uncertainty in the peak voltage

corresponds to ±0.05 V for a maximum peak voltage of

Up = 5.0 V, which is equal to the voltage step size between

two horizontal lines of Fig. 3(a) in the main text.

As stated in the main text, we observed additional deviations

in the experimental data of sample B from the theory for very

fast voltage sweeps (1/β � 50 μs/V). These deviations origi-

nate from a flattening of the triangular voltage ramps. Records

of the triangular voltage pulse taken by an oscilloscope

revealed a flattening of the voltage apex depending on the peak

voltage Up, which becomes significant for very fast sweeps.

This flattening translates into a peak voltage cutoff and hence

a different value of Up, which is transduced to the sample.

We attribute this to the limited bandwidth of the summation

amplifier, which reduces the pulse fidelity for very short ramp

times. In the experiments conducted on sample A, a high-

performance summation amplifier has been employed together

with a different arbitrary function generator. The latter exhibits

a greatly enhanced bandwidth and sampling rate (nearly one

order of magnitude) compared to the device employed in

the room-temperature experiment. As a consequence, the

flattening of the voltage pulse apex is less pronounced, and

we find good agreement between the experimental data and

the theory for inverse voltage sweep rates 1/β � 50 μs/V.
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