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1. Introduction

In [1] Chap. IIT Ludwig gave the definition of coexistent effects in
a quantum mechanical system. Coexistence of effects will be discussed
in this paper. Special attention will be called to the connection between
the notion “observable” and the notion “classical system”. It will be
proved in particular that the set of classical effects is coexistent and there-
fore the convex range of observables consists of coexistent effects.

We shall stick closely to the notation introduced in [1]. The quantum
mechanical system is described by subsets of an ordered separable Banach
space B and its dual B’, which satisfy several axioms. The subset

K={X/XeB, X20, |X| =1}
of B represents the ensembles, and the subset
L={Y/YeB, Y20, ||Y| <1}

of B’ represents the effects of the system (yes-no-experiments). The
probability to measure the effect F e L in the ensemble Ve K is expressed
by the value (V, F) of the functional F on B. G denotes the set of ex-
treme points of L, the set of decision effects. G is a complete, ortho-
complemented, weakly modular lattice.

Perhaps it is convenient to keep in mind the representation of B
and B’ by Hermitean operators in a separable Hilbert space. This re-
presentation is valid for irreducible quantum mechanical systems (no
superselection rule).

B is the set of Hermitean trace class operators.

B’ is the set of bounded Hermitean operators.

(= is the usual order of Hermitean operators.)

K={VeB/Vz0,u(V)=1},L={FeB/0<F<1}.

G is the lattice of projection operators.

V,F)=tr(V-F)
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2. Coexistent Effects
2.1. Definition of Coexistence

Let Q be a Boolean ring (Boolean lattice or Boolean algebra) with
the lattice operations: g, A ¢, intersection, ¢, v ¢, union, g* complement,
g1+ q,=(q, A q¥) v (T A q,) symmetric difference. An L-valued measure
on Q is a mapping F:Q—L such that F(q,v q,)=F(q)+ F(q,) if
gy A g, =0. The I-valued measure F(g) on Q is said to be effective if
F(g)=0 implies ¢ =0.

Roughly spoken a subset [ C L is said to be a set of coexistent effects
if it is possible to construct an apparatus in which these effects can be
measured together. By analyzing the physical situation Ludwig ([1]
Chap. II1, 12) gives the following mathematical translation of this fact:

Definition 1. A subset I1C L is said to be a set of coexistent effects,
if there is a Boolean ring Q and an L-valued measure F(g) on Q such
that [ is contained in the range of F(q).

Here Q stands for the different signal-parts of the apparatus in which
the effects are measured together. The Boolean operations in Q cotre-
spond to technical operations with these signal-parts as follows:

The signal-part g, A g, is always excited if both ¢, and g, are excited.

The signal-part g, + q, is always excited if either ¢, or g, (but not
both) is excited.

(¢* and ¢, v g, can be expressed by ¢*=1+¢, q;vVq4,=¢;+q,
+@Aq))

If F(g) is an L-valued measure on Q, the set J={q/qe Q, F(q)=0}
is an ideal in Q and by passing from Q to the quotient ring Q/J it is
possible to get an effective L-valued measure without altering the range
of Q.

Likewise it is possible to extend the Boolean ring Q and the L-valued
measure such that F(1)=1, where the first 1 denotes the unit element
in Q and the second 1 denotes the order unit in L C B’. Thus we may
confine ourselves in our considerations to the case where F(g) is an effec-
tive L-valued measure with F(1)=1.

2.2. A Uniform Structure on Q

An ensemble Ve K is called effective if (¥, F> =0, F ¢ L implies F =0.
As B is assumed to be separable there exists an ensemble

Vo= S 4,V 4,0, 3 2,=1and
y=1 V21 (1)

{V,} is a countable dense subset of K .
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V, is an effective ensemble and my(q) = {(V,, F(q)) is an effective real-
valued (not necessarily o-additive) measure on Q.

Thus d(q,, q,) = me (g, + q,) is a metric on Q and the lattice operations
are uniformly continuous with respect to this metric [2]. The uniform
structure ug induced by this metric is determined by the neighbourhoods
of the 0-element of Q:

Upo,e =1{4/q € Q, my (@) = <Vo, F(q)) < &} @

The uniform structure uy is independent of the choice of ¥, with pro-
perty (1). We shall see this in proving that the filterbasis

Uy,,..vn:=10€QKV, F(@) e i=1,...,n}

. G)
Vi, ..., V, varying in K
is equivalent to (2).
Of course (3) is finer than (2). A moment’s thinking shows that the

inverse is proved by the following inequality ({V,} dense in K!):

VF@@p KV, =V Fghl+<V,, Flg)
S|V, =V + 4, *{V,, F(g)) for all VeK.

As a basis of the uniform structure uy is given by the subsets

{41,9.)€0Q % Qlq1+q,€ Uy . V. .}

of @ x Q and g, + g, denotes the “difference” of the signal-parts g, and
q,, ug is the natural uniform structure induced by testing the signal-
parts of Q by a finite number of ensembles.

Lemma 1. The mapping F:Q—L of the L-valued effective measure
F(q) is uniformly ug — o(B’', B)-continuous.

Proof. From q;=(q1 A q})V (g1 A 42)=(q:+q2) v q, follows F(qy)
< F(q,+4,)+ F(q;) and F(q,) < F(g,+q,) + F(g,) likewise. Thus
KV, F(q)— F(g))|={V,F(q;+q,)) for all VeK. As XeB can be
decomposedin X =aV; — fV,; Vi, V, € K([1]1I1, 6)the o (B, B)-topology
is completely determined by the elements of K (instead of B). The re-
presentation (3) of the basis of u; and the definition of the o(B’, B)-
topology prove the statement.

Let Q be the completion of Q with respect to the uniform structure
ug resp. metric d(q,, 4,) = my,(q; + q,). Because of the uniform continuity
of the lattice operations in Q the lattice operations can be extended to
the whole of Q such that Q is a Boolean ring. As uy is induced by a
real-valued measure my,,, one may apply the results of measure theory
on Boolean rings and conclude that Q is a Boolean o-ring (which is
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even lattice complete such that unions and intersections can be performed
of all subsets of Q) [3].

Since the uniform structure ux on Q has got a physical meaning and
the elements of Q are ug-limit points of elements of Q, we may assign
the same interpretation to elements of Q as to the elements of Q. uy is
used to describe the uncertainty of the correspondence between signal-
parts and elements of Q.

Lisao(B, B)-closed subset of the unit sphere of B'. Thus L is ¢ (B, B)-
compact and complete with respect to the uniform structure determined
by the g(B', B)- topology Therefore the uniform continuous mapping
F:Q— I hasaunique extension to 0. Because of the uniqueness F(q; v ¢ 2)
= F(q,)+ F(q,) holds for all q,,q, €0 with ¢, A g, =0. Thus F(qg) is
extended to an L-valued measure on 0, and we have proved

Theorem 1 (Ludwig). A subset 1C L consists of coexistent effects if
there exists a Boolean ring Q and an effective L-valued measure F(q) on
Q with F(1)=1 such that Q is ug-complete (and therefore a o-ring which
is even lattice complete), and | is contained in the range of F(q).

Corollary. Let Q be a Boolean ring and F(q) an effective L-valued
measure with F(1)=1 such that Q is ug-complete. my(q)=<V,F(q)) is
a real-valued normed (m, (1)=1) o-additive measure on Q for all Ve K.

Proof. Let q,€Q, q,1, =g, and /\ ¢,=0. To prove the s-additivity
n=1
it suffices to show

my(q,)—0 forall VeK. 4)

Taking into account the representation (3) of a basis of neighbourhoods
of 0 we conclude that (4) is equivalent to g,— 0 with respect to the uniform
structure ug. Let V, € K have property (1) such that d(q,, g,) =my (g, +q)
=V, F(q; + q,)> induces ug. As my, (g,) = 0 is monotonely decreasing
Myy(4,) > 2 0. From my, (g, + 4,) = my,(4,) — my(g,)| foliows that g,
is a ug-Cauchy-sequence and therefore converges to g € Q with respect
to ug. The continuity of the lattice operations implies g < g,, and from

/\q,l 0 follows g =0.

n=

As Ludwig pointed out in [1] Chap. IL, 9, those sets of a mathematical
theory which in a physical theory are in correspondence with objects
of reality should be separable with respect to the uniform structure de-
scribing the uncertainty of this correspondence. This fact motivates the
following definition:

Definition 2. A Boolean ring Q together with an effective [.-valued
measure F(g) on Q such that F(1)=1 and Q is ug-complete and separable

8 Commun. math. Phys., Vol. 23
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is said to be an observable O =(Q, F(q)). An observable O =(Q, F(q))
is called decision observable if the range of the L-valued measure F(q)
consists of decision effects, i.e. F(q)e G for all ge Q. (G is the lattice of
extreme points of L)

In view of Theorem 1 the question arises whether it is possible to
confine oneself to the consideration of observables, i.e. ug-separable
Boolean rings while dealing with coexistent effects. This question will
be settled in Section 5.

We shall not treat the problem of decision observables here. This
is done in detail in [1]. It is shown there that the mapping Q— G C L
given by a decision observable O =(Q, E(q)) is a lattice isomorphism
of Q onto a Boolean sublattice of the lattice G of decision effects. Thus
it is possible to transcribe the physical interpretation of the lattice oper-
ations of Q to the lattice operations in the Boolean sublattice of G.

In case of a decision observable the ug-completeness of Q is proved
to be equivalent to the lattice completeness [1], and in theorem 7 we
shall see, as a by-product, that the condition of ug-separability of Q
is automatically fulfilled. Thus a decision observable is a lattice complete
Boolean sublattice of G.

3. Classical Systems

Throughout this chapter Q denotes a Boolean o-ring and m, an ef-
fective real-valued normed g-additive measure on Q. B, denotes the linear
space of all g-additive bounded real-valued functions on Q.

V a) = L mia)

i=1

By= {m(q)/m(q) real, Im(@)| < C,m (

1

for all {g;} with g, A q,=01if i+ k}.
The total variation

il (@)= sup {w= 5. infg).a= \/ g.q.ng,=0f i+ k}
i= i=1

isa o-additive measure on Q and thus an element of B. It is well known
that B, is a Banach space with respect to the norm [m|| =|m|(1). As
my, is effective on Q all elements of B, are absolutely continuous with
respect to my.

If (X, A, J) is a representation of Q by a Boolean o-ring A of subsets
of a set X with a g-ideal J of 4 such that A/J is ¢-isomorphic to Q (for
instance the Loomis’ representation), the dual space By, of B, may be
characterized by the space of all m,-measurable bounded functions on X.
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In the sequel we want to sketch a representation — free characteri-
zation of By,

A finite subset {g;};—,...,CQ is said to be a decomposition of 1 if
g;+0foralli,g;Aq,=0ifi+kand \/g=1.

i=1

A mapping f: {q;} =R of a decomposition of 1 into the reals is said
to be a representative of a simple function, and the set of these mappings
is denoted by S(Q).

Let f, f" € S(Q), where f:{g;} >R and f": {q;} >R

The relation f (q;)=f"(q) if q; A qx+0 is an equivalence relation
f~f"onS(Q)

S(Q) denotes the set of equivalence classes, which will be called
simple functions on Q.

It is easily seen that in every equivalence class there is one and only
one representative f € S(Q), the values of which are different for different
elements of the decomposition of 1 (the mapping f is injective). The
equivalence classes, simple functions, will be characterized by represen-
tatives.

S(Q) is a linear vector space by means of the following definitions:

1. f+ f' is a mapping of

{g: ~av/aie{a}, e e {an), 4 A 9+ 0}

into IR such that (f + 1) (g; A qi) = f (@) + f(q0)-

2. A- f'is a mapping of {g;} into R such that (- /) (g)=1- f(g;), L€ R.
f, 4 € O, denotes the simple function #,{g, ¢*} —IR such that ,(q)=1 and
1,(q¢*) = 0 and is said to be a characteristic function. Every simple function

f:{q;} = R then has the representation f = i S @) ng,.
i=1

i=

{m, f>=3 f(g;)-m(q;), me By, fe€S(Q) is a bilinear function on
i=1
By x S(Q) with the property

{m, f>=0 for all feS(Q) implies m=0,
{m, f>=0 for all me B, implies f=0.
As
|{m, fo1= m] (1) - sup | £ (gl )

holds, the linear functional on B, given by f e S(Q) is continuous, and
thus S(Q) is a linear subspace of By, the dual space of B,. Concerning

8%
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the dual norm on S(Q) we have

1Fl=s Km f>|)

meBQ<l I(1)

sup

sup o~ st |
sup (sup (|f(qi)|

q¢Q i

sup | (gl -

Here m,, denotes the measure defined by m,(q)=my(g A q). (5) and
(6) imply

[\

(6)

iv

mo(q A q;) ))
mo(q)

If 1l =suplf(g:)l. ™

It is possible to show that S(Q) is dense in Bj, with respect to the dual
norm. Thus Bj may be identified with the completion of S(Q) with

respect to the norm (7).
The definition f =0 if {m, f> =0 for all me B, with m=0 gives

the dual order in By. If feS(Q), f= Z f(g)n,, one has f=0 if and

only if f(g)= 0 for all i. )
In connection with the remarks at the end of Section 2.2 we shall now

prove

Theorem 2. Let Q, my, By be as stated above. By, is a separable Banach
space if and only if Q is separable with respect to the uniform structure
ug which is determined by the metric d(q,, q,)=mo(q,+ q,)-

Prooj? As Mog, = Mog, = Mo (g, nas) — Mot a2) holds for q,, q, € Q, the
total variation is

Mog, = Mogsl = Mogyn g9 + Mot nan) = Mo +a2) -
This implies
Hqul_quZH =mo(q1+q2)- ()

(8) shows that the subset M = {m,,,qe Q} of B, and Q are homeo-
morphic and Q is ug-separable if and only if M is norm-separable.

First assume B, to be separable. As B, is a metric space the subset
M of B, is separable.

Now assume Q to be separable and M, a countable dense subset
of M. Let

T= {meBQ/m= Y. Aimg,,, A; real, g;€ Q}.
i=1
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T is a linear subspace of By. The Radon-Nikodym-theorem which
establishes an isomorphism between B, and the space of m,-integrable
functions L,(Q, m,) shows that T is dense in B, corresponding to the
simple functions S(Q) in L,(Q, m,).

T.= {m € By/m= Z 0; - Moy, 0; Tational, me,, € Mc}
is a countable dense subset of T and thus of By.

In [1] Chap. ITI, 16 a system {B, B") as described in our introduction
is said to be classical if the lattice G of decision effects is Boolean (thus G
is a Boolean ring). It is shown that in this case {B, B> is isomorphic to
{Bgy, By) with Q = G such that K, = {me By/m =0, m(1) =1} represents
the ensembles, LQ {feBy/0= < f=£1} represents the effects, and
Go={fe LQ, f=n,,q€Q} represents the decision effects of the system.

As B is assumed to be separable theorem 2 shows that Q is ug-separ-
able.

In the reverse given a Boolean o-ring Q with an effective measure
myg such that Q is ug-separable a system (By, B,) satisfies Ludwig’s
axioms and is a classical system.

4. Observables and Classical Systems

In this section it will be shown that an L-valued measure F(q) on a
Boolean ring Q which is ug-complete induces a linear mapping S: B— B,,.
This mapping makes possible some interesting results with respect to
coexistent effects which will be presented in Section 5.

We'll first give a definition [4].

Definition 3. Let {By, B} ) and {B,, B,) describe quantum mechanical
systems, and let K,,K,,L;,L, be the sets of ensembles and effects
respectively. A mapping S: K; — K, which is linear on K; (ie. S(uV;
+(l—@V)=SVi+(1—wSV,,0=u=<1) is said to be a mixture
homomorphism. A mapping T:L,— L, is said to be a continuous linear
homomorphism if the following conditions are satisfied:

LF,F,F+F,e L, implies T(Fy + F,)=TF,+ TF,.

2.If F, eL2 is a o(B5, B,)-convergent sequence F,—F eL2 then
TF,o(B', B{)-converges to TF.

The following lemma gives a physical motivation of assumption 1.
of the second part of the definition.

Lemma 2. Assumption 1. of the second part of Definition 3 is equivalent to
1" If F(q) is an L,-valued measure on a Boolean ring Q, TF(q) is an
L,-valued measure on Q.
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Proof. Trivially 1 implies 1'. In order to show the reverse suppose
F,,F,,F,+ F,e L,. Consider the Boolean ring Q(2) of all subsets of a
set of two elements {1, 2} and define F({@})=0, F({1})=F;, F({2})=F,,
F({1,2})=F,+F,. F(q), qe Q(2) is an L,-valued measure on Q(2) and
T(Fy+ Fo)=T(F ({1} v {2}) = T(F,) + T(F,).

As it is easily seen a mixture homomorphism has a unique linear ex-
tension to the whole of B;. The extended linear mapping is positive
and satisfies [[S X|| < | X]| for all X e B,. Therefore the adjoint linear
mapping S':B,— B} is ¢(B,, B,)— a(B}, B{)-continuous, positive and
satisfies |S'Y | <| Y] for all Ye B;. Moreover S'1=1 since S K, CK,.

A continuous linear homomorphism T: L, L, has a unique linear
extension to the whole of Bj. The extended linear mapping T: B, — B
is ¢(B5, B,) — 0(B1, B,)-continuous, positive and satisfies [T Y| Z| Y|
for all Ye B'. Therefore the adjoint linear mapping T" maps B, into B,,
is positive and satisfies | T'X| = || X| forall Xe B,. If T1 =1, T'K, CK,
holds, and 7' is a linear extension of a mixture homomorphism. Thus
the mixture homomorphisms of ensembles and the continuous linear
homomorphisms of effects which map 1 onto 1, are dually connected.

Theorem 4. Let (B, B") describe a quantum mechanical system. Let
Q be a Boolean ring and F(q) an L-valued effective measure such that
F(1)=1 and Q is ug-complete.

Define SV=my for VeK, where my(q)=<V,F(q)) is as in the
corollary of theorem 1. Then it is defined a mixture homomorphism
S:K— K, which maps effective ensembles onto effective measures and
the continuous linear homomorphism S': LQ—>L defined by the adjoint
S’ of the linear extension of S satisfies

S'n,=F(q) forall qeQ 9
S is uniquely determined by (9).

Proof. The corollary of Theorem 1 shows that indeed S V=m,
defines a mapping S: K —K,. The linearity of the function <V, F(q)>
on B implies that S is a mixture homomorphism.

Assume ¥, to be an effective ensemble and my, (g) = 0. It follows
F(g)=0and ¢=0.

The following identity proves S'n, = F(q)

Ve K’<I/; S,rlq> = <S V; r]q> = <mV’ ’1q> = mV(q) = <V: F(CI»

Now assume {(S; —S,),1,> =0 for all ge Q.

It follows {(S;—S,) V¥, f>=0 for all elements f of the o(By, By)-
closure of the linear subspace S(Q) of By, spanned by the characteristic
functions #,. As S(Q) is dense in By, even with respect to the dual norm,
(S;—S,) V=0 holds for all VeK.
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It is possible to prove the inversion of Theorem 4:

Theorem 5. Let Q be a Boolean o-ring, {By, Byp) as described in
section 2 and S:K— K, a mixture homomorphism which maps effective
ensembles onto effective measures'. The adjoint continuous linear homo-
morphism S': iQ—> L defines an effective L-valued measure F(q)= S'n, such
that F(1)=1 and Q is ug-complete.

Proof. As 1, 0, =M, + 1,1 g1 A 4, =0, F(g) is an L-valued measure.
my(q@)=<V,F(q)> =<{SV,n,» =(S V) (q) proves SV =my.

To prove that F(g) is effective suppose F(q)=0. Hence my, (q)=<{V,,
F(g)> =0 for an effective ensemble V, € K. Since S'(1)=1 for an adjoint
mapping of a mixture homomorphism, F(1)=1 holds.

To show the ug-completeness of Q let ¥, be an effective ensemble
with property (1) of Section 1. The uniform structure uy is generated
by the metric d(qy, q,) =my (q; + q,)- As my, is an effective g-additive
measure on a Boolean o-ring Q, Q is complete with respect to this metric
[21

The combination of Theorem 2 with Theorems 4 and 5 gives

Corollary. To an observable O = (Q, F(q)) uniquely corresponds a mix-
ture homomorphism S of the quantum mechanical ensembles K into the
classical ensembles Ky, S:K— K, such that S maps effective ensembles
on effective measures and S'n,= F(q).

Vice versa a mixture homomorphism S:K—K, of the quantum me-
chanical ensembles K into the classical ensembles K, of a classical system,
such that S maps effective ensembles on effective measures, determines an
observable O =(Q, F(q) = §'n,).

5. The Convex Range of Observables

If  is a set of effects of a quantum mechanical system described by
(B, B’), the o(B’, B)-closed convex hull of I will be denoted by To(l).
Let Q be a Boolean ring and F(g) an L-valued measure on Q. ¢6 {F(g),
geQ} is called the convex range of the [-valued measure. Convex
combinations of effects F(q) have a distinct physical meaning. If

F= )Y 4,-F(q), 4>0, ) 4 =1, F may be interpreted to be an effect of
i=1 i=1

an apparatus, which selects the signal-parts ¢; with a frequency 4; and

gives a response if the selected g; gives a response. A trivial example

is given by the position measurement of an interval the endpoints of

which are varied statistically.

! This is no essential assumption but can always be arranged by altering the Boolean
o-ring Q in correspondence with the effectivity of the L-valued measure F(q).
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Since coexistence of effects expresses the fact that these effects can
be measured together in one apparatus the above given interpretation
of convex combinations of effects suggests the conjecture that convex
combinations of coexistent effects are coexistent. Indeed it will be proved
by Theorem 8 that the convex range of an [-valued measure consists
of coexistent effects.

Definition 4. Let Q,Q be Boolean rings and F(g), F'(q)) L-valued

measures on Q and Q' respectively. F(g) and F'(q’) are said to be equiva-
lent if

co{F(qhqeQ}=Co{F'(q)q Q}.

Theorem 6. Let Q be a Boolean ring and F(q) an effective L-valued
measure on Q such that F(1)=1 and Q is ug-complete. Let S:K—K,
be the mixture homomorphism determined by F(q) corresponding to
Theorem 4 and S’ the adjoint continuous linear homomorphism. S': LQ—>L

1. S'(Ly) =T {F(9),q€ Q}.

2. For every extreme point F, of S’ (LQ) there is exactly one g € Q such
that F,=F(q).

3. <75{F(q),q€Q}ﬁG={F(q),qeQ}ﬂG-
(It is not possible to get any new decision effects as limit points in the
convex range of an L-valued measure.)

Proof. The set of extreme points of LQ is the set of characteristic
functions {r,, g € Q}. Since LQ is 6(By, By)-compact the Krein-Milman-
theorem shows LQ =¢0 {1, qe Q}.

In Theorem 4 we proved §'n, = F(q). Thus we have

S'(co{n,, g€ Q})=co{F(q),qeQ}.
The weak continuity of S* implies
S'(Ly)CTo{F(g),qeQ}.

Since EQ is 6(By, By)-compact S’(f,Q) is o(B’, B)}-compact and therefore
closed such that

S'(Ly)=T0{F(g),q€ Q}.

Now assume F, to be an extreme point of §’ (LQ) If fe LQ with §'f =
f is an extreme point of LQ Thus there is g€ Q such that F,= F(q)

Suppose F, = F(q;)=F(q,)

F,=F(q)=F(q; A g3)+ F(q. A q2),
F,=F(q,)=F(q, A q¥)+F(q, A q5).
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Hence

1/2F(q,v 4)+1/2F(q, A q5)
=1/2(F(q, A q5)+F (g2 A q})+F(q A q5))+1/2F(q, A q,)=F,.

Since F, is an extreme point F(g, v ¢4,)=F(q; A g,)=F,. Thus F(g;+q5,)
=F(q, Vv q,)—F(q, A g,)=0 and g, = q, because of the effectivity of the
f,-valued measure F(q).

S’(LQ)m G={F(q).qeQ}nG is an immediate consequence as G is
the set of extreme points of L and F ¢ §' (LQ)m G thus implies F is extreme
point of §' (LQ)

Lemma 3. Let Q be a Boolean ring and F(q) an effective L-valued
measure on Q such that F(1)=1 and Q is ug-complete. If E denotes the
set of extreme points of ¢o{F(q),qe Q}, the set M={qeQ,F(q)e E}
is a ug separable subset of Q.

Proof. Theorem 6 shows that F:Q— L gives a bijection of M onto E.
Since B is separable, ¢ (B', B) is metrizable in L. and L is ¢ (B, B)-separable.
Thus the subset ECL is o(B, B)-separable and there is a countable
o(B’, B)-dense subset E. in E. It will be shown that M.=F~'(E) is
ug-dense in M.

If goe M, there is a sequence g, M. such that F(g,)— F(g,) in
a(B', B).

F(q,)=F (g, A g0) + F(g, A q8).

As To {F(qg), g € @} is compact there is a subsequence g,,, such that
F(qn‘, A qO)_)Fl € €O {F(q)’ q € Q}
and
F(q,,nq5")—F,€C0 {F(g),q€ 0}, (10)
Fi+ F,=F(qo)-

It suffices to show g, — g, with respect to u, or equivalently
A(Gn,> 40) = My(@n, + d0) = Vo F (qs, + q0)> —0.
V, being an effective ensemble with property (1) of Section 1. As

Vo> Fqn, + 900> = Vo, F(qn, A 48)> + Vo, F g, A qo)>

and F (g, A q0)= F(q0) — F(q,, A 4q,), it suffices to show F, =0 in Eq. (10).
Since F(4y, v o) = F(d, A q8) + F(do) > F; + F(qo) we have F,+ F(go)
€ C0{F(q), 9 € Q}. F(qo) =1/2F; +1/2(F, + F(q,)) implies F; = F, + F(q,)
= F(g,), because F(q,) is an extreme point of ¢o {F(q), g€ Q}.
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Theorem 7. Let Q be a Boolean ring and F(q) an effective L-valued
measure on Q such that F(1)=1 and Q is ug-complete. There is a smallest
Boolean subring Q, of Q such that Q; is ug-complete and the restriction
Fy(q) of F(g) to Q, is equivalent to F(q), i.e. €0 {F(q),q e @} =C0{F(g),
g€ Q4}. Qy is ug-separable. Moreover F(q) € G for all g € Q implies 0=0Q,.

Proof. Let E and M be defined as in Lemma 3, M a countable dense
subset of M. The subring Q. of Q generated by M, is countable. The
closure Q, = Q. with respect to ug is a ug-separable and ug-complete
subring of Q. Clearly M C Q; and therefore E is contained in the range
of the restriction F,(q) of F(g) toQ,.Thus

Co{F(q),qe Q}=Co(E)CTO{F(9),q€Q}.

Of course To {F,(q), g€ Q,} C0 {F(q), g € Q} and (Q,, F;(g)) is equivalent
to (Q, F(q)).

Suppose Q' is a ug-complete Boolean subring of Q such that the restric-
tion of F(g) to Q' is equivalent to F(g). By Theorem 6, 2. we have M C Q'

and thus Q, CQ".
If F(g)e G, F(q) is an extreme point of T6 {F(q), g € @} and therefore
F(g)e E. Thus F(q)e G for all ge Q implies QCM CQ,, ie. Q=0;.

Theorem 8. Let Q be a Boolean o-ring and {By, By) a system as
described in Section 2. There is a Boolean ring Q' such that Q is a subring
of Q' the LQ—valued measure q—1, can be extended to Q' and the range
of the extended Ly-valued measure consists of the entire set LQ

Before we enter into the proof of Theorem 8 it will be shown that it
is possible to define a multiplication in B, such that By becomes an

algebra. If £, "€ S(Q) are simple functions f = Z fladn,, f'= z f'@ng,

define - f'= Z Z f@) (@) ng, » g By thls definition S(Q) is a com-

i=1 k=1
mutative algebra and

-7 =Sup(|f(qi)| AL @111
shows that the multiplication can be extended to By, Moreover fe LQ,
f eLQ implies f - f’ eLQ

Proof of Theorem 8. Let A,, denote the free Boolean ring on M = EQ
([5, 61, Appendix to this paper). Every element ae A,,, a=0, 1, has a
unique representation

= \m/ (ép 1(5”,)) fiely, 8:,=0,1 (11)
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by a union of monomials with the same base such that all monomials
are different (thus disjoint) and the base is minimal.
Define an Ly-valued measure f(a) on Ay, as follows:

f@= 3 (116.(0) (12)

o=1 \i=

if a has the representation (11). Here II denotes the product introduced
above and

Cff i a,=1,
5ia(ﬁ)_ {(1_]0 if 51'0':0'

Since f(a)=f(a)-f'+ f(a)-(1— "), f’ef,Q, it is easily seen that (12)
still holds if the base of the monomials of the representation (11) is
extended corresponding to Egs. (16), (17) in the appendix, and the base
is no longer minimal. The additivity of f(a) now is an immediate con-
sequence of the representation of g, v q, (if g, A g, =0) given in the
appendix.

To prove that EQ is contained in the range of f(a), let foef,Q.
az=pz'(1) is a monomial of A4,,, such that f(a.)= f,.

The ideal of elements a e A, of measure zero is

Jo= {aeAM/a= 0 or a has representation (11) and [ ] 6;,(f;)=0forall a}.
i=1

Q' = Ay /J, denotes the quotient ring and ¢ the canonical homomor-
phism ¢: Ay —Ay/Jo=0".

Without altering the range of f(a), f'(¢(a))= f(a) defines an effec-
tive iQ—Valued measure on Q.

Now it will be shown that there is an injective homomorphism
j:Q@— Q' such that Q may be identified with a subring of Q' and
f'(i(q)=n, if e Q. Thus f'(a),ae @, is an extension of the I:Q-valued
measure g>,.

If g€ Q, a,=p,.' (1) is a monomial in A,,. Define j(g)=¢(a,). To
prove j(g*) = (j(9))* it is sufficient to show f(a,+ (a,)*)=0

g+ (@) = ppt () +p;(0)
=(ps' (D) A p; (1))
Vv (p#"(0) A p; 1(0)).

Thus f(a+ (3,)*) = e~ ,+ (1= ) - (1= 1) =0.
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To prove j(gq, A q,)=7j{q:) Aj(q,) is sufficient to show f((a, A a
+ gy n qz)) =0

(alh Aaqz)+a(41/\ q2) (

(

_—

g (D) AP (D) A pgyn 4,(0)
g O) v i, O) A pg; 1 4,(1)
g, () Apg, (1) A g 4,(0)
g O AP H0) Apg 4, (1)
g O) AP (1) Apg s (1)
pqll(l)/\pqzl(O) APgn (D),
f((atn A aqz)+a‘11/\ qz) =My gy (- "qqu)

+ (1 =15) - (1=15,) - g, 1 g,

A =1g,) gy Ngyn gy

g, - (1= 1,) - g, n g, =0
Clearly j is injective and f'(j(9)) = f"(¢(a,) = f(a) =n,.

Corollary 1. The set ZQ of classical effects of a classical system
described by {(Bgy, By is a set of coexistent effects.

Corollary 2. Let Q be a Boolean ring and F(q) an effective L-valued
measure on Q such that F(1)=1 and Q is ug-complete. There is a Boolean
ring Q' such that Q is a subring of Q', the L-valued measure F(q) can be
extended to Q' and the range of the extended L-valued measure consists
of the entire convex range ¢o {F(q), g€ Q} of F(q).

Thus the convex range of F(q) is a set of coexistent effects.

—_

Proof. There is a continuous linear homomorphism S’ :ﬁQafJ
determined by the L-valued measure F(q) such that §'(Lgy)=C0 {F(g),
g€ Q} (Theorem 6). Now apply Theorem 8.

A combination of Theorems 1, 7, and 8 gives

Theorem 9. A set [C L of effects of a quantum mechanical system
consists of coexistent effects if 1 is contained in the convex range of an
observable.

Appendix
Free Boolean Rings

A Boolean ring A is said to be free on a subset M which generates A
if every mapping from M into an arbitrary Boolean ring can be extended
to a ring-homomorphism. This ring-homomorphism is unique. It can
be shown that for each cardinal number there actually exists a Boolean
ring which is free on a set of this cardinality and is unique up to iso-
morphisms.
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We will not enter into the proof of this statement but sketch the con-
struction of a free Boolean ring on a set M. Let 2M denote the M-fold
product space of {0,1}. 2M is the set of all mappings f: M — {0,1}. If
x € M, p, denotes the canonical projection p,: 2 — {0,1} and p; !(5) the
set of all mappings f:M—{0,1} which satisfy f(x)=6 (6=0,1). The
subsets p; '(1), x € M, of 2™ generate a Boolean ring A, of subsets of 2¥.
x— p; ' (1) is a natural bijection between M and the class M’ of generators
pz (1) of A,,. By means of the duality theorems in the field of Boolean
rings it is proved that A4, is free on M’ ([5, 6]). A, consists of all subsets
of 2™ which are finite unions of finite intersections of sets p *(8) (5 =0,1)

a=foc2a= 7 (1 Pl )}

c=1

It is easily seen that

/_\ pat(8) %0 is equivalent to x,# x; if §;%5,.

Sets of the form A\ p;(5) with x,=x, if i+ k are called monomials
i=1
and the sets {x,, ..., x,} CM base of the monomials.
Two monomials with the same base are equal or disjoint. Every

element a e A,;, a+ 0,1, has a unique representation

-V (Are) (13)
by a union of monomials with the same base such that all monomials
are different and the base is minimal.
If a has the representation (13) and the base is not minimal there
is x; such that for every o exists ¢ with 0,,#d,, and 6,, =0, if k+1i.
Suppose a,, a, € Ay, and a; A a, =0. We want to give a representation
ofa, va,. Let

mi

a =\ (/\p;l(a ) (14)

o=1

az—@(}z\p 162, ) (15)

a
Without loss of generality assume

X1=V1,.-s%z=yz and x,;+y, £ A+-1Zign, and 71 +-15k<n,.
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Now (14) and (15) can be written

a=\ (/\ A ozl )Apy:(ak))) (16)

=1 6,=0,1 \i=1 k=r+1

ay=\/ 65{“(/\ A 62 )Ap;:(ak))) (1)

c=1 i=1 k=r+1

(16) and (17) are of the form

ay=\/ (/\p;,.‘(é,f;), 18)
e=1 \i=1
mh n3

4= \/ (/\lp;‘(ézi)- (19)
o=1 \i=

Thus it is possible to extend the base of the monomials given in (14),
(15) such that a, and a, have a representation by unions of monomials
of a common base. Of course this base is no longer minimal. a; A a, =0
implies that all monomials of a, are different from the monomials of
a, and a, v a, has a representation by the union of all monomials of
(18) and (19).

avar= " (Apre)v ¥ (Reare)
Also in this representation of a, v a, the base {z,, ..., z,,} is not neces-

sarily minimal.
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