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Abstract

We extend four tests common in classical regression - Wald, score, likelihood
ratio and F tests - to functional linear regression, for testing the null hypothesis,
that there is no association between a scalar response and a functional covariate.
Using functional principal component analysis we re-express the functional linear
model as a standard linear model, where the effect of the functional covariate can
be approximated by a finite linear combination of the functional principal compo-
nent scores. In this setting, we consider application of the four traditional tests.
The proposed testing procedures are investigated theoretically when the number of
principal components diverges, and for both densely and sparsely observed func-
tional covariates. Using the theoretical distribution of the tests under the alternative
hypothesis, we develop a procedure for sample size calculation in the context of
functional linear regression. The four tests are further compared numerically in
simulation experiments and using two real data applications.

Keywords: Asymptotic distribution, Functional principal component anal-
ysis, Functional linear model, Hypothesis Testing

1 Introduction
Functional regression models have become increasingly popular in the field of func-
tional data analysis, with applications in various areas such as biomedical studies, brain
imaging, genomics and chemometrics, among many others. We consider the functional
linear model (Ramsay and Dalzell, 1991) where the response of interest is scalar and
the covariate of interest is functional, and the primary goal is to investigate their rela-
tionship. In this article, our main focus is to develop hypothesis testing procedures to
test for association between the functional covariate and the scalar response in differ-
ent realistic scenarios, such as when the functional covariate is observed on a sparse
irregularly spaced grid, and possibly with measurement error. We discuss four testing
procedures, investigate their theoretical properties and study their finite sample per-
formance via a simulation study. The testing procedures are then applied to two data
sets: a Diffusion Tensor Imaging tractography data set, portraying a densely and ir-
regularly observed functional covariate situation; and an auction data on eBay of the
Microsoft Xbox gaming systems, portraying a sparsely observed functional covari-
ate setting.
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In functional linear models, the effect of the functional predictor on the scalar re-
sponse is represented by an inner product of the functional predictor and an unknown,
nonparametrically modeled, coefficient function. Typically, such coefficient function
is assumed to belong to an infinite dimensional Hilbert space. To estimate the coeffi-
cient function, one often projects the functional predictor and the coefficient function
onto pre-fixed basis systems, such as eigenbasis, spline basis or wavelet basis system
to achieve dimension reduction. There is a plethora of literature on estimation of the
coefficient function; see for example, Cardot et al. (1999), Yao et al. (2005b). For a de-
tailed review of functional linear model, we refer the readers to Ramsay and Silverman
(2005) and the references therein.

Our primarily interest in this article is the problem of testing whether the functional
covariate is associated with the scalar response, or equivalently, whether the coefficient
function is zero. There are two main reasons to consider the problem of testing in the
context of functional linear models to be of importance. First, in many real life situ-
ations, especially in biomedical studies, evidence for association between a predictor
and a response is as valuable as, if not more than, estimation of the actual effect size.
In the case when the predictors are functional, estimates of the actual coefficient curves
are often hard to interpret and it may not be clear whether the covariate is in fact useful
to predict the outcome. Secondly, the tactic of constructing a pre-specified level con-
fidence interval around the estimate and then inverting the interval to construct a test,
as is usually done in multivariate situation, is not readily applicable in the functional
covariate case. Most of the available literature on functional linear models present
point-wise confidence bands of the estimated coefficient functions rather than a simul-
taneous one. Inverting such a point-wise confidence band to construct a test holds very
little meaning. Thus testing for association remains a problem of paramount interest.
Unfortunately, the literature in the area of testing for association is relatively sparse and
often makes assumptions that are quite strong and impractical.

Cardot et al. (2003) discussed a testing procedure based on the norm of the cross
covariance operator of the functional predictor and the scalar response. Later, Car-
dot et al. (2004) proposed two computational approaches by using a permutation and
F tests. A key assumption of these approaches is that the functional covariates are
observed on dense regular grids, without measurement error. This assumption is not
realistic in many practical situations; for example, in both applications considered, the
covariates are observed on irregular grids. Müller and Stadtmüller (2005) proposed the
generalized functional linear model and studied the analytical expression of the asymp-
totic global confidence bands of the coefficient function estimator. A Wald test statistic
can be derived from the asymptotic properties of this estimator. However, a crucial
assumption in that work is that the functional covariate is observed fully and without
error. Also, as we observe in our simulation studies, the Wald test statistic is not very
reliable for small sample sizes and exhibits significantly inflated type I error. Recently,
Swihart, Goldsmith and Crainiceanu (2013, unpublished manuscript) addressed a sim-
ilar testing problem using likelihood ratio tests and restricted likelihood ratio tests and
investigated their properties numerically, via simulation studies, but did not present
their theoretical properties.

In this paper, we consider the situation where the functional predictor is observed
either at densely set of points, or at sparsely, irregularly spaced grid, and possibly with
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measurement error. We investigate four traditional test statistics, namely, score, Wald,
likelihood ratio and F test statistics. To facilitate these testing procedures, we mainly
rely on the use of the eigenbasis functions, derived from the functional principal com-
ponent analysis of the observed functional covariates, to model the coefficient function.
This method, commonly known as functional principal component regression has been
well researched in literature; see for example Müller and Stadtmüller (2005), and Hall
and Horowitz (2007).

We use functional principal component analysis and model the coefficient function
using the eigen functions derived from the Karhunen-Loève expansion of the covari-
ance function of the predictor. As a result, we re-express the functional linear model as
a simple linear model where the effect of the functional covariate can be approximated
as a linear combination of the functional principal component scores. Traditional tests
such as Wald, score, likelihood ratio and F tests are then formulated using the unknown
coefficients in the re-written model. Using functional principal component analysis to
model the coefficient function has various advantages. First, one can accommodate ir-
regularly spaced and sparse observation of the the functional covariates, where smooth-
ing of individual curves are practically impossible. Second, we can easily account for
possible measurement errors in the functional observations. In addition, theoretical
properties of the functional principal component scores have been studied in a variety
of settings: see for example Hall and Hosseini-Nasab (2006), Hall et al. (2006), Hall
and Hosseini-Nasab (2009), Zhang and Chen (2007), and Yao et al. (2005a). Finally,
functional principal component analysis provides automatic choices of data adaptive,
empirical, basis functions, and as such one can readily choose the number of basis
functions to be used in the model by looking at the percent of variance explained by
the corresponding number of principal components.

This article makes two major contributions. First, we derive theoretical properties
of our proposed testing procedures. In particular, we derive the null distributions of
the test statistics under both dense and sparse irregularly spaced designs, and provide
asymptotic theoretical alternative distributions under the dense design. Second, as a
consequence of our theoretical results, we develop a procedure for sample size calcula-
tion in the context of functional linear regression. To the best of our knowledge, this is
the first such result in the existing literature. Such sample size calculation procedures
are immensely useful when one has a fair idea of what the underlying covariance struc-
ture of the functional covariates from a pilot or preliminary study, and is interested in
determining the sample size of a future larger study within the same cohort. We extend
our testing procedures to the partial functional linear model (Shin, 2009), where an ad-
ditional vector valued covariate is observed and included in the model as a parametric
term.

Our theoretical results are asymptotic, in the sense that they are derived assuming
that the sample size is diverging to infinity. While such results are of great interest, it
is also important to observe the performance of the testing procedures in finite sample
sizes. We investigate numerically the performance of the four tests, when the func-
tional covariate is observed either at regular, dense designs as well as sparse, irregularly
spaced designs. The results show that, while all the four test statistics behave very sim-
ilarly in terms of both type I error and power, for large sample size, they show different
behavior for small and moderate sample sizes. In particular, for small and moderate
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sample sizes, the likelihood ratio and the Wald tests exhibit significantly inflated type
I error rate in all the designs, while the score test shows a conservative type I error. On
the other hand the F test retains close to nominal type I error rates and provides larger
power than the score test; thus F test may be viewed as a robust testing procedure, even
for small sample sizes and sparse irregular designs.

2 Methodology

2.1 Model specification
Suppose for i = 1, . . . , n, we observe a real values scalar response Yi and covariates
{Wi1, . . . ,Wimi} corresponding to points {ti1, . . . , timi} in a closed interval T . As-
sume that Wij = Wi(tij) is a proxy observation of the true underlying process Xi(·),
such that Wi(t) = η(t) + Xi(t) + ei(t), where η(·) is the mean function, and ei(·)
is a Gaussian process with mean 0 and covariance cov{ei(t), ei(s)} = σ2

eI(t = s),
where I(t = s) is the indicator function which equals 1 if t = s, and 0 otherwise.
Furthermore, it is assumed that the true process Xi(·) ∈ L2(T ) has mean 0 and covari-
ance kernel K(·, ·). We also assume that the true relationship between the response and
the functional covariate is given by a functional linear model (Ramsay and Silverman,
2005)

Yi = α+

∫
T
Xi(t)β(t)dt+ ϵi, (1)

where ϵi are independently and identically distributed normal random variable with
mean 0 and variance σ2, α is an unknown intercept and β(·) is an unknown coefficient
function quantifying the effect of the functional predictor across the domain T and
represents the main focus of our paper. In what follows, we write

∫
Xi(t)β(t)dt instead

of
∫
T Xi(t)β(t)dt for notational convenience.
Our goal is to test the null hypothesis that there is no relationship between the

covariate X(·) and the response Y . Formally, the null and the alternative hypotheses
can be stated as

H0 : β(t) = 0 for any t ∈ T vsHa : β(t) ̸= 0 for some t ∈ T . (2)

To the best of our knowledge most of the existing methods, for example Müller and
Stadtmüller (2005), Cardot et al. (2003) and Cardot et al. (2004), assume that the func-
tional covariates are observed fully and without noise. In this paper, we consider the
case where the functional covariate may be observed densely or sparsely and with mea-
surement error. We develop four testing procedures to test H0, study their theoretical
properties, and compare numerically their performances for dense as well as sparse
designs of the functional covariate.

2.2 Testing procedure
The idea behind developing the testing procedures is to use an orthogonal basis function
expansion for both X(·) and β(·) and then reduce the infinite dimensional hypothesis
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testing to the testing for the finite number of parameters by using an appropriate finite
truncation of this basis. In this paper we consider the eigenbasis functions obtained
from the covariance operator of X(·). Specifically, let the spectral decomposition of
the covariance function K(s, t) =

∑∞
j=1 λjϕj(s)ϕj(t), where {λj , j ≥ 1} are the

eigenvalues in decreasing order with
∑∞

j=1 λj < ∞ and {ϕj(·), j ≥ 1) are the cor-
responding eigenfunctions. Then Xi(·) can be represented using Karhunen-Loève ex-
pansion as Xi(t) =

∑∞
j=1 ξijϕj(t), where the functional principal component scores

are ξij =
∫
Xi(t)ϕj(t)dt, have mean zero, variance λj , and are uncorrelated over j.

Using the eigenfunctions ϕj , the coefficient function β(t) can be expanded as β(t) =∑∞
j=1 βjϕj(t), where βj’s denote the unknown basis coefficients. Thus the functional

regression model (1) can be equivalently written as Yi = α +
∑∞

j=1 ξijβj + ϵi, for
1 ≤ i ≤ n, and testing (2) is equivalent to testing βj = 0 for all j ≥ 1.

However, such a model is impractical as it involves an infinite sum. Instead, we ap-
proximate the model with a series of models where the number of predictors {ξij}∞j=1

is truncated to a finite number sn, which increases with the number of subjects n.
Conditional on the truncation point sn, the model can be approximated by the pseudo-
model

Yi = α+
∑sn

j=1ξijβj + ϵi, (3)

and the hypothesis testing problem can be reduced to

H0 : β1 = β2 = . . . = βsn = 0 vs Ha : βj ̸= 0 for at least one j, 1 ≤ j ≤ sn (4)

We consider four classical testing procedures, namely Wald, Score, likelihood ratio
and F-test and examine their application in the context of the pseudo-model (3). Define
Y = (Y1, . . . , Yn)

⊤ and ϵ = (ϵ1, . . . , ϵn)
⊤. With a slight abuse of notation, define

β = (β1, . . . , βsn)
⊤ and θ = (σ2, α, β⊤)⊤. Given the truncation sn and the true

scores {ξij , 1 ≤ i ≤ n, 1 ≤ j ≤ sn}, the pseudo log likelihood function from (3) can
be written as

Ln(θ) = −(n/2) log(2πσ2)− (Y − α1n −Mβ)⊤(Y − α1n −Mβ)/(2σ2),(5)

where 1n is a vector of ones of length n, and M is n × sn matrix with the (i, j)-th
element being Mij = ξij . We use the likelihood function (5) to develop the tests for
testing H0 : β = 0.

Let B = [1n,M ], and define the projection matrices P1 = 1n1
⊤
n /n and PB =

B(B⊤B)−1B⊤. The score function corresponding to (5) is Sn(θ) = ∂Ln(θ)/∂θ and
equals

Sn(θ) = {−n/2σ2+(Y − α1n −Mβ)⊤(Y − α1n −Mβ)/2σ4, (Y − α1n −Mβ)⊤B/2σ2}⊤;

the corresponding information matrix In(θ) is a block-diagonal matrix with two blocks,
where the first block is the scalar I11 = 2n/σ4 and the second block is the matrix
I22 = B⊤B/σ2. Let θ̃ = (σ̃2, α̃, 0⊤sn)

⊤, where σ̃2 = Y ⊤(In×n − 1n1
⊤
n /n)Y/n and

α̃ = Y = 1
n

∑n
i=1 Yi are the constrained maximum likelihood estimators for σ2 and
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α, respectively, under the null hypothesis. The efficient score test (Rao, 1948) is then
defined as

TS = Sn(θ̃)
⊤{In(θ̃)}−1Sn(θ̃) = Y ⊤(PB − P1)Y/σ̃

2.

The advantage of the score test is that this statistic only depends on the estimated
parameters under the model specified by the null hypothesis, and thus it requires fitting
only the null model.

In contrast to the score test, the advantage of the Wald test is that we only need to
fit the full model. In particular, let θ̂ = (σ̂2, α̂, β̂⊤)⊤ denote the maximum likelihood
estimate of θ under the full model. Define V (β̂) to be the variance-covariance matrix
of β̂ evaluated at θ̂, that is, the sn × sn submatrix of I−1

n (θ̂) corresponding to β. The
Wald test statistic is then defined as

TW = β̂⊤{V (β̂)}−1β̂.

In this work, we consider a slightly modified version of this statistic, where σ̂2 is re-
placed by the restricted maximum likelihood estimate σ̂2

REML = Y ⊤(In×n−PB)Y/(n−
sn − 1), rather than the usually used maximum likelihood estimate. In our simulation
study, we found that Wald test with the restricted maximum likelihood estimate for σ2

yields considerably improved results in terms of type I error, when the sample size is
small. For large sample sizes, the performance of the Wald test is similar for the two
types of estimates for σ2.

Next we consider the likelihood ratio test statistic. Usually, this statistic is defined
as −2{Ln(η̃, σ̃

2) − Ln(η̂, σ̂
2)} which simplifies to n log(σ̃2/σ̂2). Using the same

argument as in Wald test, in this case also, we use the restricted maximum likelihood
estimate for σ2 for both the null and the full model, and define a slightly modified
likelihood ratio statistic

TL = sn + n log(σ̃2
REML/σ̂

2
REML),

where σ̃2
REML = Y ⊤(In×n − P1)Y/(n − 1) is the restricted maximum likelihood

estimate for σ2 under the null model. Notice that one needs to fit both the full and the
null model to compute this test statistic.

Finally, we define the F test in terms of the residual sum of squares under the full
and the null models. In particular, define RSSfull = Y ⊤(In×n−PB)Y, and RSSred =
Y ⊤(In×n−P1)Y. to be the residual sum of squares under the full and the null models,
respectively. The F test statistic is then defined as

TF =
(RSSred −RSSfull)/sn
RSSfull/(n− sn − 1)

=
Y ⊤(P1 − PB)Y/sn

Y ⊤(In×n − PB)Y/(n− sn − 1)
.

Similar to the likelihood ratio test, computation of the F test statistic also requires fitting
of both the full and the null models.

The test statistics discussed above are based on the true functional principal compo-
nent scores. In practice, these scores are unknown and need to be estimated. Estimation
of the functional principal component scores has been previously discussed in the lit-
erature; for example Yao et al. (2005a), Zhang and Chen (2007). For completeness we
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summarize the common approaches in the Supplementary Material. There are various
approaches to estimate the number of functional principal component scores, sn. A
very popular approach in practice is based on the cumulative percentage of explained
variance of the functional covariates; commonly used threshold values are 90%, 95%,
and 99%. From a practical perspective, there are several packages that provide esti-
mation of the functional principal components scores. For example, refund package
(Crainiceanu et al., 2012), fda package (Ramsay et al., 2011), or PACE package in
MATLAB (Müller and Wang, 2012).

Once the truncation level sn and the functional principal component scores are
estimated, the testing procedures are obtained by substituting them with their corre-
sponding estimates. Specifically, let M̂ be matrix of the estimated functional principal
component scores, ξ̂ij defined analogously to M . The expressions of the four tests are
obtained by replacing M with M̂ . For the hypothesis testing, we not only need the
test statistics, but also the null distributions of the test statistics. Similar to testing in
linear model, we use chi-square with degree of freedom of sn as the null distribution
for TW , TS and TL and use F with degrees of freedom sn and n − sn − 1 as the null
distribution for TF . In the next section, we show indeed that one can approximate the
null distributions by the above traditional ones under linear model settings despite the
fact that we truncate the number of functional principal component scores and plug in
the estimates instead of the true scores.

3 Theoretical results
As discussed in Section 2, the tests considered - Wald, score, likelihood ratio, and F -
resemble their analogue for multivariate covariates, with a few important differences:
1) the number of true functional principal components, sn, is not known and thus it
is approximated, and 2) the functional principal component scores ξij are not directly
observable. In this section, we develop the asymptotic distribution of the tests, when the
truncation sn diverges with the sample size n and the functional principal component
scores are estimated using the methods discussed in Section 2. The results are presented
for the score, likelihood ratio and F tests only; the asymptotic properties of the Wald
test follow trivially from the results of Müller and Stadtmüller (2005).

First, we present the results of the asymptotic distribution of the test statistics under
H0; all the proofs are included in the Supplementary Material. We begin with introduc-
ing some notation. For any two random variables, Hn and Gn, where the subscript is to
point their dependence on sample size n, define Hn ↪→ Gn if P (Hn ≤ x)− P (Gn ≤
x) → 0, as n → ∞. Moreover define Hn ∼ Gn if P (Hn ≤ x) = P (Gn ≤ x). In the
following we use TS for the score statistic, TL for the likelihood ratio test, and TF for
the F test statistic.

Theorem 1 Assume model (1) holds. Then, if the null hypothesis, that β(t) = 0 for all
t, is true, we have that: (i) TS ↪→ χ2

sn , (ii) TL ↪→ χ2
sn , and (iii) TF ∼ Fsn,n−sn−1.

The assumptions required by Theorem 1 are mild and require Xi ∈ L2(T ) and
sn < n. This finding is not surprising, since the null distribution of the tests is derived

7



using the true model, i.e. β(·) ≡ 0, and thus it is not affected if the estimated func-
tional principal component scores are used instead of the true ones. Thus, under the
null hypothesis and conditioning on the number of functional principal components,
the distributions of these test statistics are similar to their counterparts in multiple re-
gression. In particular, for fixed truncation value sn, the null distribution of the F test
statistic is exactly Fsn,n−sn−1 and the null distribution of the score test and the likeli-
hood ratio test statistic is χ2

sn .
Next, we consider the distribution of the tests under the alternative distribution

Ha : β(·) = βa(·) for some known real-valued function βa(·) defined on T . When the
sampling design is dense, we show that the asymptotic results from classical regression
continue to hold, and thus estimating the functional principal component scores adds
negligible error. Intuitively this can be explained by the accurate estimation of the
functional principal component scores: in the dense design, the score estimators have
convergence rate of order OP (n

−1/2) (Hall and Hosseini-Nasab, 2006). However,
when the design is sparse, the estimation of the functional principal component scores
has a lower performance; for example the estimators of the scores have a convergence
rate of order oP (1) (Yao et al., 2005a). Thus the asymptotic distribution of the tests
under alternative is different, and the results are far from obvious. In the sparse case
we investigate the alternative distribution of the tests only empirically, via numerical
simulation.

We begin with describing the assumptions required by our theoretical develop-
ments. Throughout this section, let µi = E{Yi | Xi(·)} =

∫
Xi(t)βa(t)dt, µ =

(µ1, . . . , µn)
⊤, and, with a slight abuse of notation, let C denote a generic constant

term.

(A) The number of principal components selected, sn, satisfies λ−4
sn s3nδ

−1
sn n−1/2 =

o(1), where λsn is the smallest eigenvalue and δsn is the smallest spacing between any
two adjacent eigenvalues λj and λj+1 for 1 ≤ j ≤ sn.

Condition (A) concerns the divergence of the number of functional principal com-
ponent with n. Specifically, it is assumed that this divergence also depends on the
smallest eigenvalue and the spacing between adjacent eigenvalues. In particular, when
the true number of functional principal components is assumed finite Li, Wang, and
Carroll (2010), then this condition is met. Our assumption allows sn to be diverging,
but at a much slower rate than n. In fact, by requiring that the spacing between ad-
jacent eigenvalues is not too small, for example λj − λj+1 ≥ j−α−1 for j ≥ 1 and
some α > 1 (Hall and Horowitz, 2007), then condition (A) holds if we assume that
s10α+8
n = o(n). An example when the latter condition is met is sn = O(log(n)).

(B1) For all C > 0 and some ϵ > 0,

sup
t∈T

{E | Xi(t) |C} < ∞

sup
t1,t2∈T

(E[{| t1 − t2 |−ϵ| Xi(t1)−Xi(t2) |}C ]) < ∞.

(B2) For each integer r ≥ 1, λ−r
j E(

∫
T [Xi(t)−E{Xi(t)}]ϕj(t)dt)

2r is bounded uni-
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formly in j.
(B3) Let X̃i(·) be the centered version of Xi(·) to have null mean function, i.e. X̃i(t) =

Xi(t) − E{Xi(t)}. Assume R(t1, t2, t3, t4) = E{X̃i(t1)X̃i(t2)X̃i(t3)X̃i(t4)} −
K(t1, t2)K(t3, t4) exists and is finite, for t1, t2, t3, t4 ∈ T .
Conditions (B1)-(B3) are common in functional data analysis; see Hall and Hosseini-
Nasab (2006) and Li et al. (2010). For example, (B1) and (B2) are met when we have
a Gaussian process with Hölder continuous sample paths (Hall and Hosseini-Nasab,
2006).

(C1) The observed time points tik are independent identically distributed random de-
sign points with density function g(·), where g is bounded away from 0 on T and is
continuously differentiable.
(C2) max

2≤k≤mi

{tik − ti(k−1)} = O(m−1), where m = mini mi.

(C3) m ≥ Cnκ, with κ > 5/4.
(C4)

∑∞
j=1 λjβ

2
ja < ∞.

Conditions (C1)-(C4) regards the sampling design and the regression parameter β(·).
In particular, (C2) and (C3) are standard for a regular dense design; see for example Li
et al. (2010).Condition (C4) is mild; for example it suffice to have

∫
E{X2

i (t)}dt < ∞
and || βa(·) ||< ∞ in order for (C4) to hold.

The following result presents the asymptotic distribution of the score test statis-
tic, TS , the likelihood ratio test, TL, and the F test statistic, TF , under the alternative
hypothesis. The results are restricted to a dense sampling design.

Theorem 2 Assume model (1) holds. Furthermore assume the conditions (A),(B1)-
(B3),(C1)-(C4) are met. Then under the assumption that Ha : β(·) = βa(·) is true,
we have: (i) TS ↪→ χ2

sn(Λn), (ii) TL ↪→ χ2
sn(Λn), and (iii) TF ↪→ Fsn,n−sn−1(Λn),

where Λn = nϑ(1 + o(1)) with ϑ =
∫
βa(t1)βa(t2)K(t1, t2)dt1dt2.

The proof is included in the Supplementary Material. Our theoretical development
uses the approach of “smoothing first, then estimation” described in Zhang and Chen
(2007), where each noisy trajectory is first smoothed individually, using local polyno-
mial kernel smoothing with a global bandwidth. It is assumed that the kernel bandwidth
h satisfies h = O(n−κ/5), where n is the sample size and κ is specified in (C3); see
also Li et al. (2010).

Corollary 1 Theorem 2 can be used for sample size calculation. We briefly illus-
trate the ideas using the F test, TF . Let K be the covariance function of the func-
tional covariates Xi determined as K(t1, t2) =

∑
j≥1 λjϕj(t1)ϕj(t2) and let s be

the leading number of eigenfunctions corresponding to some cummulative explained
variance threshold, say 99%. Also, assume the true regression parameter function is
β(·) = βa(·), for βa(t) ̸= 0 for some t ∈ T . Then, the asymptotic distribution of TF

corresponding to a sample size n is approximately F with degrees of freedom s and
n− s− 1 respectively and non-centrality parameter nΛa, denoted by Fs,n−s−1(nΛa),
where Λa =

∫
βa(t1)βa(t2)K(t1, t2)dt1dt2. It follows that, if F ∗

α,s,n−s−1 denotes the
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critical value corresponding to right tail probability of α under the F distribution with
degrees of freedom s and n − s − 1 respectively, then for sample size n, the power
can be calculated as P{Fs,n−s−1(nΛa) > F ∗

α,s,n−s−1}. Therefore, for a power level
equal to p0 and specified level of significance α, one can find an appropriate sample
size to detect the effect βa by solving P{Fs,n−s−1(nΛa) > F ∗

α,s,n−s−1} ≥ p0 for n.
In practice, the true coefficient function βa(·) and covariance function K(·, ·) can be
estimated from prior studies. Section 6.2 illustrates an excellent performance of the
asymptotic power curves for the F test in finite samples, and employs these ideas for
the calculation of sample sizes.

4 Extension to partial functional linear regression
Often, of interest, is to investigate the association between a scalar response and a
functional covariate, while accounting for other covariate information that is available.
For example, in our tractography study the interest is to test for the association between
the cognitive score of multiple sclerosis patients and their fractional anisotropy along
the white matter tract by accounting for the patients’ sex and age; see Section 5.1 for
details. Thus model (1) cannot be used per se; however it can be modified to account
for additional covariates.

More generally, we define the following modeling framework. Let the observed
data be [Yi, {Wij , tij , j = 1, . . . ,mi}, Zi]i where Yi and Wij = Wi(tij) are the re-
sponse and the noisy functional predictors, respectively, like in Section 2, and Zi is a
vector of covariates for subject i. We consider the partial functional linear model

Yi = Z⊤
i α+

∫
T
Xi(t)β(t)dt+ ϵi, (6)

where Xi(·) is the true functional predictor, β(·) is the interest parameter function and
α is (p+1)-dimensional vector of nuisance parameters. For notation simplicity assume
that the first element of Zi is 1. This model has been studied by Shin (2009) and Li
et al. (2010).

The objective is to test the hypothesis H0 : β(t) = 0 for all t, by accommodating
nuisance parameters using the modeling framework (6). The four testing procedures
can be easily extended to this setting. As in Section 2.2, the approach is based on using
a pseudo-model, obtained by approximating the model using a truncated number sn
of the functional principal component scores. Let Z be the n × (p + 1) dimensional
matrix obtained by row-stacking ZT

i , and let M be the n × sn dimensional matrix of
the functional principal component scores as defined in Section 2.2. Then conditional
on the truncation level and the true functional principal component scores, the pseudo
log likelihood function can be written as Ln(σ

2, α, β) = −(n/2) log(2πσ2) − (Y −
Zα−Mβ)⊤(Y −Zα−Mβ)/(2σ2) which resembles to (5) with the modification that
the 1n vector is replaced by the matrix Z.

The score function and the information matrix can be derived accordingly; the
Wald, likelihood ratio and F test statistics follow easily. In particular, the maximum
likelihood estimate of σ2 is σ̃2 = Y ⊤(In×n−PZ)Y/n, and the constrained maximum
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likelihood estimate of σ2 is σ̂2 = Y ⊤(In×n − PB)Y/n, where B = [Z,M ] is de-
fined correspondingly to this setting. Furthermore, the score test statistic is given by
TS = Y ⊤(PB −PZ)Y/σ̃

2. Here PB and PZ denote the projection matrices for B and
Z respectively and, for completeness, are included in the Supplementary Material.

In practice the tests statistics are calculated based on the estimated functional prin-
cipal component scores, and thus based on the estimated design matrix M̂ , as detailed
in Section 2.2. The asymptotic distribution of these test statistics under the null hy-
pothesis that β(·) ≡ 0 can be easily derived following similar arguments to Theo-
rem 1, irrespective of the sampling design for the functional covariates. Specifically,
the null distribution of TW , TS and TL is χ2

sn , while the null distribution of TF is
Fsn,n−sn−(p+1), where the degrees of freedom are changed from (1) to account for the
dimension of the nuisance parameter.

5 Real data application

5.1 The Diffusion Tensor Imaging data
Consider our motivating application, the Diffusion Tensor Imaging (Diffusion Tensor
Imaging) tractography study, where we investigate the association between cerebral
white matter tracts in multiple sclerosis patients and cognitive impairment. The study
has been previously described in Goldsmith et al. (2011); Greven et al. (2010); Staicu
et al. (2011), and we discuss it briefly here. Multiple sclerosis is a demyelinating au-
toimmune disease that is associated with lesions in the white matter tracts of affected
individual and results in severe disability. Diffusion Tensor Imaging is a magnetic res-
onance imaging technique that allows the study of white matter tracts by measuring
the diffusivity of water in the brain: in white matter tracts, water diffuses anisotropi-
cally in the direction of the tract. Using measurements of diffusivity, Diffusion Tensor
Imaging can provide relatively detailed images of white matter anatomy in the brain
(Basser et al., 1994, 2000). Some measures of diffusion are fractional anisotropy, and
parallel diffusivity among others. For example, fractional anisotropy is a function of
the three eigenvalues of the estimated diffusion process that is equal to zero if water
diffuses perfectly isotropically, such as Brownian motion, and to one if water diffuses
anisotropically, such as for perfectly organized and synchronized movement of all wa-
ter molecules in one direction. The measurements of diffusion anisotropy are obtained
at every voxel of the white matter tracts; in this analysis we consider averages of wa-
ter diffusion anisotropy measurements along two of the dimensions, which results in a
functional observation with scalar argument that is sampled densely along the tract.

Here we study the relationship between the fractional anisotropy along the two well
identified white matter tracts, corpus callosum and left corticospinal tracts, and the
multiple sclerosis patient cognitive function, as measured by the score at a test, called
Paced Auditory Serial Addition Test. Specifically, each multiple sclerosis subject is
given numbers at three second intervals and asked to add the current number to the
previous one. The score is obtained as the total number of correct answers out of 60.

The study, in its full generality, comprises 160 multiple sclerosis patients and 42
healthy controls observed at multiple visits spanning up to four years. For each subject,
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at each visit, are recorded: diffusion anisotropy measurements along several white
matter tracts at many hospital visits, as well as additional information such as age,
gender and so on. In this analysis we use the measurements obtained at the baseline
visit. Because Paced Auditory Serial Addition Test was only administered to multiple
sclerosis subjects, we limit our analysis to the multiple sclerosis group. Few subjects
do not have Paced Auditory Serial Addition Test scores recorded and they are removed
from the analysis, leaving 150 multiple sclerosis patients in the study. Part of these data
is available in the R-package refund (Crainiceanu et al. (2012)). For illustration,
Figure 1 shows the fractional anisotropy along the corpus callosum (left panel) and
corticospinal tracts (middle) tracts, and the Paced Auditory Serial Addition Test scores
(right panel) for all the subjects in the study. Depicted in solid black/solid gray /dashed
black are the fractional anisotropy measurements of three different subjects, with each
line type representing a subject. Our goal is to test for association between the Paced
Auditory Serial Addition Test score in multiple sclerosis patients and the fractional
anisotropy along either corpus callosum tract or the left corticospinal tracts tract, while
accounting for age and gender.

Consider first the corpus callosum tract, which has an important role in the cog-
nition function. Fractional anisotropy is measured at 93 locations along this tract: the
measurements include missingness and measurement error. Using our notation, let Wij

denote the noisy fractional anisotropy observed at location tij for the ith subject, Zi is
the three-dimensional vector encompassing the intercept, the subject’s age and gender,
and let Yi be the Paced Auditory Serial Addition Test score of the ith multiple sclerosis
patient. We assume a partial functional linear model for the dependence between the
Paced Auditory Serial Addition Test score and true the fractional anisotropy along the
corpus callosum tract of the form (6), where Yi and Zi are defined above, and Xi(·)
is the underlying smooth fractional anisotropy defined on T = [0, 93]. Here β(·) is
a parameter function and main parameter of interest, describing a linear association
between the fractional anisotropy and the Paced Auditory Serial Addition Test score,
and α is a vector parameter accounting for a linear covariate effect. For simplicity, the
age is standardized to have mean zero and variance one and the fractional anisotropy
profiles are mean de-trended to have, at each location, mean zero across all the sub-
jects. We are interested in testing the null hypothesis that the parameter function β(·)
is equal to zero.

As discussed in Section 2 the preliminary step of the hypothesis testing is the esti-
mation of the subject specific functional principal component scores corresponding to
the fractional anisotropy profiles along the corpus callosum tract. We use functional
principal component analysis through conditional expectation Yao et al. (2005a), and
select the number of eigenfunctions using the cumulative explained variance. The re-
sults yield that 5 eigenfunctions are required to explain 90% of the variability in the
data, while 15 are required to explain 99% of the variability. For stability reasons, we
take a more conservative approach and select the number of eigenfunctions using 90%
cumulative explained variance. Then we test whether the coefficient function β(·) is
zero along these directions, by accounting for age and gender effects using the methods
discussed in Section 2.2. The p-value reported by the F statistic equals 2.33 × 10−4

indicating very strong evidence of association. This result is consistent across the other
testing procedures: the likelihood ratio test p-value is 1.57× 10−4, the Wald p-value is
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1.03× 10−4, while the score p-value is 3.42× 10−4.
Next, consider the left corticospinal tracts tract, and investigate the association

between the true fractional anisotropy along this tract and the cognitive disability as
measured by the Paced Auditory Serial Addition Test score. Fractional anisotropy is
measured at 55 locations along the corticospinal tracts tract; the missingness along this
tract is notably larger than along the corpus callosum tract. We assume a similar par-
tial functional linear model to relate the underlying smooth fractional anisotropy along
the corticospinal tracts tract and the Paced Auditory Serial Addition Test performance
and test for no relationship between them. As before, we first apply functional prin-
cipal component analysis, select the number of eigenfunctions using 90% explained
variance (which results to 8 eigenfunctions) and estimate the functional principal com-
ponent scores. The percentage of explained variance was again selected for stability
reasons; in particular 99% variability is explained by 15 eigenfunctions. Using the
methods discussed in the paper to assess the testing hypothesis of no relationship we
obtain a p-value of 0.0285 using F test (0.0233 with likelihood ratio test, 0.0223 using
Wald and 0.0293 with score test statistic). The results show that there is significant
relationship between the cognitive function as assessed by Paced Auditory Serial Ad-
dition Test and the corticospinal tracts tract, as measured by fractional anisotropy at
level of significance 5%.

Overall, our findings corroborate the specialists prior expectations that the cognitive
function is associated with the corpus callosum tract, as well as point out surprising
association of the cognitive function with the corticospinal tract. Interestingly, both
findings are in agreement with Swihart et al. (2013), who used the fractional anisotropy
along the two tracts of the multiple sclerosis subjects measured at all the available
hospital visits and a restricted likelihood ratio-based testing approach.

5.2 The Microsoft Xbox auction data
Next, we consider an application from electronic commerce (eCommerce) field. The
eBay auction data set (Wang, Jank, and Shmueli, 2008) consists of time series of bids
placed over time for 172 auctions for Microsoft Xbox gaming systems, which are
very popular items on eBay. For each auction, the associated time series is composed
of bids made by users located at various geographical locations, and thus it shows
very uneven features. In addition, the time between the start and the end of an auc-
tion varies across auctions, and furthermore the actions duration varies across actions.
Nevertheless, as Jank and Shmueli (2006) argues “bidding in eBay auctions tends to be
concentrated at the end, resulting in very sparse bid-arrivals during most of the auction
except for its final moments, when the bidding volume can be extremely high”. The
dynamics of the bids has attracted large interest, especially in the literature of func-
tional data (Liu and Müller, 2008). Here we investigate whether the dynamics of the
bids in the first part of the auction duration is related to the auction’s closing price.

To handle the challenge of different starting times and durations of the auctions, we
think of the bids for an action as varying with the percentile of the auction length (see
also Jank and Shmueli (2006)). For example if an auction has a length of 7 days, then
the bid placed in the 5th day from the starting time corresponds to 71.4 percentile of the
auction’s duration. Here we focus on the bids placed in the first 71.4% of the auction’s
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Figure 1: Fractional anisotropy profiles along corpus callosum (left) and corticospinal
tracts (middle) and the associated Paced Auditory Serial Addition Test scores (right
panel) in the group of multiple sclerosis patients. Depicted in different colors and
line/symbols styles are the measurements of three subjects.
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duration, and study whether their dynamics influences various measures of the closing
price of the auction. To be specific define the formation of the price during the first
71.4% of duration of an action as the process of interest observed with noise. Using the
notation in Section 2, let Wij denote the bid placed for action i at the 100×tij percentile
of the auction’s length, where tij ∈ [0, .714], and assume that Wij represents the true
auction’s price Xi(tij) observed at 100 × tij percentile with noise. We investigate
whether the underlying partial auction curve influences: (1) the relative change in the
final price of the auction, and (2) the rate of change in the final price.

Before we tackle these two important problems we carefully examine the data. A
close inspection confirms that most auctions have a duration of at least 7 days and
thus the auctions with length less than 7 days are removed. Also we remove all the
auctions for which there is only one bid in the first 71.4% of the auction duration. The
remaining data set contains bids from 125 Xboxes auctions. Moreover, for very action,
the number of bids placed in the first 71.4% of the auction’s duration, varies between
2 to 14. Our analysis regards the observed partial auction curve as a noisy functional
predictor observed at sparse and irregular time points in T = [0, .714].

For the first objective, the response for each action i, is taken as the relative change
in the final price, as defined as Yi = (Vi −Wimi)/Wimi , where Vi is the final auction
price, Wimi is the bid placed at the largest percentile less than or equal to 71.4 for
auction i. We assume that the relation between the underlying partial auction curve and
the relative change in the final price is modeled using a functional linear model of the
form (1) and are interested to test that there is no association between them. We apply
the methods outlined in Section 2, and in particular we begin with a functional principal
component analysis for sparse sampling design through conditional expectation (see
(Yao et al., 2005a)). The top four eigenfunctions are required to explain 99% explained
variance and the functional principal component scores are estimated using conditional
expectation. Then we perform the test statistics: the p-value reported by the F statistic
equals 5.5× 10−4 indicating very strong evidence of association. This result is similar
for the other testing procedures: the likelihood ratio test p-value is 4.2 × 10−4, the
Wald p-value is 2.7× 10−4, while the score p-value is 8.3× 10−4.

Next, we turn to the second objective, and re-define the response for each action i,
as the rate of change in the final price. Specifically let Yi = (Vi −Wimi

)/(1− timi
),

where Vi and Wimi are defined as above, and 100 × timi is the percentile of the ith
auction’s length corresponding to Wimi . The interest is to test that there is no asso-
ciation between the rate of change in the final auction’s price and the the underlying
partial auction curve. We use the estimated functional principal component scores ob-
tained earlier and test the hypothesis of no association via the four testing procedures.
We find that the p-values for the F, score, likelihood ratio test, Wald tests are 0.0011,
0.0015, 0.0006 and 0.0009 respectively, indicating significant association. In conclu-
sion, our analysis provides novel insights into the bidding dynamics: namely that the
bidding trajectory during the first 71.4% of an auction’s length is associated with both
the relative change of the final auction price as well as its rate of change.
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6 Simulation study
The performance of the Wald, score, likelihood ratio test and F tests in terms of type-I
error and power is investigated in a simulation experiment. First we consider a func-
tional linear model and study the tests performance under various sample sizes and
sampling designs for the functional covariate (Section 6.1). Moreover, we illustrate
how to use the asymptotic alternative distribution of the tests to calculate the ideal
sample size to detect a specified alternative (Section 6.2). Finally, we consider a par-
tial functional linear model, in an attempt to mimic the Diffusion Tensor Imaging data
generation process, and evaluate the tests performance, when the model is misspecified
(Section 6.3).

6.1 Functional linear model
The underlying generating process for the ith functional covariate is Xi(t) =

∑
j≥1 ξijϕj(t),

where ξij are generated independently as N(0, λj), for λ1 = 16, λ2 = 12, λ3 = 8,
λ4 = 4, λ5 = 2, λ6 = 1 and λk = 0 for k ≥ 7. Also ϕk are Fourier basis
functions on [0, 10] defined as ϕ1(t) = cos(πt/10)/

√
5, ϕ2(t) = sin(πt/10)/

√
5,

ϕ3(t) = cos(3πt/10)/
√
5, ϕ4(t) = sin(3πt/10)/

√
5, ϕ5(t) = cos(5πt/10)/

√
5,

ϕ6(t) = sin(5πt/10)/
√
5, 0 ≤ t ≤ 10. The observed functional covariate is taken

as Wi(t) = Xi(t) + ei(t), where the measurement error process ϵi is assumed Gaus-
sian with mean zero and covariance cov{ei(t), ei(s)} = I(t = s).

We consider there types of sampling designs for the functional covariate.

• Design 1: (Dense design). The observed points on each curve are an equally
spaced grid of 300 points in [0, 10].

• Design 2: (Moderately sparse design with a few points). The number of points
per curve, mi, is moderate and varies across subjects. Specifically, mi is chosen
randomly from a discrete uniform distribution on {5, 6, 7, 8, 9, 10}. Each curve
is assumed to be observed at mi points that are randomly selected from the set
of 501 equally spaced points in [0, 10].

• Design 3: (Very sparse design). The number of points per curve is small and
varies across subjects. Similar generating process of the sampling points as De-
sign 2, with exception that the number of measurements mi is chosen from a
discrete uniform distribution on {2, 3, 4}.

The response Yi is generated from model (1), where Xi(·) are generated as above,
ϵi ∼ N(0, 1) and the coefficient function β(·) is equal to

βc(t) = c{1 + exp (1− 0.1t)}−1, (7)

where c ≥ is a parameter that controls the departure from the null function. The per-
formance of the tests was assessed in testing the hypothesis H0 : β(·) ≡ 0, when the
sample size increases from 50 to 500. For Type I error rate performance we consider
data generated from the above model when β(·) = 0 corresponding to c = 0. For
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power performance we consider β(·) = βc(·) corresponding to c > 0 for c taking
values in grid of 12 equally spaced points in [0.02, 0.1].

The four tests were calculated as described in Section 2, after having estimated
the functional principal component scores as a preliminary step. For the latter, the
estimation of the functional principal component scores was obtained using the Matlab
package, PACE, available at http://anson.ucdavis.edu/∼ntyang/PACE. The number of
functional principal components is selected such that the cumulative explained variance
is 99%; other threshold levels have been also investigated, and the results remained in
general unchanged. We used 5000 simulated data sets are used to estimate the Type I
error rate and 1000 simulated data sets to estimate the power.

The results are presented in Figure 6.1, and correspond to fixing the level of signif-
icance at 5%. Figure 6.1 (a) shows the performance of the tests with respect to Type
I error rate for various sampling designs and as the sample size increases from 50 to
500. In particular, F test gives reasonable type-I errors for all the designs and various
sample sizes. The score test seems to be somewhat conservative for small samples for
all the sampling designs, while Wald and likelihood ratio test indicate an inflated type-I
error for small and moderate sample sizes (n = 50 or n = 100). For large sample size
(n = 500), all of the tests give type-I error rates close to the nominal level.

Figure 6.1 (b)-(d) display the power performance of the tests for the dense sampling
design and various sample sizes. The tests have comparable power for all sample sizes
investigated. The results are similar for the other two designs and are included in
the Supplementary Material: as expected, the power of the tests decreases with the
sparseness of the design.

6.2 Sample size calculation
In this section we discuss how to employ the asymptotic distribution of the tests under
the alternative hypothesis to calculate appropriate sample sizes for detection of the
effect, when both the power and the precision are a priori specified. This research
direction is novel and has not been addressed hitherto in the literature of functional
data analysis. We begin by assessing the accuracy of the asymptotic distribution of
the tests under the alternative hypothesis in finite sample sizes. The intuition is that if
the alternative asymptotic distribution of a test has good performance in finite samples,
then this distribution can be used for sample size calculation, just as in typical linear
regression.

Consider model (1) where the response Yi is generated as described in the previ-
ous section, and the covariate Xi is observed at dense design (Design 1). Also the
true regression parameter function is β(·) = βc(·), for c > 0, where the scaling pa-
rameter c controls the departure of the parameter function βc(·) from the null func-
tion. The results focus on the F test, TF , employed for testing the null hypothesis
H0 : β(·) = 0. The theoretical power of the test can be calculated using Theorem 2,
and following the approach outlined in Section 3. In particular, for sample size n,
the power curve, as a function of c, can be approximated by P{Fs,n−s−1(nΛc) >
F ∗
α,s,n−s−1}, where Fs,n−s−1(nΛc) denotes F distribution with degrees of freedom s

and n − s − 1, respectively, and non-centrality parameter nΛc, F ∗
α,s,n−s−1 denotes
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Figure 2: Panel (a) shows the estimated type I error (depicted as the height of the bars)
for all the four tests in nine settings obtained from combining three sampling designs
and sample sizes when the nominal level is 5% (horizontal dashed red line). The bars
are first grouped according to the sample size (50, 100, and 500, labeled by the digits 1,
2, and 3 respectively on the horizontal axis), and then separated by designs (Design 1,
Design 2, and Design 3). Panel (b),(c) and (d) correspond to the changes of the power
for Design 1, sample size 50, 100, and 500 respectively.
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Figure 3: Panel (a) shows the empirical (dashed line) and theoretical (solid) power
curves for Design 1, and different sample sizes. Panel (b) displays theoretical power
curves corresponding to several sample sizes: 50, 100, 150, 200, 300, 400, 500 (from
bottom to top).

the critical value corresponding to right tail probability of α under Fs,n−s−1(0), and
Λc =

∫
βc(t1)βc(t2)K(t1, t2)dt1dt2.

Figure 6.2 (a) displays the power of the F test, as a function c, when the level of
significance is fixed at 5%. Empirical and theoretical power curves are compared for
varying sample sizes, n = 50, n = 100 and n = 500. The empirical power curves
(dashed lines) are basically the power curves of the F test that are shown in Figure 6.1
panels (b)-(d) and restricted to the domain (0, 0.10]. Theoretical power curves (solid
lines) are calculated using R software to compute various probabilities and quantiles
corresponding to F distribution of various degrees and different values for the non-
centrality parameter.

For fixed sample sizes, the theoretical and empirical power curves are very close,
indicating that the asymptotic distribution of the F test under alternative is reliable for
calculation of sample sizes. For example, consider model (1), assume that there is a
linear association between the response and the functional covariate, and that the true
regression parameter is β(·) = β0.08(·). Then, corresponding to a power level of at
least 80%, the smallest sample size at which one can detect significant association at
tolerance level of 0.05 is n = 150. In Figure 6.2 (b) this is represented by tracing up the
vertical line at c = 0.08 that corresponds to parameter function β0.08(·) to intersect the
power curves of different sample size, at different power levels. The smallest sample
size at which the power level is at least 80% is the desired sample size.

The sample size calculation is illustrated on the F test, mainly because the alter-
native asymptotic distribution of this test is very accurate, even for smaller samples.
For the Wald, score, and likelihood ratio tests, close agreement between the asymptotic
and empirical power approximations occurs when the sample size is large. Because of
these considerations, our recommendation is to use F test for sample size calculations.
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6.3 Partial functional linear model
Next, we investigate the performance of the tests in a partial functional liner model set-
ting that mimics the Diffusion Tensor Imaging data generation process, and we study
the robustness of the results when the distribution of the errors is not Gaussian. In par-
ticular consider the case-study, where of interest is the association between the Paced
Auditory Serial Addition Test score and the fractional anisotropy profiles along the
corpus callosum tract in multiple sclerosis, while accounting for the gender and age of
the patients; see Section 5.1. We analyze these data using the partial functional linear
model approach discussed in Section 4; in the interest of space, the model components
estimates are given in the Supplementary Material. We use these estimates to perform
a simulation experiment for partial functional linear model.

The estimated eigenfunctions and eigenvalues, are used to obtain the generating
process for the underlying functional covariates {Xi(t) : t ∈ [0, 93]}. The noisy
observations Wij corresponding to points tij ∈ [0, 93] are obtained by contaminating
Xi(tij) with Gaussian measurement error that has mean 0 and variance equal to the
estimated variance of the noise in the study; it is assumed a regular dense design for
tij’s. The additional covariates are taken as the gender and the centered and scaled age
of the patients in the study. The response Yi is generated from the partial functional
linear model (6) for α = α̃, β(t) = cβ̃(t), where c ≥ 0, α̃ and β̃(·) are the estimated
effects from the data analysis. The sample size is set to n = 150, the total number
of patients in the application. Two settings for the distribution of the random noise ϵi
are considered: (i) ϵi ∼ N(0, 144), (ii) ϵi ∼

√
48t3, where the variance of the noise

is equal to the estimated analogue in the application. The objective of this experiment
is to study the performance of the four tests for testing the null hypothesis that H0 :
β(·) ≡ 0.

The four tests are applied, as discussed in Section 2, where for consistency with the
real data analysis, the number of functional principal components is selected using a
threshold level of 90% for the cumulative explained variance. Type I error is estimated
based on 5000 simulations when data are generated under the assumption that β(·) ≡ 0,
and the power is estimated based on 1000 simulations when data are generated under
the assumptions that β(·) = cβ̃(·) for c > 0, for various values of c.

Table 1 gives the results separately for the two models for the error distribution,
when the significance level is 5%. Overall it appears that all the tests are robust to the
model mispecification: both the Type I error rate and various powers of the tests seem
to be similar under the two error distributions considered. Furthermore, the Type I error
rates are close to the nominal level for the score and F tests, while they seem some-
what inflated for the Wald and the likelihood ratio tests. All the tests have comparable
powers.
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Table 1: Percentage of rejected tests at 5% significance level. The results are based on
5000 simulated data sets for Type I error and 1000 simulated data sets for power.

Model Type of test c = 0 0.2 0.4 0.6 0.8 1
Normal Score 5.4 11.6 32.2 67.2 91.0 98.6

Wald 5.8 12.1 33.1 67.9 91.3 98.8
Likelihood Ratio 5.8 12.3 33.3 68.1 91.3 98.8

F 5.1 11.2 31.4 66.7 90.8 98.6
t Score 5.3 12.3 39.5 74.9 93.0 98.0

Wald 5.7 12.8 40.2 75.6 93.5 98.0
Likelihood Ratio 5.7 12.9 40.2 75.7 93.5 98.0

F 5.1 11.9 39.1 74.5 92.8 97.9
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Supplementary material available includes details of the estimation of the functional
principal component scores, complete proofs of the two main theorems, the expressions
of the testing procedures for partial functional linear model, and additional simulations.
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