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Abstract We study various classical aspects of the Weyl
transverse (WTDiff) gravity in a general space-time dimen-
sion. First of all, we clarify a classical equivalence among
three kinds of gravitational theories, those are, the confor-
mally invariant scalar tensor gravity, Einstein’s general rela-
tivity and the WTDiff gravity via the gauge-fixing procedure.
Secondly, we show that in the WTDiff gravity the cosmolog-
ical constant is a mere integration constant as in unimodu-
lar gravity, but it does not receive any radiative corrections
unlike the unimodular gravity. A key point in this proof is to
construct a covariantly conserved energy-momentum tensor,
which is achieved on the basis of this equivalence relation.
Thirdly, we demonstrate that the Noether current for the Weyl
transformation is identically vanishing, thereby implying that
the Weyl symmetry existing in both the conformally invariant
scalar tensor gravity and the WTDiff gravity is a “fake” sym-
metry. We find it possible to extend this proof to all matter
fields, i.e. the Weyl-invariant scalar, vector and spinor fields.
Fourthly, it is explicitly shown that in the WTDiff gravity the
Schwarzschild black hole metric and a charged black hole
one are classical solutions to the equations of motion only
when they are expressed in the Cartesian coordinate system.
Finally, we consider the Friedmann–Lemaitre–Robertson–
Walker (FLRW) cosmology and provide some exact solu-
tions.

1 Introduction

The physical importance of Weyl (local conformal) symme-
try has not been clearly established in quantum gravity thus
far. It is usually believed that if the energy scale under con-
sideration goes up to the Planck mass scale, all elementary
particles, which are either massive or massless at the low
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energy scale, could be regarded as almost massless particles
where the Weyl symmetry would become a gauge symmetry
and play an important role. However, it is true that a concrete
implementation of the Weyl symmetry as a plausible gauge
symmetry in quantum gravity encounters a lot of difficulties.
For instance, if one requires an exact Weyl symmetry to be
realized in gravitational theories at the classical level, only
two candidate theories are deserved to be studied though they
possess some defects in their own right. The one theory is the
conformal gravity, for which the action is described in terms
of the square term of the conformal tensor. The conformal
gravity belongs to a class of higher derivative gravities so that
it suffers from a serious problem, i.e. violation of the unitar-
ity because of the emergence of massive ghosts, although it
has an attractive feature as a renormalizable theory [1,2].

The other plausible candidate as a gravitational theory
with the Weyl symmetry, which we consider in this article
intensively, is the conformally invariant scalar–tensor gravity
[3,4]. In this theory, a (ghost-like) scalar field is introduced in
such a way that it couples to the scalar curvature in a confor-
mally invariant manner. Even if this theory is a unitary theory
owing to the presence of only second-order derivative terms,
it suffers from a sort of triviality problem in the sense that
when we take a suitable gauge condition for the Weyl sym-
metry (we take the scalar field to be a constant), the action
of the conformally invariant scalar–tensor gravity reduces to
the Einstein–Hilbert action of Einstein’s general relativity. It
is therefore unclear to make use of the conformally invari-
ant scalar–tensor gravity as an alternative theory of general
relativity. Of course, the conformally invariant scalar–tensor
gravity is not a renormalizable theory like general relativity.

One reason why we would like to consider a gravitational
theory with the Weyl symmetry stems from the cosmologi-
cal constant problem [5], which is one of the most difficult
problems in modern theoretical physics. The Weyl symmetry
forbids the appearance of operators of dimension zero such
as the cosmological constant in the action so it is expected
that the Weyl symmetry might play an important role in the
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cosmological constant problem [6]. In this respect, a diffi-
culty is that the Weyl symmetry is broken by quantum effects
and its violation emerges as a trace anomaly of the energy-
momentum tensor [7,8]. Thus, the idea such that one utilizes
the Weyl symmetry as a resolution of the cosmological con-
stant problem makes no sense at the quantum level even if it
is an intriguing idea at the classical level.

Here a naive but natural question arises: Is the Weyl sym-
metry always violated by radiative corrections? We think that
it is not always so. What kind of the Weyl symmetry is not
broken? In a pioneering work by Englert et al. [9], it has been
clarified that the conformally invariant scalar–tensor gravity
coupled to various matter fields is free of Weyl anomaly when
the Weyl symmetry is spontaneously broken. This fact has
been investigated and certified by subsequent papers [10–18].
Related to this work, in this article, we wish to put forward
a new conjecture that the Weyl symmetry is not violated by
radiative corrections if it is a fake Weyl symmetry and it
is spontaneously broken. Here the word “fake” means that
the corresponding Noether currents [19] vanish identically
[6,20].

If our conjecture were really valid, we could have recourse
to the Weyl symmetry as a resolution to the cosmological con-
stant problem as follows: start with the conformally invariant
scalar–tensor gravity, and gauge-fix the longitudinal diffeo-
morphism instead of the Weyl symmetry, by which the ghost-
like scalar field can be removed from the physical spectrum,
so that the unitarity issue does not occur. Consequently, we
obtain the Weyl-invariant and transverse diffeomorphisms-
invariant gravitational theory. We then find that the remain-
ing Weyl symmetry is a fake symmetry, so it is not violated
by quantum corrections according to our conjecture. By a
detailed analysis, it turns out that this gravitational theory,
which we call Weyl transverse (WTDiff) gravity [21–27],
has a remarkable feature that the equations of motion can be
rewritten to the same form as the standard Einstein’s equa-
tions where the cosmological constant emerges as an inte-
gration constant as in unimodular gravity. In the unimodular
gravity [28–44], the unimodular condition is implemented
by using the Lagrange multiplier field, which plays a role as
the cosmological constant and receives huge radiative cor-
rections, so the cosmological constant problem is not solved.
On the other hand, in the WTDiff gravity, there is no con-
straint like the unimodular condition and the unbroken Weyl
symmetry severely prohibits the appearance of the cosmo-
logical constant. Hence, our conjecture would insist that in
the WTDiff gravity, the cosmological constant problem is
reduced to a mere problem of how to fix the initial value of
the cosmological constant, which is an important first step for
a resolution of the cosmological constant problem though we
still have the new problem of how to fix its initial value.

This paper is organised as follows: In Sect. 2, we clarify
the equivalence relation among three kinds of gravitational

theories, i.e. the conformally invariant scalar tensor grav-
ity, Einstein’s general relativity and the WTDiff gravity via
the gauge-fixing procedure. This equivalence makes it possi-
ble to construct a covariantly conserved energy-momentum
tensor and prove that the equations of motions in the WTD-
iff gravity can be transformed to the Einstein equations of
general relativity. The possibility of making such an energy-
momentum tensor comes from the fact that the underlying
theory behind the WTDiff gravity is the conformally invari-
ant scalar–tensor gravity which is generally covariant.

In Sect. 3, we show that the Noether current for the
Weyl transformation is identically vanishing, thereby imply-
ing that the Weyl symmetry existing in both the conformally
invariant scalar tensor gravity and the WTDiff gravity is a
“fake” symmetry. It is shown that it is possible to apply this
proof for all the Weyl-invariant matter fields. It is explic-
itly shown in Sects. 4 and 5 that in the WTDiff gravity
the Schwarzschild black hole metric and the charged black
hole one are classical solutions to the equations of motion
only when they are expressed in the Cartesian coordinate
system. In Sect. 6, we consider the Friedmann–Lemaitre–
Robertson–Walker (FLRW) cosmology and provide an exact
solution. The final section is devoted to discussions. Our nota-
tion and conventions are summarized in Appendix A. From
Appendix B to D, some proof and the details of calculations
are presented.

2 Equivalence among three gravitational theories

We will start by recalling the well-known recipe for obtain-
ing the conformally invariant scalar–tensor gravity from the
Einstein–Hilbert action of general relativity. The Einstein–
Hilbert action is of form in a general n space-time dimension
(we assume n �= 2 in this article).1

Ŝ = 1

2

∫
dnx

√
−ĝ R̂, (1)

where ĝμν is a metric tensor. (The “hat” symbol is put for
later convenience.) To let this action have the Weyl (local
conformal) symmetry, one introduces a scalar field ϕ and
supposes that the metric tensor ĝμν is composed of the scalar
field ϕ and a new metric field gμν as

ĝμν =
(

1

2

√
n − 2

n − 1
ϕ

) 4
n−2

gμν. (2)

The key observation is that the metric tensor ĝμν is invariant
under the following Weyl transformation:

gμν → g′
μν = �2(x)gμν, ϕ → ϕ′ = �− n−2

2 (x)ϕ, (3)

1 See Appendix A.1 for our notation and conventions.
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where �(x) is a scalar parameter. Next, substituting (2) into
the Einstein–Hilbert action (1) produces an action for the
conformally invariant scalar–tensor gravity2

S =
∫

dnx
√−g

[
n − 2

8(n − 1)
ϕ2R + 1

2
gμν∂μϕ∂νϕ

]
. (4)

Note that the scalar field ϕ is not normal but ghost-like owing
to the positive coefficient 1

2 , but it is not a problem since
the dynamical degree of freedom associated with ϕ can be
nullified by taking a gauge condition.

This recipe for introducing the Weyl symmetry to a theory
suggests that the Weyl symmetry obtained in this way might
be a fake symmetry and the scalar field ϕ be a spurion field
[20]. Indeed, as shown later, the Noether current for the Weyl
symmetry is identically vanishing for both local and global
Weyl transformations [6,20]. The physical property and the
importance of this fakeWeyl symmetry will also be discussed
later in dealing with the Noether currents.

Now let us invert the order of the above argument and
this time start with the conformally invariant scalar–tensor
gravity (4). It is easy to see that the gauge condition for the
Weyl symmetry

ϕ = 2

√
n − 1

n − 2
(5)

transforms the action (4) of the conformally invariant scalar–
tensor gravity into the Einstein–Hilbert action (1) of general
relativity (without the hat symbol).

An interesting gauge condition not for the Weyl symmetry
but for the longitudinal diffeomorphism is given by

ϕ = 2

√
n − 1

n − 2
|g|− n−2

4n , (6)

where we have defined |g| = −g because of g < 0. Here let
us examine this gauge condition (6) more closely. Under the
Weyl transformation (3), the RHS of Eq. (6) is transformed
as

2

√
n − 1

n − 2
|g|− n−2

4n → �− n−2
2 2

√
n − 1

n − 2
|g|− n−2

4n , (7)

which is the same transformation property as ϕ under the
Weyl transformation as seen in (3). Thus, the gauge condition
(6) does not break the Weyl symmetry. Instead, the gauge
condition (6) does break the longitudinal diffeomorphism as
explained in what follows: First, notice that with the gauge
condition (6) the metric tensor (2) reads

ĝμν = |g|− 1
n gμν. (8)

Taking the determinant of this metric reveals us that ĝμν is
the unimodular metric satisfying the unimodular condition

ĝ(x) = −1. (9)

2 See Refs. [45–48] for various applications of this action.

Given the unimodular condition (9), any variation of the uni-
modular metric gives rise to an equation

ĝμνδĝμν = 0. (10)

When one restricts the variation to be diffeomorphisms

δĝμν = ∇̂μξν + ∇̂νξμ = ĝμρ∂νξ
ρ + ĝνρ∂μξρ + ξρ∂ρ ĝμν,

(11)

with ∇̂μ and ξμ being the covariant derivative with respect to
the metric tensor ĝμν and an infinitesimal parameter, respec-
tively, Eq. (10) yields

∂μξμ = 0, (12)

where we have used

ĝμν∂ρ ĝμν = 2∂ρ

(
log

√
−ĝ

)
= 0, (13)

which comes from the unimodular condition (9). Equation
(12) implies that the full group of diffeomorphisms (Diff)
is broken down to the transverse diffeomorphisms (TDiff),3

thereby showing that the gauge condition (6) certainly breaks
the longitudinal diffeomorphism.

Inserting the gauge condition (6) to the action of the con-
formally invariant scalar–tensor gravity (4), one arrives at an
action of the Weyl transverse (WTDiff) gravity

S =
∫

dnxL

= 1

2

∫
dnx |g| 1

n

[
R+ (n−1)(n−2)

4n2

1

|g|2 g
μν∂μ|g|∂ν |g|

]
.

(14)

It is straightforward to derive the equations of motion
from this action. The detailed calculation is presented in
Appendix C by means of two different methods. Then the
equations of motion read

Rμν − 1

n
gμνR = T(g)μν − 1

n
gμνT(g), (15)

where the energy-momentum tensor T(g)μν is defined as

T(g)μν = (n − 2)(2n − 1)

4n2

1

|g|2 ∂μ|g|∂ν |g|

− n − 2

2n

1

|g|∇μ∇ν |g|, (16)

with ∇μ∇ν |g| = ∂μ∂ν |g| − 	
ρ
μν∂ρ |g|. Note that Eq. (15) is

purely the traceless part of the standard Einstein equations.
By an explicit calculation, it is possible to verify that the
action (14) and the equations of motion (15) are invariant
under the Weyl transformation (3) and the transverse group
of diffeomorphisms. The proof is given in Appendix B.

3 See Appendix B for more details of TDiff.
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The most important point associated with this energy-
momentum tensor (16) is that it is not covariantly conserved

∇μT(g)μν �= 0. (17)

This is because the WTDiff gravity action (14) is not invari-
ant under the full group of diffeomorphisms but only its
subgroup, that is, the transverse diffeomorphisms (TDiff).
However, our starting action (4) of the conformally invari-
ant scalar–tensor gravity is generally covariant, so it should
be possible to find an alternative energy-momentum tensor
which is covariantly conserved (see Appendix D).

To find the desired energy-momentum tensor, let us begin
by deriving the equations of motion of the conformally invari-
ant scalar–tensor gravity (4). The equations of motion for
the metric tensor gμν and the scalar field ϕ are, respectively,
given by

n − 2

8(n − 1)

[
ϕ2Gμν + (gμν� − ∇μ∇ν)(ϕ

2)
]

= 1

4
gμν∂ρϕ∂ρϕ − 1

2
∂μϕ∂νϕ (18)

and

n − 2

4(n − 1)
ϕR = �ϕ, (19)

where Gμν = Rμν − 1
2gμνR is the Einstein tensor and �ϕ =

gμν∇μ∇νϕ. Equation (19) is the equation of motion for the
spurion field ϕ so it is not an independent equation. Actually,
taking the trace part of Eq. (18) naturally leads to Eq. (19).
Thus, it is sufficient to take only the equations of motion (18)
into consideration.

Next, we will rewrite (18) as

Gμν = 1

ϕ2 (∇μ∇ν − gμν�)(ϕ2)

+ 8(n − 1)

n − 2

1

ϕ2

[
1

4
gμν∂ρϕ∂ρϕ − 1

2
∂μϕ∂νϕ

]

= Tμν, (20)

where we have defined a new energy-momentum tensor Tμν .
Since the Einstein tensor Gμν satisfies the Bianchi, identity

∇μGμν = 0, (21)

the new energy-momentum Tμν should satisfy the covariant
conservation law

∇μTμν = 0. (22)

Finally, substituting the gauge condition (6) into Tμν , one
has

Tμν = T(g)μν + n − 2

2n
gμν

×
[
−5n − 3

4n

1

|g|2 (∂ρ |g|)2 + 1

|g|∇ρ∇ρ |g|
]

. (23)

Note that the existence of the extra terms except T(g)μν

makes it possible to hold the covariant conservation law
(22). Indeed, it is straightforward to check that this energy-
momentum tensor (23) satisfies the covariant conservation
law (22) by a direct calculation. Another indirect but easy
proof is to consider the conservation law (22) in the local
Lorentz frame where gμν = ημν and ∂ρgμν = 0. Then we
can explicitly check that

∂μTμν =−n − 2

2n

1

|g|∂
μ∂μ∂ν |g|+ n − 2

2n

1

|g|∂
μ∂μ∂ν |g|=0,

(24)

which implies the conservation law (22) in a curved space-
time.

One remarkable feature of this energy-momentum tensor
Tμν is that there exists a nontrivial relation between Tμν and
T(g)μν

Tμν − 1

n
gμνT = T(g)μν − 1

n
gμνT(g), (25)

which stems from the fact that the actions of both the confor-
mally invariant scalar–tensor gravity and the WTDiff gravity
are invariant under the Weyl transformation. It is worthwhile
to stress that our findings (23) critically depend on the clas-
sical equivalence between the conformally invariant scalar–
tensor gravity and the WTDiff gravity. In other words, with-
out this equivalence, it would be difficult, if not impossible, to
construct the covariantly conserved energy-momentum ten-
sor (23) which also satisfies the important relation (25).

Now we are ready to show that the equations of motion of
the WTDiff gravity, Eq. (15), reproduce the standard Einstein
equations. To this aim, using Eq. (25), let us first replace the
RHS in Eq. (15) with its covariantly conserved counterpart

Rμν − 1

n
gμνR = Tμν − 1

n
gμνT . (26)

Taking the covariant derivative of this equation, and using
the Bianchi identity (21) and the covariant conservation law
(22), one obtains

n − 2

2n
∇μR = −1

n
∇μT . (27)

This equation says that R + 2
n−2T is a constant, which we

will call 2n
n−2�,

R + 2

n − 2
T = 2n

n − 2
�. (28)

Eliminating T from Eq. (26) in terms of Eq. (28), one can
reach the standard Einstein equations

Rμν − 1

2
gμνR + �gμν = Tμν. (29)

Although we have obtained the Einstein equations from
the equations of motion of the WTDiff gravity in this way,
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the cosmological constant � emerges as a mere integration
constant and has nothing to do with any terms in the action or
vacuum fluctuations. To put it differently, Eq. (26) does not
include the cosmological constant and the contribution from
radiative corrections to the cosmological constant cancels in
the RHS of Eq. (26), thereby guaranteeing the stability of the
cosmological constant against quantum corrections.

This feature of the emergence of the cosmological con-
stant as an integration constant is a common feature of the
WTDiff gravity and the unimodular gravity [28–44]. How-
ever, there is an important difference between the two theo-
ries. In the unimodular gravity, from the viewpoint of quan-
tum field theories, the unimodular condition must be properly
implemented via the Lagrange multiplier field, which turns
out to correspond to the cosmological constant in the uni-
modular gravity, thereby rendering its initial value radiatively
unstable. In this sense, the cosmological constant problem
cannot be solved within the framework of the unimodular
gravity.

On the other hand, in the WTDiff gravity, there is no con-
straint like the unimodular condition and the fake Weyl sym-
metry is expected to forbid operators of dimension zero such
as the cosmological constant. Moreover, we have a plausible
conjecture such that the fake Weyl symmetry might never be
violated by quantum effects, that is, no Weyl anomaly, owing
to its “fakeness”. In other words, the fake Weyl symmetry
could survive even at the quantum level, by which suppress-
ing the radiative corrections to the cosmological constant. If
our conjecture were true, the cosmological constant problem
would amount to be a mere problem of how to fix the integra-
tion constant �. From this point of view, we should clarify
quantum aspects of the WTDiff gravity in the future.

3 Fake Weyl symmetry

In our previous article [6], motivated with the article [20] we
have studied Weyl symmetry (local conformal symmetry)
in the WTDiff gravity and the conformally invariant scalar–
tensor gravity in four space-time dimensions, and we have
shown that the Noether currents for both the local and the
global Weyl symmetries are identically vanishing. In this
sense, the Weyl symmetry existing in the WTDiff gravity
and the conformally invariant scalar–tensor gravity is called
a “fake” Weyl symmetry. In this section, we will generalize
this study to not only an arbitrary space-time dimension but
also all matter fields involving scalar, vector and spinor fields.

3.1 Gravity

Let us start with a gravitational sector and consider the action
of the WTDiff gravity, Eq. (14). Here it is more convenient
to work with the Lagrangian density than the action itself,

L = 1

2
|g| 1

n

[
R + (n − 1)(n − 2)

4n2

1

|g|2 g
μν∂μ|g|∂ν |g|

]
,

(30)

which is invariant under the Weyl transformation up to a
surface term as shown in Appendix B.

Now we wish to calculate the Noether current for Weyl
symmetry by using the Noether procedure [19]. We will
closely follow the line of arguments in Ref. [20]. The general
variation of the Lagrangian density (30) reads

δL = ∂L
∂gμν

δgμν + ∂L
∂(∂μgνρ)

δ(∂μgνρ)

+ ∂L
∂(∂μ∂νgρσ )

δ(∂μ∂νgρσ ). (31)

In this expression, let us note that the Lagrangian den-
sity under consideration includes second-order derivatives
of gμν in the scalar curvature R. Setting �(x) = e−�(x), the
infinitesimal variation δL under the Weyl transformation (3)
is given by

δL = ∂μX
μ
1 , (32)

where Xμ
1 is defined as

Xμ
1 = (n − 1)|g| 1

n gμν∂ν�. (33)

Next, using the equations of motion

∂L
∂gμν

= ∂ρ

∂L
∂(∂ρgμν)

− ∂ρ∂σ

∂L
∂(∂ρ∂σ gμν)

, (34)

the variation δL in (31) can be cast into the form

δL = ∂μK
μ
1 , (35)

where Kμ
1 is defined as

Kμ
1 = ∂L

∂(∂μgνρ)
δgνρ + ∂L

∂(∂μ∂νgρσ )
∂νδgρσ

− ∂ν

∂L
∂(∂μ∂νgρσ )

δgρσ . (36)

Using this formula, an explicit calculation yields

Kμ
1 = Xμ

1 , (37)

thereby giving us the result that the Noether current for the
Weyl symmetry vanishes identically

Jμ
1 = Kμ

1 − Xμ
1 = 0. (38)

Incidentally, let us note that both the expressions Xμ
1 and Kμ

1
are gauge invariant under the Weyl transformation as seen in
Eq. (33). This fact will be utilized later.

As an alternative derivation of the same result, one can also
appeal to a more conventional method where the Lagrangian
density in (30) does not explicitly involve second-order
derivatives of gμν in the curvature scalar R. To do so, one
makes use of the following well-known formula, which holds
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in general space-time dimensions: When one writes the scalar
curvature

R = R1 + R2, (39)

the formula takes the form [49]

R1 = −2R2 + 1√−g
∂μ(

√−gAμ), (40)

where one has defined the following quantities:

R1 = gμν
(
∂ρ	ρ

μν − ∂ν	
ρ
μρ

)
,

R2 = gμν
(
	σ

ρσ 	ρ
μν − 	σ

ρν	
ρ
μσ

)

= gμν	σ
ρσ 	ρ

μν + 1

2
	ρ

μν∂ρg
μν,

Aμ = gνρ	μ
νρ − gμν	ρ

νρ.

(41)

Here let us note that R2 is free of second-order derivatives
of gμν , which are now involved in the term including Aμ.
Using this formula, we can rewrite the Lagrangian density
(30) to the form

L = L0 + 1

2
∂μ

(
|g| 1

n Aμ
)

, (42)

where L0 is defined as

L0 = 1

2
|g| 1

n

[
−R2 + n − 2

2n

1

|g| A
μ∂μ|g|

+ (n − 1)(n − 2)

4n2

1

|g|2 g
μν∂μ|g|∂ν |g|

]
. (43)

We are now ready to show that the Noether current for
the Weyl symmetry is also zero by the more conventional
method. First of all, let us observe that the variation of L
under the Weyl transformation (3) comes from only the total
derivative term

δL = ∂μ

[
(n−1)|g| 1

n gμν∂ν�
]

= 1

2
∂μ

[
δ(|g| 1

n Aμ)
]
. (44)

The total derivative terms are irrelevant to dynamics so in
what follows let us focus our attention only on the Lagrangian
L0, which is free of second-order derivatives of gμν .

Second, by an explicit calculation we find that the
Lagrangian L0 is invariant under the Weyl transformation
without any surface term

Xμ
2 = 0. (45)

Finally, applying the Noether theorem [19] for L0, we can
derive the following result:

Kμ
2 = ∂L0

∂(∂μgνρ)
(−2gνρ) = 0. (46)

Hence, the Noether current for the Weyl symmetry identically
vanishes as before,

Jμ
2 = Kμ

2 − Xμ
2 = 0. (47)

At this stage, we should refer to an ambiguity associated
with the Noether currents for local Weyl symmetry. Our cal-
culation in this section is based on the first Noether theorem,
which is applicable for global symmetries, and the second
theorem, which can be applied to local (gauge) symmetries.
Of course, the latter case includes the former one as a special
case, and the two Noether theorems give the same result such
that the Noether currents are identically vanishing. However,
we should recall the well-known fact that the Noether cur-
rents for local (gauge) symmetries always reduce to super-
potentials, which give us some ambiguity. Thus, the more
reliable statement, which is obtained from our calculation
at hand, is that the global Weyl symmetry has a vanishing
Noether current, and hence neither charge nor symmetry gen-
erator.

Next, we shall provide a simpler proof that the Noether
current for the Weyl symmetry in both the conformally invari-
ant scalar–tensor gravity and the WTDiff gravity vanishes.
This proof is based on the observation that via the metric (2)
and the gauge condition (6), the two theories become equiva-
lent, and the Noether currents are gauge-invariant quantities.
For simplicity, we will consider the action which includes
only first-order derivatives of the metric tensor gμν .

As the starting action, we will take the action (4) of the
conformally invariant scalar–tensor gravity. As in the case
of the WTDiff gravity, this action can be rewritten in the
first-order derivative form

S =
∫

dnx

[
L3 + n − 2

8(n − 1)
∂μ(

√−gϕ2Aμ)

]
, (48)

where L3 is defined by

L3 = √−g

[
− n − 2

8(n − 1)
ϕ2R2

− n − 2

8(n − 1)
Aμ∂μ(ϕ2) + 1

2
gμν∂μϕ∂νϕ

]
. (49)

The total derivative term in S plays no role in bulk dynam-
ics, so we will henceforth pay our attention to L3. It is easy
to show that L3 is invariant under the Weyl transformation
without a surface term, which gives us

Xμ
3 = 0. (50)

Then the Noether theorem [19] provides us with

Kμ
3 = ∂L3

∂(∂μϕ)

n − 2

2
ϕ + ∂L3

∂(∂μgνρ)
(−2gνρ). (51)

Here we would like to give a simpler proof of Kμ
3 = 0

without much calculations. The key observation for this proof
is to recall that three kinds of gravitational theories are related
to each other by a Weyl-invariant metric (2), from which,
taking the differentiation, we can derive an equation
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∂μĝνρ =
(

1

2

√
n − 2

n − 1
ϕ

) 4
n−2 (

4

n − 2

1

ϕ
∂μϕgνρ + ∂μgνρ

)
.

(52)

Using this equation, one finds that

∂L3

∂(∂μϕ)
= ∂L3

∂(∂μĝνρ)

(
1

2

√
n − 2

n − 1
ϕ

) 4
n−2 4

n − 2

1

ϕ
gνρ,

∂L3

∂(∂μgνρ)
= ∂L3

∂(∂μĝνρ)

(
1

2

√
n − 2

n − 1
ϕ

) 4
n−2

. (53)

From Eq. (53), Eq. (51) produces the expected result,

Kμ
3 = 0. (54)

As a result, the Noether current for the Weyl symmetry is
vanishing

Jμ
3 = Kμ

3 − Xμ
3 = 0. (55)

This is our simpler proof of the vanishing Noether current
for the Weyl symmetry in the conformally invariant scalar–
tensor gravity. Since the current is gauge invariant, our proof
can be directly applied to any conformally invariant grav-
itational theories such as the WTDiff gravity obtained via
the trick (2) and the gauge condition (6). From our simple
proof, we can also explain why the Weyl symmetry exist-
ing in both the conformally invariant scalar–tensor gravity
and the WTDiff gravity is identically vanishing. It has been
already shown in the previous section that these two gravi-
tational theories are equivalent to general relativity, and the
Noether currents for the Weyl symmetry are Weyl-invariant
quantities. Since there is no Weyl symmetry in general rela-
tivity, the Noether current for the Weyl symmetry should be
trivially zero in general relativity. The equivalence among the
three theories and gauge invariance of the Noether currents
naturally lead to a conclusion that the Weyl currents in the
conformally invariant scalar–tensor gravity and the WTDiff
gravity should be vanishing as well.

So far, we have confined our attention to only the gravita-
tional sector. Since there are plenty of matters around us, it
is natural to ask if effects of matter fields could change our
conclusion or not. In the following subsections, we will show
that the introduction of conformal matters does not modify
the fact that the Weyl current vanishes.

3.2 Scalar field

First, let us turn our attention to a real scalar field φ in an
n-dimensional curved space-time. The action is consisted of
a kinetic term and a potential V (φ)

Sφ =
∫

dnx |g| 1
2

[
−1

2
gμν∂μφ∂νφ − V (φ)

]
. (56)

Note that this action is manifestly invariant under the full
group of diffeomorphisms (Diff). Under the Weyl transfor-
mation, the scalar field φ has the same transformation law as
the spurion field ϕ,

φ → φ′ = �− n−2
2 (x)φ. (57)

The trick to enlarge gauge symmetries from Diff to WDiff
is now to make a Weyl-invariant scalar field φ̂ = ϕ−1φ in
addition to the Weyl-invariant metric (2), and then replace
the metric and the scalar field in the action (56) by the
corresponding Weyl-invariant objects. As a result, a WDiff-
invariant scalar action takes the form

Ŝφ =
∫

dnx L̂φ

=
∫

dnx |ĝ| 1
2

[
−1

2
ĝμν∂μφ̂∂νφ̂ − V (φ̂)

]

=
∫

dnx |g| 1
2

[
− n − 2

8(n − 1)
ϕ2gμν∂μ

(
φ

ϕ

)
∂ν

(
φ

ϕ

)

−
(

1

2

√
n − 2

n − 1
ϕ

) 2n
n−2

V

(
φ

ϕ

)⎤
⎦ . (58)

We shall calculate the Noether current for Weyl symmetry
by the two different methods. One method, which is called
the WDiff method, is to calculate the current in the WDiff-
invariant action without gauge-fixing the Weyl symmetry like
the conformally invariant scalar–tensor gravity. The other
method, which is called the WTDiff method, is to gauge-
fix the longitudinal diffeomorphism by the gauge condition
(6), by which the WDiff-invariant action is reduced to the
WTDiff-invariant one, and then calculate the Noether cur-
rent for the Weyl symmetry like the WTDiff gravity. The
Weyl current is a gauge-invariant quantity, so the two meth-
ods should provide the same result.

First, let us calculate the Noether current for the Weyl
symmetry on the basis of the WDiff matter action (58). It is
easy to see that the action (58) is invariant under the Weyl
transformation without a surface term, so we have

Xμ
φ = 0. (59)

Again, the Noether theorem [19] yields

Kμ
φ = ∂L̂φ

∂(∂μφ)

n − 2

2
φ + ∂L̂φ

∂(∂μϕ)

n − 2

2
ϕ

+ ∂L̂φ

∂(∂μgνρ)
(−2gνρ). (60)

Next, the Weyl-invariant combinations (2) and φ̂ = ϕ−1φ

give us the relations

∂L̂φ

∂(∂μφ)
= ∂L̂φ

∂(∂μφ̂)

1

ϕ
,
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∂L̂φ

∂(∂μϕ)
= ∂L̂φ

∂(∂μĝνρ)

(
1

2

√
n − 2

n − 1
ϕ

) 4
n−2 4

n − 2

1

ϕ
gνρ

− ∂L̂φ

∂(∂μφ̂)

φ

ϕ2 ,

∂L̂φ

∂(∂μgνρ)
= ∂L̂φ

∂(∂μĝνρ)

(
1

2

√
n − 2

n − 1
ϕ

) 4
n−2

. (61)

Using these relations (61), Kμ
φ in (60) becomes zero,

Kμ
φ = 0. (62)

The Noether current for the Weyl symmetry is therefore van-
ishing

Jμ
φ = Kμ

φ − Xμ
φ = 0. (63)

This is a general result and even after gauge-fixing the lon-
gitudinal diffeomorphism this result should be valid since
the Weyl current is gauge invariant under the Weyl transfor-
mation. Indeed, this is so by calculating the Weyl current in
WTDiff scalar action below.

Now let us take the gauge condition (6) for the longitu-
dinal diffeomorphism, which does not break the local Weyl
symmetry. Inserting the gauge condition (6) to the WDiff-
invariant scalar action (58) leads to the WTDiff-invariant
scalar action

Ŝφ =
∫

dnx L̂φ

=
∫

dnx

{
− n − 2

8(n − 1)
|g| 1

2 gμν

[
∂μφ∂νφ

+ n − 2

2n

φ

|g|∂μ|g|∂νφ + (n − 2)2

16n2

φ2

|g|2 ∂μ|g|∂ν |g|
]

− V

(
1

2

√
n − 2

n − 1
|g| n−2

4n φ

)}
. (64)

Since the action (64) is invariant under the Weyl transfor-
mation without a surface term, we have

Xμ
φ = 0. (65)

The Noether theorem [19] gives us the formula

Kμ
φ = ∂L̂φ

∂(∂μφ)

n − 2

2
φ + ∂L̂φ

∂(∂μgνρ)
(−2gνρ). (66)

It is useful to evaluate each term in (66) separately to see its
gauge invariance. In fact, the result is given by

∂L̂φ

∂(∂μφ)

n − 2

2
φ = −n − 2

4
φ̂2 ĝμν∂ν log

(
φ̂2

)
,

∂L̂φ

∂(∂μgνρ)
(−2gνρ) = n − 2

4
φ̂2 ĝμν∂ν log

(
φ̂2

)
.

(67)

As promised, each term is manifestly gauge invariant under
the Weyl transformation, since it is expressed in terms of only
gauge-invariant quantities. Adding the two terms in (67), we
have

Kμ
φ = 0. (68)

Thus, the Noether current for the Weyl symmetry in the
WTDiff method is certainly vanishing,

Jμ
φ = Kμ

φ − Xμ
φ = 0. (69)

The two results in (63) and (69) clearly account for that the
Noether current for the Weyl symmetry is vanishing in both
the WDiff-invariant scalar action and the WTDiff-invariant
one.

3.3 Vector field

Next, we will move on to spin 1 abelian gauge field, that is,
the electro-magnetic field. It is well known that the Maxwell
action for the electro-magnetic field is invariant in only four
space-time dimensions, but not so in an arbitrary space-time
dimension. It is therefore necessary to extend the Maxwell
action in four dimensions in such a way it is also invariant
under the Weyl transformation in general dimensions. We are
now accustomed to the recipe for accomplishing this work:
Start with a Diff-invariant action and then replace all fields
with the corresponding Weyl-invariant fields, by which we
have the WDiff-invariant action. Furthermore, the WTDiff-
invariant action is obtained by selecting the gauge condi-
tion (6) for the longitudinal diffeomorphism. According to
this recipe, let us start with the conventional Maxwell action
which is invariant under Diff in n space-time dimensions:

SA = −1

4

∫
dnx |g| 1

2 gμνgρσ FμρFνσ , (70)

where Fμν = ∂μAν − ∂ν Aμ. The Weyl transformation for
the vector field is defined as usual

Aμ → A′
μ = Aμ. (71)

Then the WDiff-invariant action reads

ŜA =
∫

dnxL̂A

= −1

4

∫
dnx |ĝ| 1

2 ĝμν ĝρσ FμρFνσ ,

= −1

4

∫
dnx |g| 1

2

(
1

2

√
n − 2

n − 1
ϕ

) 2(n−4)
n−2

gμνgρσ FμρFνσ ,

(72)

and the WTDiff-invariant action takes the form
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ŜA =
∫

dnxL̂A

= −1

4

∫
dnx |g| 2

n gμνgρσ FμρFνσ . (73)

Based on these actions, it is again easy to evaluate the
Noether current associated with the Weyl symmetry by the
two methods. For instance, in the WTDiff method, since the
WTDiff-invariant action is invariant without a surface term,
we have

Xμ
A = 0. (74)

The Noether theorem [19] again produces the formula

�Kμ
A = ∂L̂A

∂(∂μAν)
δAν + ∂L̂A

∂(∂μgνρ)
δgνρ, (75)

where � is the infinitesimal parameter for the Weyl trans-

formation. Since δAν = ∂L̂A
∂(∂μgνρ)

= 0, we soon reach the
result

Kμ
A = 0. (76)

Hence, we have the vanishing Noether current

Jμ
A = Kμ

A − Xμ
A = 0. (77)

It is straightforward to derive the same result on the basis of
the WDiff-invariant action (72).

3.4 Spinor field

Finally, as one of matter fields, let us consider the Dirac
spinor field. It is well known that in general n space-time
dimensions, the action for massless Dirac spinor fields is
invariant under the Weyl transformation [9]. We find it useful
to recall the symmetry properties of the Dirac action whose
Lagrangian density is4

Lψ = −1

2
eψ̄

(
�D − ←−�D

)
ψ − emψ̄ψ

= e
(−ψ̄eμ

a γ aDμψ − mψ̄ψ
)
, (78)

where e = det eaμ, �D = γ μDμ, and in the last equality we
have used the integration by parts. In case of the massless
Dirac field (m = 0), in general n space-time dimensions,
the action

∫
dnxLψ is invariant under the following Weyl

transformation:

eaμ → e′ a
μ = �(x)eaμ, eaμ → e′ aμ = �−1(x)eaμ,

ψ → ψ ′ = �− n−1
2 (x)ψ. (79)

In the presence of the scalar field ϕ, we can make even
the mass term invariant under the Weyl transformation. To do
so, as before, it is sufficient to introduce the Weyl-invariant

4 See Appendix A.2 for notation and some definitions related to spinors.

fields and then replace each field in the Lagrangian (78) by
the corresponding Weyl-invariant field. The Weyl-invariant
fields are given by

êμ
a =

(
1

2

√
n−2

n−1
ϕ

)− 2
n−2

eμ
a , ψ̂ =

(
1

2

√
n−2

n−1
ϕ

)− n−1
n−2

ψ.

(80)

By replacing each field with the corresponding Weyl-
invariant one in Eq. (78), we have the Weyl-invariant massive
Dirac Lagrangian density L̂ψ ,

L̂ψ = ê
(
− ˆ̄ψ êμ

a γ a D̂μψ̂ − m ˆ̄ψψ̂
)

,

= e

⎡
⎣−ψ̄eμ

a γ aDμψ −
(

1

2

√
n − 2

n − 1
ϕ

) 2
n−2

mψ̄ψ

⎤
⎦ .

(81)

Let us note that the first term has the same expression as
before since the massless Dirac Lagrangian density is invari-
ant under the Weyl transformation. The action

∫
dnxL̂ψ is

invariant under both the Weyl transformation and the full
group of Diff. To reduce the symmetries from WDiff to
WTDiff, we will take the gauge condition (6) for the lon-
gitudinal diffeomorphism. The resulting Lagrangian density
reads

L̂ψ = e
(
−ψ̄eμ

a γ aDμψ − e− 1
n mψ̄ψ

)
. (82)

The Noether current for the Weyl symmetry should be
calculated by using either action since the current is a gauge-
invariant quantity. We will use the Lagrangian density (82),
which is invariant under the Weyl transformation without
surface terms, i.e.

Xμ
ψ = 0. (83)

The Noether theorem gives us the expression

�Kμ
ψ = ∂ RL̂ψ

∂(∂μψ)
δψ + ∂L̂ψ

∂(∂μeaν )
δeaν , (84)

where we have used the right-derivative notation with respect
to the spinor field and the second-order formalism of gravity,
that is, the spin connection has been regarded as a function
of the vielbein. A straightforward calculation of each term in
(84) yields

∂ RL̂ψ

∂(∂μψ)
δψ = −�

n − 1

2
eψ̄eμ

a γ aψ

∂L̂ψ

∂(∂μeaν )
δeaν = �

n − 1

2
eψ̄eμ

a γ aψ,

(85)

both of which are gauge invariant as expected. Therefore, we
have

Kμ
ψ = 0. (86)
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Accordingly, even in this case, we have the identically van-
ishing Noether current

Jμ
ψ = Kμ

ψ − Xμ
ψ = 0. (87)

To close this section, we should comment on the trace or
Weyl (conformal) anomaly. It is well known that in a curved
space-time, certain matter fields, such as the electro-magnetic
field in four dimensions and massless Dirac fields in any
dimensions, exhibit Weyl (local conformal) invariance at the
classical level as mentioned above. Weyl invariance of the
action implies that the trace of the energy-momentum ten-
sor is zero. We are also familiar with the fact that a theory
based on a classical action which is Weyl invariant in gen-
eral loses its Weyl invariance in the quantum theory as a
result of renormalization, i.e. owing to the existence of the
renormalization scale. The energy-momentum tensor there-
fore acquires a non-zero trace, known as the trace or Weyl
(conformal) anomaly [7,8].

However, this well-known result does not generally hold
in the present formalism where there is the spurion field ϕ.
In our formalism, we keep the situation in mind such that the
conformally invariant scalar–tensor gravity coexists with the
various conformally invariant matter fields. In this situation,
the spurion field ϕ is assumed to be broken spontaneously
ϕ = 〈ϕ〉 + σ where the massless “meson” σ is the Gold-
stone boson restoring conformal symmetry, even if there is
no potential for triggering the spontaneous symmetry break-
down. Note that σ = 0 corresponds to the “unitary gauge”
leading to general relativity or the WTDiff gravity depend-
ing on the choice of 〈ϕ〉. The key idea is that we can use
the vacuum expectation value of the spurion field, 〈ϕ〉, as
the renormalization scale instead of the conventional fixed
renormalization scaleμ [9–18]. With this idea, we have a con-
formally invariant effective potential without trace anomaly
and the coupling constants still run with the momentum scale
[15].

4 Schwarzschild solution

In this section, we wish to show that the Schwarzschild
metric is a classical solution to the equations of motion
of the WTDiff gravity, Eq. (15), or equivalently Eq. (26).
Before doing so, we soon realize that a notable feature
of Eq. (15) is that the traceless Einstein tensor defined as
GT

μν = Rμν − 1
n gμνR in the LHS has a beautiful geometri-

cal structure, whereas the traceless energy-momentum tensor
T T

(g)μν = T(g)μν − 1
n gμνT(g) in the RHS has a complicated

expression, and the presence of the metric determinant g and
its derivative ∇μ∇ν |g| reflects the fact that the equations of
motion are not invariant under Diff, but only TDiff. It is
therefore natural to fix the Weyl symmetry first by the gauge
condition

g = −1, (88)

which is nothing but the unimodular condition (9). Since the
traceless energy-momentum tensor in the RHS of Eq. (15)
trivially vanishes, the resultant equations of motion read

GT
μν ≡ Rμν − 1

n
gμνR = 0. (89)

The space-time defined by Eq. (89) is called an Einstein space
in four dimensions. The Riemannian spaces which are con-
formally related to Einstein spaces have been addressed for
a long time [50].

Now we wish to show that the Schwarzschild metric in
the Cartesian coordinate system is a classical solution to the
equations of motion (89). For this purpose, we will look for
a gravitational field outside an isolated, static, spherically
symmetric object with mass M . In the far region from the
isolated object, we assume that the metric tensor is in an
asymptotically Lorentzian form,

gμν → ημν + O
(

1

rn−3

)
, (90)

where ημν is the Minkowski metric, and the radial coordinate
r is defined as

r =
√

(x1)2 + (x2)2 + · · · + (xn−1)2 =
√

(xi )2, (91)

with i running over spatial coordinates (i = 1, 2, . . . , n−1).
Let us recall that the most spherically symmetric line ele-

ment in n space-time dimensions reads

ds2 = −A(r)dt2 + B(r)(xidxi )2 + C(r)(dxi )2

+ D(r)dt xidxi , (92)

where A(r) and C(r) are positive functions depending on
only r . Requiring the invariance under the time reversal t →
−t leads to D = 0. As is well known, we can set C(r) =
1 by redefining the radial coordinate r [51]. Thus, the line
element under consideration takes the form in the Cartesian
coordinate system

ds2 = −A(r)dt2 + (dxi )2 + B(r)(xidxi )2. (93)

From this line element (93), the non-vanishing compo-
nents of the metric tensor are given by

gtt = −A, gi j = δi j + Bxi x j , (94)

and the components of its inverse matrix are

gtt = − 1

A
, gi j = δi j − B

1 + Br2 x
i x j . (95)

Moreover, using these components of the metric tensor, the
affine connection is calculated to be

	t
ti = A′

2A

xi

r
, 	i

t t = A′

2(1 + Br2)

xi

r
,
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	i
jk = 1

2(1 + Br2)

xi

r
(2Brδ jk + B ′x j xk), (96)

where the prime denotes the differentiation with respect to
r , for instance, A′ = dA

dr .
Here let us take the gauge condition (88) for the Weyl

transformation into consideration. By means of the metric
tensor (94), the gauge condition (88) is cast into the form

A(1 + Br2) = 1. (97)

Using this gauge condition (97) and Eqs. (94)–(96), the Ricci
tensor and the scalar curvature can easily be calculated to be

Rtt = 1

2
A

(
A′′ + n − 2

r
A′

)
,

Ri j =
[
n − 3

r2 (1 − A) − A′

r

]
δi j

+ 1

r2

[
n−3

r2 (A−1)+ 1

r

A′

A
(1− n

2
+A)− 1

2

A′′

A

]
xi x j ,

R = −A′′− 2(n − 2)

r
A′− (n − 2)(n − 3)

r2 (A−1). (98)

These results produce the concrete expressions for the non-
vanishing components of the traceless Einstein tensorGT

μν ≡
Rμν − 1

n gμνR,

GT
tt =

(
1

2
− 1

n

)
A

[
A′′+(n−4)

1

r
A′−2(n−3)

1

r2 (A−1)

]
,

GT
i j =

{
1

n
δi j + 1

r2

1

A

[
−1

2
+ 1

n
(1−A)

]
xi x j

}

[
A′′+(n−4)

1

r
A′ − 2(n − 3)

1

r2 (A − 1)

]
. (99)

Consequently, Eq. (89) reduces to the equation

A′′ + (n − 4)
1

r
A′ − 2(n − 3)

1

r2 (A − 1) = 0. (100)

Noticing that the LHS of Eq. (100) can be rewritten as

A′′ + (n − 4)
1

r
A′ − 2(n − 3)

1

r2 (A − 1)

= 1

rn−3

d2

dr2 [rn−3(A − 1)]

− (n − 2)
1

rn−2

d

dr
[rn−3(A − 1)], (101)

Eq. (100) is easily solved to be

A(r) = 1 − 2M

rn−3 + ar2, (102)

where M and a are integration constants. From the boundary
condition (90), we have to choose a = 0, and we can obtain
the expression for B(r) in terms of the gauge condition (97).
Accordingly, we arrive at the expressions for A(r) and B(r):

A(r) = 1 − 2M

rn−3 , B(r) = 2M

r2(rn−3 − 2M)
. (103)

Then the line element is of form

ds2 = −
(

1 − 2M

rn−3

)
dt2 + (dxi )2

+ 2M

r2(rn−3 − 2M)
(xidxi )2. (104)

In this way, we have succeeded in showing that the Schwarz-
schild metric in the Cartesian coordinate system is a classical
solution in the WTDiff gravity as in general relativity.

However, there is a caveat. The Schwarzschild metric in
the Cartesian coordinate system, (104), can be rewritten in
the spherical coordinate system as

ds2 = −
(

1 − 2M

rn−3

)
dt2 + 1

1 − 2M
rn−3

dr2 + r2d�2
n−2,

(105)

where

d�2
n−2 = dθ2

2 + sin2 θ2dθ2
3 + · · · +

n−2∏
i=2

sin2 θidθ2
n−1. (106)

This form of the Schwarzschild metric is very familiar to
physicists, but this is not a classical solution to the equations
of motion of the WTDiff gravity, (89). The reason is that when
transforming from the Cartesian coordinates to the spherical
coordinates, we have a non-vanishing Jacobian factor which
is against TDiff. To put it differently, while the determinant
of the metric tensor in Eq. (104) is −1, the one in Eq. (105)
is not so, which is against the gauge condition (88). In order
to show that Eq. (105) is also a classical solution, one has to
solve the equations of motion under the condition g �= −1,
which is at present a difficult task due to the complicated
structure of the energy-momentum tensor.

5 Charged black hole solution

In the previous section, we have investigated classical solu-
tions in the WTDiff gravity and found that the Schwarzschild
metric is indeed a classical solution to the equations of motion
of the WTDiff gravity. A study of the Schwarzschild solu-
tion is of physical importance since the Schwarzschild solu-
tion corresponds to the basic one-body problem of classical
astronomy, and the reliable experimental verifications of the
Einstein equations are almost all based on the Schwarzschild
line element. Then it is natural to ask ourselves whether a
charged black hole metric is also a classical solution to the
equations of motion of the WTDiff gravity coupled to an
electro-magnetic field or not. In this section, we will prove
that it is indeed the case in general n space-time dimensions.
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Our starting action is the sum of the WTDiff gravity action
(14) and the WTDiff-invariant Maxwell action (73)

S =
∫

dnx

{
1

2
|g| 1

n

[
R+ (n−1)(n−2)

4n2

1

|g|2 g
μν∂μ|g|∂ν |g|

]

− 1

4
|g| 2

n gμνgρσ FμρFνσ

}
. (107)

It is worthwhile to point out that although the WTDiff gravity
has been already shown to be equivalent to general relativity,
the WTDiff-invariant Maxwell action for the vector field Aμ

is not equivalent to the conventional Maxwell action except
in four dimensions and is its Weyl-invariant generalization.
Thus, it is a nontrivial task to examine whether the action
(107) possesses a charged black hole solution as a classical
solution.

It is straightforward to derive the equations of motion for
the gauge field Aμ and the metric tensor gμν . The result is
given by

∂μ(|g| 2
n Fμν) = 0 (108)

and

Rμν − 1

n
gμνR = T(g,A)μν − 1

n
gμνT(g,A), (109)

where the energy-momentum tensor T(g,A)μν is defined as

T(g,A)μν = (n − 2)(2n − 1)

4n2

1

|g|2 ∂μ|g|∂ν |g|

− n − 2

2n

1

|g|∇μ∇ν |g| + |g| 1
n FμαFν

α. (110)

This energy-momentum tensor T(g,A)μν is not covariantly
conserved as T(g)μν in Eq. (16), but it is possible to construct
a covariantly conserved energy-momentum tensor as before.
Along the same line of arguments as in Sect. 2, the covariantly
conserved energy-momentum tensor is found to be

Tμν = T(g,A)μν + n − 2

2n
gμν

[
−5n − 3

4n

1

|g|2 (∂ρ |g|)2

+ 1

|g|∇ρ∇ρ |g|
]

− 1

4
|g| 1

n gμνFρσ F
ρσ . (111)

Moreover, as expected from Weyl invariance of the WTDiff-
invariant Maxwell action, this covariantly conserved energy-
momentum tensor Tμν satisfies the relation

Tμν − 1

n
gμνT = T(g,A)μν − 1

n
gμνT(g,A). (112)

Hence, as in the case of the absence of the electro-magnetic
field, even if we add the electro-magnetic field to the WTDiff
gravity, we can derive the standard Einstein equations (29)
where the cosmological constant appears as an integration
constant.

Since we want to find a charged black hole solution, we
look for a gravitational field outside an isolated, static, spher-

ically symmetric object with mass M and electric charge
Q. We again take the asymptotically Lorentzian space-time,
Eq. (90), as a boundary condition for the metric tensor. We
also work with the line element (93), and take the unimod-
ular condition (88) as a gauge condition for the Weyl sym-
metry, so in this case we have perfectly the same equations
as Eqs. (93)–(99). With the unimodular condition (88) for
the Weyl symmetry, the Maxwell equation and the energy-
momentum tensor are, respectively, reduced to the form

∂μF
μν = 0, (113)

T(g,A)μν = FμαFν
α. (114)

As for the electro-magnetic field Aμ(x), we assume that
it has a static, spherically symmetric electric potential

At = −φ(r), Ai = 0, (115)

where φ(r) is a function of r . First, let us solve the
Maxwell equation (113). With the ansatzes (93) and (115),
the Maxwell equation (113) is cast into a single equation,

d

dr
(rn−2φ′) = 0, (116)

which is easily integrated to be

φ(r) =
√
n − 2

n − 3

Q

rn−3 + c, (117)

where Q, which corresponds to an electric charge, and c are
integration constants. To fix the constant c, we will impose
the boundary condition

lim
r→∞ φ(r) = 0, (118)

which uniquely determines c = 0. Thus, we obtain the final
expression for φ(r)

φ(r) =
√
n − 2

n − 3

Q

rn−3 . (119)

Next, let us try to solve the traceless Einstein equations
(109) with the unimodular gauge condition (88). For this
purpose, we will calculate the traceless energy-momentum
tensor defined as T T

(g,A)μν ≡ T(g,A)μν − 1
n gμνT(g,A) whose

result is summarized as

T T
(g,A)t t = A

(n − 2)2(n − 3)

n

Q2

r2(n−2)
,

T T
(g,A)i j = 2(n − 2)(n − 3)

n

×
(

δi j − A + n
2 − 1

A

xi x j

r2

)
Q2

r2(n−2)
. (120)

Consequently, the traceless Einstein equations (109) reduce
to the equation
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A′′ + (n − 4)
1

r
A′ − 2(n − 3)

1

r2 (A − 1)

− 2(n − 2)(n − 3)
Q2

r2(n−2)
= 0. (121)

This equation can be rewritten as

1

rn−3

d2

dr2

[
rn−3

(
A − 1 − Q2

r2(n−3)

)]

− (n − 2)
1

rn−2

d

dr

[
rn−3

(
A − 1 − Q2

r2(n−3)

)]
= 0.

(122)

By performing an integration, A(r) turns out to be

A(r) = 1 − 2M

rn−3 + Q2

r2(n−3)
+ ar2, (123)

where M and a are integration constants. From the boundary
condition (90), we have to choose a = 0, and we can obtain
the expression for B(r) in terms of the gauge condition (97).
As a result, we obtain the expressions for A(r) and B(r),

A(r) = 1 − 2M

rn−3 + Q2

r2(n−3)
,

B(r) = 2Mrn−3 − Q2

r2
[
r2(n−3) − 2Mrn−3 + Q2

] . (124)

Then the line element is of the form

ds2 = −
[

1 − 2M

rn−3 + Q2

r2(n−3)

]
dt2 + (dxi )2

+ 2Mrn−3 − Q2

r2
[
r2(n−3) − 2Mrn−3 + Q2

] (xidxi )2. (125)

Hence, we have shown that the charged black hole metric in
the Cartesian coordinate system is indeed a classical solu-
tion in the WTDiff gravity coupled to the WTDiff-invariant
Maxwell theory in an arbitrary space-time dimension.

Again we should make an important remark. The charged
black hole metric (125) in the Cartesian coordinate system
can be rewritten in a more familiar form in the spherical
coordinate system,

ds2 = −
[

1 − 2M

rn−3 + Q2

r2(n−3)

]
dt2

+ 1

1 − 2M
rn−3

+ Q2

r2(n−3)
dr2 + r2d�2

n−2. (126)

However, Eq. (126) is not a classical solution in the WTDiff
gravity plus the WTDiff-invariant Maxwell theory. This situ-
ation is very similar to the Schwarzschild black hole metric.
Namely, the dependence of classical solutions on the chosen
coordinate system is a notable feature of the WTDiff gravity
where there is no the full group of diffeomorphisms, but only
TDiff.

6 Cosmology

As a final application of the classical WTDiff gravity, we
would like to consider cosmology in the WTDiff gravity
coupled with the WTDiff-invariant scalar matter. Before
attempting to solve the traceless Einstein equations, follow-
ing the same method as before we can construct the energy-
momentum tensor satisfying the covariant conservation law
in this case as well. An interesting point here is that such
a covariantly conserved energy-momentum tensor plays a
critical role in the construction of classical solutions, which
should be contrasted to the cases treated thus far where the
covariantly conserved energy-momentum tensors are only
needed to have a connection with the standard Einstein equa-
tions.

The action with which we begin is the sum of the WTDiff
gravity action (14) and the WTDiff-invariant scalar action
(64),

S =
∫

dnx

{
1

2
|g| 1

n

[
R+ (n−1)(n−2)

4n2

1

|g|2 g
μν∂μ|g|∂ν |g|

]

− n − 2

8(n − 1)
|g| 1

2 gμν
[
∂μφ∂νφ

+ n − 2

2n

φ

|g|∂μ|g|∂νφ + (n − 2)2

16n2

φ2

|g|2 ∂μ|g|∂ν |g|
]

− V

(
1

2

√
n − 2

n − 1
|g| n−2

4n φ

)}
. (127)

From this action, the equations of motion for the scalar
field and the metric tensor field are, respectively, calculated
to be

−1

8

n − 2

n − 1
|g| 1

2

[
(n − 2)(5n − 2)

8n2

φ

|g|2 (∂ρ |g|)2

− n − 2

2n

φ

|g|∇ρ∇ρ |g| − 2∇ρ∇ρφ

]

−1

2

√
n − 2

n − 1
|g| n−2

4n V ′
(

1

2

√
n − 2

n − 1
|g| n−2

4n φ

)
= 0, (128)

with V ′(φ) ≡ dV (φ)
dφ

, and

Rμν − 1

n
gμνR = T(g,φ)μν − 1

n
gμνT(g,φ), (129)

where the energy-momentum tensor T(g,φ)μν is defined as

T(g,φ)μν = (n − 2)(2n − 1)

4n2

1

|g|2 ∂μ|g|∂ν |g|

− n − 2

2n

1

|g|∇μ∇ν |g|

+ 1

4

n − 2

n − 1

(
∂μφ + n − 2

4n

φ

|g|∂μ|g|
)

×
(

∂νφ + n − 2

4n

φ

|g|∂ν |g|
)

. (130)
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In deriving the energy-momentum tensor (130), we have used
the equation of motion for φ, (128).

The energy-momentum tensor T(g,φ)μν is not covariantly
conserved, either, but it is again possible to construct a
covariantly conserved energy-momentum tensor as before.
The covariantly conserved energy-momentum tensor is now
given by

Tμν = T(g,φ)μν + n − 2

2n
gμν

×
[
−5n − 3

4n

1

|g|2 (∂ρ |g|)2 + 1

|g|∇ρ∇ρ |g|
]

+ gμν

[
−1

8

n − 2

n − 1

(
∂ρφ + n − 2

4n

φ

|g|∂ρ |g|
)2

− |g|− 1
2 V

(
1

2

√
n − 2

n − 1
|g| n−2

4n φ

)]
. (131)

It turns out that this covariantly conserved energy-momentum
tensor Tμν satisfies the desired relation,

Tμν − 1

n
gμνT = T(g,φ)μν − 1

n
gμνT(g,φ). (132)

Hence, although we add the scalar field to the WTDiff gravity,
we can derive the standard Einstein equations (29) where the
cosmological constant appears as an integration constant.

To simplify the energy-momentum tensor, we will again
select the unimodular condition (88) as a gauge condition for
the Weyl symmetry. This choice of the gauge condition pro-
vides us with an enormous simplification, since the energy-
momentum tensor (131) is reduced to the tractable form

Tμν = 1

4

n − 2

n − 1
∂μφ∂νφ + gμν

×
[
−1

8

n − 2

n − 1
(∂ρφ)2 − V

(
1

2

√
n − 2

n − 1
φ

)]
. (133)

We now proceed to the study of cosmological solutions.
It is usually assumed that our universe is described in terms
of an expanding, homogeneous and isotropic Friedmann–
Lemaitre–Robertson–Walker (FLRW) universe, given by the
line element

ds2 = gμνdxμdxν

= −dt2 + a2(t)γi j (x)dx
idx j , (134)

where a(t) is a scale factor and γi j (x) is the spatial met-
ric of the unit (n − 1)-sphere, unit (n − 1)-hyperboloid or
(n − 1)-plane, and i, j run over spatial coordinates (i =
1, 2, . . . , n − 1). However, this metric ansatz does not sat-
isfy the gauge condition (88), so the line element should be
somewhat modified. A suitable modification, which satisfies
the gauge condition (88), is to consider the following line
element:

ds2 = −N 2(t)dt2 + a2(t)(dxi )2, (135)

where N (t) is a lapse function and the spatial geometry is
chosen to be the (n − 1)-plane, i.e. the (n − 1)-dimensional
Euclidean space. Note that the existence of the lapse function
N (t) means that the time coordinate t does not coincide with
the proper time of particles at rest. With this line element, the
gauge condition (88) provides a relation between the lapse
function N (t) and the scale factor a(t),

N (t) = a−(n−1)(t). (136)

Given the line element (135) and Eq. (136), it turns out
that the non-vanishing components of the traceless Einstein
tensor defined as GT

μν = Rμν − 1
n gμνR are given by

GT
tt = − (n − 1)(n − 2)

n

[
Ḣ + (n − 1)H2

]
,

GT
i j = −n − 2

n
a2n

[
Ḣ + (n − 1)H2

]
δi j , (137)

where H = ȧ
a is the Hubble parameter and we have defined

ȧ = da(t)
dt . In a similar way, the non-vanishing components

of the traceless energy-momentum tensor, which is defined
as T T

μν = Tμν − 1
n gμνT , read

T T
tt = n − 2

4n
(φ̇)2,

T T
i j = 1

n − 1

n − 2

4n
a2n(φ̇)2δi j , (138)

where we have specified the scalar field φ to be spatially
homogeneous, that is, φ = φ(t). As a result, the traceless
Einstein equations are cast into the form of a single equation,

Ḣ + (n − 1)H2 = − 1

4(n − 1)
(φ̇)2. (139)

Moreover, using the line element (135) and Eq. (136), the
equation of motion for the scalar matter field φ, Eq. (128), is
simplified to

φ̈+2(n−1)H φ̇+2

√
n−1

n−2
a−2(n−1)V ′

(
1

2

√
n−2

n−1
φ

)
=0.

(140)

It is of interest to see that the traceless Einstein equations
have yielded only the single Eq. (139), which is similar to
the Raychaudhuri equation or the first Friedmann equation
[52,53], which comes from all i j-components of the Ein-
stein equations in general relativity though there is a slight
difference in Eq. (139), which will be commented on shortly.
However, in the present formalism, the (second) Friedmann
equation stemming from the 00-components of the Einstein
equations is missing. In order to solve Eq. (139), we need
the conservation law of the energy-momentum tensor. In this
respect, recall that in general relativity the first Friedmann
equation can be viewed as a consequence of the (second)
Friedmann equation and covariant conservation of energy,
so that the combination of the (second) Friedmann equation
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and the conservation law, supplemented by the equation of
state p = p(ρ) (which will appear later), forms a complete
system of equations that determines the two unknown func-
tions, the scale factor a(t) and the energy density ρ. In our
formalism, instead of the (second) Friedmann equation, we
have to use the first Friedmann equation like Eq. (139).

At this stage, we meet a new situation: As mentioned
above, to solve Eq. (139), we must set up the conservation
law of the energy-momentum tensor as an additional equa-
tion. It is the covariantly conserved energy-momentum tensor
Tμν in Eq. (133) that we have to deal with in this context.
So far the covariantly conserved energy-momentum tensors
are needed to make contact with the standard Einstein equa-
tions, but in the present situation, we must make use of the
concrete expressions to find classical solutions. Then the non-
vanishing components of Tμν are easily evaluated to be

T t
t = −1

8

n − 2

n − 1
a2(n−1)(φ̇)2 − V

(
1

2

√
n − 2

n − 1
φ

)
≡ −ρ(t),

T i
j =

[
1

8

n − 2

n − 1
a2(n−1)(φ̇)2 − V

(
1

2

√
n − 2

n − 1
φ

)]
δi j

≡ p(t)δi j , (141)

where we have introduced energy density ρ(t) and pressure
p(t) in a conventional way. Using these expressions, the
covariant conservation law ∇μTμν = 0 leads to an equa-
tion

ρ̇ + (n − 1)H(ρ + p) = 0. (142)

To close the system of equations, which determines the
dynamics of homogeneous and isotropic universe, we have
to specify the equation of state of matter as usual,

p = wρ, (143)

where w is a certain constant. Of course, the equation of
state is not a consequence of equations of our formalism, but
should be determined by the matter content in our universe.
With the help of Eq. (143), Eq. (142) is exactly solved to be

ρ(t) = ρ0a
−(n−1)(w+1)(t), (144)

where ρ0 is an integration constant. Equations (142)–(144)
are the same expressions as in general relativity. Now, using
Eqs. (141), (143) and (144), our Friedmann equation (139)
is rewritten as

Ḣ + (n − 1)H2 = −w + 1

n − 2
ρ0a

−(n−1)(w+3). (145)

Since it is difficult to find a general solution to this
Eq. (145), we will refer only to special solutions which are
physically interesting. Looking at the RHS in Eq. (145), one
soon notices that at w = −1 and w = −3, specific situa-
tions occur. Actually, at w = −1, Eq. (145) can be exactly
integrated to be

a(t) = a0t
1

n−1 , (146)

where a0 is an integration constant and this solution describes
the decelerating universe in four dimensions owing to ä < 0.

In the case w = −3, Eq. (145) is reduced to the form

Ḣ + (n − 1)H2 = 2

n − 2
ρ0. (147)

This equation includes a special solution describing an expo-
nentially expanding universe,

a(t) = a0eH0t , (148)

where H0 is a constant defined as

H0 =
√

2ρ0

(n − 1)(n − 2)
. (149)

Finally, one can find a special solution such that the scale
factor a(t) has the form of a polynomial in t ,

a(t) = a0t
α, (150)

where α is a constant to be determined by the Friedmann
equation (145). It is easy to verify that the constant α is given
by

α = 2

(n − 1)(w + 3)
, (151)

so that in this case the scale factor takes the form

a(t) = a0t
2

(n−1)(w+3) . (152)

Then the accelerating universe ä(t) > 0 requires

w <
−3n + 5

n − 1
, (153)

while the decelerating universe requires

w >
−3n + 5

n − 1
. (154)

One might wonder how the obtained solutions are related
to the solutions in general relativity. In particular, in general
relativity we are familiar with the fact that the case w = −1
corresponds to the cosmological constant and the solution
is then an exponentially expanding universe, whereas in our
case the corresponding solution belongs to the case w =
−3, which appears to be strange. But this is just an illusion,
since we do not use the conventional form (134) of the line
element but the line element (135) involving the nontrivial
lapse function N (t).

In order to show that our result coincides with that in
general relativity, let us focus our attention on the Fried-
mann equation (139). By means of Eq. (141), this equation
is rewritten as

Ḣ + (n − 1)H2 = − 1

n − 2
N 2(ρ + p), (155)
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where we recovered the lapse function N (t) by using
Eq. (136).

On the other hand, with the conventional notation of the
energy-momentum tensor

Tμ
ν = diag(−ρ, p, . . . , p), (156)

and the line element (135), the Einstein equations in general
relativity,

Gμ
ν ≡ Rμ

ν − 1

2
δμ

νR = Tμ
ν, (157)

become a set of Friedmann equations,

H2 = 2

(n − 1)(n − 2)
N 2ρ, (158)

Ḣ + n − 1

2
H2 − Ṅ

N
H = − 1

n − 2
N 2 p. (159)

By using Eq. (136), Eq. (159) is written as

Ḣ + 3(n − 1)

2
H2 = − 1

n − 2
N 2 p. (160)

Equation (158) allows us to rewrite this equation in the form

Ḣ + (n − 1)H2 = − 1

n − 2
N 2(ρ + p), (161)

which precisely coincides with our Friedmann equation
(155). This demonstration clearly indicates that our cosmo-
logical solution is just equivalent to that of general relativity
specified in such a way that the line element is (135) and the
lapse function is given by Eq. (136).

7 Discussions

In this article, we have clarified various classical aspects of
the Weyl transverse (WTDiff) gravity in a general space-
time dimension. We have found that the Schwarzschild
black hole is a classical solution to the equations of
motion of the WTDiff gravity when expressed in the
Cartesian coordinate system. We have also shown that
the Reissner–Nordstrom black hole is a solution in the
same coordinate system in four space-time dimensions.
The generalization to higher space-time dimensions has
required us to extend the conventional Maxwell action to
the Weyl-invariant action since the Maxwell action is invari-
ant under the Weyl (local conformal) transformation only
in four dimensions. It is of interest that even in such an
extended electro-magnetic action plus the WTDiff grav-
ity action in higher dimensions there is a charged black
hole solution which shares all features with the conven-
tional Reissner–Nordstrom charge black hole solution in
four dimensions. Furthermore, we have investigated the
Friedmann–Lemaitre–Robertson–Walker (FLRW) cosmol-
ogy and seen that the FLRW cosmology is a classical solution

when the shift factor has a nontrivial scale factor and the spa-
tial geometry is flat.

In the classical analysis of the WTDiff gravity, a novel
feature is the classical relation among three gravitational
theories, those are, the conformally invariant scalar–tensor
gravity, Einstein’s general relativity and the Weyl transverse
(WTDiff) gravity, in a general space-time dimension. To put
it concretely, starting with the conformally invariant scalar–
tensor gravity, which is invariant under both the local Weyl
transformation and the diffeomorphisms (Diff), we have
gauge-fixed the longitudinal diffeomorphism, by which the
full diffeomorphisms (Diff) are broken to the transverse dif-
feomorphisms (TDiff), and we have obtained the WTDiff
gravity. It is explicitly verified that not only the resultant
action of the WTDiff gravity but also its equations of motion
are invariant under both the local Weyl transformation and
the TDiff. On the other hand, beginning with the confor-
mally invariant scalar–tensor gravity and gauge-fixing the
Weyl transformation have yielded general relativity, which
is invariant under Diff. In this sense, the three gravitational
theories are classically equivalent and we then conjecture
that this equivalence holds even in the quantum regime. In
other words, the conformally invariant scalar–tensor grav-
ity is the underlying theory with the maximum symmetry
behind Einstein’s general relativity and the WTDiff grav-
ity.

As a bonus, the equivalence of the three theories has
made it possible to construct covariantly conserved energy-
momentum tensors, by which we can prove that the traceless
Einstein equations in the WTDiff gravity become equiva-
lent with the standard Einstein equations in general relativ-
ity. Here one of the most remarkable things is that the cos-
mological constant emerges as an integration constant. This
interesting phenomenon has already been observed in uni-
modular gravity and is expected to lead to a resolution to
the cosmological constant problem. However, afterwards, it
was revealed that this is not indeed the case for the follow-
ing reason: In unimodular gravity, the unimodular condition
plays an important role and this condition must be properly
implemented by the method of Lagrange multipliers. Then it
turns out that the Lagrange multiplier field is nothing but the
cosmological constant and it receives huge radiative correc-
tions.

On the other hand, in the WTDiff gravity under consid-
eration, we have a chance of utilizing the phenomenon of
the emergence of the cosmological constant as an integra-
tion constant for solving the cosmological constant prob-
lem. In the WTDiff gravity, we have neither additional con-
ditions like the unimodular condition nor Lagrange multi-
plier fields, so we have no counterpart of the cosmological
constant in the action. Moreover, the Weyl symmetry for-
bids the emergence of the cosmological constant of dimen-
sion zero in a quantum effective action, and if it were not
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violated at the quantum level, the cosmological constant
appearing as an integration constant in the Einstein equa-
tions would keep its classical value in all energy scales. In
this sense, the cosmological constant in the WTDiff gravity is
radiatively stable. Thus, important remaining works amount
to giving a proof that the fake Weyl symmetry is not bro-
ken by quantum effects and determining the initial value of
the cosmological constant from some still unknown princi-
ple.

In a pioneering paper by Englert et al. [9], it is stated
that the Weyl symmetry in the conformally invariant scalar–
tensor gravity is free of Weyl anomaly when the Weyl
symmetry is spontaneously broken, and this situation is
unchanged when the Weyl-invariant matter fields are incor-
porated into the theory. Here “spontaneously broken” needs
an explanation. Usually, it is necessary to have a Higgs poten-
tial to trigger the spontaneous symmetry breakdown, but it
is in general difficult to set up such a potential for break-
ing the Weyl symmetry. Thus, as commented on around
the end of Sect. 3, the meaning of “spontaneously broken”
should be understood in the sense that the spurion field ϕ

is assumed to be divided into two terms, ϕ = 〈ϕ〉 + σ

where 〈ϕ〉 is the vacuum expectation value and σ is the
Goldstone boson restoring conformal symmetry, respec-
tively. Then the key technical idea in [9–18] is that the
vacuum expectation value 〈ϕ〉 plays a role as the renor-
malization scale instead of the conventional fixed renormal-
ization scale, by which the Weyl-invariant effective action
can be obtained. Our conjecture that the fake Weyl symme-
try has no anomaly is interpreted as a supplementary state-
ment from the symmetry side, which supports this technical
idea.

Anyway, as an important feature problem, we must
understand quantum aspects of the WTDiff gravity. This
is a very important step for the cosmological constant
problem. We wish to consider this problem in the near
future.
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Appendix A: Notation and conventions

A.1 Gravity

We follow the notation and conventions by Misner et al.’s
textbook [54], for instance, the flat Minkowski metric ηab =
diag(−1, 1, 1, 1), the Riemann curvature tensor Rμ

ναβ =
∂α	

μ
νβ − ∂β	

μ
να + 	

μ
σα	σ

νβ − 	
μ
σβ	σ

να , and the Ricci ten-
sor Rμν = Rα

μαν . The Latin indices label the flat space-
time coordinates, while the Greek ones run over the curved
space-time coordinates. The reduced Planck mass is defined

as Mp =
√

ch̄
8πG = 2.4 × 1018 GeV. Throughout this arti-

cle, we adopt reduced Planck units where we set c = h̄ =
Mp = 1. In these units, all quantities become dimension-
less. Finally, note that in reduced Planck units, the Einstein–
Hilbert Lagrangian density takes the form LEH = 1

2
√−gR.

A.2 Spinor

In this subsection, we gather some notation and definitions
relevant to spinor fields. The Dirac spinor ψ is a 2[ n2 ] dimen-
sional spinor where [ n2 ] is the Gauss symbol. The Clifford
algebra is defined as {γ a, γ b} = 2ηab. The gamma matrices
in a curved space-time are related to those in a flat space-
time with the help of the vielbein by γ μ = eμ

a γ a . The
metric tensor gμν is composed of the vielbein eμ

a by the
conventional relation gμν = ηabeaμebν . Therefore, we have
{γ μ, γ ν} = 2gμν .

In writing down the Dirac action, we need to define the
Dirac adjoint and the covariant derivative. The Dirac adjoint
is defined as ψ̄ = −iψ†γa=0 = iψ†γ a=0 where γa=0

or γ a=0 denotes the zero component of the flat space-time
gamma matrices. Using the spin connection ωab

μ , the covari-
ant derivative is of the form

Dμψ =
(

∂μ + 1

4
ωab

μ γab

)
ψ, (A.1)

where γab = 1
2 [γa, γb]. Similarly, the covariant derivative

for the Dirac adjoint can be derived from (A.1) to be

ψ̄
←−
D μ = ψ̄

(←−
∂ μ − 1

4
ωab

μ γab

)
. (A.2)

We will use the torsion-free spin connection. Then it is
defined through the Ricci rotation coefficient as

ωa,bc = eμ
a ωμ,bc = 1

2
(�a,bc − �b,ca + �c,ba) = −ωa,cb,

(A.3)

where the Ricci rotation coefficient is defined as

�a,bc = −�a,cb = (eμ
b e

ν
c − eμ

c e
ν
b)∂νeaμ

= −eaμ(eν
c ∂νe

μ
b − eν

b∂νe
μ
c ). (A.4)
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Appendix B: Proof of invariance

In this appendix, let us explicitly show that the action (14)
and the equations of motion (15) are invariant under the Weyl
transformation (3) and the transverse group of diffeomor-
phisms.

For this purpose, let us explain the transverse diffeomor-
phisms (TDiff) in more detail. Under the general coordinate
transformation or Diff, the metric tensor transforms as

gμν(x) → g′
μν(x

′) = ∂xα

∂xμ′
∂xβ

∂xν′ gαβ(x) ≡ Jα
μ′ J

β
ν′gαβ(x),

(B.1)

where the Jacobian matrix Jα
μ′, which is defined as Jα

μ′ =
∂xα

∂xμ′ , was introduced. Denoting the determinant of the Jaco-

bian matrix as J = det Jα
μ′ = det ∂xα

∂xμ′ , taking the determi-
nant of Eq. (B.1) produces

g′(x ′) = J 2(x)g(x). (B.2)

Then the transverse diffeomorphisms (TDiff), or equivalently
the volume preserving diffeomorphisms, are defined as a sub-
group of the full diffeomorphisms such that the determinant
of the Jacobian matrix is the unity

J (x) = 1. (B.3)

With this condition (B.3), the volume element is preserved
under Diff, and Eq. (B.2) shows that g(x) is a dimensionless
scalar field. In the infinitesimal form of diffeomorphisms
xμ → xμ′ = xμ − ξμ(x), using Eq. (B.3), TDiff can be
expressed in terms of Eq. (12) since we can derive the fol-
lowing equation:

1 = J (x) = det
∂xα

∂xμ′ = det
(
δα
μ + ∂μξα

) = e
Tr log

(
δα
μ+∂μξα

)

= e∂μξμ

. (B.4)

Armed with the knowledge of TDiff, we are ready to show
explicitly that the action (14) and the equations of motion (15)
of the WTDiff gravity are indeed invariant under both TDiff
and Weyl transformation. In fact, under Diff, the Lagrangian
density of (14) is transformed as

L′(x ′) = 1

2
|J 2g| 1

n

[
R + (n − 1)(n − 2)

4n2

1

|g|2 g
μν(∂μ|g|

+ 2|g|
J

∂μ J )(∂ν |g| + 2|g|
J

∂ν J )

]
. (B.5)

It is obvious that the Lagrangian density L is not invariant
under Diff owing to the presence of the terms with J while it
is invariant under TDiff because of Eq. (B.3), which means
that TDiff is in fact a symmetry of the action (14) of the
WTDiff gravity. Now let us show that the traceless Einstein
equations (15) are also invariant under TDiff. To do so, let us

perform the general coordinate transformation to Eq. (15),
whose result is described as

GT ′
μν − T T ′

(g)μν = Jα
μ′ J

β
ν′

{
GT

αβ − T T
(g)αβ + n − 2

2n

×
[

1

n

1

J |g| (∂α J∂β |g| + ∂β J∂α|g|)

+ 2(1 − n)

n

1

J 2 ∂α J∂β J + 2

J
DαDβ J

]

− n − 2

n2

[
1

n

1

J |g|∂ρ J∂ρ |g|

+1 − n

n

1

J 2 (∂ρ J )2 + 1

J
DρD

ρ J

]
gαβ

}
.

(B.6)

From this expression, we see that (15) is not invariant under
Diff, but with J = 1, that is, under TDiff, it becomes invari-
ant.

Next, we will prove Weyl invariance of the action (14) and
the equations of motion (15). Under the Weyl transformation
(3), the Lagrangian density of (14) is changed as

L′ = L − (n − 1)∂μ

(
|g| 1

n gμν 1

�
∂ν�

)
, (B.7)

which implies that the WTDiff gravity is invariant under the
Weyl transformation up to a surface term. Now, under the
Weyl transformation, the traceless Einstein tensor GT

μν and
T T

(g)μν are transformed by the same quantity

GT ′
μν = GT

μν + AT
μν,

T T ′
(g)μν = T T

(g)μν + AT
μν, (B.8)

where AT
μν is defined as

AT
μν = 2(n − 2)

1

�2

[
∂μ�∂ν� − 1

n
gμν(∂ρ�)2

]

− (n − 2)
1

�

[
∇μ∇ν� − 1

n
gμν∇ρ∇ρ�

]
. (B.9)

It is therefore obvious that Eq. (15) is invariant under the
Weyl transformation.

Appendix C: Derivations of Eq. (15)

In this appendix, we will present two different derivations
of the equations of motion (15) for the metric tensor in the
WTDiff gravity.

C.1 Derivation from Eq. (20)

This derivation method utilizes the equivalence relation
between the conformally invariant scalar–tensor gravity and
the WTDiff gravity via the gauge-fixing procedure, and the

123



Eur. Phys. J. C (2017) 77 :284 Page 19 of 21 284

fact that the equations of motion for the metric tensor in the
WTDiff gravity are traceless equations.

As mentioned in the article, the equations of motion in the
WTDiff gravity is entirely described in Eq. (20), or equiv-
alently Eq. (18). The equivalence between the conformally
invariant scalar–tensor gravity and the WTDiff gravity via the
gauge-fixing procedure demands that the equations of motion
in the WTDiff gravity should be obtained from Eq. (20) by
substituting the gauge condition (6). After a straightforward
calculation, we find that

Gμν = (n − 2)(2n − 1)

4n2

1

|g|2 ∂μ|g|∂ν |g| − n − 2

2n

1

|g|∇μ∇ν |g|

− (n − 2)(5n − 3)

8n2 gμν

1

|g|2
(
∂ρ |g|)2

+ n − 2

2n
gμν

1

|g|∇ρ∇ρ |g|. (C.1)

It is easy to see that taking its traceless part, i.e. calculating
GT

μν ≡ Rμν − 1
n gμνR, yields the equations of motion in the

WTDiff gravity, Eq. (15) with the definition of the energy-
momentum tensor (16).

C.2 Derivation from variation of WTDiff gravity action
(14)

In this subsection, we will derive the equations of motion
(15) of the WTDiff gravity by taking the variation for the
metric tensor step by step.

Let us first divide the action of the WTDiff gravity,
Eq. (14), into two parts

S = SR + Sg =
∫

dnxLR +
∫

dnxLg, (C.2)

where we have defined

LR = 1

2
|g| 1

n R, Lg

= (n − 1)(n − 2)

8n2 |g| 1
n −2gμν∂μ|g|∂ν |g|. (C.3)

Using the formulas

δ|g| = −|g|gμνδg
μν,

δR = Rμνδg
μν + (gμν� − ∇μ∇ν)δg

μν, (C.4)

the metric variation of LR reads

δLR = 1

2
|g| 1

n GT
μνδg

μν + 1

2
|g| 1

n (gμν� − ∇μ∇ν)δg
μν.(C.5)

Next, let us divide the second term in (C.5) into two parts
and evaluate each term separately

I1 = 1

2
|g| 1

n gμν�δgμν, I2 = −1

2
|g| 1

n ∇μ∇νδg
μν. (C.6)

In what follows, to convert the covariant derivative ∇μ to
the partial derivative ∂μ we repeatedly use the well-known
formula

|g| 1
2 ∇μA

μ = ∂μ

(
|g| 1

2 Aμ
)

, (C.7)

where Aμ is a generic vector field which includes ∂μ|g| and
∇νδgμν etc. We will give a detailed derivation of I1 below and
only give the result of I2, since the calculation of I2 is similar
to that of I1. Neglecting total derivative terms and using Eq.
(C.7) twice, we can proceed to calculate I1 as follows:

I1 = 1

2
|g| 1

n − 1
2 |g| 1

2 ∇ρ

(
gμνg

ρσ ∇σ δgμν
)

= 1

2
|g| 1

n − 1
2 ∂ρ

(
|g| 1

2 gμνg
ρσ ∇σ δgμν

)

= −1

2

(
1

n
− 1

2

)
|g| 1

n − 3
2 ∂ρ |g||g| 1

2 gμνg
ρσ ∇σ δgμν

= n − 2

4n
|g| 1

n − 3
2

[
|g| 1

2 ∇σ

(
∂ρ |g|gμνg

ρσ δgμν
)

−|g| 1
2 ∇ρ∇σ |g|gμνg

ρσ δgμν
]

= n − 2

4n
|g| 1

n − 3
2

[
∂σ

(
|g| 1

2 ∂ρ |g|gμνg
ρσ δgμν

)

− |g| 1
2 ∇ρ∇σ |g|gμνg

ρσ δgμν
]

= n−2

4n

[
−

(
1

n
− 3

2

)
|g| 1

n−5
2 ∂σ |g||g| 1

2 ∂ρ |g|gμνg
ρσ δgμν

− |g| 1
n −1gμν∇ρ∇ρ |g|δgμν

]

= n−2

4n
|g| 1

n gμνδg
μν

[
3n−2

2n

1

|g|2 (∂ρ |g|)2− 1

|g|∇ρ∇ρ |g|
]

.

(C.8)

In a perfectly similar way, we have

I2 = −n−2

4n
|g| 1

n δgμν

[
3n−2

2n

1

|g|2 ∂μ|g|∂ν |g|− 1

|g|∇μ∇ν |g|
]

.

(C.9)

Then from Eqs. (C.5), (C.8) and (C.9), the variation of SR
with respect to the metric tensor becomes

δSR
δgμν

= 1

2
|g| 1

n GT
μν + n − 2

4n
|g| 1

n gμν

×
[

3n − 2

2n

1

|g|2 (∂ρ |g|)2 − 1

|g|∇ρ∇ρ |g|
]

− n − 2

4n
|g| 1

n

[
3n − 2

2n

1

|g|2 ∂μ|g|∂ν |g| − 1

|g|∇μ∇ν |g|
]

.

(C.10)

The variation of Sg with respect to the metric tensor can
be calculated in a similar manner to be

δSg
δgμν

= (n − 1)(n − 2)

8n2 |g| 1
n
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×
{

1

|g|2 ∂μ|g|∂ν |g| + gμν

[
−3n − 1

n

1

|g|2 (∂ρ |g|)2

+ 2

|g|∇ρ∇ρ |g|
]}

. (C.11)

It is easy to check that adding the two results (C.10) and
(C.11) leads to the equations of motion of the WTDiff gravity

δS

δgμν
= δSR

δgμν
+ δSg

δgμν
= 1

2
|g| 1

n

(
GT

μν − T T
μν

)
. (C.12)

Appendix D: Covariantly conserved energy-momentum
tensors

In this article, we mainly work with the Weyl transverse
(WTDiff) gravity, which is not invariant under the general
coordinate transformation (Diff) but only invariant under the
Weyl transformation and TDiff. We find that the energy-
momentum tensor derived from the WTDiff gravity is not
covariantly conserved, thereby making it unclear to make a
connection with the standard Einstein equations. However,
as shown in this paper, the WTDiff gravity can be obtained
by gauge-fixing the longitudinal diffeomorphism existing in
the conformally invariant scalar–tensor gravity, which is gen-
erally covariant, so there should be a covariantly conserved
energy-momentum tensor. In this appendix, for complete-
ness, we will give a (well-known) proof for the existence
of the covariantly conserved energy-momentum tensor if the
underlying gravitational theory is invariant under the general
coordinate transformation (Diff).

Suppose that a generic action S is invariant under Diff,

S =
∫

dnx
√−gL. (D.1)

Under Diff, the metric tensor transforms as

δgμν = ∇μξν + ∇νξμ, (D.2)

where ξμ is a local parameter of Diff. Under Diff, the action
S is transformed into

δS = −
∫

dnx
√−gTμν∇μξν, (D.3)

where the energy-momentum tensor Tμν is defined as

Tμν = − 2√−g

δ(
√−gL)

δgμν

= −2
δL

δgμν
+ gμνL. (D.4)

By using Eq. (C.7) and integrating by parts, Eq. (D.3) can be
recast into the form

δS =
∫

dnx
√−g∇μT

μνξν, (D.5)

from which we can arrive at the covariant conservation law
of the energy-momentum tensor

∇μT
μν = 0. (D.6)

Let us note that only general coordinate invariance of the
action plays a critical role in this proof.
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