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1 Introduction

Future prospects in gravitational wave astronomy require perturbative calculations at very
high precision [1]. Remarkably, ideas and methods from quantum field theory offer a
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promising avenue of investigation [2–17]. Powerful techniques have been developed to com-
pute scattering amplitudes, and we have learned how to extract classical physics efficiently
from amplitudes [18–51]. A crucial insight from quantum field theory is the double copy:
the observation that scattering amplitudes in gravitational theories can be computed from
amplitudes in gauge theories.1 Since perturbation theory is far simpler in Yang-Mills (YM)
theory than in standard approaches to gravity, the double copy has revolutionary potential.

Yang-Mills theory, treated as a classical field theory, shares many of the important
physical features of gravity, including non-linearity and a subtle gauge structure. In this
respect the YM case has always served as an excellent toy model for gravitational dy-
namics. But our developing understanding of the double copy has taught us that the
connection between Yang-Mills theory and gravity is deeper than this. Detailed aspects
of the perturbative dynamics of gravity, including gravitational radiation, can be deduced
from Yang-Mills theory and the double copy [11, 21, 53, 54]. In fact the double copy extends
beyond perturbation theory, leading to exact maps [8, 55–81] between classical solutions
of gauge theory and gravity, even when there is gravitational radiation present [9].

So we are motivated to take another look at perturbative YM processes, particularly
those that connect to gravitational wave physics. However, the double copy is best un-
derstood as a relationship between the scattering amplitudes of YM theory and gravity.
Consequently it is useful to formulate classical YM dynamics in terms of amplitudes, rather
than by solving the equations of motion. We explain how to do so in this article. Since
our interest is in the classical theory, we systematically ignore non-perturbative quantum
effects. Nevertheless we identify observables which are well-defined in the classical theory
and which can be extracted unambiguously from perturbative scattering amplitudes to
any order. Our approach is complementary to an effort to understand the double copy
from a purely classical, worldline perspective [11, 54, 82–89]. Perhaps the simplest way of
implementing the double copy for classical quantities will be to compute observables using
classical worldline methods; extract the relevant amplitudes by comparing to our formulae
for observables in terms of amplitudes, and then double copy to gravity.

Returning briefly to our underlying interest in gravitational dynamics, it is worth
emphasising the importance of spin. The spin of the individual bodies in a compact binary
coalescence event influences the details of the outgoing gravitational radiation. This spin
also contains information on the poorly-understood formation channels of the binaries.
Measurement of spin is therefore one of the primary physics outputs of gravitational wave
observations. It is fortunate, then, that spin can be incorporated rather naturally in the
formalism of quantum field theory [41, 76, 90–104], even for very large (classical) spins.
However the details of spin dynamics quickly becomes complex.

In the Yang-Mills context we can also discuss the dynamics of spin. However Yang-
Mills theories always involve colour, and colour is in many respects very analogous to spin.
The dynamics of colour is actually a little simpler than spin, because the latter is tied
together with spacetime while colour is defined in its own vector space. We therefore pay
particular attention to the dynamics of colour in Yang-Mills theory. We discuss in detail

1The double copy was thoroughly reviewed recently [52].
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the change of colour of a particle during a scattering event, and the radiation of colour to
null infinity. We also discuss more briefly the impulse (change of momentum) and radiation
of momentum in YM theory. The methods we use build on ideas previously described by
Kosower and two of us in a previous paper [15] (KMOC).

The classical equations of central interest in our paper describe the Yang-Mills field
with some gauge group coupled to several classical point-like particles. These particles each
carry colour charges ca which are time-dependent vectors in the adjoint representation of
the gauge group. Often known as Wong’s equations [105], the equations of motion for N
of these particles following worldlines xα(τα) and with velocities vα and momenta pα are

dpµα
dτα

= g caα(τα)F aµν(xα(τα)) vαν(τα) , (1.1a)

dcaα
dτα

= gfabcvµα(τα)Abµ(xα(τα)) ccα(τα) , (1.1b)

DµF aµν(x) = Jaν (x) = g
N∑
α=1

∫
dτα caα(τα)vαν(τα) δ(4)(x− xα(τα)) , (1.1c)

where the Yang-Mills field is Aµ = AaµT
a and F aµν is the associated field strength tensor.

Although our motivation lies in gravitational dynamics, classical YM theory is also
important in other contexts. Its asymptotic symmetry group has recently received intense
study both for its own intrinsic interest but also as a toy model for the asymptotic symmetry
group of gravity [106–112]. The radiation of colour charge of interest to us is also important
in that context.

A totally different application is to the quark-gluon plasma, a high-temperature phase
of matter which is described by the classical equations of Yang-Mills theory. Indeed it
is in this context that the classical theory has its main application, as a tool to model
transport phenomena in non-Abelian plasmas in the very high temperature regime [113–
118]. The equations of motion also provide a successful approximation for calculating the
gluon distribution functions from deeply inelastic, ultrarelativistic ion collisions [119–121],
and radiation from classical particles has recently been calculated in this regime [122, 123].

Our paper is organised as follows. In section 2 we review the theoretical treatment of
colour in Yang-Mills theory, emphasising the importance of coherent states in the classical
limit. We will see that point-like particles emerging from an underlying matter field in a
representation R of the gauge group have an adjoint-valued colour charge which naturally
has dimensions of angular momentum. In section 3 we will set up expressions for the
classical and momentum impulse when scattering states have colour, and provide an explicit
computation of these observables at NLO. In section 4 we turn to radiation, constructing
the total radiated colour charge in terms of amplitudes and explicitly recovering the classical
LO radiation current derived in [11]. In section 5 we reproduce our earlier results using
purely classical methods. Finally, we discuss our results in section 6.

2 Review of the theory of colour

In this section we review the emergence of non-Abelian colour charges caα — a vector in
the adjoint representation for each particle species α — from a quantum field theory with
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scalars ϕα in any representation Rα of the gauge group, coupled to the Yang-Mills field.
We specialise to the case of two different scalar fields, so that α = 1, 2. Our action is

S =
∫

d4x

( 2∑
α=1

[
(Dµϕ

†
α)Dµϕα −

m2
α

~2 ϕ
†
αϕα

]
− 1

4F
a
µνF

aµν

)
, (2.1)

where Dµ = ∂µ + igAaµT
a
R. We have restored factors of ~ for convenience below. The

generator matrices (in a representation R) are T aR = (T aR)ij and satisfy the Lie algebra
[T aR, T bR]ij = ifabc(T cR)ij . We take the metric signature to be mostly negative.

2.1 Colour in classical field theory

For simplicity we begin with the case of just a single massive scalar. At the classical level,
the colour charge can be obtained from the Noether current jaµ associated with the global
part of the gauge symmetry. The colour charge is explicitly given by∫

d3x ja0 (t,x) = i

∫
d3x

(
ϕ†T aR ∂0ϕ− (∂0ϕ

†)T aR ϕ
)
. (2.2)

Notice that a direct application of the Noether procedure has led to a colour charge with
dimensions of action, or equivalently, of angular momentum.

It’s worth dwelling on dimensional analysis in the context of the Wong equations (1.1)
since they motivate us to make certain choices which may, at first, seem surprising. The
Yang-Mills field strength

F aµν = ∂µA
a
ν − ∂νAaµ − gfabcAbµAcν (2.3)

is obviously an important actor in these classical equations. Classical equations should
contain no factors2 of ~, so we choose to maintain this precise expression for the field
strength when ~ 6= 1. By inspection it follows3 that [gAaµ] = L−1. We can develop this
further; since the action of equation (2.1) has dimensions of angular momentum, the Yang-
Mills field strength must have dimensions of

√
M/L3. Thus, from equation (2.3),

[Aaµ] =

√
M

L
, [g] = 1√

ML
. (2.4)

This conclusion about the dimensions of g is in contrast to the situation in electrodynamics,
where [e] =

√
ML. Put another way, in electrodynamics the dimensionless fine structure

constant is e2/4π~ while in our conventions the analogue is ~g2/4π ! It is possible to
arrange matters such that the YM and EM cases are more similar, but we find the present
conventions to be convenient in perturbative calculations.

Continuing with our discussion of dimensions, note that the Yang-Mills version of the
Lorentz force, equation (1.1a), demonstrates that the quantity gca must have the same

2An equivalent point of view is that any factors of ~ appearing in an equation which has classical meaning
should be absorbed into parameters of the classical theory.

3We use the notation [x] for the dimensions of the quantity x. The symbols L andM stand for dimension
of length and mass, respectively.
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dimension as the electric charge. This is consistent with our observation above that the
colour has dimensions of angular momentum.

At first our assignment of dimensions of g may seem troubling from the perspective of
extracting classical physics from scattering amplitudes following the algorithm described by
Kosower and some of the authors (KMOC) [15]. The fact that g has dimensions of 1/

√
ML

implies that the dimensionless coupling at each vertex is g
√
~, so factors of ~ associated

with the coupling appear with the opposite power to the case of electrodynamics (and
gravity). However, because the colour charges are dimensionful the net power of ~ turns
out to be the same, and thus the KMOC approach is ultimately unaltered. We will also see
below that the dimensionful nature of the colour clarifies the classical limit of this aspect
of the theory. To see how this works we must quantise.

2.2 Colour of single-particle quantum states

Dimensional analysis demonstrates that ϕ has dimensions of
√
M/L, so its mode expansion

is
ϕi(x) = 1√

~

∫
dΦ(p)

(
ai(p)e−ip·x/~ + b†i (p)e

ip·x/~
)
. (2.5)

The index i labels the representation R. We have normalised the ladder operators by
requiring

[ai(p), a†j(q)] = 2Ep (2π)3δ(3)(p− q) δij ≡ δ̂3
Φ(p− q) δij , (2.6)

and likewise for the antiparticle operators. Each ladder operator therefore has dimensions
of M−1. We also write the Lorentz-invariant phase space measure as

dΦ(k) = d4k

(2π)4 2πΘ(k0) δ(k2 −m2) ≡ d̂4k δ̂(+)(k2 −m2) , (2.7)

and introduce the hat notation in the measure and the delta functions

d̂np ≡ dnp
(2π)n , δ̂(n)(x) ≡ (2π)nδ(n)(x) , (2.8)

in order to avoid a proliferation of factors of 2π.
After quantisation, the colour charge of equation (2.2) becomes a Hilbert space operator

which will be important below. To emphasise that this is an operator we write the quantised
form as Ca:

Ca = i

∫
d3x

(
ϕ†T aR ∂0ϕ− (∂0ϕ

†)T aR ϕ
)

= ~
∫

dΦ(p)
(
a†(p)T aR a(p) + b†(p)T a

R̄
b(p)

)
,

(2.9)

using the generators of the conjugate representation R̄, T a
R̄

= −T aR. The overall ~ factor
guarantees that the colour has dimensions of angular momentum, as we require. It is
important to note that these global colour operators inherit the usual Lie algebra of the
generators, modified by factors of ~, so that

[Ca,Cb] = i~fabcCc . (2.10)
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Now we turn to the action of the colour operator on the single-particle states

|pi〉 = a†i(p)|0〉 . (2.11)

Acting with the colour charge operator of equation (2.9) we immediately see that

Ca|pi〉 = ~ (T aR)j i|pj〉 , 〈pi|Ca = ~ 〈pj |(T aR)ij . (2.12)

Thus inner products yield generators scaled by ~:

〈pi|Ca|pj〉 ≡ (Ca)ij = ~ (T aR)ij . (2.13)

The (Ca)ij are simply rescalings of the usual generators T aR by a factor of ~, and thus
satisfy the rescaled Lie algebra in equation (2.10); since this rescaling is important for us,
it is useful to make the distinction between the two.

We may then write a generic single particle state as

|ψ〉 =
∑
i

∫
dΦ(p)φ(p)χi |pi〉 , (2.14)

where the vector χi labels a general colour state, and the normalisations are chosen such
that ∫

dΦ(p)|φ(p)|2 = 1 ,
∑
i

χi∗χi = 1 . (2.15)

The colour operator acts on these states as

Ca|ψ〉 =
∫

dΦ(p) (Ca)ij φ(p)χj |pi〉 . (2.16)

Furthermore, we define the colour charge of the particle as

〈ψ|Ca|ψ〉 = χi∗(Ca)ij χj . (2.17)

Computing this charge and extracting its classical limit is the topic of the next section 2.3.
As a final remark on these rescaled generators, let us write out the covariant derivative

in the representation R. In terms of Ca, the ~ scaling of interactions is precisely the same
as in QED (and in perturbative gravity):

Dµ = ∂µ + i gAaµT
a = ∂µ + ig

~
AaµC

a ; (2.18)

for comparison, the covariant derivative used by KMOC in QED was ∂µ + ieAµ/~ [15].
Thus we have arranged that factors of ~ appear in the same place in YM theory as in
electrodynamics, provided that the colour is measured by Ca. This ensures that the basic
rules for obtaining the classical limits of amplitudes will be the same as in KMOC [15].
In practical calculations one can thus restore ~’s in colour factors and work using Ca’s
everywhere. However, it is worth emphasising that unlike classical colour charges, the
factors Ca do not commute.

– 6 –
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2.3 Colour of point-like particles in the classical regime

The classical point-particle picture emerges from sharply peaked quantum wavepackets.
In [15], linear exponential generalisations of Gaussian wavepackets were chosen for rela-
tivistic momentum space wavepackets. The essential property that must be satisfied was
for the particle to have a sharply-defined position and a sharply-defined momentum when-
ever the classical limit was taken. To understand colour, governed by the Yang-Mills-Wong
equations in the classical arena, a similar picture should emerge for our quantum colour
operator in equation (2.9). Following the KMOC philosophy [15] we will first consider the
full quantum states and then the classical limit. We define the classical limit of the colour
charge to be

ca ≡ 〈ψ|Ca|ψ〉 . (2.19)

Our focus in this section is on the colour structure of our particle. The full state is a
tensor product of colour and kinematics:

|ψ〉 =
∑
|ψcolour〉 ⊗ |ψkin〉 , (2.20)

but as we ignore kinematics for now, we simply write the colour part of the state |ψcolour〉 →
|ψ〉 in the remainder of this section. Then, in the classical limit, the critical requirements
on the colour part of the state are that

〈ψ|Ca|ψ〉 = finite ,
〈ψ|CaCb|ψ〉 = 〈ψ|Ca|ψ〉〈ψ|Cb|ψ〉+ negligible .

(2.21)

Since the colour operator explicitly involves a factor of ~, another parameter must be large
so that the colour expectation 〈ψ|Ca|ψ〉 is much bigger than ~ in the classical region. This
situation is basically the same as for the usual classical limit of angular momentum: in that
case we take the spin quantum number j large so that ~j is a classical angular momentum.
For colour, we similarly need the size of the representation R to be large. (We will see this
explicitly in the case of SU(3) in a moment.) For the second requirement we must select
appropriate colour wavefunctions |ψ〉 which are analogous to the kinematic wavepacket in
KMOC [15].

Coherent states are the key to the classical limit very generally [124], including the
case of angular momentum, so we choose a coherent state to describe the colour of our par-
ticle. The states used in KMOC to describe momenta [15] can themselves be understood
as coherent states for a “first-quantised” particle — more specifically they are states for
the restricted Poincaré group [125–127]. However, not all definitions of coherent states are
equivalent, so we need to specify in what sense our states are coherent. The definition we
use was introduced by Perelomov [128], which formalises the notion of coherent state for any
Lie group and hence can be utilised for both the kinematic and the colour parts. It is in this
sense that the states used by KMOC are coherent for the Poincaré group. We refer the in-
terested reader to [129] for details of the Perelomov formalism and to [130] for applications.

For the explicit construction of the appropriate colour states we will use the Schwinger
boson formalism. For SU(2), constructing irreducible representations from Schwinger

– 7 –
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bosons is a standard textbook exercise [131]. One simply introduces the Schwinger bosons
— that is, creation a†i and annihilation ai operators, transforming in the fundamental
two-dimensional representation so that i = 1, 2. The irreducible representations of SU(2)
are all symmetrised tensor powers of the fundamental, so the state

a†i1a†i2 · · · a†i2j |0〉 , (2.22)

which is automatically symmetric in all its indices, transforms in the spin j representation.
For groups larger than SU(2), the situation is a little more complicated because the

construction of a general irreducible representation requires both symmetrisation and an-
tisymmetrisation over appropriate sets of indices. This leads to expressions which are
involved already for SU(3) [132, 133]. We content ourselves with a brief discussion of the
SU(3) case which captures all of the interesting features of the general case.

One can construct all irreducible representations from tensor products only of funda-
mentals [134, 135]; however, for our treatment of SU(3) it is helpful to instead make use
of the fundamental and antifundamental, and tensor these together to generate represen-
tations. Following [132], we introduce two sets of ladder operators ai and bi , i = 1, 2, 3,
which transform in the 3 and 3∗ respectively. The colour operator can then be written as

Ce = ~
(
a†
λe

2 a− b
† λ̄

e

2 b
)
, e = 1, . . . , 8 , (2.23)

where λe are the Gell-Mann matrices and λ̄e are their conjugates. The operators a and b
satisfy the usual commutation relations

[ai, a†j ] = δi
j , [bi, b†j ] = δij , [ai, bj ] = 0 , [a†i, b†j ] = 0 . (2.24)

By virtue of these commutators, the colour operator (2.23) obeys the commutation rela-
tion (2.10).

There are two Casimir operators given by the number operators4

N1 ≡ a† · a , N2 ≡ b† · b , (2.25)

with eigenvalues n1 and n2 respectively, so we label irreducible representations by [n1, n2].
Naïvely, the states we are looking for are constructed by acting on the vacuum state as
follows: (

a†i1 · · · a†in1
) (
b†j1 · · · b

†
jn2

)
|0〉 . (2.26)

However, these states are SU(3) reducible and thus cannot be used in our construction
of coherent states. We write the irreducible states schematically by acting with a Young
projector P which appropriately (anti-) symmetrises upper and lower indices, thereby sub-
tracting traces:

|ψ〉[n1,n2] ≡ P
((
a†i1 · · · a†in1

) (
b†j1 · · · b

†
jn2

)
|0〉
)
. (2.27)

In general these operations will lead to involved expressions for the states, but we can
understand them from their associated Young tableaux (figure 1). Each double box column
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j1 j2 . . . jn2 i1 i2 · · · in1

Figure 1. Young tableau of SU(3).

represents an operator b†i and each single column box represents the operator a†i, and thus
for a mixed representation we have n2 double columns and n1 single columns.

Having constructed the irreducible states, one can define a coherent state parametrised
by two triplets of complex numbers ξi and ζi, i = 1, 2, 3. These are normalised according to

|ξ|2 = |ζ|2 = 1 , ξ · ζ = 0 . (2.28)

We won’t require fully general coherent states, but instead their projections onto the
[n1, n2] representation, which are

|ξ ζ〉[n1,n2] ≡
1√

(n1!n2!)

(
ζ · b†

)n2 (
ξ · a†

)n1 |0〉 . (2.29)

The square roots ensure that the states are normalised to unity.5 With this normalisation
we can write the identity operator as

1[n1,n2] =
∫

dµ(ξ, ζ)
(
|ξ ζ〉 〈ξ ζ|

)
[n1,n2]

, (2.30)

where
∫

dµ(ξ, ζ) is the SU(3) Haar measure, normalised such that
∫

dµ(ξ, ζ) = 1. Its precise
form is irrelevant for our purposes.

With the states in hand, we can return to the expectation value of the colour operator
Ca in equation (2.9). The size of the representation, that is n1 and n2, must be large
compared to ~ in the classical regime so that the final result is finite. To see this let us
compute this expectation value explicitly. By definition we have

〈ξ ζ|Ce|ξ ζ〉[n1,n2] = ~
2
(
〈ξ ζ|a†λea|ξ ζ〉[n1,n2] − 〈ξ ζ|b†λ̄eb|ξ ζ〉[n1,n2]

)
. (2.31)

After a little algebra we find that

〈ξ ζ|Ce|ξ ζ〉 = ~
2
(
n1ξ
∗λeξ − n2ζ

∗λ̄eζ
)
. (2.32)

We see that a finite charge requires a scaling limit in which we take n1, n2 large as ~→ 0,
keeping the product ~ni fixed for at least one value of i. The classical charge is therefore
the finite c-number

ca = 〈ξ ζ|Ca|ξ ζ〉[n1,n2] = ~
2
(
n1ξ
∗λaξ − n2ζ

∗λ̄aζ
)
. (2.33)

4Here we define a† · a ≡
∑3

i=1 a
†iai and |ξ|2 ≡

∑3
i=1 |ξi|

2.
5Note that the Young projector in equation (2.27) is no longer necessary since the constraint ξ · ζ = 0

removes all the unwanted traces.
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The other feature we must check is the expectation value of products. A similar
calculation for two pairs of charge operators in a large representation leads to the important
property

〈ξ ζ|CaCb|ξ ζ〉[n1,n2] = 〈ξ ζ|Ca|ξ ζ〉[n1,n2]〈ξ ζ|Cb|ξ ζ〉[n1,n2] +O(~)
= cacb +O(~) .

(2.34)

This is in fact a special case of a more general construction discussed in detail by Yaffe [124].
In appendix A we prove equation (2.34), and show that the correction term is O(~). The
same argument can be used to demonstrate an important property of the coherent states
in the classical limit, which is that the overlap 〈χ′|χ〉 is very strongly peaked about χ =
χ′ [124]. We have thus constructed explicit colour states which ensure the correct classical
behaviour of the colour charges.

In the calculation of the colour impulse and radiated colour in sections 3 and 4, we
will only need to make use of the finiteness and factorisation properties, so we will avoid
further use of the explicit form of the states. Henceforth we write χi for the parameters
of a general colour state |χ〉 with these properties, and dµ(χ) for the Haar measure of the
colour group, whatever it may be.

2.4 Colour of several particles

Now that we have reviewed the theory of colour for a single particle, it’s time to consider
what happens when more than one particle is present. We will shortly discuss the dynamics
of colour in detail; here, we set up initial states describing more than one point-like particle.

We take our particles to be distinguishable, so they are associated with distinct quan-
tum fields ϕα with α = 1, 2. We only consider two different particles explicitly, though it is
no more difficult to consider the many-particle case. We also restrict to scalar fields, again
for simplicity. The action is therefore as given in equation (2.1). Both fields ϕα must be in
representations Rα which are large, so that a classical limit is available for the individual
colours.

At some initial time in the far past, we assume that our two particles both have well-
defined positions, momenta and colours. In other words, particle α has a wavepacket φα(pα)
describing its momentum-space distribution, and a colour wavepacket χα as described in
section 2.3. In this initial state, both particles are separated by an impact parameter b
(which must then be very large compared to the spatial spread of the momenta in the
wavepackets [15]). We further assume that there is no incoming radiation (that is, no
vector boson) in the incoming state. Thus, the state is

|Ψ〉 =
∫

dΦ(p1)dΦ(p2)φ1(p1)φ2(p2) eib·p1/~ |p1 χ1; p2 χ2〉

=
∫

dΦ(p1)dΦ(p2)φ1(p1)φ2(p2) eib·p1/~ χ1i χ2j |p1
i; p2

j〉 .
(2.35)

Notice that the state |Ψ〉 refers to a multi-particle state. We reserve the notation |ψ〉 for
single particle states.

We measure the colour of multi-particle states by acting with a colour operator which
is simply the sum of the individual colour operators (2.9) for each of the scalar fields. For
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example, acting on the state |p1 χ1; p2 χ2〉 we have

Ca|p1χ1; p2χ2〉 = |p1
i′ p2

j′〉
(
(Ca1 )i′ iδj′j + δi′

i(Ca2 )j′j
)
χ1i χ2j

=
∫
dµ(χ′1)dµ(χ′2)

∣∣p1 χ
′
1; p2 χ

′
2
〉
〈χ′1 χ′2|Ca1 ⊗ 1 + 1⊗ Ca2 |χ1 χ2〉

=
∫
dµ(χ′1)dµ(χ′2)

∣∣p1 χ
′
1; p2 χ

′
2
〉
〈χ′1 χ′2|Ca1+2|χ1 χ2〉 ,

(2.36)

where Caα is the colour in representation Rα and we have written Ca1+2 for the colour
operator on the tensor product of representations R1 and R2. In the classical regime, using
the property that the overlap between states sets χ′i = χi in the classical limit, it follows that

〈p1 χ1; p2 χ2|Ca1+2 |p1 χ1; p2 χ2〉 = ca1 + ca2 , (2.37)

so the colours simply add.

3 Impulse

Now we move on to the dynamics of colour. Our focus in this section will be on the colour
impulse — that is, the total change in colour during a scattering event — leaving radiation
of colour to the next section. We begin by setting up the colour impulse observable in the
vein of [15, 95] before turning to explicit examples at LO and NLO.

3.1 Colourful scattering observables in quantum field theory

A natural observable in Yang-Mills theory is the total change in the colour charge of one
of the massive scattering particles,

〈∆ca1〉 = 〈Ψ|S†Ca1S|Ψ〉 − 〈Ψ|Ca1|Ψ〉
= i〈Ψ|[Ca1, T ]|Ψ〉+ 〈Ψ|T †[Ca1, T ]|Ψ〉 ,

(3.1)

where we have introduced the S and T matrices, related by S = 1 + iT , and utilised the
optical theorem. We call this observable the colour impulse, as it mirrors the structure
of the momentum impulse ∆pµ1 of [15] and angular impulse ∆sµ1 of [95]. An immediate
novelty for this impulse is that it is a Lorentz scalar, instead transforming in the adjoint
representation of the gauge group.

Substituting the 2-particle wavepackets in equation (2.35) yields

〈∆ca1〉 =
∏
i=1,2

∫
dΦ(pi)dΦ(p′i)φi(pi)φ∗i (p′i)eib·(p1−p′1)/~

× 〈p′1 χ1; p′2 χ2|i[Ca1, T ] + T †[Ca1, T ]|p1 χ1; p2 χ2〉 , (3.2)

which we expand in terms of amplitudes by inserting complete sets of states,

1 =
∑
X

∫
dΦ(r1)dΦ(r2) dµ(ζ1)dµ(ζ2)|r1 ζ1; r2 ζ2; X〉〈r1 ζ1; r2 ζ2; X| . (3.3)

The setX could contain any number of extra gluon or scalar states, whose phase space mea-
sures and sums over any other quantum numbers are left implicit in the summation over X.
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It is frequently convenient to write amplitudes in Yang-Mills theory in colour-ordered
form; for example, see [136] for an application to amplitudes with multiple different external
particles. The full amplitude A is decomposed onto a basis of colour factors times partial
amplitudes A. The colour factors are associated with some set of Feynman topologies. Once
a basis of independent colour structures is chosen, the corresponding partial amplitudes
must be gauge invariant. Thus,

〈p′1χ1; p′2χ2|T |p1χ1; p2χ2〉= 〈χ1χ2|A(p1,p2→ p′1,p
′
2)|χ1χ2〉 δ̂(4)(p1 +p2−p′1−p′2)

=
∑
D

〈C(D)〉AD(p1,p2→ p′1,p
′
2) δ̂(4)(p1 +p2−p′1−p′2) , (3.4)

where C(D) is the colour factor of diagram D and AD is the associated partial amplitude.
The remaining expectation value is over the colour states χi. Using this notation and the
action of the colour operator in equation (2.36), we can write the colour impulse as

〈∆ca1〉=
∏
i=1,2

∑
D

∫
dΦ(pi)dΦ(p′i)φi(pi)φ∗i (p′i)eib·(p1−p′1)/~

×
[
i〈[Ca1 ,C(D)]〉AD(p1,p2→ p′1,p

′
2) δ̂(4)(p1 +p2−p′1−p′2)

+
∑
D′

∑
X

∫
dΦ(ri)

〈
C(D′)†[Ca1 ,C(D)]

〉
A∗D′(p′1,p′2→ r1, r2, rX)

×AD(p1,p2→ r1, r2, rX) δ̂(4)(p1 +p2−p′1−p′2)δ̂(4)(p1 +p2−r1−r2−rX)
]
.

(3.5)

Finally, let us introduce the momentum mismatch qi = p′i − pi, and transfer wi = ri − pi.
After integrating over the delta functions, we arrive at

〈∆ca1〉 = i

∫
dΦ(p1)dΦ(p2)d̂4q δ̂(2p1 · q + q2)δ̂(2p2 · q − q2)

×Θ(p0
1 + q0)Θ(p0

2 − q0)φ1(p1)φ2(p2)φ∗1(p1 + q)φ∗2(p2 − q)e−ib·q/~

×
{∑

D

〈[Ca1 , C(D)]〉AD(p1, p2 → p1 + q, p2 − q)

− i
∏
i=1,2

∑
X

∫
d̂4wi δ̂(2p1 · wi + w2

i )δ̂(4)(w1 + w2 − rX)Θ(p0
i + w0

i )

×
∑
D,D′

〈
C(D′)†[Ca1 , C(D)]

〉
AD(p1, p2 → p1 + w1, p2 + w2, rX)

×A∗D′(p1 + q, p2 − q → p1 + w1, p2 + w2, rX)
}
.

(3.6)

It is interesting to note that factors of expectation values of colour commutators, such as
〈[Ca1 , C(D)]〉, in the colour impulse play a similar role to that of the momentum mismatch
qµ in the momentum impulse ∆pµ1 [15].

The momentum impulse in QED and gravity was discussed in detail in [15]. In Yang-
Mills theory, the presence of colour leads to slight modifications of those KMOC expressions.
The basic difference is the colour structure of the amplitude. The observable itself is built
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from the (colour singlet) momentum operator Pµ1 , so factors of Ca1 appearing in the colour
impulse, equation (3.6), do not arise in the momentum case. We proceed by writing the
full amplitude as a sum over colour structures, finding

〈∆pµ1 〉 = i

∫
dΦ(p1)dΦ(p2)d̂4q δ̂(2p1 · q + q2)δ̂(2p2 · q − q2)

×Θ(p0
1 + q0)Θ(p0

2 − q0)φ(p1)φ(p2)φ∗(p1 + q)φ∗(p2 − q)e−ib·q

×
{∑

D

qµ 〈C(D)〉AD(p1, p2 → p1 + q, p2 − q)

− i
∏
i=1,2

∑
X

∫
d̂4wi δ̂(2p1 · wi + w2

i )δ̂(4)(w1 + w2 − rX)Θ(p0
i + w0

i )

×
∑
D,D′

〈
C(D′)†C(D)

〉
AD(p1, p2 → p1 + w1, p2 + w2, rX)

×A∗D′(p1 + q, p2 − q → p1 + w1, p2 + w2, rX)
}
.

(3.7)

By construction, both impulse observables are well defined in the classical regime. Once
wavefunctions of the types described in section 2 are used, the details of the wavefunctions
will not be important. However, to extract expressions which are valid in the classical
approximation, it is important to be aware that the commutators of the Ca contain powers
of ~. In particular one must take care to expand all commutators of colour factors.

All other powers of ~ appear as described by KMOC. In brief, the rescaled covariant
derivative of equation (2.18) ensures that each factor of the coupling g is accompanied by
a factor ~−1/2; all massless external and loop momenta are products of a factor of ~ and a
wavenumber; care must be taken with squares of massless momenta q2 in delta functions.
Finally, small shifts of order ~q̄ to the dominant momenta of order m in wavefunctions can
be neglected; this is an example of a general property of coherent states in the classical
limit [124]. We therefore introduce the notation

〈〈
f(p1, p2, · · · )

〉〉
=
∫

dΦ(p1)dΦ(p2)|φ(p1)|2|φ(p2)|2 〈χ1 χ2|f(p1, p2, · · · )|χ1 χ2〉 . (3.8)

The nature of the wavepackets make evaluating these expectation values very easy in the
classical limit: the momentum phase space integrals are simply evaluated by replacing
massive momenta with 4-velocities, pi → miui [15], while the colour expectation value
is guaranteed by equation (2.34) to behave as a product of commuting classical colour
charges. We will still use single angle brackets to indicate expectation values which are
only over the colour states.

Following this procedure, the colour impulse becomes

〈∆ca1〉 → ∆ca1 = i

〈〈∫
d̂4q̄ δ̂(2p1 · q̄)δ̂(2p2 · q̄)e−ib·q̄ Ga

〉〉
, (3.9)
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where we define the colour kernel Ga to be

Ga = ~2∑
D

[Ca1 , C(D)]AD(p1, p2 → p1 + q, p2 − q)

−i~4∑
X

∏
i=1,2

∫
d̂4w̄i δ̂(2p1 · w̄i + ~w̄2

i ) δ̂(4)(w̄1 + w̄2 − r̄X)
∑
D,D′

C(D′)†[Ca, C(D)]

×A∗D′(p1 + q, p2 − q → p1 + w1, p2 + w2, rX)AD(p1, p2 → p1 + w1, p2 − w2, rX) .

(3.10)

We designed this kernel so that it is of order ~0 in the classical approximation. Clearly at
LO only the first term, linear in the amplitude, contributes; the second integral contributes
from NLO, where it is an integral over tree level diagrams, while the first term involves
one-loop amplitudes.

In the same notation, the momentum impulse is

〈∆pµ1 〉 → ∆pµ1 = i

〈〈∫
d̂4q̄ δ̂(2p1 · q̄)δ̂(2p2 · q̄)e−ib·q̄ Iµ

〉〉
, (3.11)

with momentum kernel

Iµ = ~3q̄µ
∑
D

C(D)AD(p1,p2→ p1 +q,p2−q)

− i~5∑
X

∏
i=1,2

∫
d̂4w̄i δ̂(2pi · w̄i+~w̄2

i ) δ̂(4)(w̄1 + w̄2− r̄X) w̄µ1
∑
D,D′

C(D′)†C(D)

×A∗D′(p1 +q,p2−q→ p1 +w1,p2 +w2, rX)AD(p1,p2→ p1 +w1,p2 +w2, rX)

(3.12)

when the scattering particles carry colour.

3.2 Leading order

We may now compute the colour impulse explicitly. We begin at leading order (LO) for
the scalar YM theory defined by equation (2.1), moving to next-to-leading order (NLO)
in the next subsection. We will strip coupling constants from amplitudes, writing Ā(n)

D for
the charge stripped partial amplitudes at O(g2n+2). At LO the colour kernel is

Ga,(0) = ~g2∑
D

[Ca1 , C(D)] Ā(0)
D (p1, p2 → p1 + ~q̄, p2 − ~q̄) . (3.13)

Here only the t-channel tree topology contributes, so the sum between colour and kinemat-
ics is trivial; we simply have6

Ā = 4p1 · p2 + ~q̄2

~2q̄2 , C
( )

= C1 · C2 , (3.14)

and therefore the colour impulse factor is[
Ca1 , C

( ) ]
= [Ca1 , Cb1]Cb2 = i~fabcCc1Cb2 . (3.15)

6We adopt the convention that time runs vertically in Feynman diagrams.

– 14 –



J
H
E
P
1
2
(
2
0
2
0
)
0
7
6

Inserting these expressions into the colour kernel, all factors of ~ cancel as expected for a
classical observable. The classical limit is

∆ca,(0)
1 = −g2

〈〈
fabcCc1C

b
2

∫
d̂4q̄ δ̂(p1 · q̄)δ̂(p2 · q̄)e−ib·q̄

p1 · p2
q̄2

〉〉
= g2fabccb1c

c
2 u1 · u2

∫
d̂4q̄ δ̂(u1 · q̄)δ̂(u2 · q̄)

e−ib·q̄

q̄2 .

(3.16)

Notice that while evaluating the large double angle brackets we obtained classical colour
charges as expectations values of the Cα.

The remaining integral is straightforward but divergent. While we use dimensional
regulation throughout the remainder of the paper to define divergent integrals, in this case
it is convenient to take a different approach.

The logarithmic divergence in the colour may seem surprising at first. However, the
spacetime position of the particle is also logarithmically divergent in four dimensions;
this is simply the familiar divergence due to the long-range nature of 1/r2 forces in four
dimensions. We therefore introduce a cutoff regulator L of dimensions length as follows.
Consider the following quantity

2b2∂∆ca,(0)
1

∂b2
= bµ

∂∆ca,(0)
1

∂bµ
= −ig2fabccb1c

c
2γbµ

∫
d̂4q̄ δ̂(u1 · q̄)δ̂(u2 · q̄)

e−ib·q̄ q̄µ

q̄2 , (3.17)

where γ = u1 · u2. The integral on the r.h.s. was evaluated in [15]. Using that result, it is
easy to show that the solution of the differential equation is

∆ca,(0)
1 = γg2fabccb1c

c
2

4π
√
γ2 − 1

log
(
b2

L2

)
, (3.18)

where we have included the regulator explicitly.

3.3 Next to leading order

At NLO the classical colour kernel, with ~’s from couplings removed, is

Ga,(1) = g4∑
Γ

[Ca1 , C(Γ)]Ā(1)
Γ (p1, p2 → p1 + ~q̄, p2 − ~q̄)

− ig4~2
∫

d̂4 ¯̀δ̂(2p1 · ¯̀+ ~¯̀2)δ̂(2p2 · ¯̀− ~¯̀2) C
( )† [

Ca1 , C
( )]

× Ā∗ (p1 + ~q̄, p2 − ~q̄ → p1 + ~¯̀, p2 − ~¯̀)Ā (p1, p2 → p1 + ~¯̀, p2 − ~¯̀) ,

(3.19)

where Γ is a set of one-loop topologies which span the independent colour factors. By the
analysis of [15], the topologies relevant in the classical regime are7

. (3.20)

7See appendix B for the evaluation of these diagrams.
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We will refer to these as the box B, cross box C, triangles Tij and non-Abelian diagrams
Yij respectively. The latter, involving the 3-gluon interaction vertex, are new to the Yang-
Mills calculation. Of course these are not the only diagrams we must calculate; there is
also the product of trees, which we will view as a cut box |B, in the non-linear part of the
colour kernel. Note that we now have two distinct colour structures to calculate, one for the
loops and one for the cut box. We will investigate in detail how these structures affect the
cancellation of classically singular terms, but first let us work with the 1-loop, linear piece.

3.3.1 1-loop amplitude

At NLO we need to calculate the 1-loop scalar amplitude

A(1) = C
( )

B + C
( )

C + C
( )

T12

+ C
( )

T21 + C
( )

Y12 + C
( )

Y21 . (3.21)

A first task is to choose a basis of independent colour structures. The complete set of
colour factors can easily be calculated:

C
( )

= Ca1C
a
2C

b
1C

b
2 ,

C
( )

= Ca1C
b
2C

b
1C

a
2 ,

C
( )

= 1
2 C
( )

+ 1
2 C
( )

= C
( )

,

C
( )

= ~Ca1fabcCb2Cc2 ,

C
( )

= ~Ca1Cb1fabcCc2 .

(3.22)

At first sight, we appear to have four independent colour factors: the box, cross box and
the two non-Abelian triangles. However, it is very simple to see that the latter are in fact
both proportional to the tree colour factor of equation (3.14); for example,

C
( )

= ~
2 C

a
1f

abc[Cb2, Cc2] = i~2

2 fabcf bcdCa1C
d
2

= i~2

2 C
( )

,

(3.23)

where we have used equation (2.10). Moreover, similar manipulations demonstrate that
the cross-box colour factor is not in fact linearly independent:

C
( )

= Ca1C
b
1

(
Ca2C

b
2 − i~fabcCc2

)
= (C1 · C2)(C1 · C2)− i~

2 [Ca1 , Cb2]fabcCc2

= C
( )

+ ~2

2 C
( )

.

(3.24)

Thus at 1-loop the classically significant part of the amplitude has a basis of two colour
structures: the box and tree. Hence the decomposition of the 1-loop amplitude into partial
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amplitudes and colour structures is

A(1) = C
( ) [

B + C + T12 + T21

]
+ ~2

2 C
( ) [

C + T12
2 + T21

2 + iY12 + iY21

]
.

(3.25)

This expression for the amplitude is particularly useful when taking the classical limit. The
second term is proportional to two powers of ~ while the only possible singularity in ~ at one
loop order is a factor 1/~ in the evaluation of the kinematic parts of the diagrams. Thus,
it is clear that the second line of the expression must be a quantum correction, and can
be dropped in calculating the classical colour impulse. Perhaps surprisingly, these terms
include the sole contribution from the non-Abelian triangles Yij , and thus we will not need
to calculate these diagrams. We learn that classically, the 1-loop scalar YM amplitude
has a basis of only one colour factor, and moreover depends on the same topologies as in
electrodynamics, so we have

A(1) = C
( )

A(1,QED) +O(~) , (3.26)

in terms of the one-loop QED amplitude A(1,QED).
The colour impulse factor in equation (3.19) therefore reduces to a single commutator.

To calculate this we need to repeatedly apply the commutation relation in equation (2.10),
which yields[
Ca1 , C

( ) ]
= [Ca1 , Cb1Cc1]Cb2Cc2

= i~facd
(
Cd1C

b
1C

c
2C

b
2 + Cb1C

d
1C

b
2C

c
2

)
= i~facd

(
Cd1C

c
2(C1 · C2) +

(
Cd1C

b
1 + i~f bdeCe1

) (
Cc2C

b
2 + i~f bceCe2

))
= i~facd

(
2Cd1Cc2(C1 · C2)− i~fdbe

(
Ce1C

b
2C

c
2 − Ce2Cb1Cc1

)
+O(~2)

)
.

(3.27)

The colour impulse factor is itself a series in ~. The partial amplitude is also a Laurent
series in ~, which is presented in appendix B. In brief, the leading term in this expansion
is the apparently singular (enhanced by one inverse power of ~) part A(1,QED)

−1 ∼ O(~−2),
and the classical term A(1,QED)

0 ∼ O(~−1). This has a very important consequence for
the impulse kernel — unlike in the QED case, the apparently singular term A(1,QED)

−1 in
the partial amplitude now contributes classically, because of the second term in the colour
impulse factor:

Ga,(1)
1-loop = ~g4

{
2ifacdCd1Cc2(C1 · C2)

(
A(1,QED)
−1 +A(1,QED)

0

)
+ ~facdfdbe

(
Ce1C

b
2C

c
2 − Ce2Cb1Cc1

)
A(1,QED)
−1

}
. (3.28)

However, there are still singular terms in the first line; their cancellation requires including
the quadratic part of the colour kernel.
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3.3.2 Cut box

Rather than viewing the second term in equation (3.19) as a product of trees, we will treat
the quadratic piece as a weighted cut of the box diagram, and define

|B = −i~2
∫

d̂4 ¯̀δ̂(2p1 · ¯̀+ ~¯̀2)δ̂(2p2 · ¯̀− ~¯̀2)

× Ā (p1 + ~q̄, p2 − ~q̄ → p1 + ~¯̀, p2 − ~¯̀)Ā (p1, p2 → p1 + ~¯̀, p2 − ~¯̀) . (3.29)

Using the tree in equation (3.14) we can Laurent expand this expression in ~, as discussed
in appendix B, which yields the leading terms

|B−1 = −i4(p1 · p2)2

~2

∫
d̂4 ¯̀ δ̂(p1 · ¯̀)δ̂(p2 · ¯̀)

¯̀2(q̄ − ¯̀)2

|B0 = −i2(p1 · p2)2

~

∫
d̂4 ¯̀ ¯̀· q̄

¯̀2(q̄ − ¯̀)2

{
δ̂(p1 · ¯̀)δ̂′(p2 · ¯̀)− δ̂(p2 · ¯̀)δ̂′(p1 · ¯̀)

}
.

(3.30)

To determine the classical contributions we must calculate the associated colour impulse
factor,

C
( )† [

Ca1, C
( )]

= i~(C1 ·C2)fabcCc1Cb2

= i~fabc
(
Cc1C

d
1 + i~fdceCe1

)(
Cb2C

d
2 + i~fdbeCe2

)
(3.31)

= i~facdCd1Cc2(C1 ·C2)+~2facdfdbe
(
Ce1C

b
2C

c
2−Ce2Cb1Cc1

)
+O(~3) .

Clearly we have a similar situation to equation (3.28): the colour impulse factor is again an
expansion in ~, and its leading term yields a classical contributions from |B0. Meanwhile
|B−1 also contributes classically from the correction to the colour structure — however,
there is still a singular term:

Ga,(1)
cut box = i~g4facd

(
Cd1C

c
2(C1 · C2)

(
|B−1 + |B0

)
− i~fdbe

(
Ce1C

b
2C

c
2 − Ce2Cb1Cc1

)
|B−1

)
= 2g4facd(p1 · p2)2

∫
d̂4 ¯̀ 1

¯̀2(q̄ − ¯̀)2

{
Cd1C

c
2(C1 · C2) (3.32)

×
[2δ̂(p1 · ¯̀)δ̂(p2 · ¯̀)

~
+ ¯̀· q̄

(
δ̂(p1 · ¯̀)δ̂′(p2 · ¯̀)− δ̂(p2 · ¯̀)δ̂′(p1 · ¯̀)

) ]

− 2ifdbe
(
Ce1C

b
2C

c
2 − Ce2Cb1Cc1

)
δ̂(p1 · ¯̀)δ̂(p2 · ¯̀)

}
.

3.3.3 Combining terms

It now remains to calculate the full colour kernel,

Ga,(1) = Ga,(1)
1-loop + Ga,(1)

cut box . (3.33)

The first priority is to study the classically singular terms which sit in both parts of the
kernel. Recall that each part of equation (3.19) came with a different colour kernel. The
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upshot of this fact is that, after explicit calculation, the singular terms now involve one
common colour structure:

Ga,(1)
−1 = i~g4 facdCd1C

c
2(C1 · C2)

(
2A(1,QED)
−1 + |B−1

)
+ ~2g4 facdfdbe

(
Ce1C

b
2C

c
2 − Ce2Cb1Cc1

) (
A(1,QED)
−1 + |B−1

)
. (3.34)

As detailed in appendix B, the singular term in the expansion of the QED amplitude
originates entirely from box diagrams, and takes a neat form in terms of delta functions:

A(1,QED)
−1 = i

2(p1 · p2)2

~2

∫
d̂4 ¯̀ 1

¯̀2(q̄ − ¯̀)2 δ̂(p1 · ¯̀)δ̂(p2 · ¯̀) . (3.35)

This expression is the same as the |B−1 term in equation (3.30). The coefficients are such
that the terms in the first line of equation (3.34) cancel, ensuring the apparently singular
part of the colour kernel vanishes.

However, an interesting new feature of the colour impulse is that the colour structure
in the second line of equation (3.34) combines with the sum of the 1-loop singular terms
to give a non-zero classical contribution:

[
Ga,(1)
−1

]
O(~0)

= −2ig4facdfdbe
(
Ce1C

b
2C

c
2 − Ce2Cb1Cc2

)
(p1 · p2)2

∫
d̂4 ¯̀ δ̂(p1 · ¯̀)δ̂(p2 · ¯̀)

¯̀2(q̄ − ¯̀)2 . (3.36)

With all possible singular terms safely dealt with, it remains to combine the O(~0)
terms in equation (3.28) and equation (3.32). Conveniently, these all have the same colour
factor:

Ga,(1) = ig4~facdCd1Cc2(C1 · C2)
(
2A(1,QED)

0 + |B0
)

+
[
Ga,(1)
−1

]
O(~0)

. (3.37)

Now we can sum the diagrams in the partial amplitude, the explicit expressions for which
are given in appendix B. The result is

Ga,(1) = g4
∫

d̂4 ¯̀ 1
¯̀2(¯̀− q̄)2

{
4ifacdCc2Cd1 (C1 · C2) (3.38)

×
[
δ̂(p1 · ¯̀)

[
m2

1 + (p1 · p2)2 ¯̀· (¯̀− q̄)
( 1

(p2 · ¯̀− iε)2 + iδ̂′(p2 · ¯̀)
)]

+ δ̂(p2 · ¯̀)
[
m2

2 + (p1 · p2)2 ¯̀· (¯̀− q̄)
( 1

(p1 · ¯̀+ iε)2 − iδ̂
′(p1 · ¯̀)

)]]

− 2ifacdfdbe
(
Ce1C

b
2C

c
2 − Ce2Cb1Cc1

)
(p1 · p2)2δ̂(p1 · ¯̀)δ̂(p2 · ¯̀)

}
.

3.3.4 Final result

Finally the observable, the colour impulse, is given by

∆ca,(1)
1 =

〈〈
i

∫
d̂4q̄ δ̂(2p1 · q̄)δ̂(2p2 · q̄)e−ib·q̄ Ga,(1)

〉〉
. (3.39)
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Upon substituting the kernel in equation (3.38), we can average over the momentum and
colour wavefunctions implicit in the expectation value. For sharply peaked momentum
wavefunctions and large SU(N) representations, this merely has the effect of sending pi 7→
miui, and replacing quantum colour factors with products of commuting classical charges.
Hence we finally obtain the NLO colour impulse

∆ca,(1)
1 = g4

∫
d̂4q̄ d̂4 ¯̀δ̂(u1 · q̄)δ̂(u2 · q̄)e−iq̄·b

1
¯̀2(¯̀− q̄)2

×
{
δ̂(u1 · ¯̀)

[
facdcc1c

d
2(c1 · c2)
m2

[
1 + (u1 · u2)2 ¯̀· (¯̀− q̄)

( 1
(u2 · ¯̀− iε)2

+ iδ̂′(u2 · ¯̀)
)]
− facdfdbecb1cc1ce2

(u1 · u2)2

2 δ̂(u2 · ¯̀)
]

+ δ̂(u2 · ¯̀)
[
facdcc1c

d
2(c1 · c2)
m1

[
1 + (u1 · u2)2 ¯̀· (¯̀− q̄)

( 1
(u1 · ¯̀+ iε)2

− iδ̂′(u1 · ¯̀)
)]

+ facdfdbece1c
b
2c
c
2
(u1 · u2)2

2 δ̂(u1 · ¯̀)
]}

.

(3.40)

This is found to agree with the result obtained by solving the classical equations of motion,
which is discussed in section 5.

3.4 Momentum

It is evident that the usual (momentum) impulse in YM theory should be similar to the
QED case discussed in [15]. But it is also natural to expect some new terms in the YM
impulse in view of the self-coupling of the YM field. Diagrams involving this self-coupling
are present at NLO. In this subsection, we investigate the impulse in the YM case with
this thought in mind. We begin with equation (3.12) for the impulse kernel Iµ, which now
only involves colour factors of the partial amplitudes themselves.

At leading order we can just reuse the expressions in equation (3.14), finding

Iµ,(0) = 4g2 (p1 · p2)
q̄2 q̄µC1 · C2 . (3.41)

Then, substituting into equation (3.11) and taking the classical limit as before we have the
LO momentum impulse

∆pµ,(0)
1 = ig2c1 · c2

∫
d̂4q̄

δ̂(u1 · q̄)δ̂(u2 · q̄)e−ib·q̄

q̄2 (u1 · u2)q̄µ . (3.42)

This expression is closely related to the NLO impulse in QED, which can be obtained from
the YM case by replacing c1 ·c2 with the product of the electric charges of the two particles.
This relationship is natural, since at leading order the gluons do not self-interact.
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Just as in the colour case, at NLO the momentum kernel has linear, 1-loop and
quadratic, cut box components:

Iµ,(1) = ~g4q̄µ
∑
Γ
C(Γ)Ā(1)

Γ (p1, p2 → p1 + ~q̄, p2 − ~q̄)

− ig4~3
∫

d̂4 ¯̀δ̂(2p1 · ¯̀+ ~¯̀2)δ̂(2p2 · ¯̀− ~¯̀2) ¯̀µ C
( )†

C
( )

× Ā (p1 + ~q̄, p2 − ~q̄ → p1 + ~¯̀, p2 − ~¯̀)Ā (p1, p2 → p1 + ~¯̀, p2 − ~¯̀) .

(3.43)

The decomposition of the 1-loop amplitude onto the colour basis in equation (3.25)
makes computing the first term (linear in the one-loop amplitude) in the impulse kernel
trivial; we have

Iµ,(1)
1-loop = ~g4q̄µ C

( ) (
A(1,QED)
−1 +A(1,QED)

0

)
. (3.44)

This means that the non-Abelian triangle Feynman diagrams do not contribute to the
impulse: a somewhat surprising result, since it is only in these diagrams that the self-
interaction of the gluons appears.

Meanwhile we will denote the kinematic terms in the quadratic piece of the momentum
kernel |Bµ, which has the same definition as equation (3.29) but dressed with an extra loop
momentum — explicit expressions are given in appendix B. Its colour factor is simply

C
( )†

C
( )

= (C2 · C1)(C1 · C2) = C
( )

. (3.45)

Thus there is only one relevant colour structure in the NLO momentum impulse, that of
the box. The momentum kernel factorises accordingly:

Iµ,(1) = g4(C1 · C2)2
[
~q̄µ

(
A(1,QED)
−1 +A(1,QED)

0

)
+ |Bµ

−1 + |Bµ
0

]
. (3.46)

This is just a colour dressing of the NLO momentum impulse in QED — in particular, the
cancellation of singular terms between the cut box and 1-loop diagrams is guaranteed [15].
Gathering all the terms from triangles, boxes and the cut box in appendix B and inserting
into equation (3.11), upon taking the classical limit in the now familiar way we find

∆pµ,(1)
1 = g4(c1 · c2)2

2

∫
d̂4 ¯̀d̂4q̄

δ̂(u1 · q̄)δ̂(u2 · q̄)
¯̀2(¯̀− q̄)2

[
q̄µ
{
δ̂(u2 · ¯̀)
m1

+ δ̂(u1 · ¯̀)
m2

+ (u1 · u2)2 ¯̀· (¯̀− q̄)
(

δ̂(u1 · ¯̀)
m2(u2 · ¯̀− iε)2 + δ̂(u2 · ¯̀)

m1(u1 · ¯̀+ iε)2

)}

− i¯̀µ ¯̀· (¯̀− q̄)
(
δ̂′(u1 · ¯̀)δ̂(u2 · ¯̀)

m2
− δ̂(u1 · ¯̀)δ̂′(u2 · ¯̀)

m1

)]
.

(3.47)

We have found that in the non-Abelian theory the final result for the impulse is identical to
QED [15] with the charge to colour replacement Q1Q2 → c1 · c2. In fact this result follows
from the colour basis decomposition in equation (3.25) and in particular the fact that the
non-Abelian triangle diagrams only contribute to the ~2 suppressed second colour structure.
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4 Radiation

One of the strengths of studying impulse-like observables is that radiative phenomena
are naturally included, as explored in depth in [15]. Moreover, the double copy makes
radiation in Yang-Mills theory a powerful tool for studying its gravitational counter-
part [11, 21, 85]. The general discussion of radiation of momentum in KMOC [15] applies
directly to the Yang-Mills case, but weakly-coupled YM theory contains another interesting
observable: the total colour radiated to infinity. In this section, we study this radiation of
colour in the quantum formalism. As an explicit example we compute the leading order
classical colour current found in [11] from scattering amplitudes.

4.1 Total radiated colour

The construction and calculation of the colour impulse relied on the adjoint-valued colour
operator in equation (2.9) for a scalar field in representation R. To study the total radiated
colour we need a similar operator for the gluon radiation field. This can easily be obtained
by restricting to the adjoint representation, namely by taking (T aadj)bc = if bac. Since the
gluon field is real and has two helicity eigenstates, its colour operator is

Fa = i~f bac
∑
σ=±

∫
dΦ(k) ab†σ (k) acσ(k) , (4.1)

where σ labels the helicity. Of course, it is also possible to derive this expression di-
rectly from the Noether charge for vector fields in the adjoint representation, given in
equation (5.15), in close analogy to our discussion in sections 2.1 and 2.2.

This adjoint colour charge is of interest elsewhere in the literature since it plays a role
in the physics of YM theory at asymptotic infinity [106–112]. In this connection, the nature
of the final state of the radiation is relevant [111]. Here, we do not compute this final state
explicitly. Instead, we compute expectation values of operators on the final state.

Following the KMOC route [15] to obtain an expression for the total colour charge
radiated from a scattering event leads to

〈Racol〉 = 〈Ψ|T †FaT |Ψ〉 , (4.2)

where we made use of the fact that there are no gauge bosons in the incoming state of
equation (2.35). Before expanding in terms of on-shell scattering amplitudes, it is worth
demonstrating colour conservation in our formalism. At the operator level, assuming only
the quantum fields corresponding to particles 1 and 2 are present in addition to the Yang-
Mills field, the statement that colour is conserved is

[Ca1 + Ca2 + Fa, T ] = 0 . (4.3)

It then immediately follows that

〈∆ca1〉+ 〈∆ca2〉 = 〈Ψ|T †[Ca1, T ]|Ψ〉+ 〈Ψ|T †[Ca2, T ]|Ψ〉
= −〈Ψ|T †[Fa, T ]|Ψ〉 = −〈Ψ|T †FaT |Ψ〉 = −〈Racol〉 , (4.4)
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where the second line holds from the absence of gluon radiation in the incoming state. Total
colour is therefore conserved in the quantum theory, as it must be given the associated
global symmetry.

Let us proceed in expanding equation (4.2) by inserting complete sets of states; for
leading order radiation we need to consider an extra explicit gluon with momentum k and
a colour index, so we will take the set X in the resolution of identity in equation (3.3) to
just include the contribution ∑

b,σ

∫
dΦ(k) |kb, σ〉〈kb, σ| . (4.5)

Note that higher order corrections could also be obtained by adding further states, but we
will just be interested in the lowest order case here. Using equation (4.1) and integrating
over intermediate delta functions we find

〈Racol〉 =
∑
b,c,σ

∫
dΦ(k)dΦ(k̃)dΦ(r1)dΦ(r2) dµ(ζ1)dµ(ζ2) (4.6)

× 〈Ψ|T †|r1 r2 k
b, σ; ζ1 ζ2〉〈kb, σ|Fa|k̃c, σ〉〈r1 r2 k̃

c, σ; ζ1ζ2|T |Ψ〉

= −i~
∑
b,c,σ

∫
dΦ(k)dΦ(r1)dΦ(r2)dµ(ζ1)dµ(ζ2) fabcΥ ∗ b(r1, r2; k, σ)Υ c(r1, r2; k, σ) ,

where

Υ a(r1, r2; k, σ) =
∫

dΦ(p1)dΦ(p2)φ1(p1)φ2(p2) eib·p1/~δ̂(4)(p1 + p2 − r1 − r2 − k)

×
∑
D

〈ζ1 ζ2|Ca(D)|χ1 χ2〉AD(p1, p2 → r1, r2; k, σ) . (4.7)

We have factorised the amplitude into colour structures C(D) and partial amplitudes AD,
as in equation (3.4). However, here the colour factor gains a free index from the external
gluon state.

To take the classical limit of equation (4.6) and introduce radiation kernels we fol-
low [15], finding

Racol = −ifabc
∑
σ

〈〈
~−2

∫
dΦ(k)R∗ b(k, σ)Rc(k, σ)

〉〉
. (4.8)

The large angle brackets, defined in equation (3.8), are the expectation value over the
incoming scalar wavepackets, and thus include the colour states. The radiation kernels
inherit the colour index of the external gluon, and take the form

Ra(k, σ) = ~
3
2

∫
d̂4q1d̂4q2 δ̂(2p1 · q1 + q2

1)δ̂(2p2 · q2 + q2
2) δ̂(4)(k − q1 − q2) eib·q1/~

×
∑
D

Ca(D)AD(p1 + q1, p2 + q2 → p1, p2; k, σ) . (4.9)

The powers of ~ are organised such that the radiation kernel will be O(~0) and therefore
classical in the limit. Note that because the colour charge has dimensions of angular
momentum, the ~ scaling here works out the same way as in the total radiated momentum.
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4.2 Leading order evaluation

Let us explicitly compute the leading order radiation kernel for the scattering of two massive
scalar particles, described by the action in equation (2.1). In the classical limit the LO
kernel is given in terms of coupling constant stripped amplitudes by

Ra,(0)(k̄) = ~2g3
∫

d̂4q̄1d̂4q̄2 δ̂(2p1 · q̄1 + ~q̄2
1)δ̂(2p2 · q̄2 + ~q̄2

2) (4.10)

× δ̂(4)(k̄ − q̄1 − q̄2) eib·q̄1
∑
D

Ca(D)Ā(0)
D (p1 + q1, p2 + q2 → p1, p2; k, σ) .

Clearly the terms in the amplitude which contribute to the classical radiation are those at
O(~−2). The shifts in the delta functions are important for obtaining this accurately. The
relevant amplitude is the non-Abelian extension of the 5-point tree studied in [15]; this
was used in [21] to take the double copy and calculate radiation in Einstein gravity. The
relevant Feynman topologies for emission from particle 1 are8

(4.11)

so we need to calculate the classical terms in the 5-point amplitude

A(0)(k̄a) =
∑
D

Ca(D)Ā(0)
D (p1 + q1, p2 + q2 → p1, p2; k, σ) (4.12)

=
[
Ca
( )

A + Ca
( )

A + Ca
( )

A + (1↔ 2)
]

+ Ca
( )

A .

Explicitly, the colour factors are given by

Ca
( )

= (Ca1 · Cb1)Cb2 , Ca
( )

= (Cb1 · Ca1 )Cb2 ,

Ca
( )

= 1
2C

a
( )

+ 1
2C

a
( )

, Ca
( )

= ~fabcCb1Cc2 ,
(4.13)

with the replacement 1 ↔ 2 for diagrams with gluon emission from particle 2. Just as in
the 4-point case at 1-loop, this is an overcomplete set for specifying a basis, because

Ca
( )

= (Ca1 · Cb1)Cb2 + i~f bacCc1Cb2 = Ca
( )

+ i Ca
( )

. (4.14)

Hence the full basis of colour factors is only 3 dimensional, and the colour decomposition
of the 5-point tree is

A(0)(k̄a) = Ca
( ) (

A +A +A
)

+ 1
2C

a
( ) (

A + 2iA + iA
)

+ (1↔ 2) . (4.15)

8The momentum routing is as indicated in equation (4.10).
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Given that the second structure is O(~), it would appear that we could again neglect
the second term as a quantum correction. However, this intuition is not quite correct, as
calculating the associated partial amplitude shows:

A + 2iA + iA = −
4i εhµ(k̄)

~2

[ 2p1 · p2

q̄2
2 p1 · k̄

pµ1
~

+ 1
~ q̄2

1 q̄
2
2

(
2p2 · k̄ pµ1 (4.16)

− p1 · p2 (q̄µ1 − q̄
µ
2 )− 2p1 · k̄ pµ2

)
+O(~0)

]
,

where we have used p1 · q̄2 = p1 · k̄ − ~q̄2
1/2 on the support of the on-shell delta functions

in the kernel equation (4.10). The partial amplitude appears to be singular, as there is an
extra power of ~ downstairs. However, this will cancel against the extra power in the colour
structure, yielding a classical contribution. Meanwhile in the other partial amplitude the
potentially singular terms cancel trivially, as in QED, and the contribution is classical:

A +A +A = 2
~2

εhµ(k̄)
q̄2

2 p1 · k̄

[
2p1 · p2 q̄

µ
2 + p1 · p2

p1 · k̄
pµ1 (q̄2

1 − q̄2
2) (4.17)

− 2p1 · k̄ pµ2 + 2p2 · k̄ pµ1 +O(~)
]
.

Summing all colour factors and partial amplitudes, the classically significant part of the
5-point amplitude is

Ā(0)(k̄a) =
∑
D

Ca(D)Ā(0)
D (k̄) (4.18)

= −
4εhµ(k̄)
~2

{
Ca1 (C1 · C2)
q̄2

2 k̄ · p1

[
−(p1 · p2)

(
q̄µ2 −

k̄ · q̄2

k̄ · p1
pµ1

)
+ k̄ · p1 p

µ
2 − k̄ · p2 p

µ
1

]

+ ifabcCb1C
c
2

q̄2
1 q̄

2
2

[
2k̄ · p2 p

µ
1 − p1 · p2 q̄

µ
1 + p1 · p2

q̄2
1

k̄ · p1
pµ1

]
+ (1↔ 2)

}
,

where we have used that q̄2
1− q̄2

2 = −2k̄ · q̄2 since the outgoing radiation is on-shell. Finally,
we can substitute into the radiation kernel in equation (4.10) and take the classical limit.
Averaging over the wavepackets sets pi = miui and replaces quantum colour charges with
their classical counterparts, yielding

Ra,(0)(k̄) = −g3
∫

d̂4q̄1d̂4q̄2 δ̂
(4)(k̄ − q̄1 − q̄2)δ̂(u1 · q̄1)δ̂(u2 · q̄2) eib·q̄1εhµ (4.19)

×
{
c1 · c2
m1

ca1
q̄2

2 k̄ · u1

[
−(u1 · u2)

(
q̄µ2 −

k̄ · q̄2

k̄ · u1
uµ1

)
+ k̄ · u1 u

µ
2 − k̄ · u2 u

µ
1

]

+ ifabc cb1c
c
2

q̄2
1 q̄

2
2

[
2k̄ · u2 u

µ
1 − u1 · u2 q̄

µ
1 + u1 · u2

q̄2
1

k̄ · u1
uµ1

]
+ (1↔ 2)

}
.

Our result is equal to the leading order current K̃a,(0) obtained in [11] by iteratively solving
the Wong equations in equation (1.1a) and equation (1.1b) for timelike particle worldlines.
We will show this explicitly in the next section.

– 25 –



J
H
E
P
1
2
(
2
0
2
0
)
0
7
6

5 Classical perspectives

In this section we compute the same classical observables, impulse and radiation, using
purely classical techniques. These calculations are not too complex, and serve to verify the
results we obtained using scattering amplitudes. This gives confidence in applying these
quantum methods to gravity, for example, where the classical calculations can become
significantly more involved. We start with the colour and momentum impulses before
moving to the total radiated colour charge, discussing its relation to asymptotic symmetries.

5.1 Impulses from equations of motion

We start with the NLO colour impulse, initially in the more general case of a system of
N interacting particles, and later restrict to the N = 2 case for comparison with earlier
sections of the paper.

As discussed previously, the appropriate equations of motion for each particle’s world-
line are the Yang-Mills-Wong equations in equation (1.1a) and equation (1.1b). We are
seeking perturbative solutions, and therefore expand worldline quantities in the coupling:

xµα(τα) = bµα + uατα + ∆(1)xµα(τα) + ∆(2)xµα(τα) + · · · ,

vµα(τα) = uα + ∆(1)vµα(τα) + ∆(2)vµα(τα) + · · · ,

caα(τα) = caα + ∆(1)caα(τα) + ∆(2)caα(τα) + · · · .

(5.1)

Here ∆(i)xµα indicates quantities entering at O(g2i). Calculating higher order corrections
requires solving for the gauge field Aaµ(x), using equation (1.1c). Provided the particle
worldlines remain well separated, we can find perturbative solutions using the field equation
in the form [11]

∂2Aaµ(x) = Ka
µ(x) ,

Ka
µ(x) ≡ Jaµ(x) + gfabcAb ν(x)

(
∂νA

c
µ(x)− F cµν(x)

)
.

(5.2)

The current Ka
µ is conserved but gauge dependent; for simplicity we have chosen Lorenz

gauge. Writing ∆(i)Aaµ(¯̀) for perturbative corrections to gauge-field quantities at order
O(g2i−1), the LO and NLO gauge fields are solutions to the equations

∂2[∆(1)Aaµ(x)] = ∆(1)Jaµ(x) ,

∂2[∆(2)Aaµ(x)] = ∆(2)Jaµ(x) + gfabc
[
∆(1)Ab ν(x)

(
∂ν∆(1)Acµ(x)−∆(1)F cµν(x)

)]
,

(5.3)

respectively — note that the LO equation is the same as for Abelian electrodynamics. We
solve by Fourier transforming,9 using tildes to represent the Fourier transformed quantity.
Solving the LO equation, it is easy to show that the leading order field is

∆(1)Ãaµ(¯̀) = −g
∑
α

δ̂(uα · ¯̀)ei
¯̀·bα c

a
αu

µ
α

¯̀2 . (5.4)

9Our conventions for the Fourier transform are g(x) =
∫

d̂4 ¯̀e−i¯̀·xg̃(¯̀) and g̃(¯̀) =
∫

d4x ei
¯̀·xg(x).
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It will be useful to define the straight line trajectory yµα ≡ bµα + uµατα corresponding to the
initial unperturbed worldlines. With this definition the LO equations of motion become

mα
d2∆(1)xµα

dτ2
α

= g caα

∫
d̂4 ¯̀e−i¯̀·yα∆(1)F̃ aµν(¯̀)uαν ,

d∆(1)caα
dτα

= gfabc
∫

d̂4 ¯̀e−i¯̀·yαuµα∆(1)Ãbµ(¯̀)ccα ,
(5.5)

while at NLO, O(g4), we have

d2∆(2)xµα
dτ2
α

= g

mα

∫
d̂4 ¯̀e−i¯̀·yα

[
∆(1)F̃ aµν(¯̀)∆(1)vανc

a
α + ∆(1)F̃ aµν(¯̀)

× uαν∆(1)caα + ∆(2)F̃ aµν(¯̀)uανcaα − i¯̀·∆(1)xα∆(1)F̃ aµν(¯̀)uανcaα
]
,

d∆(2)caα
dτα

= gfabc
∫

d̂4 ¯̀e−i¯̀·yα
[
uα ·∆(1)Ãb(¯̀) ∆(1)ccα + ∆(1)vα ·∆(1)Ab(¯̀) ccα

+ uα ·∆(2)Ãb ccα − i¯̀·∆(1)xα uα ·∆(1)Ãb(¯̀) ccα
]
.

(5.6)

These NLO equations involve the LO corrections to the fields and the particles’ colours,
positions and velocities, so although they are not the main quantities of interest we will
need to integrate the expressions in equation (5.5); for example,

∆caα(τα) =
∫ τα

−∞
dτ ′α

dcaα
dτ ′α

. (5.7)

In performing these integrals one must include an iε convergence factor, so the definition
of yµα is modified such that ¯̀· yα = ¯̀· bα + (uα · ¯̀+ iε)τα. This yields

∆(1)xµα(τα) = ig2 ∑
β 6=α

cα · cβ
mα

∫
d̂4 ¯̀ei(¯̀·bβ−¯̀·yα)δ̂(¯̀· uβ)

¯̀· uαuµβ − ¯̀µuα · uβ
¯̀2(¯̀· uα + iε)2 ,

∆(1)caα(τα) = ig2 ∑
β 6=α

fabccbαc
c
β uα · uβ

∫
d̂4 ¯̀ei(¯̀·bβ−¯̀·yα) δ̂(¯̀· uβ)

¯̀2
1

(¯̀· uα + iε)
.

(5.8)

We now have the information to determine the NLO field, which is

∆(2)Ãaµ(¯̀1) = −g3 1
¯̀2
1

∑
β 6=α

∫
d̂4 ¯̀2 e

i(¯̀1−¯̀2)·bαei
¯̀2·bβ δ̂((¯̀1 − ¯̀2) · uα)δ̂(¯̀2 · uβ)

×
{
caαcα · cβ
mα

¯̀2
2

− ¯̀µ
2uα · uβ
¯̀2 · uα

+
¯̀1 · ¯̀2uα · uβ uµα(

¯̀2 · uα
)2 −

¯̀1 · uβ uµα
¯̀2 · uα

+ uµβ


+
ifabccbαc

c
β

¯̀2
2

( ¯̀µ
2uα · uβ

(¯̀1 − ¯̀2)2 −
2¯̀2 · uαuµβ
(¯̀1 − ¯̀2)2 + uα · uβ uµα

¯̀2 · uα

)}
.

(5.9)

It is now very simple to use the Fourier transform of the Yang-Mills equation in equa-
tion (5.2) to calculate the LO momentum space current. In this context it is useful to
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rename the momentum of the field k̄, relabel ¯̀2 = q̄2, and introduce q̄1 = ¯̀1− ¯̀2. Then we
find that

∆(2)K̃aµ(k̄) = g3 ∑
β 6=α

∫
d̂4q̄1d̂4q̄2 δ̂

(4)(k̄ − q̄1 − q̄2)δ̂(uα · q̄1)δ̂(uβ · q̄2) eibα·q̄1eibβ ·q̄2 (5.10)

×
{
cα · cβ
q̄2

2 k̄ · uα
caα
mα

[
− (uα · uβ)

(
q̄µ2 −

k̄ · q̄2

k̄ · uα
uµα

)
+ k̄ · uαuµβ − k̄ · uβ u

µ
α

]

+
ifabc cbαc

c
β

q̄2
1 q̄

2
2

[
2k̄ · uβ uµα − uα · uβ q̄

µ
1 + uα · uβ

q̄2
1

k̄ · uα
uµα

]}
.

This result was first obtained in ref. [11]. Comparing against equation (4.19), we can see
that (up to an irrelevant overall sign) the two particle restriction of the current is equal to
the LO radiation kernel calculated using amplitudes.10

Returning to the impulse, we can skip over the current and substitute the NLO field
into equation (5.6). A straightforward but tedious calculation then yields the results for
the NLO corrections given in appendix C. The observable quantities, the impulses, are
defined by

∆caα ≡
∫ ∞
−∞

dτα
dcaα
dτα

, ∆pµα ≡ mα

∫ ∞
−∞

dτα
dvµα
dτα

. (5.11)

Using the results for ∆(2)caα it is straightforward to show, after a redefinition of the inte-
gration variables, that the NLO colour impulse takes the form

∆ca,(2)
α = fabc

∫
d̂4q̄ eib2·q̄e−ib1·q̄ δ̂(q̄ · u1)δ̂(q̄ · u2)

∫ d̂4 ¯̀
¯̀2(¯̀− q̄)2 (5.12)

×
{
δ̂(¯̀· u2)

c1 · c2 c
b
1c
c
2

m1

1 +
(u1 · u2)2

(
¯̀2 − ¯̀· q̄

)
(¯̀· u1 − iε)2

+ if bdecc2c
d
2c
e
1

(u1 · u2)2

¯̀· u1 − iε


+ δ̂(¯̀· u1)

[
c1 · c2 c

b
1c
c
2

m2

1 +
(u1 · u2)2

(
¯̀2 − ¯̀· q̄

)
(

¯̀· u2 + iε
)2

+ if bdecc1c
d
1c
e
2

(u1 · u2)2

¯̀· u2 + iε

]

− 2if bdecc1cd1ce2 δ̂(¯̀· u1)
¯̀· u2
q̄2

}
.

Notice that the signs of the iε on the second and third lines in the above equation are
different. This is a simple consequence of a change of variables required to associate the
loop momenta of the classical calculation to that derived from amplitudes (see appendix C).
To see that this indeed is the same as our earlier result we must manipulate the iε factors
in the denominators further. For the quadratic denominator we can replace

1
(¯̀· uα + iε)2 = iδ̂′(¯̀· uα) + 1

(¯̀· uα − iε)2 , (5.13)

and for the linear denominator we make the shift ¯̀→ q̄− ¯̀, which simply has the effect of
changing the sign of the iε.11 Then these terms can be averaged and combined to form a

10Notice that we set b2 = 0 in sections 3 and 4 using translation symmetry.
11The q̄ · uα term can be ignored due to the delta function δ(q̄ · uα).
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delta function. These procedures are the same as for the momentum impulse [15] and are
briefly reviewed in appendix B. After these manipulations, the result from amplitudes in
equation (3.47) matches the colour impulse computed classically in equation (5.12), up to
the term on the last line.

This final term is spurious, and can be traced back to the non-Abelian correction to
the gauge field at NLO, shown in the bottom line of equation (5.9). We observe that the
term is proportional to the integral

u2 · I =
∫

d̂4 ¯̀δ̂(¯̀· u1)
¯̀· u2

¯̀2(¯̀− q̄)2 , (5.14)

which vanishes on the support of δ̂(q̄ ·u1) and δ̂(q̄ ·u2). This can easily be seen by writing12

Iµ = Auµ1 +Bq̄µ; then we have that A = 0, and hence u2 · I = 0.
The momentum impulse follows through similarly, and for the case of two particles we

find that the result is the same as in Abelian electrodynamics, calculated by KMOC [15],
but with the replacement Q1Q2 → c1·c2. This is in agreement with the quantum calculation
of section 3.4.

5.2 Total radiated colour and asymptotic symmetries

Our classical calculation of the NLO impulse relied on the order g3 gauge field in equa-
tion (5.9). This gauge field in isolation is also of interest, because it is the leading radiation
field generated by the scattering of the two particles. It therefore describes the transport
of momentum and colour by the classical YM field itself. This classical transport of colour
deserves more discussion.

The Noether current for a vector field transforming in the adjoint of the colour group is

jaµ(x) = −fabcAbν(x)
(
∂µA

c
ν(x)− ∂νAcµ(x)

)
. (5.15)

To measure the instantaneous rate of colour radiation at a time t during a scattering event,
we surround the particles by a large sphere and measure the flux of jaµ across its surface,
taking the limit that the radius of the sphere goes to infinity. More specifically, we are
interested in outgoing radiation from our scattering event, so we take this large radius
limit at fixed retarded time u = t− r. We then integrate over all retarded times. Thus the
surface of integration — namely the null future boundary I + of Minkowski space — is
three-dimensional, parameterised by u and the coordinates on the two-sphere. The colour
radiated to I + is13

Racol =
∫

I +
∗ ja

= −
∫ ∞
−∞

du lim
r→∞

∫
dΩ2 r

2jar ,
(5.16)

where ja = jaµ dxµ and ∗ ja is its Hodge dual.

12Any additional vectorial dependence arising by regulating the divergent integral will have vanishing dot
product with u2.

13We use Bondi coordinates u, r, θ and φ.
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To evaluate this integral, we need an expression for the asymptotic field. This satisfies
the Yang-Mills equation, given in linearised form in equation (5.2). Since there is no
incoming radiation in our situation, we impose retarded boundary conditions. Using the
standard large-distance expansion of the retarded Green’s function we readily find

Aaµ(x) = 1
4πr

∫ dω
2π e

−iωuK̃a
µ(k̄)

∣∣∣∣
k̄ν=(ω,ωx̂)

+O
( 1
r2

)
, (5.17)

where r = |x| and t = x0. It may also help the reader to record the derivative of the field,
which is

∂µA
a
ν(x) = − i

4πr

∫ dω
2π k̄µK̃

a
ν (k̄)e−iωu

∣∣∣∣
k̄ρ=(ω,ωx̂)

+O
( 1
r2

)
. (5.18)

Hence upon integrating over delta functions the total radiated charge is

Racol = i

(4π)2

∫ ∞
−∞

dω
2π

∫
dΩ2 f

abcK̃b ν(−k̄)
(
kνK̃

c
r(k)− k̄rK̃c

ν(k̄)
) ∣∣∣∣

k̄=(ω,ωx̂)
. (5.19)

This expression can be considerably simplified. Current conservation is kνK̃a
ν (k) = 0,

so the first term in parentheses vanishes. In the second term, we have kr = −ω. We can
further exploit the symmetry of the integral, and reality of the current Ka

µ(x) to show

Racol = i

(2π)3

∫ ∞
0

dω ω2
∫

dΩ2
1

2ωf
abcK̃b

ν(−k̄)K̃c ν(k̄)
∣∣∣∣
k̄=(ω,ωx̂)

= i

(2π)3

∫
d3k̄ dk̄0 δ(k̄0 − |k̄|)

2|k̄|
fabcK̃b

ν(−k̄)K̃c ν(k̄)

=
∫

dΦ(k̄) ifabcK̃b ∗
ν (k̄)K̃c ν(k̄) .

(5.20)

Finally, we use completeness of the polarisation vectors to write the classical total radiated
colour in precisely the same form as the quantum expression:

Racol = −ifabc
∑
σ=±

∫
dΦ(k̄)

(
ε∗σ · K̃∗(k̄)

)b(
εσ · K̃(k̄)

)c
. (5.21)

Comparing with equation (4.8) confirms that, in the classical limit, the radiation kernel
coincides (up to a possible sign) with εσ · K̃a(k̄) at large distances.

Let us finish with a few additional remarks on this radiated colour. In ordinary elec-
trodynamics it is elementary that charge is connected with the current appearing in the
equation of motion. Although we made use of the Noether current in our discussion above,
it remains the case that the radiated charge is connected to the current Ka in the lin-
earised form of equation (5.2). It is easy to check, using the explicit asymptotic field of
equation (5.17), that the radiated charge is

Racol = 1
g

∫
I +
∗Ka . (5.22)

We may now make use of equation (5.2) in the form

d ∗ F a = − ∗Ka (5.23)
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to write
Racol = −1

g

∫
I +

d ∗ F a , (5.24)

where F a is the linearised field strength. The radiated charge may therefore also be recon-
structed by integration over the boundaries I +

± of I + as

gRacol =
∫

I +
−

∗F a −
∫

I +
+

∗F a = gcinitial − gcfinal . (5.25)

In other words, the radiated charge is the difference between initial and final charges, as
measured by integrating the electric fields over large spheres in the far past and the far
future: total colour charge is conserved, as we also saw using quantum mechanical methods
in equation (4.4).

Although our focus was on radiation of global charge, some of the expressions above are
also relevant in the discussion of the larger asymptotic symmetry group of Yang-Mills the-
ory, see for example [106–110, 112, 137, 138]. It would be interesting to broaden our analysis
to this context, particularly in the context of the infrared structure of loop amplitudes.

6 Discussion

In this article, we developed methods for computing classical observables in Yang-Mills
theories from scattering amplitudes. This amounts to an extension of the scope of the
KMOC formalism [15] to encompass perturbative Yang-Mills theory. In addition to the
observables familiar from electrodynamics and gravity, namely the momentum impulse and
the total radiated momentum, we constructed two new observables: the colour impulse and
total radiated colour charge.

Our underlying motivation is to understand the dynamics of classical general relativ-
ity through the double copy. In particular, we are interested in the relativistic two-body
problem which is so central to the physics of the compact binary coalescence events ob-
served by LIGO and Virgo. Consequently, we focused on observables in two-body events.
Although we only considered unbound (scattering) events, it is possible to determine the
physics of bound states from our observables. This can be done concretely using effective
theories [14]. We also hope that it may be possible to connect our observables more directly
to bound states using analytic continuation, in a manner similar to the work of Kälin and
Porto [32, 34].

The emergence of the classical theory from an underlying perturbative quantum field
theory is surprisingly intricate. Coherent states play an important role in this story, as
emphasised by Yaffe [124] in the context of large N theories. In section 2 we emphasised
the role of coherent states in describing the colour structure of particles in the classical
approximation. It is also important that the representation of the corresponding quantum
field is large. This is in exact analogy with the emergence of a classical spin from a
quantum system, and indeed the states we used for colour can equally be used to describe
spin. Furthermore the physics of the colour impulse in YM theory is closely analogous to
the physics of angular momentum and the associated angular impulse [95, 96]. Since the
story for colour is a little simpler, we expect it to be a useful toy model for spin in gravity.
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We studied the impulse and its colourful counterpart at NLO in YM theory. One sur-
prise in our work was that the part of the (four-point) amplitude which is relevant in the
classical theory is exactly proportional to the classical part of the QED four-point ampli-
tude. Indeed the impulse at next-to-leading order in the YM case is basically equal to the
QED case; the only difference is a charge-to-colour replacement. This is a little peculiar
because it is natural to expect the non-linearity of the Yang-Mills field to enter at this
order (and it does so in the quantum theory). Nevertheless the colour impulse, which is
intrinsically non-Abelian by definition, is non-vanishing. Although it is constructed from
the same one-loop amplitude, an interplay of colour commutators and classically singular
terms in the amplitude results in an expression for the colour impulse which involves various
different colour factors. We confirmed the results of our calculations by a direct classical
computation using the Yang-Mills-Wong worldline formalism. It is interesting to compare
our methods to those of Shen [85], who implemented the double copy at NLO wholly within
the classical worldline formalism following ground-breaking work of Goldberger and Ridg-
way [11]. Shen found it necessary to include vanishing terms involving structure constants
in his work. Similarly, in our context, some colour factors are paired with kinematic nu-
merators proportional to ~. It would be interesting to use the tools developed in this paper
to explore the double copy construction of Shen [85] from the perspective of amplitudes.

Throughout our paper, we emphasised that scattering amplitudes can be used to de-
termine classical YM observables. But so do Wong’s equations. We have not addressed the
question of whether it is easier to find a particular observable from amplitudes or from the
Wong equations. This question isn’t really of interest to us since our goal is to understand
gravity, where amplitudes are much easier to compute than any (known) classical proce-
dure. But possibly our work offers a way to combine the advantages of classical equations
and the double copy. We provided explicit expressions for YM observables in terms of
amplitudes; given a determination of these observables from the Wong equations, then it
is possible to solve for the (classical part of the) amplitude. If it is possible to compute a
corresponding gravitational amplitude from the double copy unambiguously from the clas-
sical parts of a Yang-Mills amplitude, then this method would allow for the computation
of observables in gravity from the Wong equations. Compared to the worldline double
copy of Goldberger, Ridgway [11] and Shen [85] this suggestion would implement the dou-
ble copy in a more standard manner. Our methods may also shine light on the difficulty
implementing the double copy off-shell in the worldline theory discussed in [87], since one
could check proposals for implementing a worldline double copy against our formulae.

Our expression for the colour impulse is in many ways similar to the KMOC expression
for the ordinary impulse. In essence the impulse describes a transfer of a small amount of
momentum ~q̄, weighted by an amplitude of order 1/~. Thus the momentum transferred
by many gluons leads to a macroscopic impulse. In the colour case, the small momentum
transferred is replaced by a colour commutator. This is reminiscent of the transition from
fuzzy spaces to the continuum (see, for example [139, 140]): the momentum transfer in
the impulse is the Fourier transform of a derivative, corresponding to the commutator in
a fuzzy space. Perhaps there is a clue here to how the double copy works.
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Turning to radiation of colour, a first comment is that the relevant amplitude is no
longer proportional to the QED case. This means that at NNLO the impulse will no
longer be proportional to the QED impulse, because the radiated momenta are genuinely
different in the two cases. One motivation for studying impulse and radiation together
is that they are related by conservation of momentum, so the five-point radiation terms
capture dissipative effects in the impulse. The physics of momentum conservation and
dissipation is rich, so we look forward to further work in this area.

Colour radiation is also interesting from the point of view of asymptotic symmetry
groups. Yang-Mills theory is an interesting toy model for gravity in this context, as pointed
out in an early paper by Lüscher [137]. It would be very interesting to study colour radiation
at NLO, in particular to understand what becomes of the infrared divergences of the loop
amplitudes, and their impact on soft theorems. The Yang-Mills case is particularly subtle
in view of the presence of collinear divergences. In electromagnetism and gravity a first step
in these directions has recently been made [46], where the connection between quantum
and classical soft theorems in electromagnetism and gravity was studied using radiation
kernels. We look forward to future progress on these fronts.

Acknowledgments

We thank Roger Horsley, David Kosower, Seán Mee, Alexander Ochirov and Siddharth
Pandey for useful discussions, and Ingrid Holm for correcting some typos in our equations.
BM and AR are supported by STFC studentships ST/R504737/1 and ST/T506060/1 re-
spectively. LDLC and DOC are supported by the STFC grant ST/P0000630/1. This
research was supported by the Munich Institute for Astro- and Particle Physics (MIAPP)
which is funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foun-
dation) under Germany’s Excellence Strategy — EXC-2094 — 390783311. Some of our
figures were produced with the help of TikZ-Feynman [141].

A Charge factorisation in SU(3)

In this appendix we prove equation (2.34). Using the coherent states restricted to the
SU(3) irreducible representation [n1, n2] in equation (2.29), we have

〈ξ ζ|CaCb|ξ ζ〉[n1,n2] = 1
(n1!n2!) 〈0| (ζ

∗ · b)n2 (ξ∗ · a)n1 (a†λaa− b†λ̄ab)

× (a†λba− b†λ̄bb)
(
ζ · b†

)n2 (
ξ · a†

)n1 |0〉

= 1
(n1!n2!) 〈0| (ζ

∗ · b)n2 (ξ∗ · a)n1
(
a†λaa a†λ̄ba− b†λ̄ab a†λba

− a†λaa b†λ̄bb− b†λ̄ab b†λ̄bb
) (
ζ · b†

)n2 (
ξ · a†

)n1 |0〉 .

(A.1)
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Note that we can consider the a and b terms separately since they commute. The terms
with only two a operators (or b’s) reduce to products of the form

〈ξ ζ|a†iaj |ξ ζ〉[n1,n2] = 1
(n1!n2!) 〈0| (ζ

∗ · b)n2 (ξ∗ · a)n1 a†iaj
(
ζ · b†

)n2 (
ξ · a†

)n1 |0〉

= n1ξ
∗iξj ,

(A.2)

and similarly for expressions involving bib†j . We made use of the fact that the states are
normalised. Next we have the term involving four a’s (or b’s), which yields

〈ξ ζ|a†iaja†kal|ξ ζ〉[n1,n2] = n1ξ
∗iξl δj

k + n1(n1 − 1)ξ∗iξl ξ∗kξj . (A.3)

In the limit where n1 is large we can replace14 the n(n− 1) factor with n2. Using this and
returning all λ and ~ factors we find

~2(λa)ij(λb)kl〈ξ ζ|a†iaja†kal|ξ ζ〉[n1,n2] = ~2n2
1 ξ
∗λaξ ξ∗λbξ + ~2n1 ξ

∗λa · λbξ . (A.4)

Now, gathering all the terms with a pair of a’s and a pair of b’s, which are simply
products of the expressions in equation (A.2) contracted with Gell-Mann matrices, we
have that

〈ξ ζ|CaCb|ξ ζ〉[n1,n2] = ~2
(
n2

1 ξ
∗λaξ ξ∗λbξ + n2

2 ζ
∗λ̄aζ ζ∗λ̄bζ − n1n2ξ

∗λaξ ζ∗λ̄bζ (A.5)

− n1n2 ξ
∗λbξ ζ∗λ̄aζ

)
+ ~

(
~n1 ξ

∗λa · λbξ − ~n2 ζ
∗λ̄a · λ̄bζ

)
.

Recognising the charge expectation values 〈ξ ζ|CaCb|ξ ζ〉[n1,n2] from equation (2.33), this
can be written as

〈ξ ζ|CaCb|ξ ζ〉[n1,n2] = 〈ξ ζ|Ca|ξ ζ〉[n1,n2]〈ξ ζ|Cb|ξ ζ〉[n1,n2]

+ ~
(
~n1 ξ

∗λa · λbξ − ~n2 ζ
∗λ̄a · λ̄bζ

)
. (A.6)

The finite quantity in the classical limit ~ → 0, ni → ∞ is the product ~ni. The term
inside the brackets on the second line is itself finite, but comes with a lone ~ coefficient,
and thus vanishes in the classical limit. This then proves the factorisation property in
equation (2.34).

B Diagrams and amplitude expressions

In this appendix we gather the expressions necessary for calculating the 1-loop partial
amplitudes introduced in section 3.3. We are only interested in the leading classical terms
of the relevant topologies, and will not list quantum corrections.

From equation (3.25) we know that the relevant 1-loop topologies for NLO observables
in YM theory are those which contributed to the analogous QED calculation in [15]. The
QED amplitude

A(1,QED) = B + C + T12 + T21 (B.1)
14The correction term vanishes in the classical ~→ 0 limit regardless.
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is constructed from the triangle Tij , box B, and cross box C diagrams. Beginning with the
triangles, the leading classical terms are

iT12 =

p2 − q

p2

p1 + q

p1

`

= i
2m2

1
~

∫
d̂4 ¯̀ δ̂(p1 · ¯̀)

¯̀2(¯̀− q̄)2 +O(~0) ,

iT21 =

p1 + q

p1

p2 − q

p2

`

= i
2m2

2
~

∫
d̂4 ¯̀ δ̂(p2 · ¯̀)

¯̀2(¯̀− q̄)2 +O(~0) .

(B.2)

We refer the curious reader to ref. [15] for the detailed calculations: heuristically, the ~
expansion of the diagrams is conducted by rescaling `→ ~¯̀ and q → ~q̄ on the support of
the delta functions in equation (3.9). Propagator denominators are expanded as a series in
~. Noting that the loop integrals are symmetric under the replacement ¯̀→ q̄− ¯̀, this change
of variables can be exploited to change the sign of the (Feynman) iε in massive propagators.
Then, averaging over the two expressions for the integral and applying the identities

iδ̂(x) = 1
x− iε

− 1
x+ iε

−iδ̂′(x) = 1
(x− iε)2 −

1
(x+ iε)2

(B.3)

leads to the expressions in equation (B.2). This symmetrisation trick is unnecessary for
calculating the individual terms from box topologies, for which we choose the following
momentum routing:

iB =

p1 + q

p1

p2 − q

p2
`

iC =

p1 + q

p1

p2 − q

p2

`

i |B =

p1 + q

p1

p2 − q

p2
`

`− q

(B.4)

The cut box appears outside of A(1,QED), forming the quadratic part of the NLO colour
kernel, and is defined in equation (3.30). However, these diagrams all have kinematic
coefficients of the form

D = D−1 +D0 +O(~0) , (B.5)

where D−1 ∼ O(~−2) and D0 ∼ O(~−1). We choose to label the terms like this as the
O(~−1) terms are those which generally contribute classically, and we ignore the O(~0)
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terms as they always act as quantum corrections. The O(~−2) terms would give rise to
contributions to the impulse which are classically singular, and as shown in section 3.3 it
is necessary to consider all three diagrams in order to see that they cancel. We have

B−1 = i
4(p1 · p2)2

~2

∫
d̂4 ¯̀ 1

¯̀2(q̄ − ¯̀)2(p2 · ¯̀− iε)(p1 · ¯̀+ iε)
,

C−1 = −i4(p1 · p2)2

~2

∫
d̂4 ¯̀ 1

¯̀2(q̄ − ¯̀)2
1

(p2 · ¯̀+ iε)(p1 · ¯̀+ iε)
,

|B−1 = −i4(p1 · p2)2

~2

∫
d̂4 ¯̀ δ̂(p1 · ¯̀)δ̂(p2 · ¯̀)

¯̀2(q̄ − ¯̀)2 ,

(B.6)

and

B0 = i
2p1 · p2

~

∫
d̂4 ¯̀ 1

¯̀2(q̄ − ¯̀)2(p1 · ¯̀+ iε)(p2 · ¯̀− iε)

×
{

2(p2 − p1) · ¯̀+ (p1 · p2)¯̀2
(

1
(p2 · ¯̀− iε)

− 1
(p1 · ¯̀+ iε)

)}
,

C0 = −i2p1 · p2
~

∫
d̂4 ¯̀ 1

¯̀2(q̄ − ¯̀)2(p1 · ¯̀+ iε)(p2 · ¯̀+ iε)

×
{

2(p1 + p2) · ¯̀− (p1 · p2)
( ¯̀2

(p1 · ¯̀+ iε)
+

¯̀2 − 2q̄ · ¯̀
(p2 · ¯̀+ iε)

)}
,

|B0 = i
2(p1 · p2)2

~

∫
d̂4 ¯̀ 1

¯̀2(q̄ − ¯̀)2
¯̀2
{
δ̂(p1 · ¯̀)δ̂′(p2 · ¯̀)− δ̂′(p1 · ¯̀)δ̂(p2 · ¯̀)

}
.

(B.7)

Here the delta functions in |B originate in its definition as the quadratic part of the colour
kernel in equation (3.19). Applying the symmetrisation trick and equation (B.3) ensures
that the sums of the box and cross box contributions can also be recast in terms of delta
functions — hence, upon including the triangle contributions, the leading terms in the
expansion of the QED amplitude in equation (B.1) are

A(1,QED)
−1 = i

2(p1 · p2)2

~2

∫
d̂4 ¯̀ 1

¯̀2(q̄ − ¯̀)2 δ̂(p1 · ¯̀)δ̂(p2 · ¯̀)

A(1,QED)
0 = 2

~

∫
d̂4 ¯̀ 1

¯̀2(q̄ − ¯̀)2

{
i(p1 · p2)2

[
1
2(¯̀2 − 2¯̀· q̄)

(
δ̂(p1 · ¯̀)δ̂′(p2 · ¯̀)

− δ̂′(p1 · ¯̀)δ̂(p2 · ¯̀)
)
− (¯̀2 − ¯̀· q̄)

(
iδ̂(p1 · ¯̀)

(p2 · ¯̀− iε)2 + iδ̂(p2 · ¯̀)
(p1 · ¯̀+ iε)2

)]

+m2
1 δ̂(p1 · ¯̀) +m2

2 δ̂(p2 · ¯̀)
}
.

(B.8)

A similar averaging procedure can also be applied to the cut box, yielding

|B0 = −i2(p1 · p2)2

~

∫
d̂4 ¯̀ ¯̀· q̄

¯̀2(q̄ − ¯̀)2

{
δ̂(p1 · ¯̀)δ̂′(p2 · ¯̀)− δ̂′(p1 · ¯̀)δ̂(p2 · ¯̀)

}
, (B.9)

which is the result listed in equation (3.30).
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Finally, for the momentum impulse the cut box |Bµ is dressed by a power of the loop
momentum, and thus

|Bµ
−1 = −i4(p1 · p2)2

~2

∫
d̂4 ¯̀ ¯̀µδ̂(p1 · ¯̀)δ̂(p2 · ¯̀)

¯̀2(q̄ − ¯̀)2 ,

|Bµ
0 = i

2(p1 · p2)2

~

∫
d̂4 ¯̀ ¯̀µ

¯̀2(q̄ − ¯̀)2

{
¯̀2δ̂(p1 · ¯̀)δ̂′(p2 · ¯̀)− ¯̀2δ̂(p2 · ¯̀)δ̂′(p1 · ¯̀)

}
.

(B.10)

Shifting with ¯̀→ q̄− ¯̀and averaging the two expressions, these can be written equivalently
as

|Bµ
−1 = −i2g

4(p1 · p2)2

~2

∫
d̂4 ¯̀ q̄µ

¯̀2(q̄ − ¯̀)2 δ̂(p1 · ¯̀)δ̂(p2 · ¯̀) ,

|Bµ
0 = i

2(p1 · p2)2

~

∫
d̂4 ¯̀ ¯̀· (¯̀− q̄)

¯̀2(q̄ − ¯̀)2
¯̀µ
(
δ̂(p1 · ¯̀)δ̂′(p2 · ¯̀)− δ̂′(p1 · ¯̀)δ̂(p2 · ¯̀)

)
− i (p1 · p2)2

~
q̄µ
∫

d̂4 ¯̀ (¯̀2 − 2q̄ · ¯̀)
¯̀2(q̄ − ¯̀)2

(
δ̂(p1 · ¯̀)δ̂′(p2 · ¯̀)− δ̂′(p1 · ¯̀)δ̂(p2 · ¯̀)

)
.

(B.11)

Applying the analysis of [15], one would expect the non-Abelian triangles

iY12 =

p2 − q

p2

p1 + q

p1

q
`

iY21 =

p1 + q

p1

p2 − q

p2

q
`

(B.12)

to contribute to the NLO observables. The series in ~ for these partial amplitudes contain
terms at O(~−2); however, the decomposition of the full amplitude onto the colour basis
in equation (3.25) shows that these always act as quantum corrections, and thus we need
not calculate these diagrams.

C Colour deflection for N particles

Here we give the full general N particle results for the colour deflection. The strategy
to perform the calculation is iterative and follows ref. [11]. However, here we have not
introduced an extra integration and performed a sum over integration labels as in [11]. As
can be seen in equations (5.8), we are removing self-interactions. At NLO this leads to
an important distinction between sums over particle species. Accordingly, in the following
expressions we have separated the contributions according to the type of sum involved.
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Our result for the NLO colour deflection is

∆(2)caα(τα) =
N∑

β=1,β 6=α
γ=1,γ 6=α

∫
d̂4q̄2

∫
d̂4q̄3 δ̂(q̄3 · uγ)δ̂(q̄2 · uβ)eiq̄3·bγeiq̄2·bβ

× e−i(q̄2+q̄3)·(bα+uατα)Ha,(2)
A (q̄1, q̄3;uα, uγ , uβ)

+
N∑

β=1,β 6=α
γ=1,γ 6=β

∫
d̂4q̄2

∫
d̂4q̄3 δ̂(q̄3 · uγ)δ̂ (q̄2 · uβ) eiq̄3·bγeiq̄2·bβ

× e−i(q̄2+q̄3)·(bα+uατα)Ha,(2)
B (q̄1, q̄3;uα, uγ , uβ) ,

(C.1)

where q̄ij... = q̄i + q̄j + · · · and

tr(A,B,C,D) ≡ 1
4tr(

/A/B /C /D) . (C.2)

Here,

Ha,(2)
A (q̄1, q̄3;uα, uγ , uβ) = i

fabccbγc
c
αcα · cβ

mα q̄2
2 q̄

2
3 q̄23 · uα(q̄2 · uα)2

× (uα · uγtr(q̄2, q̄3, uα, uβ) + q̄2 · uαtr(q̄2, uβ , uα, uγ))

− fabcf cdecbγcdβceα
(

uα · uβuα · uγ
q̄2

2 q̄
2
3 q̄2 · uαq̄23 · uα

)
,

Ha,(2)
B (q̄1, q̄3;uα, uγ , uβ) = i

fabccbβc
c
αcβ · cγ

mβ q̄
2
3 q̄

2
23 q̄23 · uα(q̄3 · uβ)2

(
uα · uβtr(q̄23, uβ , q̄3, uγ)

+ q̄3 · uβtr(q̄3, uα, uβ , uγ)
)

+
fabcf bdeccαc

d
γc
e
β

q̄2
3 q̄

2
23 q̄23 · uα

×
(
−uβ · uγ q̄3 · uα

q̄2
2

+ 2uα · uγ q̄3 · uβ
q̄2

2
− uα · uβuβ · uγ

q̄3 · uβ

)
.

(C.3)

In order to reach the form of the colour impulse in section 5 we set N = 2 and perform the
time integration on the support of the on-shell conditions. To recover the final observables
we define the loop momentum as ¯̀≡ q̄3 and ¯̀≡ q̄2+ q̄3 in the first and second contributions
in (C.3) respectively.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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