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We extend the onept of lassiality in quantum optis to spin states. We all a state �lassial�

if its density matrix an be deomposed as a weighted sum of angular momentum oherent states

with positive weights. Classial spin states form a onvex set C, whih we fully haraterize for a

spin�1/2 and a spin�1. For arbitrary spin, we provide �non-lassiality witnesses�. For bipartite

systems, C forms a subset of all separable states. A state of two spins�1/2 belongs to C if and only

if it is separable, whereas for a spin�1/2 oupled to a spin�1, there are separable states whih do

not belong to C. We show that in general the question whether a state is in C an be answered by

a linear programming algorithm.

PACS numbers: 02.40.Ft, 03.67.-a, 03.67.Mn

I. INTRODUCTION

The question of the lassiality of quantum states has

regained interest with the rise of quantum information

theory [1℄. Stronger�than�lassial orrelations between

di�erent systems are an important resoure for quan-

tum ommuniation protools, and the existene of large

amounts of entanglement has been shown to be nees-

sary for a quantum omputational speed-up [2, 3℄. How-

ever, even for a single system the question of lassial-

ity is important. Historially the question goes bak to

two seminal papers in quantum optis by Sudarshan and

Glauber [4, 5℄, who introdued the Glauber�Sudarshan

P�representation for the states of a harmoni osillator.

This representation allows to deompose the density ma-

trix in terms of oherent states of the harmoni osilla-

tor. For a single oherent state, the weight funtion of

the P�representation (alled P�funtion in the following

for short) redues to a delta funtion on the phase spae

point in whih the oherent state is entered, and the dy-

namis of the P�funtion is exatly the one of the las-

sial phase spae distribution. It has therefore beome

ustomary in quantum optis to onsider states with a

positive P�funtion as lassial. Several other riteria

an be derived from this requirement. Using Bohner's

theorem for the Fourier transform of a lassial probabil-

ity distribution [6℄, Rihter and Vogel derived a hierarhy

of observable riteria based on the harateristi funtion,

whih are both neessary and su�ient for lassiality [7℄.

This led to a reent demonstration of the negativity of

the P�funtion in a quantum optial experiment [8℄. Ko-

rbiz et al. realized a onnetion of the positivity of the

P�funtion to Hilbert's 17th problem of the deomposi-

tion of a positive polynomial [9℄. Sine the P�funtion
for a ontinuous variable system an be highly singular, a

lot of attempts to de�ne lassiality have been based on

other quasi-probability distributions [10℄ as well, notably

the Wigner funtion [11, 12℄.

These quasiprobability distributions for the harmoni

osillator [10℄ have analogs for �nite�dimensional angular

momentum states [13℄. The Wigner funtion for �nite�

dimensional systems has reeived a large amount of at-

tention, ranging from questions of its most appropriate

de�nition [13, 14, 15, 16, 17℄, over lassiality riteria

[18, 19℄, to the importane of its negativity for quan-

tum omputational speed-up [20℄ (see also for further

referenes onerning the historial development of the

Wigner funtion for �nite�dimensional systems). Sur-

prisingly, the P�funtion for �nite�dimensional systems

has been muh less studied, in spite of its attrative

mathematial properties. The P�funtion for a system

with a �nite�dimensional Hilbert spae (i.e. formally a

spin system) allows to deompose the density matrix in

terms of angular momentum oherent states [21℄. It an

always be hosen to be a smooth funtion, expandable

in a �nite set of spherial harmoni funtions [13℄. In

ontrast to the ase of the harmoni osillator, questions

onerning the existene of the P�funtion (or its na-

ture as a distribution or worse) do therefore not arise.

This idylli situation is somewhat perturbed, however,

by the fat, already observed in [21℄, that for a spin sys-

tem a large amount of freedom exists in the hoie of the

P�funtion, as it depends on two ontinuous variables

on the Bloh sphere, whereas the density matrix for a

system with d�dimensional Hilbert spae is spei�ed by

d2 − 1 real independent entries.

In this paper we show that the existene of a P�
representation of the state of a spin system with a posi-

tive P�funtion is a meaningful onept whih allows to

de�ne the lassiality of states of �nite�dimensional sys-

tems in a natural fashion, ompletely analogous to the

lassiality of the harmoni osillator states of the ele-

tromagneti �eld. We shall all the orresponding states

�P�representable�, or P�rep for short. The set C of P�
representable states form a onvex domain in the spae of

density operators, ontaining the ompletely mixed state

in its interior. We show that, surprisingly, all states of a

single spin�1/2 are P�rep, and obtain an analytial ri-

terion for P�representability in the ase of a spin�1. For

bipartite systems, the set of P�rep states is a subset of

the set of separable states. For two spins�1/2 the two sets

oinide, whereas already for a spin�1/2 ombined with

http://arxiv.org/abs/0805.2592v1
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a spin�1, there are separable states whih are not P�rep.
We also show that the problem of deiding whether a

given state is P�rep an be solved numerially by linear

programming.

In the following we will �rst motivate and de�ne P�
representability, then study simple ases of small spins,

introdue a variational approah that gives rise to a lin-

ear programming algorithm, and �nally have a look at

omposite systems. We also develop some neessary on-

ditions for P�representability based on measurable ob-

servables, whih may thus serve as �non�lassiality wit-

nesses�, an extension of the by now well-known onept

of entanglement witnesses [22℄.

II. DEFINITION OF P�REPRESENTABILITY

A. Coherent states

We �rst set some notations following the lines of [13℄.

Angular momentum oherent states are de�ned as eigen-

states of J2
and n.J with eigenvalues j(j + 1) and j,

respetively, where n is a unit olumn vetor whih spe-

i�es the quantization axis with polar angle θ and azimuth
ϕ, and J is the familiar angular momentum operator with

omponents Jx, Jy and Jz. The transpose of the olumn

vetor n reads

n (θ, ϕ)
t
=(sin θ cosϕ, sin θ sinϕ, cos θ) .

An angular momentum oherent state an be expanded

in terms of the states |jm〉 quantized on the z axis as

|θϕ〉 =

j∑

m=−j

√(
2j

j +m

)

×
(
sin

θ

2

)j−m(
cos

θ

2

)j+m

e−i(j+m)ϕ |jm〉 .

The oherent states form a omplete, although not or-

thogonal, basis set of normalized states within the spae

of the eigenfuntions of J2
with given j, and

2j + 1

4π

∫
sin θdθdφ |θϕ〉 〈θϕ| = 12j+1, (1)

where 12j+1 is the (2j + 1)�dimensional identity matrix.

We shall use the shorthand α = (θ, ϕ) and denote dα =
sin θdθdφ. The oherent state |θϕ〉 assoiated with the

vetor n will be denoted |n〉 or |α〉.

B. P�representation

The P�representation of a density operator ρ is an ex-

pansion over the overomplete basis of oherent states.

This expansion reads

ρ =

∫
dαP (α) |α〉 〈α| , (2)

where the P�funtion P (α) is real and normalized by the

ondition

trρ =

∫
dαP (α) = 1 . (3)

If P (α) is non-negative then ρ is a lassial mixture of

pure oherent states with probability density P (α), and
an therefore be onsidered as lassial. In this ase we

shall say that ρ is P�representable, or �P�rep� for short.
This de�nition has to be made more preise onsider-

ing that P (α) is not uniquely determined by the density

operator. To show this, onsider the multipole expansion

of ρ,

ρ =

2j∑

K=0

K∑

Q=−K

ρKQT̂KQ, ρKQ = trρT̂ †
KQ, (4)

T̂KQ =

j∑

m1,m2

(−1)j−m+QCKQ
jm1jm2

|jm1〉 〈jm2| (5)

where CKQ
jm1jm2

are the Clebsh-Gordan oe�ients as

[23℄. Expanding the P�funtion as a sum of spherial

harmonis,

P (α) =

∞∑

K=0

K∑

Q=−K

PKQYKQ(α),

one obtains a one-to-one relation between the oe�ients

of the two expansions for 0 ≤ K ≤ 2j,

ρKQ = PKQ

√
4π

(2j)!√
Γ(2j −K + 1)Γ(2j +K + 2)

. (6)

If K > 2j the Euler Gamma funtions in the denomina-

tor beome in�nite; onsequently regardless of PKQ the

respetive ρKQ will be zero. It means that the hoie of

suh PKQ is totally arbitrary. However, non-negativity

of a P (α) for one hoie of PKQ with K > 2j may be

absent for another hoie. Here is a simple example.

Let the density operator be a projetor on a oherent

state, ρ = |α0〉 〈α0|. An obvious P -funtion in this ase

is δ(α − α0); it an be onsidered non-negative sine it

an be approahed by a sequene of non-negative fun-

tions, like Gaussians with dereasing width. An alter-

native hoie however would be to drop all non-physial

terms in P with K > 2j, replaing the δ-funtion by a

�nite linear ombination

P (α) =

2j∑

K=0

K∑

Q=−K

Y ∗
KQ(α0)YKQ(α)

whih is not non-negative for all �nite j (its tail away

from the maximum at α = α0 osillates around zero).

In view of the non-uniqueness of P (α) we reformulate
the de�nition of P�representability demanding that the

ondition P ≥ 0 must be ful�lled at least for one parti-

ular P (α). Under this de�nition the pure oherent state

ρ = |α0〉 〈α0| will be P�rep, whih is intuitively reason-

able. We are thus led to the following de�nition:



3

De�nition 1 A density matrix ρ is alled P�rep if it an

be written as a onvex sum of oherent states, i.e. as in

Eq. (2) with a non-negative funtion P (α).

We will now derive some simple onsequenes of this def-

inition.

C. Consequenes

Let V be the vetor spae of (2j+1)×(2j+1) hermitian

matries. The salar produt 〈X,Y 〉 = trX†Y de�nes an

operator norm ||X || =
√
trX†X on V . We denote by

N the subset of non-negative density matries, and by

C the subset of P�rep states. The boundaries of these

sets are respetively denoted ∂N and ∂C. The following
statements follow immediately from the above de�nition:

1. The totally mixed state ρ0 ≡ 1
2j+112j+1 is P�rep,

whih is readily seen from Eq. (1) taking P (α) =
1/4π.

2. The set C of P�rep states is the onvex hull of the

set of oherent states. In partiular, it is a onvex

set.

3. Sine all P�rep states are non-negative (but not

vie versa) we have C ⊆ N ⊆ V .
4. Aording to Carathéodory's theorem on onvex

sets applied to the (2j + 1)2�dimensional vetor

spae V , any non-negative Hermitian matrix an be

represented as a onvex sum of at most (2j+1)2+1
projetors onto oherent states. In the ase of

density matries subjet to the ondition trρ = 1
this number is dereased by 1. Finding a P�
representation for a state ρ is thus equivalent to

�nding real non-negative oe�ients λi and oher-

ent states |αi〉 suh that

ρ =

(2j+1)2∑

i=1

λi|αi〉〈αi|. (7)

5. A pure state is P�rep if and only if it is a oherent

state.

Proof. The �if� part is trivial. For the �only if�

part, assume that a state ρ is P�rep, i.e. that there
exists a deomposition suh as in (7). We have

trρ2 =
∑

i,j λiλj |〈αi|αj〉|2 ≤ (
∑

i λi)
2
= 1, where

equality ours only for |〈αi|αj〉| = 1 for all i, j.
The latter ondition an only be ful�lled if there is

a single term in the sum. Thus a pure P�rep state,

for whih trρ2 = 1, has to be a oherent state.

6. Any density matrix an be deomposed as a sum

of the totally mixed state ρ0 and a traeless hermi-

tian operator ρ̂ with trae norm one multiplied by

a positive real parameter κ,

ρκ = ρ0 + κρ̂. (8)

Sine C is onvex, there is, for any given diretion

ρ̂, an extremal value κe of κ suh that ρκ ∈ C if

0 ≤ κ < κe and ρκ /∈ C if κ > κe. The states

ρ = ρ0+κeρ̂ form the boundary ∂C of P�rep states.
They belong to C provided we aept states ρ as P�
rep if they an be approximated in the trae norm

by a onvex sum of oherent states, that is for all

ǫ > 0 there exists a positive funtion P (α) suh that∣∣∣∣ρ−
∫
dαP (α) |α〉 〈α|

∣∣∣∣ < ǫ. With this extended

de�nition the set of P�rep states beomes ompat.

In some diretions the boundary ∂C may touh ∂N ,

e.g. when ρ = |α〉 〈α| is a pure oherent state.

7. ∂C is separated by a �nite distane from the state

ρ0. In other words, all density operators in some

�nite neighborhood of ρ0 are P�rep. To show it

let us hoose P (α) ontaining only the mandatory

omponents with K ≤ 2j,

P (α) =
1

4π
+ P̂ (α) ,

P̂ (α) =

2j∑

K=1

K∑

Q=−K

PKQYKQ(α). (9)

The PKQ are bounded sine they are related to the

oordinates ρKQ of ρ by (6) and trρ2 ≤ 1. As the
spherial harmonis are bounded on the sphere and

(9) is a �nite sum, there is an upper bound P̂e to

the non-trivial part P̂ (α) when ρ and α are varied.

Thus, all matries ρ0 + κρ̂ with κ < 1/(4πP̂e) will
be P�rep.

III. P�REP FOR SYSTEMS OF SMALL SPIN

In the ase of a spin�1/2 or a spin�1, it is possible to

obtain a omplete haraterization of P�rep states.

A. Spin�1/2

We denote by σ =(σx, σy, σz) the vetor formed by

the Pauli matries. Together with the identity matrix 12

they form a basis of the spae of 2 × 2 matries. Any

2× 2 Hermitian matrix with unit trae an be written as

ρ =
1

2
(12 + u.σ) , (10)

and u is given by u = tr(ρσ). The matrix ρ is non-

negative if and only if |u| ≤ 1. A physial density ma-

trix ρ an thus be represented by a point inside the unit

sphere (the Bloh sphere). Matries orresponding to

points on the unit sphere are pure states. Sine for spin�

1/2 any pure state is a oherent state, the onvex hull of

oherent states is the onvex hull of pure states, whih is

the set of all density matries. Thus all states are P�rep.
It is straightforward to �nd an expliit deomposition

in terms of angular momentum oherent states by simply
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diagonalizing ρ, whih leads to the sum of two projetors

with two positive eigenvalues. Nevertheless, there is a

large freedom in hoosing the oherent states. Aord-

ing to (7), �nding a P�representation for ρ amounts to

�nding positive real oe�ients λi and projetors on o-

herent states |αi〉〈αi| = 1
2

(
12 + n(i).σ

)
with |n(i)| = 1

suh that ρ =
∑

i λi|αi〉〈αi|. Sine the σi form a basis of

the 2×2 density matries, this is equivalent to �nding λi
and norm-1 vetors n(i)

suh that

u =
∑

i

λin
(i). (11)

This an be trivially ahieved e.g. by taking any pair of

points on the Bloh sphere suh that the line joining these

two points ontains the point representing u inside the

sphere.

B. Spin�1

Let us now onsider a spin�1 density matrix. We shall

use the representation

ρ =
1

3
13+

1

2
u.J+

1

2

∑

a,b=x,y,z

(
Wab −

1

3
δab

)
JaJb + JbJa

2
,

(12)

where Ja are matries of the angular momentum with

j = 1. The Ja and the (JaJb + JbJa)/2, together with
the identity matrix 13, form a basis of the vetor spae

V of 3× 3 hermitian matries. Inverting relation (12) we

obtain

ua = tr (ρJa) , Wab = Tr ρ (JaJb + JbJa)− δab, (13)

whih shows that u ∈R3
whileW is a 3×3 real symmetri

tensor with trae 1. The projetor on a oherent state

|n〉, written in the form (12), reads

|n〉〈n| = 1

3
13+

1

2
n.J+

1

2

∑

a,b=x,y,z

(
nanb −

1

3
δab

)
JaJb + JbJa

2
.

(14)

Aording to (7), ρ is P�rep if and only if there exist

λi > 0 with
∑

i λi = 1 and oherent states orresponding

to vetors n(i) ∈ R
3
of length 1 suh that

∑

i

λin
(i)
a = ua, (15)

∑

i

λin
(i)
a n

(i)
b = Wab,

(with a, b running over x, y, z). It turns out that these

equations admit a solution � and hene ρ is P�rep � if

and only if the real symmetri 3×3matrix Z with matrix

elements

Zab =Wab − uaub (16)

is non-negative.

Proof. First let us assume that the Eqs. (15) do have a

solution. Then Z an be written

Zab =
∑

i,j

(λiδij − λiλj)n
(i)
a n

(j)
b , (17)

and for any vetor y ∈ R
3
we have

ytZy =
∑

i

λi

(
y.n(i)

)2
−
(
∑

i

λiy.n
(i)

)2

≥ 0 (18)

sine the weights λi > 0 sum to 1 and f(x) = x2 is a

onvex funtion. Therefore Z is indeed non-negative for

all P�rep operators ρ.
Conversely, if Z ≥ 0, then it is possible to exhibit

a deomposition of ρ by �nding an expliit solution to

Eqs. (15). Let A be suh that Z = AAt
. If we denote by

t(i) the eight olumn vetors (±1,±1,±1) obtained from

all ombinations of the ± signs, and de�ne

τ i = − utAt(i)

1− |u|2 +

√

1 +

(
utAt(i)

1− |u|2
)2

, (19)

then one an hek that a solution to Eqs. (15) is given

by

n(i) = u+ τ iAt
(i)

(20)

λi =
1

4

1

1 + τ2i
, (21)

whih proves that ρ is P�rep.
The neessary and su�ient ondition Z ≥ 0 in the

ase of spin�1 allows to haraterize the boundary ∂C of

P�rep states. Indeed, let us onsider a one-parameter

family of states as in (8). If u and W are the vetor and

matrix orresponding to the expansion (12) of the state

ρ0 + ρ̂, then the vetor and the matrix assoiated with

ρκ = ρ0 + κρ̂ are given by

uκ = κu (22)

Wκ = κW +

(
1− κ

3

)
13,

and thus the 3× 3 matrix Zκ assoiated with ρκ reads

Zκ = κW +

(
1− κ

3

)
13 − κ2uut. (23)

The value κ = κe at whih the saled operator ρκ eases

to be P�rep orresponds to the smallest κ for whih Zκ

has a zero eigenvalue. Thus κe is the smallest solution of

the equation detZκ = 0, and the equation of ∂C in the

vetor spae V is

κ2eu
t

(
κeW +

1− κe
3

13

)−1

u = 1. (24)

This equation gives impliitly the value κe for eah di-

retion ρ̂ in the vetor spae V . As the examples of spin�

1/2 and spin�1 show, the proportion of P�rep matries

among all density operators depends on j.
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C. Neessary onditions for higher spins

It is possible to derive more general neessary ondi-

tions for P�representability of spin�j states, as follows.

Let us denote by Jt = t.J the spin operator in diretion

t. For a oherent state |n〉 orresponding to a vetor n,

the mean values of Jt and J
2
t
are given by

〈n|Jt|n〉 = j t.n (25)

〈n|J2
t
|n〉 =

j

2
+ j

(
j − 1

2

)
(t.n)2 . (26)

Any P�rep state ρ an be written as ρ =∑
i λi|n(i)〉〈n(i)|, whih implies for the mean values of

Jt and J
2
t
in the state ρ

〈Jt〉 = j
∑

i

λi t.n
(i)

(27)

〈J2
t
〉 =

j

2
+ j

(
j − 1

2

)∑

i

λi

(
t.n(i)

)2
. (28)

Convexity of f(x) = x2 applied to the sums over i leads
to the inequality

2j〈J2
t
〉 − (2j − 1)〈Jt〉2 − j2 ≥ 0 ∀t, |t| = 1, (29)

with equality if and only if ρ is itself a oherent state.

This is a neessary ondition for P�rep, valid for any j.
In the partiular ase of spin�1/2 this inequality beomes

〈J2
t
〉 ≥ 1/4, whih is obviously true for all states ρ and

all diretions t. In the ase of spin�1 the inequality (29)

an be rewritten as

∑

a,b

(2〈JaJb〉 − 〈Ja〉〈Jb〉 − δab) tatb ≥ 0 ∀t = (tx, ty, tz), |t| = 1.

(30)

As an be seen from Eqs. (13) and (16), this inequality

exatly orresponds to the ondition Z ≥ 0 derived in

the previous setion.

For higher spins, one an similarly derive other nees-

sary onditions. For instane for a P�rep state of spin�

3/2, one has

〈J3
t
〉 = 21

8

∑

i

λi

(
t.n(i)

)
+

3

4

∑

i

λi

(
t.n(i)

)3
, (31)

and a neessary ondition imposed by the fat that

|∑i λix
3
i | ≤

∑
i λix

2
i for any xi ∈ [−1, 1] reads

∀t, 2

∣∣∣∣〈J3
t
〉 − 7

4
〈Jt〉

∣∣∣∣ ≤
∣∣∣∣〈J2

t
〉 − 3

4

∣∣∣∣ . (32)

These neessary onditions an be onsidered as �non-

lassiality witnesses�, as a state ρ is not in C if at least

one of these onditions is not ful�lled.

IV. NUMERICAL IMPLEMENTATION

A. Variational approah to P�representability

Suppose we are given a density operator and want to

establish whether it is P�representable. Let us use the

multipole expansion (4). The oe�ients PKQ with 0 ≤
K ≤ 2j will be de�ned by Eq. (6). Orthogonality of the

spherial harmonis implies that the hypothetial P (α) ≥
0 satis�es the integral equations

∫
P (α)Y ∗

KQ(α)dα = PKQ, 0 < K ≤ 2j, |Q| ≤ K,

(33)

together with

∫
P (α)dα = trρ = 1.

If we �nd any P (α) ≥ 0 satisfying these equations the

state in question is P�representable.
We an ask for more and try to �nd the representability

boundary for all matries of the form ρκ = ρ0 + κρ̂ ob-

tained by saling a given traeless normalized hermitian

matrix ρ̂. To that end, we onsider the set of matries

ρ0/κ+ ρ̂, κ > 0. These states all have the same traeless

part ρ̂, thus they are represented by P�funtions P (α)
that satisfy Eqs. (33) with PKQ orresponding to ρ̂, but
with

∫
P (α)dα = 1

κ
. We look at the minimum of the

funtional F [P ] ≡
∫
P (α)dα over these states. Suppose

that the minimum is realized by some funtion Pe(α) and
introdue κe through

min

∫
P (α)dα =

∫
Pe(α)dα =

1

κe
. (34)

The orresponding density operator ρκe
= ρ0 + κeρ̂ is

represented by the funtion κePe(α). As we pointed out

it means that all operators ρκ with 0 ≤ κ < κe are P�
representable and that ρe belongs to the boundary ∂C.

B. Conavity of 1/κe

The parameter κe orresponding to the border of P�
rep depends on the matrix ρ, suh that κe = κe(ρ). Let us
take two matries, ρI and ρII and alulate the respetive
κe(ρ

I), κe(ρ
II). Consider now a onvex ombination

ρ(c) = cρI + (1− c)ρII , 0 < c < 1.

Then

1

κe(ρ(c))
≤ c

κe(ρI)
+

1− c

κe(ρII)
,

i.e., 1/κe is a onave funtion of ρ. The proof is based

on Eq. (34). Let P I
e , P

II
e be the funtions minimizing∫

Pdα under onstraints orresponding to the operators

ρI and ρII respetively. Then the funtion P (c) = cP I
e +
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(1− c)P II
e will obey the onstraints orresponding to the

operator ρ(c). Therefore we must have

1

κe(ρ(c))
= min

∫
P (α) dα ≤

∫
P (c)(α) dα

= c

∫
P I
e (α) dα+ (1− c)

∫
P II
e (α) dα

=
c

κe(ρI)
+

1− c

κe(ρII)
,

whih implies onavity of 1/κe. Thus the knowledge

of κe for two density matries gives a lower bound for

a whole family of onvex ombinations of these density

matries.

C. Linear programming

In order to numerially implement the variational ap-

proah desribed here, let us hoose the trial P�funtion
in the form of a linear ombination of δ-peaks

P (α) =

n∑

i=1

wiδ (α− αi) (35)

where the points αi = (θi, φi) are more or less uni-

formly distributed on the unit sphere, and wi ≥ 0 are

non-negative variational parameters; the delta-funtions

are assumed to be normalized on the unit sphere,

δ (α− αi) = δ (cos θ − cos θi) δ (φ− φi). Inserting this

P (α) in (33) we ome to the optimization problem: �nd

w = {w1, . . . , wn} with all wi ≥ 0, i = 1 . . . n, minimiz-

ing the sum

F (w) =
n∑

i=1

wi, (36)

and subjet to M = (2j + 1)2 − 1 linear onstraints

n∑

i=1

YKQ(αi) wi = PKQ, 0 < K ≤ 2j, |Q| ≤ K.

This is a problem of linear programming [24℄. Its well-

known theorem states that whatever the number of un-

knowns n the minimum of F is realized on a solution

ontaining no more than M non-zero omponents. This

number is one less than predited by Caratheodory's the-

orem beause the solution is a boundary, not an internal,

point of the set of the density matries P -representable
by (35). The minimum found numerially for a given

n yields an upper bound on the exat value of 1/κe
(Eq. (34)), i.e., the lower bound on the value of the sal-

ing parameter κ at the border of P�rep in ρκ = ρ0 + κρ̂.
The linear programming approah was numerially

tested and found e�ient for moderate values of j. For

a given ρ, the minimal value of κ−1
diminished fast with

the inrease of n and was stable. On the other hand,

the solution w hanged erratially with the hange of n.
That was to be expeted onsidering the freedom in the

hoie of P (α).

V. COMPOSITE SYSTEMS

The de�nition of lassiality an be extended to sys-

tems of more than one partile in a natural way. In the

present setion we shall onsider the ase of two partiles,

but the formalism generalizes to an arbitrary number of

partiles.

A. Classiality for two partiles

The P�representation of a density operator in the ase

of two spins jAand jB ,

ρ =

∫
d2αAd

2αBP (αA, αB) |αA〉 |αB〉 〈αA| 〈αB| (37)

with P ≥ 0 is possible for separable states only; on-

sequently P�rep is a su�ient riterion of separability.

The partially transposed matries ρTA
and ρTB

are de-

�ned in a �xed omputational basis |ij〉 ≡ |i〉A ⊗ |j〉B as

ρTA

ij,kl = ρkj,il and ρ
TB

ij,kl = ρil,kj . They are P�rep if and

only if ρ is P�rep, and the orresponding P�funtions
PTA

and PTB
are simply related to the P�funtion of

ρ by PTA(αA, αB) = P (α̃A, αB), α̃A = (θA,−ϕA), and
orrespondingly for PTB

. All previously onsidered equa-

tions are reformulated for two spins in a straightforward

manner; we shall list them without ommenting.

The representation of ρ in terms of produts of spher-

ial multipole operators reads

ρ =

2jA∑

KA=0

KA∑

QA=−KA

2jB∑

KB=0

KB∑

QB=−KB

ρKAQA,KBQB
T̂A
KAQA

T̂B
KBQB

, (38)

and we have the P�funtion expanded into produts of spherial harmonis,

P (α) =
∞∑

KA=0

KA∑

QA=−KA

∞∑

KB=0

KB∑

QB=−KB

PKAQA,KBQB
YKAQA

(αA)YKBQB
(αB).
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The relation between the oe�ients of ρ and P is given by

ρKAQA,KBQB
= PKAQA,KBQB

×4π
(2jA)! (2jB)!√

(2jA −KA)!(2jA +KA + 1)!(2jB −KB)!(2jB +KB + 1)!
,

and the density operator with a saled non-trivial part by

ρκ = ρ0 + κρ̂,

ρ0 =
1(2jA+1)×(2jB+1)

(2jA + 1)(2jB + 1)
.

The following variational problem needs to be solved when the boundary of P�representability is to be found:

minimize the funtional

F [P ] =

∫
d2αAd

2αBP (αA, αB)

with P (αA, αB) ≥ 0 satisfying the integral equations

∫
d2αAd

2αBP (αA, αB)Y
∗
KAQA

(αA)Y
∗
KBQB

(αB) = PKAQA,KBQB
, (39)

where KA,KB run from 0 to 2j exluding KA = KB = 0, and |QA| ≤ KA, |QB| ≤ KB. If the minimum of F is equal

to

Fe = minF =

∫
d2αAd

2αBPe(αA, αB) ≡
1

κe
,

then the density operator lying on the boundary of P�representability will be ρκe
.

For the numerial implementation, the integrals are now taken over a produt of two unit spheres of Alie and Bob.

Let us hoose the trial P�funtion as

P (αA, αB) =

nA∑

iA=1

nB∑

iB=1

wiAiBδ
(
αA − αA

iA

)
δ
(
αB − αB

iB

)
(40)

where nA points αA
iA

and nB points αB
iB

are uniformly sattered over the spheres of Alie and Bob, respetively, and

wiAiB ≥ 0 are nAnB variational parameters. We now solve the linear programming task: minimize

F (w) =

nA∑

iA=1

nB∑

iB=1

wiA iB

with wiA iB ≥ 0 satisfying M = (2j1 + 1)2(2j2 + 1)2 − 1 linear onstraints,

nA∑

iA=1

nB∑

iB=1

Y ∗
KAQA

(αA
iA
)Y ∗

KBQB
(αB

iB
) wiAiB = PKAQA,KBQB

.

Here KA, QA,KB, QB take all possible values exluding KA = KB = 0. Again, the optimal solution ontains no more

than M non-zero elements wiAiB .

B. Two spins 1/2

Considering that the density operator of a single spin�1/2 is always P�rep it is easy to see that the density operator

for a system of two spins is P - rep if and only if it is separable. Consequently, the neessary and su�ient ondition

of P�rep is given by the Peres-Horodeki theorem [25, 26℄. It means that the boundary of P�representability in the

family ρκ = ρ0+κρ̂ is reahed when either ρκ or its partial transpose ρTA
κ eases to be non-negative. This was heked

numerially in the linear programming approah: the minima 1/κe of the funtional F [P ] alulated with the matrix

ρ and its partial transpose ρTA
in all ases oinided with eah other and agreed with the saling neessary to shift

the smallest eigenvalue of either ρ or ρTA
to zero. The optimal P was obtained as a ombination of M = 15 oherent

states, some of them with very small weights.
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FIG. 1: (Color online) Example of a set of lassial states C for a bipartite system of two spins 1/2 and 1 parametrized by two

parameters, ρ = ρ
0
+ κ1ρ̂1 + κ2ρ̂2 with some traeless ρ̂

1
, ρ̂

2
. Boundaries are shown of non-negativity of ρ (bold blak line),

non-negativity of its partial transpose ρTA
(dashed line), and of P�representability of ρ, ρTA

(inner red line).

C. Spins 1/2 and 1

In this ase the separability and P�rep onditions do not oinide. Indeed onsider for instane the pure produt

state (in |jm〉 notation) |ψ〉 = | 12 1
2 〉⊗|10〉. Then the mean value of the operator 12⊗J2

z in the state |ψ〉 is 〈10|J2
z |10〉 = 0,

while using Eq. (28) one should have for a P�rep state 〈12 ⊗ J2
z 〉 ≥ 1/2. Thus, |ψ〉 is not P�rep. More generally, it is

easy to show numerially that ∂C is well inside the separability boundary. An example is shown in Fig.1, where we

display the two boundaries for a density matrix of the form ρ = ρ0+ κ1ρ̂1 + κ2ρ̂2 with two random but �xed traeless

parts ρ̂1 and ρ̂2.

D. Classiality witness

A simple neessary ondition for P�rep an be formulated for the density operator ρ of the system of two partiles

A and B. Let VA be any non-negative operator in the Hilbert spae of A and take the partial trae of ρVA over the

A−variables. Assuming that ρ is P�rep and using the oherent states |α′〉 for the alulation of the trae we obtain

TrA ρVA =
2j + 1

4π

∫
dα′ 〈α′|ρVA|α′〉 (41)

=
2j + 1

4π

∫
dβ |β〉 〈β|

∫
dαP (α, β)

∫
dα′ 〈α|VA|α′〉 〈α′|α〉 (42)

=

∫
dβP̄ (β) |β〉 〈β| (43)

where P̄ (β) =
∫
dαP (α, β) 〈α|VA|α〉 is manifestly non-negative. Consequently,

ρB = (TrA ρVA) /Tr ρVA (44)

an be onsidered as a density operator in the B−spae whih is P�representable by a funtion P̄ (β) /Tr ρVA.
Therefore ρ an be P�rep only if ρB is also P�rep (not vie versa). The P�rep of ρB is easy to hek using our result

for j = 1. One an take, e.g., VA = 1A getting ρB = TrA ρ.
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VI. CONCLUSION

The P�representable states are lassial mixtures of

projetors on angular momentum oherent states, i.e. of

angular momentum states with minimal unertainty.

The P�rep states have many interesting properties. They

an be seen as the �most lassial� states, an �inner irle�

within the linear spae of density operators whih forms

a onvex set C that ontains the totally mixed state in its

interior. In the ase of two spins, C is a subset of the set

of separable states. The study of the P�representation
provides thus important information on the struture of

spae of density matries.

We have studied onditions for P�representability, and
ompletely haraterized the set of lassial states for

small spins: for a spin�1/2 all states are P�rep, and for

a spin�1 we dedued a neessary and su�ient ondition

for P�rep. In the ase of two spins�1/2, P�rep is equiva-

lent to separability, but already for a spin�1/2 ombined

with a spin�1, there are states whih are separable but

not P�rep. In addition, we have shown that the question

whether a given state is P�rep or not an be solved with

a pratial numerial method based on the linear pro-

gramming algorithm for �nding the border of P�rep. We

have also formulated neessary onditions based on mea-

surable observables for P�rep, whih an be onsidered

�non-lassiality witnesses� for spin systems.

Both analytial and omputational methods have been

used so far on very modest values of j (up to j ∼ 2); for
large j the numerial methods beome forbiddingly slow.

It would be important to investigate the limit of large

j and provide thus a bridge to the ase of ontinuous

variables where the P�rep states were an objet of intense
studies for many years and proved to be of great physial

importane.
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