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Abstract Trypanosomosis or Surra can rightly be attrib-

uted as the most economically important vector-borne

haemoprotozoan disease encountering India. Surra infected

chronic cases show almost similar types of signs and

symptoms often confusing it with other haemoprotozoan

infections, thereby, making it prerequisite for the devel-

opment of aspecific and sensitive technique for its detec-

tion in susceptible animals. Blood microscopy and serology

suffers from the hands of lack of sensitivity and specificity

thereby leaving molecular detection techniques as one of

the promising alternative. Alongside, there is utmost need

for exploring of new molecular gene targets for the

development of a putative alternative for diagnosis and

immunoprophylaxsis. The present communication

describes the identification and amplification of oligopep-

tidase B, cysteine protease and variable surface glycopro-

tein genes of T. evansi so as to exploit them in future as

potential candidates for immune protection and/or molec-

ular detection.
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Introduction

Trypanosomosis or Surra is an important vector-borne

protozoan disease that imposes serious constraints on the

health and productivity of domestic animals in tropical and

sub-tropical regions throughout the world. This causative

agent for surra, a haemoflagellate Trypanosoma evansi, has

established itself in Southeast Asia for close to a century

(Luckins 1988). Surra is widely prevalent in different parts

of the country and is of significant economic importance in

livestock production (Singh and Tiwari 2012) alongside

causing deleterious effects on health status of animals

(Pandey et al. 2015). The total net benefit from effective

surra control for a typical village in a moderate/high risk

area was estimated to be US $158,000 per annum (Dobson

et al. 2009). Following recovery from primary infection,

animals become persistent carriers acting as reservoirs of

infection thereby playing a critical role in disease epi-

demiology. The situation becomes even worse in chronic

cases of recurrence under stress conditions or due to

overuse of corticosteroids (Kumar et al. 2012). Serological

tests like indirect fluorescent antibody test (IFAT) and

enzyme-linked immunosorbent assay (ELISA) are capable

of detecting antibodies in carrier animals and hence are

routinely used for monitoring surveillance (Singh et al.

2015; Sudan et al. 2015a, b) and export certification, but

they too suffer on the grounds that antibodies can be

detected even years after recovery of infection, though no

active infection is prevalent, thereby obscuring the exact

picture of prevalence of infection at that particular point.

PCR is the most accurate tool for the diagnosis of sub-

clinical and latent infections (Sudan et al. 2014; Parashar

et al. 2015). This stresses the relevance of molecular PCR-

based techniques. Moreover, there is utmost need of

exploring newer molecular targets for assessing their role
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as a putative candidate for both prophylaxis and diagnosis.

The present study was designed to amplify the oligopep-

tidase B, cysteine protease and variable surface glycopro-

tein (VSG) genes of T. evansi so as to exploit them in

future as potential candidates for immune protection and/or

molecular detection.

Materials and methods

Collection of blood samples

Blood [1 ml aliquot in clean sterile vacutainers, containing

ethylene diamine tetra acetic acid (EDTA)] and stored

plasma samples were taken from earlier T. evansi con-

firmed animals (microscopic observation of blood smears).

DNA isolation from whole blood

DNA was isolated using commercial blood genomic DNA

purification kit (Banglore GeNeiTM) following manufac-

turers protocol. The concentration of the purified DNA was

measured by Nanodrop (Eppendroff).

Primers selection and Polymerase chain reaction

(PCR)

Primers corresponding to oligopeptidase B (opd b F and R),

cysteine protease (CP F and R) and variable surface gly-

coprotein (VSG F and R) genes of T. evansi were custom

synthesized. The PCR reaction was set up into 25 ll vol-
ume containing 12.5 ll of 29 DreamTaq Green PCR

Master Mix (Thermo scientific) containing DreamTaq

DNA polymerase with blue and yellow dyes in reaction

mixture buffer, 4 mM MgCl2, 0.4 mM dATP, 0.4 mM

dCTP, 0.4 mM dGTP, and 0.4 mM dTTP, 1.5 ll of each
primer (15 p moles), 2 ll of the DNA template and total

volume was made up to 25 ll using Nuclease free water.

The primer sequence, thermocyclic conditions along with

the expected size of amplicons are described in Table 1.

The PCR amplicons were later analyzed by agarose gel

electrophoresis on 1.5 % agarose gel containing ethidium

bromide.

Results and discussion

The kit was able to isolate DNA from both blood and

plasma samples as was verified by Nanodrop values. The

PCR was laboratory standardized and was able to amplify

all the three genes. PCR amplification of opd b, CP, VSG

genes of T. evansi revealed DNA fragment of 2092, 432,

681 bp lengths, respectively (Fig. 1).

Blood smear examination is known to be of limited

value in diagnosis of subacute or chronic cases of try-

panosomosis (Sudan et al. 2015a, c). No doubt, the con-

ventional parasitological techniques will always remain

important for understanding the biology, ecology and

molecular epidemiology of different strains of the parasites

yet there is need of a highly sensitive test that can detect

the lowest levels of parasitemia (Singh and Tiwari 2012).

Herbert and Lumsden (1976) reported non feasibility of

microscopic detection in trypanosomiosis when the para-

site number is\2,500,000 parasites/ml of blood. In sero-

logical tests, antibodies to T. evansi infection persist after

drug treatment, complicating the differentiation of patent

Table 1 Primer sequence, PCR conditions as well as size of amplified amplicon

Primer Primer sequence Amplicon size (bp) References

Opd b F 50GGACACATATGATGCAAACTGAACGTGGTCC30 2092 Morty et al. (2005)

Opd b R 50TACGCTCATATGCTACTTCCGCAGCAGCGGCC30

CP F 50CTGGGCCTTTTCAACTATC30 432 Self synthesized

CP R 50TAACCAACGAGGAGCACAC30

VSG F 50GGGAATTCATGCAAACCAAGGCGCTCGTTGGCGT30 681 Sengupta et al. (2012)

VSG R 50CGGGAATTCCTTGATGTTGCTGGTCGCGATTTTGATC30

Initial denaturation Denaturation Annealing Extension Termination

Thermal cycling profile

PCR with opd b gene 94 �C, 240 s 94 �C, 45 s 57 �C, 60 s 72 �C, 60 s 72 �C, 600 s

935 cycles

PCR with CP gene 95 �C, 120 s 94 �C, 45 s 48 �C, 60 s 72 �C, 300 s 72 �C, 600 s

940 cycles

PCR with VSG gene 95 �C, 120 s 94 �C, 45 s 60 �C, 60 s 72 �C, 120 s 72 �C, 600 s

935 cycles
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infection from non-patent infections using serological

methods. Polymerase chain reaction is free of these hurdles

and specifically amplifies genetically defined regions of the

genome of the infectious agent. Although the detection of a

single DNA molecule is possible, detection levels to a

minimum of five trypanosomes by PCR assay are well

documented (Artama et al. 1992). Amplification of repet-

itive T. evansi specific DNA sequence was possible even

with DNA of a single trypanosome (Viseshakul and

Panyim 1990).

There is urgent need to identify several promising can-

didates or targets for sensitive detection of surra. Proteases,

a ubiquitous group of enzymes, are known to play key roles

in the life cycle of parasites (McKerrow et al. 2006).

Oligopeptidase B, a protease, has been implicated as an

important virulence factor in trypanosomosis (Burleigh and

Woolsey 2002) and it could become a vital therapeutic

target. Oligopeptidase B is essential for proteolyti cleavage

of many of the host derived peptides and proteins like

kinogen and atrial natriuretic factor in the bloodstream of

infected host (Morty et al. 2005). Cysteine proteases are

important for parasite survival and are involved in the

digestion of exogenous proteins for nutritive purposes

(Rosenthal 1999), invasion of host cells and tissues, and

modification of host proteins (Caler et al. 1998). VSG

undergoes switching in its expression which facilitates the

evasion from the host immune response and leads to

chronic persistence of the parasite in the host (Barry and

McCullogh 2001). It is also a well known fact that the

whole VSG molecule is antigenic and that the VSG specific

epitopes are usually localized in the N-terminal protein

part. Over all, the VSG gene is expressed during early,

middle and later stages of the infection of susceptible

animals with all T. evansi strains (Verloo et al. 2000;

Ngaira et al. 2004). Earlier studies suggest that VSG can be

used as an antigen for the diagnosis of T. evansi infection

(Songa and Hamers 1988). Further, it is also known that the

immunoreactivity of the glycosylated and deglycosylated

VSG are same against the anti-VSG antibody (Reinwald

1985). Hence the protein portion of the VSG is signifi-

cantly antigenic.

It would be interesting to further investigate the role of

all these molecular targets in the specific diagnosis and

immune protection of the disease in different mammalian

hosts. Further research is thereby warranted on all these

three molecules about their roles on diagnosis and/or

immunoprotection.
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