
Zayed University Zayed University 

ZU Scholars ZU Scholars 

All Works 

6-21-2021 

Classification and Analysis of Android Malware Images Using Classification and Analysis of Android Malware Images Using 

Feature Fusion Technique Feature Fusion Technique 

Jaiteg Singh 
Chitkara University 

Deepak Thakur 
Chitkara University 

Tanya Gera 
Chitkara University 

Babar Shah 
Zayed University 

Tamer Abuhmed 
Sungkyunkwan University 

See next page for additional authors 

Follow this and additional works at: https://zuscholars.zu.ac.ae/works 

 Part of the Computer Sciences Commons 

Recommended Citation Recommended Citation 

Singh, Jaiteg; Thakur, Deepak; Gera, Tanya; Shah, Babar; Abuhmed, Tamer; and Ali, Farman, "Classification 

and Analysis of Android Malware Images Using Feature Fusion Technique" (2021). All Works. 4332. 

https://zuscholars.zu.ac.ae/works/4332 

This Article is brought to you for free and open access by ZU Scholars. It has been accepted for inclusion in All 
Works by an authorized administrator of ZU Scholars. For more information, please contact 
Yrjo.Lappalainen@zu.ac.ae, nikesh.narayanan@zu.ac.ae. 

https://zuscholars.zu.ac.ae/
https://zuscholars.zu.ac.ae/works
https://zuscholars.zu.ac.ae/works?utm_source=zuscholars.zu.ac.ae%2Fworks%2F4332&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=zuscholars.zu.ac.ae%2Fworks%2F4332&utm_medium=PDF&utm_campaign=PDFCoverPages
https://zuscholars.zu.ac.ae/works/4332?utm_source=zuscholars.zu.ac.ae%2Fworks%2F4332&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:Yrjo.Lappalainen@zu.ac.ae,%20nikesh.narayanan@zu.ac.ae


Author First name, Last name, Institution Author First name, Last name, Institution 
Jaiteg Singh, Deepak Thakur, Tanya Gera, Babar Shah, Tamer Abuhmed, and Farman Ali 

This article is available at ZU Scholars: https://zuscholars.zu.ac.ae/works/4332 

https://zuscholars.zu.ac.ae/works/4332


This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3090998, IEEE Access

Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000.

Digital Object Identifier 10.1109/ACCESS.2017.DOI

Classification and Analysis of Android
Malware Images Using Feature Fusion
Technique

JAITEG SINGH1, DEEPAK THAKUR1, TANYA GERA1, BABAR SHAH2, TAMER ABUHMED3,

and FARMAN ALI4
1
Chitkara University Institute of Engineering and Technology, Chitkara University, Punjab, India

2
College of Technological Innovation, Zayed University, UAE

3
Department of Computer Science and Engineering, College of Computing, Sungkyunkwan University, Republic of Korea

4
Department of Software, Sejong University, Seoul 05006, Korea

Corresponding author: Deepak Thakur (e-mail: deepak.thakur@chitkara.edu.in), Tamer Abuhmed (e-mail: tamer@skku.edu)

“This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No.

2021R1A2C1011198)”

ABSTRACT The super packed functionalities and artificial intelligence (AI)-powered applications have

made the Android operating system a big player in the market. Android smartphones have become an

integral part of life and users are reliant on their smart devices for making calls, sending text messages,

navigation, games, and financial transactions to name a few. This evolution of the smartphone community

has opened new horizons for malware developers. As malware variants are growing at a tremendous rate

every year, there is an urgent need to combat against stealth malware techniques. This paper proposes a

visualization and machine learning-based framework for classifying Android malware. Android malware

applications from the DREBIN dataset were converted into grayscale images. In the first phase of the

experiment, the proposed framework transforms Android malware into fifteen different image sections and

identifies malware files by exploiting handcrafted features associated with Android malware images. The

algorithms such as Gray Level Co-occurrence Matrix-based (GLCM), Global Image deScripTors (GIST),

and Local Binary Pattern (LBP) are used to extract the handcrafted features from the image sections. The

extracted features were further classified using machine learning algorithms like K-Nearest Neighbors,

Support Vector Machines, and Random Forests. In the second phase of the experiment, handcrafted

features were fused with CNN features to form the feature fusion strategy. The classification performance

was evaluated against every malware image file section. The results obtained using the Feature Fusion

strategy are compared with handcrafted features results. The experiment results conclude to the fact that

Feature Fusion-SVM model is most suited for the identification and classification of Android malware

using the certificate and Android Manifest (CR+AM) malware images. It attained an high accuracy of

93.24%.

INDEX TERMS Handcrafted features, Machine learning, malware, Classification, Visualization, Android,

Security, Feature fusion

I. INTRODUCTION

Smartphones nowadays are a virtual substitute for any

generic computing device. Smartphones have become an in-

tegral part of life and users are reliant on their smart devices

for making calls, sending text messages, navigation, games,

and financial transactions to name a few. This evolution of

the smartphone community has opened new horizons for

malware developers. There are more than thirty categories

available on online app stores like Google Playstore. Among

those categories, Games, Business, Lifestyle, Education,

Entertainment, and Health & Fitness are found to be the

most popular. Users make use of these applications to their

maximum advantage and tend to communicate, entertain,

business, relax, and educate themselves. The rapid adoption

of such applications has resulted in the generation and

sharing of sensitive information. Amongst the plethora of
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available mobile operating systems, Android has managed

to conquer more than 86% of the total market. Android

being a market leader has an open marketplace and a huge

community promulgating intensely popular APIs.

The popularity of the Android operating system has also

attracted cybercriminals to develop malicious applications

to exploit Android users for monetary benefits. The cyber

attacks are commonly categorized as Malware, Adware,

and Potentially Unwanted Applications (PUA). As per the

annual threat report 2020, 57% of the total detected attacks

were due to malware. During the COVID-19 pandemic, a

notable rise is observed in the number and the severity of

cyber-attacks. The finding indicates that 68% of the total

reported attacks were related to financial gains. Furthermore,

once the malware applications breach into the phone, they

can adversely affect the smooth flow of an activity lifecycle

paradigm. Activity lifecycle involves various stages such as

onCreate(), onStart(), onStop(), and onDestroy() to name

a few. These callbacks are important to preserve because

they do take care of the normal execution of an Android

application. Android-powered devices run the archive file

known as Android Package (APK). An APK can be written

in renowned languages such as java, C++, and kotlin. The

APKs which are of few megabytes (MBs) in size when

backed with malicious payloads can harm the user socially,

emotionally, and financially. Malware applications tend to

hijack the imperative building blocks of the APK known as

application components. These components are activities,

broadcast receivers, content providers, and services. Mal-

ware authors take control of these components and compro-

mise the Android devices by establishing communication

with Command and Control (C&C) servers.

Automation and artificial intelligence are on the rise to

generate variants of malware families rapidly. Researchers

have realized that using signature-based methods, static

methods, and dynamic methods are not competing against

fast-growing malware variants. Signature-based detection

approaches are more prone to code obfuscation and transfor-

mation techniques. These approaches also need to keep their

database updated every time by appending new malware

variants into it. Plenty of time and expertise is invested in

manually analyzing the signatures and then extracting them.

The static analysis doesn’t stand even with trivial trans-

formations [1]–[3]. On the other hand, dynamic analysis

is heavy on time and resources [4], [5]. Significant time

is required to extract the static and dynamic features for

the detection and classification of Android malware. The

researchers have proposed various algorithms to build a

robust feature set to solve the multiclass problem. Construct-

ing the feature set manually is a tedious task and hence

requires more expertise and time. There is a need to deploy

better feature reduction techniques or other supplementary

techniques to build time-sensitive feature sets in Android

malware research.

Visualization-based techniques do not let the applica-

tion to execute rather it extracts CNN features [6] and

handcrafted features for the classification task. Handcrafted

features are used to extract the information from the images.

These features help to solve classification problems. The

algorithms such as GLCM, GIST, and LBP are also known

as texture or image descriptors. To perform classification,

the aforementioned algorithms must be used in linear com-

bination with machine learning classifiers such as Support

Vector Machine (SVM), K-Nearest Neighbor (KNN), and

Random Forest (RF). The image-based approaches based on

handcrafted features have gained an edge over traditional ap-

proaches for malware identification as handcrafted features

refer to properties derived using various algorithms using the

information present in the image itself. The adopted method-

ology would study raw bytes of malware code visualized as

an image. Such consideration would eventually eliminate

the need for decryption, disassembly, reverse engineering,

and execution of code. Min-Max Normalization method is

considered to investigate the impact of data normalization on

the classification performance of malware images. Results

produced on normalized and un-normalized are also com-

pared. A total of fifteen unique combinations of the Android

malware file structure were used to generate the malware

images. This paper is the extension of the work presented by

authors in [7]. They have deployed the visualization-based

approach infusion with deep learning architecture to classify

the Android malware families. We are motivated to improve

the classification accuracy by proposing the model based on

feature fusion methodology. Feature fusion is constructed

by combining the rich features extracted from deep layers

of Convolutional Neural Network (CNN) with handcrafted

features such as Gray Level Co-occurrence Matrix (GLCM),

Global Image deScripTors (GIST), and Local Binary Pattern

(LBP).

The manuscript is organized as: section 2 discusses the

related work of the study, section 3 lays the foundation for

the proposed methodology, section 4 elaborates the results

and findings, and section 5 concludes the study.

II. RELATED WORK

Authors in [8] implemented image-based approach to iden-

tify the malicious patterns in the code. They mapped the

sequence of API pairs to RGB images. After preprocessing

and preparation of the data for the neural network, it was

fed into the convolutional neural network. They worked on

the two-class problem i.e. detecting whether an application

is benign or malicious. The authors ran the experiment for

100 epochs with batch size 32. A disassembly process was

required to extract the API calls. Authors in [9] consider

a dataset of 144 Android permissions. They used the tools

such as androguard parser and smali disassembler for the

parsing and decompilation process of an APK. Further, they

extracted the requested permissions from the disassembled

manifest file and mapped it into 12x12 permission vectors

as an image. Their dataset contains a total of 2500 Android

applications in which 2000 applications were malware sam-

ples and 500 applications were benign samples. Further, a
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deep learning model was applied to identify and classify

the malware samples. Authors in [10], first disassembled

the APK file and extracted only the dex bytecode from

the file. They converted the dex bytecode into RGB image

format and fed it into a convolutional neural network for

automatic feature extraction and training. Authors in [11],

implemented their Android malware detection approach

in two phases. In the first phase, they extracted the dex

bytecode from the APK archive and transformed it into

RGB images. In the second phase, images were used to

train the convolutional neural network. They implemented

eight hidden layers in the convolutional neural network and

used the softmax function to classify whether the sample is

benign or malicious. A better result of precision and recall

was observed for malware samples as compared to benign

samples. Authors in [12] used the convolutional neural

network for detection of Android malware. They had used

the Rectified Linear Unit (Relu) activation function as it

overcomes the vanishing gradient problem and shows better

convergence performance. Furthermore, they had employed

the deep autoencoder to reduce the training time by 83% of

the convolutional neural network. They had also compared

their model with other machine classifiers such as Support

Vector Machine (SVM). The accuracy of their proposed

model was improved by 5% when compared to the accuracy

obtained using the SVM classifier. Authors in [13] imple-

mented multimodal deep learning strategy for Android mal-

ware detection. They have used publicly available dataset

omnidroid and Knowledge Discovery in Databases (KDD)

for training and evaluation of the proposed model. They uti-

lized manual and automatic feature engineering using deep

learning architectures. They have used convolutional neural

network, deep neural network, and transformer networks

to perform feature learning from grayscale images which

are generated from dex bytecode, static features i.e. intents

and permissions, and dynamic features i.e. system calls

respectively. Authors in [14] utilizes the GIST features for

the classification of malware families. The classifiers such

as Support Vector Machines, K-Nearest Neighbor, Random

Forests, and Naive Bayes were used in the experimenation.

The results with Support Vector Machines attain the highest

accuracy of 92.7%. Authors in [15] transformed the dalvik

executable code into two dimensional bytecode matrix.

Further, convolutional neural network was used for training

and classification task. Convolutional neural network can

automatically learn the features from the bytecode files to

recognize the malware. Various research areas and trends in

Android security domain were studied by the authors using

latent semantic analysis technique in [16], [17]. Authors

in [18] discusses the alarming challenges in the field of

Android security. Authors in [19], implemented the ten-

sorflow models i.e. GoogleNet and ResNet for malware

detection. In their work, ResNet proved to be more accurate

but consumed a lot of time. Authors in [20] proposed

the image texture-based approach to perform the analysis

on the code. They combine the image texture features

and API calls to train the Deep Belief Network (DBN).

DBN is stacked with Restricted Boltzmann Machines (RBN)

and Back Propagation (BP). Authors also compared their

proposed model with shallow machine learning models such

as Support Vector Machine (SVM), K-Nearest Neighbor

(KNN), and shallow feed-forward network ANN (Artificial

Neural Network) and found that the proposed DBN model

was more accurate. Table 1 comprises of a summary of

related literature.

The literature survey revealed that approaches of analyz-

ing malware include static analysis and dynamic analysis

or maybe the combination of both. The static analysis

mainly focuses on disassembling the code, followed by

manual investigation to search the malicious patterns in the

code. Conversely, dynamic analysis executes the code in

the virtual environment and analyzes its execution trace to

observe the malicious behavior of an application. The static

analysis is helpful in tracing original and full execution

paths; therefore, it provides complete code coverage but

eventually it suffers from code obfuscation. The sample has

to be decrypted first to perform static analysis. The problems

of intractable complexity hinder the analysis. Dynamic

analysis is more efficient and does not need the executable

to be unpacked or decrypted. The suspicious application is

monitored in a controlled environment. This process is time

and resource consuming. It also raises scalability issues.

Moreover, some malicious behavior might be unobserved

because the environment does not satisfy the triggering

conditions. Furthermore, malware authors make use of au-

tomation technology to generate a huge amount of new

malware variants, thus posing a big challenge to malware

analysts. The present state of art demands the integration of

existing primitive techniques with supplementary techniques

to achieve an effective solution. Supplementary techniques

such as visualization-based analysis should be leveraged

to complement the classification of fast-growing Android

malware families. It is proven to be effective in determining

abnormal modern malicious behavior or security vulnerabil-

ities. Deploying a visualization-based technique, a malware

variant can be visualized as an image. An image can capture

even small changes. In this paper, the visualization-based

technique backed with feature fusion strategy is proposed

to reduce the influence of obfuscation by transforming

the malware‘s non-intuitive features into fingerprint images

followed by the classification of Android malware families.

The following section explains the adopted methodology

and to undertake a case analysis.

III. MATERIALS AND METHODS

We evaluated our experiments over the DREBIN [38]

dataset. This dataset has been adopted by many researchers

investigating Android malware. The count of samples of

malware families in DREBIN dataset is shown in the Figure

1. The subsequent sections discuss the methodology of

the proposed work followed by results and findings. A

graphical representation of the proposed methodology is

VOLUME 4, 2016 3
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illustrated in Figure 2. The following subsections discusses

the underlying steps in proposed methodolgy.

A. DESCRIPTION OF FUNDAMENTAL CONCEPTS

With a slight change in malware code, the malware au-

thors can generate numerous malware variants. Any type

of malware can be visualized as an image, which can

capture even the slightest of the changes. An image has the

capability to retain the original semantics of the code. The

basic structure of an APK and the process of transforming

malware into images are defined in subsequent sections.

All files and folders that are contained in the ZIP archive

of an APK. These files are binded together to develop an

application. The literature survey indicated an inspection

of four types of primary resources for identifying malware

behaviour [5]. These primary resources include classes.dex,

resource, manifest, and certificate files. There is a high

propensity that malware developers exploit these files to

store malicious behavior.

FIGURE 1. Count of samples in each malware family in DREBIN dataset

The functionality and purpose of files and folders within

an apk as shown in Figure 3 are explained below:

a) Meta-Inf /: It contains the signature files such

as CERT.SF and CERT.RSA. It also contains the manifest

file i.e. MANIFEST.MF

b) assets/: AssetManager object is used by the application

to retrieve the application assets detailed in assets folder.

c) res/: This folder includes description of resources.

These resources are not compiled in resources.arsc folder.

d) lib/: The software layer of a processor is associated

with a particular type of compiled code that is stored inside

this folder.

e) resources.arsc : The compiled apk resources are

contained within this file. Strings, styles and the paths of

images/layout files are part of this content. Data is processed

in XML format only.

f) classes.dex : Class files are generated after compilation

of the java code. These class files are merged into one single

dex file using some standard dex tool. Classes.dex contains

the Dalvik bytecode. Dalvik Virtual Machine executes the

dex file. Any change in dex file will affect the APK.

g) AndroidManifest.xml: It includes the set of per-

missions required by an application, hardware or software

components, and linking of API libraries. It also reveals the

SDK version.

B. CONVERTING MALWARE APK INTO GRAYSCALE

IMAGES

Primarily four types of files such as classes.dex, resource,

manifest, and certificate files constitute a stable APK struc-

ture [39]. The malware binary bits are paired into 8-bit

vectors and in this manner converted over into grayscale

images. There are a couple of key advances associated while

transforming any malware binary samples into grayscale

images. The whole malware substring can be viewed as the

grouping of a few substrings. Every substring in a binary

code which is 8-length long termed as a pixel. The 8-bit

length number stream can be further converted to represent

decimal numbers within the range 0 to 255. After the

computation of unsigned decimal numbers, the malicious

code matrix needs to be generated. All malware executable

substrings are further split into 1D vectors of decimal

numbers. A one-dimensional vector space can be considered

as linear vector space. It is further processed to form a two-

dimensional matrix of specific width. Furthermore, some

generalizations have been made based on empirical observa-

tions. We have fixed the grayscale image widths as indicated

by the image size in Table 2 [40]. In this paper, we have used

the DREBIN dataset for malware classification purposes.

The malware executables of twenty families were converted

into grayscale images by following the above-mentioned

steps. The illustration of malware images of families such

as FakeInstaller, DroidKungFu, Plankton, and Opfake is de-

picted in Figure 4. These grayscale images relate to various

areas of the APK. We have created the images using fifteen

unique combinations of Android file structures. Figure 6

summarizes the number of malware images generated for

every unique file structure combination. It can been visually

interpreted from the figure that the malware images are

distributed familywise. CR stands for the certificate file,

AM, RS, CL stands for Android manifest file, resources

file, and classes.dex file of any malware APK. In Figure

4, the malware images of the families are generated using

file combination CR and RS. In Figure 5, the malware

images of the families are generated using file combination

CR+AM+RS+CL. The variants of the mentioned malware

families were found to be dissimilar in their texture. These

images found to have different grayscale image textures

when generated using different file structure combinations.

The texture tends to change with the contents of the malware

APK. The malware images generated are different in size.

The height of the images is adjusted according to the file

size of the malware sample. This motivates to classify and

analyze the malware based on malware images.
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FIGURE 2. The proposed methodology

FIGURE 3. Primary resources of an APK

TABLE 2. Fixation of image width

File Size Width

<50 KB 64
50KB~100KB 128
100KB~200KB 256
200KB~500KB 512
500KB~1000KB 1024

C. EXPERIMENT DESIGN

As depicted in Figure 4 and 5, we can see that malware im-

ages have textures in it. The texture is the description of the

spatial arrangement of color, intensities, or a selected region

in an image. Image texture is a function of spatial variation

in pixel intensity which reveals how the pixel values are

changing over an area. It eventually defines the visual

interpretation of an image. Nowadays, in the era of digital

image analysis, textures of the image are used for various

purposes such as image segmentation, image classification,

texture synthesis, and shapes that can be discriminated using

textures. Texture involves the spatial distribution of gray

levels. There are multiple uses of textures. Application areas

of textures are multidisciplinary such as the food processing

industry, biometrics analysis (matching fingerprint, iris, or

retina), medical image analysis, remote sensing data analysis

(geographic information system), cybersecurity. The texture

features are calculated using a statistical approach. The

statistical approach includes methods such as GIST, Gray

Level Co-occurrence Matrix-based (GLCM) features, and

Local Binary Pattern (LBP) features. The stated descriptors

are explained as below:

1) Gray Level Co-occurrence Matrix-based (GLCM features)

GLCM are one of the most popular texture features which

have been utilized widely for content-based image retrieval,

medical image classification, and object recognition. In this

approach, texture information from the image is extracted

6 VOLUME 4, 2016
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FIGURE 4. Malware images generated using files certificate (CR) and resource (RS) of an Android application

FIGURE 5. Malware images generated using files Android manifest (AM), certificate (CR), classes.dex (CL), and resource (RS) of an Android application

FIGURE 6a. Distribution of eight types of unique malware images across malware families

VOLUME 4, 2016 7
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FIGURE 6b. Distribution of eight types of unique malware images across malware families

FIGURE 6c. Distribution of seven types of unique malware images across malware families

FIGURE 6d. Distribution of seven types of unique malware images across malware families

FIGURE 6. Distribution of malware images across malware families (CR is Certificate, AM is AndroidManifest, RS is Resource, CL is Classes.dex)

from the spatial relationship between the pixels. This spatial

relation between the image pixels is defined in terms of

distance and orientation. Initially, the GLCM matrix is

calculated which estimates the probability density function

of the gray level pairs in an image with some specific spatial

relationship. The most common choice of distance is 1 in

four directions (0°, 45°, 90°, and 135) [22], [37]. Then,

several statistics are calculated from this matrix to describe

the texture in an image. In this work, only nineteen statistics

are used to represent the texture of malware images. These

features include contrast, correlation, energy, entropy, ho-

mogeneity, sum of square, sum average, sum variance, sum

entropy, difference variance, difference entropy and Infor-

mation measure of correlation. These features are measured

for each combination of distance and orientation which

results in total 76 features.

2) Local Binary Pattern (LBP)

Local Binary Pattern (LBP) [41], [42] texture descriptor

is calculated on malware grayscale images. In a small

patch/matrix of the image, the center pixel is surrounded

by the neighbors. If the neighbor has the value greater than

the center value, it would be replaced with 1 otherwise with

0. For example, consider the 3x3 matrix, there would be 8

neighbors around the center pixel and hence 8-bit sequence

would be generated. For every 8-bit sequence, there are 8

such rotations and also there is an integer representation

associated with each rotation. LBP is typically defined as the

integer value of the minimum of rotations. The parametric

value of radius is taken to be 8.

8 VOLUME 4, 2016
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3) Global Image deScripTors (GIST)

GIST algorithm [43], [44] is known for its good accuracy

in computer vision tasks. GIST uses 8 orientation of pa-

rameters per scale in 4 different blocks. It convolved the

image with 32 Gabor filter at 4 scales and 8 orientation to

produce 32 feature maps of the same size of an input image.

It divides each feature map into 16 regions (4x4 grid) and

then averages the feature values within each region. It then

concatenates the 16 averaged values of all 32 feature maps

resulting in a 16x32=512 GIST descriptors.

Feature fusion has been widely adopted by researchers

for detection and classification tasks relevant to computed

vision [45]–[49]. We have used GIST descriptors with

default value. Using default GIST values produced 512

features in total. For GLCM and LBP, a total of 76 and 58

features respectively are used. CNN architecture produces

the vector of length 4096 features. In our work, we have

used the concatenation method for feature fusion [50], [51].

Features are concatenated column-wise. The working of

CNN architecture has been elaborated in Figure 9.

IV. RESULTS

Top twenty classes with maximum number of instances

in the DREBIN dataset were included in this experiment.

We have used a handcrafted and CNN feature extraction

approach to solve the malware classification problem. The

results obtained from the experiments are discussed in the

subsequent sections.

A. CLASSIFICATION PERFORMANCE WITH

HANDCRAFTED FEATURES

Table 3 shows the classification results with classifiers SVM,

KNN, and RF for malware images using three texture de-

scriptors GLCM, GIST, and LBP. To identify the effective-

ness of the proposed solution, various evaluation measures

such as Accuracy, Precision, Recall, and Error Rate were

explored. We have used the default parameters of machine

classifiers - Support Vector Machines, K-Nearest Neighbor,

and Random Forest which are mentioned in the Scikit-Learn

library. The important findings from the outcomes are as

follows.

The performance of SVM classifier degrades for malware

images when used with GLCM and LBP texture descriptors.

As shown in Table 3, when features were extracted using the

GLCM algorithm and used SVM to perform classification,

the accuracy for 11 different combinations of image sections

lies only between 51% to 59%. For some combination

of image sections, it is even worse. For combination RS,

CR+RS, AM+RS, CR+AM+RS, it is 30.56%, 29.71%,

38.62%, 39.21% respectively. In LBP+SVM classification

results, the accuracy for 14 combinations of image sections

lies only between 54% to 63%. For RS combination, it is

even poorer which is 46.62%. The performance of the SVM

classifier significantly improved when used with GIST text

descriptors. For 15 unique combinations of image sections,

the accuracy lies between 82% to 92%. The highest accuracy

of 91.29% was observed for combination CR+AM. The

lowest accuracy of 82.92% was observed for combination

CR.

When the KNN classifier was used to classify GLCM fea-

tures, a decent accuracy between 79% to 84% was observed

for most of the combinations of image sections. The highest

accuracy of 83.36% was observed for the combination of

CR+AM. The poor performance was seen against only one

combination i.e. CR with accuracy 56.05%. The KNN clas-

sifier also performs well when used with LBP descriptors.

The accuracy for 14 out of 15 combinations lies between

79% to 86%. For combination RS+CL malware images,

the highest accuracy of 85.18% was recorded. It is closely

followed by malware images combination of CR+RS+CL

with an accuracy of 84.92%. The lowest accuracy of 61.53%

was observed for CR malware images. The classification

results using GIST-KNN, showed good accuracy which is

comparable to classification results of GIST-SVM. For 14

combinations, accuracy lies between 85% to 91%. The

highest accuracy of 90.12% was observed for combination

CR+AM. The lowest accuracy of 80.60% was observed for

CR.

The better performance was seen in the results when

GLCM features are extracted from malware images and

classified using RF. For most of the combination of image

file sections, the accuracy lies between 87% to 92%. The

highest accuracy of 91.74% was observed for the combina-

tion of CR+AM of malware images. The lowest accuracy

of 76.62% was observed for CR malware images. When

malware images are classified using GIST texture descrip-

tors + RF classifier, the classification results are decent but

not better than GIST-SVM and GIST-KNN. The accuracy

for all combinations of malware images lies between 83%

to 89%. The highest accuracy of 88.69% was observed for

the combination of CR+AM of malware images. The lowest

accuracy of 83.42% was observed for CR.

When features were extracted using LBP texture descrip-

tors and classified using RF, it provided better classifica-

tion results than LBP-SVM and LBP-KNN. Most of the

combinations of malware image sections attain the accuracy

between 84% to 86%.

The top average accuracy observed to be 88.05%,

87.99%, 87.44%, 85.32%, and 84.37% for GIST-SVM,

GLCM-RF, GIST-KNN, GIST-RF, LBP-RF respectively.

The classification results with all classifiers SVM, KNN,

and RF on all combinations of malware image sections using

GIST algorithm found to be maximum stable. GIST features

are more helpful in drawing the original semantics and anal-

ysis of the malware image. GLCM features when classified

with SVM classifier shown poorer performance with an

average accuracy of 48.35%. LBP features performed well

with classifiers KNN and RF with an average accuracy of

81.17% and 84.37% respectively. LBP texture descriptors

did not perform well with the SVM classifier and attain an

average accuracy of 55.87%. CR+AM malware images have

attained the maximum accuracy.
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TABLE 3. Accuracy of handcrafted features on fifteen combination of malware images

Image

Combination

GLCM-

SVM

GLCM-

KNN

GLCM-

RF

GIST-

SVM

GIST-

KNN

GIST-

RF

LBP-

SVM

LBP-

KNN

LBP-

RF

CR 51.08% 56.05% 76.62% 82.92% 80.60% 83.42% 56.22% 61.53% 67.66%
AM 57.02% 81.60% 89.86% 90.70% 89.01% 86.35% 59.23% 79.39% 85.37%
RS 30.56% 79.45% 87.84% 86.02% 85.44% 84.07% 46.62% 80.88% 86.80%
CL 52.86% 82.25% 88.69% 88.69% 88.88% 86.28% 58.32% 83.62% 85.11%
CR+AM 58.45% 83.36% 91.74% 91.29% 90.12% 88.69% 62.42% 81.99% 86.22%
CR+RS 29.71% 79.91% 87.52% 85.70% 85.63% 83.81% 46.75% 79.97% 84.46%
CR+CL 53.06% 81.66% 89.08% 88.69% 89.14% 85.63% 58.19% 84.46% 85.11%
AM+RS 38.62% 80.17% 88.43% 87.26% 86.28% 84.14% 52.99% 79.52% 85.83%
AM+CL 52.86% 82.70% 88.56% 88.95% 88.49% 85.83% 58.45% 84.46% 86.35%
RS+CL 52.21% 82.31% 88.30% 88.75% 88.56% 85.18% 56.76% 85.18% 85.89%
CR+AM+RS 39.21% 80.95% 88.43% 87.39% 85.89% 84.79% 54.23% 79.97% 84.46%
CR+AM+CL 52.73% 83.09% 88.82% 87.84% 88.82% 85.31% 58.52% 84.07% 85.31%
CR+RS+CL 52.28% 81.86% 88.62% 89.01% 88.23% 85.24% 57.35% 84.92% 86.09%
AM+RS+CL 52.21% 82.18% 88.82% 88.56% 88.04% 85.37% 55.98% 83.94% 85.57%
CR+AM+RS+CL 52.34% 82.05% 88.56% 88.95% 88.49% 85.70% 56.05% 83.62% 85.37%

B. IMPACT OF NORMALIZATION ON CLASSIFICATION

PERFORMANCE

In this work, the Min-Max Normalization method is consid-

ered to investigate the impact of data normalization on the

classification performance of malware images. The method

scales the un-normalized data to a predefined lower and

upper bounds linearly. The data is usually rescaled within

the range of 0 to 1 or -1 to 1. Table 4 shows the classification

accuracy for normalized using handcrafted features. The

classification performance on normalized data is discussed

below.

The classification results produced using GLCM features

and classifiers SVM, KNN, and RF are depicted in Figure

7(a), 7(b), and 7(c). The difference in the classification

results with normalized and unnormalized data can be seen

visually. Figure 7(a) shows that there is an improvement

in classification performance with normalized data. For all

combinations of the malware image section, the accuracy

is observed to be significantly improved using GLCM-

SVM. It is to be worth noted that GLCM-SVM showed the

worst performance on unnormalized data with an average

classification accuracy of 48.35%. But with normalized

data, the average classification accuracy of GLCM-SVM

improved to 84.33%. The highest accuracy of 92.20% was

observed with GLCM-SVM using AM malware images.

Therefore, min-max normalization proved to be substantial

to make GLCM-SVM a more stable model.

Normalization not always improve classification perfor-

mance. Incase of GLCM-RF, the classification accuracy is

observed to be declined for some combination of malware

image sections. But it also increased for some of the

combinations. The maximum fall in accuracy is seen to be

0.85% for combination CR+RS. The maximum increase in

accuracy is seen to be of 0.85% for RS+CL. Hence, we can

say that normalization does not have a significant impact on

the combination GLCM-RF as shown in Figure 7(b)

The classification results improved with normalized data

using GLCM-KNN. It got improved for all combinations

of image file sections. There is an increase in accuracy

ranges from the window of 6.57% to 8.39% for at least

fourteen combinations as shown in Figure 7(c). It is ob-

served that classification accuracy for CR malware images

has been increased by 22.55%. Earlier GLCM-KNN with

unnormalized data was the worst performer on CR with

an accuracy of 56.05% but with normalized data, it got

increased to 78.61%. The average classification accuracy of

GLCM-KNN got improved from 79.97% to 87.91% due to

the impact of normalization.

There is no major impact of normalization was observed

on classification accuracy obtain using GIST features and

classifiers SVM, KNN, and RF.

The significant improvement is observed in the classifi-

cation results when malware images were classified using

LBP-SVM as shown in Figure 8(a). At least an increase of

21% to 27% in the accuracy has been observed in most of

the combinations of malware image sections. The average

classification accuracy increases from 55.87% to 80.37%.

Thus, normalization makes the LBP-SVM a more stable

model.

Normalization also improved the classification results of

LBP-KNN as shown in Figure 8(b). The average classifica-

tion results of LBP-KNN with normalized data observed to

be 84.34%.

There is no significant improvement observed in the

results of LBP+RF with normalized data as shown in Figure

8(c).

C. FEATURE FUSION OF CNN AND HANDCRAFTED

FEATURES ON NORMALIZED DATA

For feature fusion experiments, we have combined CNN

features and handcrafted features to perform Android mal-

ware image classification. The CNN architecture used in this

work was adopted from [7]. The classification is performed

using SVM, KNN, and RF classifiers with normalized data.

The graphical representation of the CNN architecture is

presented in Figure 9. The grayscale images are fed into

the CNN architecture. CNN will extract the features from

the malware images. Conv2D and MaxPooling2D are the
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TABLE 4. Accuracy of handcrafted features on fifteen combination of malware images (normalized dataset)

Image

Combination

GLCM-

SVM

GLCM-

KNN

GLCM-

RF

GIST-

SVM

GIST-

KNN

GIST-

RF

LBP-

SVM

LBP-

KNN

LBP-

RF

CR 78.94% 78.61% 77.11% 83.58% 80.60% 83.25% 63.02% 65.01% 68.99%
AM 92.20% 89.99% 90.12% 90.77% 89.66% 86.35% 80.30% 83.49% 85.11%
RS 79.13% 86.54% 87.58% 84.98% 85.37% 84.85% 73.93% 83.88% 86.35%
CL 84.85% 88.36% 88.62% 88.82% 88.62% 85.63% 84.01% 85.70% 85.24%
CR+AM 90.96% 90.57% 91.81% 91.35% 89.21% 88.56% 83.88% 84.72% 86.09%
CR+RS 81.27% 86.15% 86.67% 86.09% 85.37% 84.79% 76.92% 84.07% 84.14%
CR+CL 83.49% 89.34% 88.75% 88.75% 88.56% 85.83% 84.20% 87.06% 86.15%
AM+RS 83.42% 87.13% 88.36% 87.26% 86.35% 84.07% 77.96% 86.09% 86.22%
AM+CL 83.75% 89.40% 88.69% 88.82% 88.43% 85.89% 84.66% 87.26% 85.76%
RS+CL 84.07% 88.95% 89.14% 89.01% 88.43% 85.89% 83.75% 86.54% 85.89%
CR+AM+RS 86.28% 88.17% 88.49% 87.58% 86.35% 84.40% 76.72% 85.05% 84.59%
CR+AM+CL 84.66% 89.21% 88.43% 88.04% 88.75% 84.66% 84.92% 87.13% 86.02%
CR+RS+CL 83.68% 88.62% 88.56% 89.53% 88.10% 85.18% 83.22% 86.67% 86.09%
AM+RS+CL 84.14% 89.01% 89.08% 88.82% 88.43% 85.11% 84.20% 86.15% 85.70%
CR+AM+RS+CL 84.07% 88.62% 88.95% 89.21% 88.62% 85.37% 83.94% 86.35% 85.31%

FIGURE 7a. Comparison of Accuracy of GLCM-RF on fifteen combination of malware images of normalized and un-normalized dataset

FIGURE 7b. Comparison of Accuracy of GLCM-RF on fifteen combination of malware images of normalized and un-normalized dataset

FIGURE 7c. Comparison of Accuracy of GLCM-KNN on fifteen combination of malware images of normalized and un-normalized dataset
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FIGURE 8a. Comparison of Accuracy of LBP-SVM on fifteen combinations of grayscale malware images ofnormalized and un-normalized dataset

FIGURE 8b. Comparison of Accuracy of LBP-KNN on fifteen combinations of grayscale malware images ofnormalized and un-normalized dataset

FIGURE 8c. Comparison of Accuracy of LBP-RF on fifteen combinations of grayscale malware images ofnormalized and un-normalized dataset

other two libraries imported to set up the environment for

neural networks. MaxPooling will help to reduce the size of

the image. Other libraries imported are Activation, Dropout,

Flatten, and Dense. Malware grayscale images are in two

dimensions. The height, width, and depth of the input image

are taken to be 108, 108, and 1 respectively. To build and

train the CNN on the malware images of different families,

we added the three convolutional layers to the model which

are represented as the Conv2D (32,7,7), Conv2D (128,5,5),

and Conv2D (256,3,3). The first argument defines the num-

ber of output filters in the convolution layer. The next two

arguments define the kernel size. Kernel size is a tuple of

two integers that is specifying the width and height of the

two-dimensional convolutional window. ReLu is used as the

activation layer in the CNN architecture. Max-pooling layer

has been deployed with pool size 3X2, 3X3, and 2X2 after

each convolution layer. To avoid the overfitting problem, a

dropout layer with a value of 0.5 was used. Three dense

layers with 50, 100, 200 neurons were deployed in the

network. The softmax activation function is added to the

output layer of 20 neurons.

1) Comparison with GLCM-SVM, GIST-SVM, LBP-SVM

Feature Fusion with SVM classifier significantly improves

the classification accuracy when compared with the re-

sults of GLCM-SVM. A decent hike of 7% to 10% was

observed for at least ten combinations of malware im-

age sections as depicted in Figure 10(a). These combi-

nations are AM+RS+CL, CR+AM+CL, CR+AM+RS+CL,

AM+CL, CL, AM+RS, RS+CL, CR+RS+CL, CR+CL, and
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FIGURE 9. The CNN architecture

CR+RS with increased accuracy 6.70%, 6.96%, 7.02%,

7.35%, 7.35%, 7.35%, 7.61%, 8.13%, 8.45%, and 9.23%

respectively. For the rest of the combinations of malware

image sections, the classification accuracy increased from at

least 2% to the maximum of 7%. A slight decline of 0.65%

was observed in classification accuracy for malware images

created using AM file. The highest accuracy of 93.24% was

observed for combination CR+AM using Feature Fusion-

SVM classifier.

The classification results of Feature Fusion-SVM are also

compared with GIST-SVM as shown in Figure 10(b). It has

been observed that classification results produced using Fea-

ture Fusion-SVM are better than the results of GIST-SVM

on various combinations of malware image sections. For at

least thirteen combinations, there is a hike in classification

accuracy between the range 1% to 4%.

Figure 10(c) revealed that Feature Fusion-SVM also out-

performed the combination LBP-SVM. For combinations

AM, AM+RS, CR+RS, RS, CR+AM+RS the accuracy in-

creased by 11.25%, 12.81%, 13.59%, 14.69%, and 15.47%

respectively. For the rest of the combinations, there was an

increase in accuracy between the range 6% to 10%. The

average accuracy is observed to be 90.90% using Feature

Fusion-SVM whereas it was 80.37% using LBP-SVM.

2) Comparison with GLCM-KNN, GIST-KNN, LBP-KNN

The comparison results of Feature Fusion-KNN with

GLCM-KNN, GIST-KNN, LBP-KNN are shown in Figure

11(a), 11(b), and 11(c). An increase of 0.39% to 2.86%

in classification accuracy was observed when the results

of Feature Fusion-KNN are compared with GLCM-KNN.

On the other hand, an increase of 0.83% to 3.77% in

classification accuracy was observed when the results of

Feature Fusion-KNN are compared with GIST-KNN. KNN

outperformed the results of LBP-KNN when it was used

with feature fusion. It was observed that LBP-KNN showed

the worst performance against CR malware images with an

accuracy of 65.01%. KNN performance on CR malware im-

ages got better with Feature Fusion and obtain an accuracy

of 81.43%. For the rest of the combinations, accuracy ranges

from 2% to 7%.

3) Comparison with GLCM-RF, GIST-RF, LBP-RF

The comparison results of Feature Fusion-RF with GLCM-

RF, GIST-RF, LBP-RF are depicted in Figure 12(a), 12(b),

12(c). There is no significant difference between the results

which are produced by GLCM-RF and Feature Fusion-

RF. The variation in accuracy is observed when results

of GIST-RF are compared with classification results of

Feature Fusion-RF. An increase in accuracy between the

range of 0.17% to 4.16% was observed for RF when used

in linear combination with Feature Fusion. The results of

Feature Fusion-RF are also better than the results of LBP-

RF. The average classification result of LBP-RF is recorded

as 84.51% whereas it is 88.34% when RF is used with

handcrafted and CNN features.

The top five type of malware images against which hand-

crafted features and feature fusion strategy have attained

maximum accuracy are depicted in Figure 13(a), 13(b)

,13(c), 13(d), 13(e). It revealed that classifiers have attained

the maximum accuracy on AM and CR+AM malware

images. It is observed that sharp spikes appear when using

the feature fusion strategy for the classification of Android

malware images. For CR+AM malware images, GLCM,

GIST, and LBP features attained an average accuracy of

91.05%, 89.71%, and 84.89% respectively whereas feature

fusion strategy attained an accuracy of 91.3%. For AM mal-

ware images, GLCM, GIST, and LBP features attained an

average accuracy of 90.77%, 88.93%, and 82.96% respec-

tively whereas feature fusion strategy attained an accuracy

of 89.62%. For CR+CL malware images, GLCM, GIST,

and LBP features attained an average accuracy of 87.19%,

87.71%, and 85.80% respectively whereas feature fusion

strategy attained an accuracy of 90.75%. For AM+CL mal-

ware images, GLCM, GIST, and LBP features attained an

average accuracy of 87.28%, 87.71%, and 85.89% respec-

tively whereas feature fusion strategy attained an accuracy of

90.42%. For CR+AM+CL malware images, GLCM, GIST,

and LBP features attained an average accuracy of 87.43%,

87.15%, and 86.02% respectively whereas feature fusion

strategy attained an accuracy of 90.31%.

The confusion matrix for the twenty malware families

is shown in Figure 14. The performance metrics such as

precision, recall, and error rate is also shown in Figure 15.

As discussed earlier, Feature Fusion with SVM classifier
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FIGURE 10a. Comparison of Accuracy of GLCM-SVM and Feature Fusion-SVM on fifteen combinations of grayscale

FIGURE 10b. Comparison of Accuracy of GIST-SVM and Feature Fusion-SVM on fifteen combinations of grayscale

FIGURE 10c. Comparison of Accuracy of LBP-SVM and Feature Fusion-SVM on fifteen combinations of grayscale

FIGURE 11a. Comparison of Accuracy of GLCM-KNN and Feature Fusion-KNN on fifteen combinations of grayscale

14 VOLUME 4, 2016



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3090998, IEEE Access

Thakur: Classification and Analysis of Android Malware Images Using Feature Fusion Technique

FIGURE 11b. Comparison of Accuracy of GIST-KNN and Feature Fusion-KNN on fifteen combinations of grayscale

FIGURE 11c. Comparison of Accuracy of LBP-KNN and Feature Fusion-KNN on fifteen combinations of grayscale

FIGURE 12a. Comparison of Accuracy of GLCM-RF and Feature Fusion-RF on fifteen combinations of grayscale

FIGURE 12b. Comparison of Accuracy of GIST-RF and Feature Fusion-RF on fifteen combinations of grayscale
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FIGURE 12c. Comparison of Accuracy of LBP-RF and Feature Fusion-RF on fifteen combinations of grayscale

FIGURE 13a. Graphplot showing accuracy of handcrafted features and feature fusion against CR+AM malware image

FIGURE 13b. Graphplot showing accuracy of handcrafted features and feature fusion against AM malware image

FIGURE 13c. Graphplot showing accuracy of handcrafted features and feature fusion against CR+CL malware image
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FIGURE 13d. Graphplot showing accuracy of handcrafted features and feature fusion against AM+CL malware image

FIGURE 13e. Graphplot showing accuracy of handcrafted features and feature fusion against CR+AM+CL malware image

FIGURE 14. A confusion matrix
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FIGURE 15. Performance metrics obtained using Feature Fusion-SVM classifier

achieved the highest accuracy of 93.24% using CR+AM

malware images. Among the total malware families, the

families such as Kmin, GoldDream, FakeDoc, Iconosys,

Opfake, and FakeInstaller attain high precision and recall.

ExploitLinuxLootor, MobileTx, Gappusin, and BaseBridge

are the families against which low precision and recall were

observed. The performance degrades due to the less number

of samples in these families.

The error rate for the malware family ExploitLinuxLotoor

is found to be 65.21%, which is relatively high. For Mo-

bileTx and Imlog, it was 34.78% and 28.57% respectively.

The error rate for the families Adrd, SMSreg, DroidDream,

and Gappusin varies from 21% to 24%. All the samples for

the malware family Kmin were correctly classified. Even no

sample of other class gets misclassified to Kmin malware

family class. Therefore, its error rate found to be zero.

The family Iconosys also attained the error rate of zero

but achieve the precision of 98.03%. Only one sample of

FakeInstaller gets misclassified into the Iconosys malware

family. One sample of Plankton class gets misclassified into

SendPay class and one sample of Sendpay gets misclassified

into DroidKungFu class. For this reason, malware family

Iconosys attain an equal precision and recall rate. The error

rate of 2.91% and 2.95% was recorded for malware family

Plankton and FakeInstaller respectively. For Opfake family,

it was observed to be 0.49%.

V. CONCLUSION AND FUTURE SCOPE

A series of experiments were conducted for the analysis and

classification of Android malware images. The handcrafted

features used in this work are Gray Level Co-occurrence

Matrix (GLCM), Global Image deScripTors (GIST), and Lo-

cal Binary Pattern (LBP). LBP features do not contain much

information for malware classification. GIST features with

classifiers SVM, KNN, and RF showed good classification

accuracy. Min-max normalization on the dataset showed a

great impact on the proposed methodology. GLCM-SVM

achieved the highest classification accuracy of 92.20% on

AM malware images closely followed by the GLCM-RF and

GIST-SVM model that achieved an accuracy of 91.81% and

91.35% respectively on CR+AM malware images. Further-

more, CNN and handcrafted features were fused to form

the feature fusion strategy for the classification of Android

malware images. The classification results obtained using

handcrafted features are compared with results achieved

using feature fusion methodology. It was found that the

classification performance of all the classifiers eventually

increased when feature fusion was deployed. Of the top

malware images revealed in this work, feature fusion un-

doubtedly outperforms handcrafted features in the classifi-

cation of Android malware images. The highest accuracy

of 93.24% was observed for malware image combination

CR+AM using the Feature Fusion-SVM classifier. There-

fore, the efforts can be saved in inspecting the entire APK

structure for the classification of Android malware. The

proposed visualization technique based on feature fusion

will let the same work done with lesser resources and

time. The primary focus of this study, was on the feature

fusion technique to identify the descriptors, which could

help to differentiate between different types of Android

malware families. The study on the correlation of features

can be another interesting area to explore. The features that

are extracted may contain irrelevant or redundant features.

Therefore, as future scope of this work, we tend to deploy

suitable feature extraction techniques to identify and remove

the redundant features by analyzing the correlation between
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them. Moreover, the use of ensemble learning in CNNs and

other transfer learning models considering hyperparameters

optimization sets the future scope of this work.
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