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Abstract: The classification of olive oils and the authentication of their biological or geographic
origin are important issues for public health and for the olive oil market and related industries.
The development of techniques for olive oil classification that are fast, easy to use, and suitable for
online, in situ and remote operation is of high interest. In this study, the possibility of discriminating
and classifying vegetable oils according to different criteria related to biological or geographical
origin was assessed using cyclic voltammograms (CVs) as input data, obtained with electrochemical
sensors based on carbonaceous nanomaterials and gold nanoparticles. In this context, 44 vegetable
oil samples of different categories were analyzed and the capacity of the sensor array coupled
with multivariate analysis was evaluated. The characteristics highlighted in voltammograms are
related to the redox properties of the electroactive compounds, mainly phenolics, existing in the oils.
Moreover, the antioxidant activity of the oils’ hydrophilic fraction was also estimated by conventional
spectrophotometric methods (1,1-diphenyl-2-picrylhydrazyl (DPPH) and galvinoxyl) and correlated
with the voltammetric responses of the sensors. The percentage of DPPH and galvinoxyl inhibition
was accurately predicted from the voltammetric data, with a correlation coefficients greater than
0.97 both in calibration and in validation. The results indicate that this method allows for a clear
discrimination of oils from different biological or geographic origins.
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1. Introduction

The olive (Olea europaea L.) is an ancient crop in Mediterranean countries and has
been spread throughout all five continents. The reason for its worldwide diffusion is
related to the high value of its oils, which are used in human consumption and have been
demonstrated to be highly beneficial for human health [1]. Olive fruits are very nutritious
and their use together with the leaves in medicine dates back to ancient times [2]. Clinical
data prove the beneficial properties of olive oil as a nutrient that reduces the risk of heart,
skin or prostate diseases, as well as the risk of gastrointestinal cancer, etc., and it is included
as an ingredient in numerous pharmaceutical and cosmetic formulations [3].

The assessment of virgin olive oil (VOO) quality and the classification into different
categories is based on the following criteria: acidity, peroxide value, UV absorption and
organoleptic evaluation [4]. On the basis of these criteria and taking into account the
process of obtaining the various varieties of oil, the EU defines six main types of oils, which
are delineated also by The International Olive Council (IOC) [5], in Article 118 of European
Commission (EC) Regulation (EC) No 1234/2007 [6]. The specific characteristics of each
type of oil are shown in Table S1.

The quality of the seed oils is established according to the Codex Standard for named
vegetable oils 210 (Amendment 2005, 2011, 2013 and 2015) [7]. In the case of extra virgin
sunflower oil, the technological process includes the cold extraction of the oil, which is
suitable for human consumption without refining.
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Of the many commercial categories that exist for olive oil, EVOO has particularly
high standards in terms of composition as well as sensory characteristics as assessed by
recognized panels [8]. Chemically, it is a complex food composed mainly of triglycerides,
accounting for 98% of the total composition and a number of minor constituents that are
of crucial importance in terms of health benefits and sensory properties [9]. This fraction
of minor compounds includes free fatty acids [10], monoglycerides [11], diglycerides [12],
phenols [13], tocopherols [14], sterols [15], phospholipids [16], waxes [17], squalene [17],
hydrocarbons [18] and volatile compounds [19]. However, the phenolic compounds are the
main compounds responsible for the flavor of EVOOs and as biomarkers of authenticity [20].
Furthermore, EVOO contains a high amount of phenolic compounds, which are the main
agents responsible for resistance to auto-oxidation and photo-oxidation [21].

There are at least thirty-six structurally different phenolic compounds that have been
identified in EVOO [22]. Not all of these compounds are present in every EVOO and there
is variation in the concentration of phenolic compounds between olive oils [23]. Such
variation in the phenolic fraction is the result of production factors, including the variety
of olives [24], the region of olive cultivation [25], the agricultural techniques used for
olive cultivation [26], the maturity of the olive fruit at harvest [27] and also the extraction,
processing and storage methods [28]. The main phenolic compounds in olive oil are
presented in Table S2.

The quantitative determination of these compounds is usually performed according to
the Folin–Ciocalteu spectrophotometric method [29]. However, the method is less specific
compared to chromatographic methods [30]. According to the literature, the most common
analytical techniques used for the separation and determination of these phenolic com-
pounds in olive oil to date are high-performance liquid chromatography (HPLC) coupled
with ultraviolet (UV) or diode array detection (DAD) [31], mass spectrometry (MS) [32], gas
chromatography coupled with MS [33], capillary electrophoresis (CE) coupled with UV or
MS detection [34], nuclear magnetic resonance spectroscopy (NMR) [35], and infrared (IR)
spectroscopy [36]. These methods have the disadvantage of being laborious [37], requiring
a relatively long period of analysis and processing of the samples due to the complexity
of the phenolic species [38]. Complementary innovative methods for the qualitative and
quantitative determination of phenolic compounds are based on electrochemical sensors
and biosensors [39–41]. The sensors and biosensors can be used for the detection of specific
compounds or to obtain the chemical profile (“chemical fingerprint”) when an array of
such sensors is used [42–44].

The array of sensors coupled with multivariate data analysis, electronic tongues,
based on potentiometric, voltammetric or impedimetric sensors, have been successfully
used for discriminating different types of oils, depending on their phenolic and sensory
characteristics [45,46]. These features were used for the discrimination and classification
of oils, and especially olive oils, as a function of quality, olive variety, bitterness or other
sensorial characteristics, geographical origin, etc. [47,48].

An important category of electrochemical sensors and biosensors is based on carbona-
ceous nanomaterials and metal nanoparticles, which have a special affinity for the phenolic
compounds [49]. These nanomaterials have high surface-to-volume ratios biocompatible
with the phenolic compounds and enhance electron-transfer kinetics during electrochemical
processes [50]. Therefore, these kinds of sensors and biosensors have excellent performance
characteristics for the detection of phenolic compounds in complex samples.

In this study, screen-printed electrodes based on nanomaterials (carbon nanotubes,
graphene and carbon nanofibers) modified with gold nanoparticles were used for the
sensitive detection of phenolic compounds in oil hydromethanolic extracts. The synergic
effects in the sensitive properties of nanomaterials increases the active area of sensors and
improves the rate of electron transfer, increasing sensitivity. Electrochemical responses
coupled with multivariate data analysis were used for discriminating and classifying
vegetable oils according to different criteria, related to biological or geographical origin, or
to establish correlations with antioxidant activity.
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2. Materials and Methods
2.1. Reagents and Solutions

KCl was purchased from Sigma-Aldrich (St. Louis, MO, USA) and dissolved in
ultrapure water obtained from a Milli-Q system (Millipore, Bedford, MA, USA). Methanol
was purchased from Merck (Darmstadt, Germany).

The 0.1 mM DPPH stock solution was prepared by weighing 0.0036 g DPPH (2,2-
diphenyl-1-picrylhydrazyl) reagent (purchased from Sigma-Aldrich) and dissolving in
100 mL 96% (v/v) ethanol (Sigma-Aldrich). The resulting solution was kept at room
temperature and in the dark until use.

The 0.1 mM galvinoxyl stock solution was prepared by weighing 0.0042 g free rad-
ical galvinoxyl (2,6-di-tert-butyl-α-(3,5-di-tert-butyl-4-ox-2,5-cyclohexadiene-1-ylidene)-p-
tolyloxy) reagent (purchased from Sigma-Aldrich) and dissolving in 100 mL 96% (v/v) ethanol,
the mixture being kept in the dark at room temperature for 20 min before determination.

2.2. Electrodes and Devices Used

Electrochemical measurements were performed using a conventional system contain-
ing three electrodes, namely an Ag/AgCl reference electrode (Princeton, Applied Research),
an auxiliary electrode consisting of a platinum wire, and a working electrode. The working
electrode was, in turn, a screen-printed electrode (SPE) based on nanomaterials such as
carbon nanotubes (CNT) and gold nanoparticles (GNP), nanofibers (CNF) and GNP and
also, graphene (GPH) and GNP. These three working electrodes were purchased from
Metrohm-DropSens (Llanera, Spain).

A Biologic SP 150 potentiostat/galvanostat (Bio-Logic Science Instruments SAS France)
coupled with EC-Lab Express software operating in Windows was used to record, character-
ize and optimize the electrode signals. Software was also used to analyze and interpret the
results: Origin, The Unscrambler and Microsoft Excel. For the weighting of the compounds,
the Partner AS 220/C/2 analytical balance was used, as well as the Elmasonic ultrasonic
bath (Carl Roth GmbH, Karlsruhe, Germany) for the dissolution and homogenization of
the solutions.

For the spectrophotometric method based on the reaction of antioxidants with the
stable free radicals DPPH and galvinoxyl, sample absorbances were measured using a
Rayleigh UV2601 UV/Vis Double Beam Spectrophotometer (Beijing Beifen-Ruili Analytical
Instrument, Beijing, China).

2.3. Samples

44 different commercial oils with year of production 2022 were analyzed in this study,
divided into three types of edible vegetable oil, namely POO, EVOO from various countries
(Italy, Greece, Spain and Tunisia), and unrefined sunflower oils (SFO). All oils studied were
purchased from a local supermarket. A sub-criterion for EVOO sample classification was
the country of origin. The studied samples were packaged in dark 0.5 or 1 L bottles and
their price was not higher than 8 €/L at the time of the study. Oil samples were kept in a
dry and dark place, at a constant temperature. Table 1 summarizes all the samples of edible
oils studied.

2.4. Obtaining Extracts

For analysis, 44 samples from different oils were prepared using liquid–liquid extrac-
tion [51]. For each oil, 5 g was mixed with 10 mL methanol-water solution (40:10, v/v) and
ultrasonicated for 10 min. The hydromethanolic extracts were separated using a separation
funnel. For the measurements with the sensors, 5 mL of hydromethanolic extract was added
to 45 mL 10−1 M KCl solution and the CVs were registered. Six replicates for all samples
and sensors were registered. These data were used as input in multivariate data analysis.
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Table 1. Oil denomination, code, type of oil, and country of origin for the 44 oil samples under study.

Sample Oils Denomination Code
Type of Oil Country of Origin

1 TopSeller Pomace Oil p1 POO -
2 Oliol p2 POO -
3 Costa d’Oro, Sansa p3 POO -
4 Regina Olio di Sansa p4 POO -
5 Pietro Coricelli Olio di Sansa p5 POO -
6 Ionia p6 POO -
7 Regina v1 EVOO I
8 Costa D’Oro L’extra v2 EVOO I
9 Olitalia v3 EVOO I
10 Pietro Coricelli Non Filtrato v4 EVOO I
11 Mazza v5 EVOO I
12 Rivano Olio v6 EVOO I
13 Costa d’Oro Il Grezzo v7 EVOO I
14 Pietro Coricelli Olio v8 EVOO I
15 Monini Mini v9 EVOO I
16 Costa d’Oro L’Italiano v10 EVOO I
17 Costa d’Oro, Il Biologico v11 EVOO I
18 Monini Delicato v12 EVOO I
19 Monini Classico v13 EVOO I
20 Solaris Koroneiki v14 EVOO G
21 Greek Koroneiki v15 EVOO G
22 Minerva Greek v16 EVOO G
23 Monastir Oil v17 EVOO G
24 Kanakis v18 EVOO G
25 Agoureleo v19 EVOO G
26 Agoureleo Finest v20 EVOO G
27 Mueloliva v21 EVOO S
28 TopSeller Extra Virgin Olive Oil v22 EVOO S
29 Molino Alfonso v23 EVOO S
30 Pletora v24 EVOO S
31 Iznaoliva v25 EVOO S
32 Coosur v26 EVOO S
33 Obio v27 EVOO S
34 Terra Delyssa—Tunisian Oil v28 EVOO T
35 Clearspring v29 EVOO T
36 Urtekram v30 EVOO T
37 Terra Delyssa Bio v31 EVOO T
38 Olivi v32 EVOO T
39 Solaris s1 SFO -
40 De la Luna s2 SFO -
41 Walachia s3 SFO -
42 Morarita s4 SFO -
43 Bunetto s5 SFO -
44 Super Foods s6 SFO -

EVOO—extra virgin olive oil; POO—pomace olive oil; SFO = sunflower oil; I = Italy; G = Greece; S = Spain;
T = Tunisia.

2.5. DPPH Method

The DPPH assay for the evaluation of antioxidant activity is a simple, cheap and
effective method, one of the most commonly used to determine the antioxidant capacity of
a compound, an extract or other biological matrices (plants, fruit, wine, honey) [52–54]. In
its initial radical form, DPPH has an intense purple color, which changes to yellow when
found in reduced form (Figure S1).

DPPH has a significant absorption band in the range 515–520 nm, making spectropho-
tometry an easy tool for measuring this color change and determining the antioxidant
activity of the sample. The more this color changes, the more DPPH is reduced and the
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better the antioxidant activity of the sample [55]. The use of the DPPH assay provides an
easy and rapid way to assess antioxidants by spectrophotometry, and various chemical
compounds or natural products with antioxidant activity can be evaluated [56].

2.6. Galvinoxyl Method

The galvinoxyl method of determining antiradical activity is based on the use of the
stable O-centered radical galvinoxyl, which is known to associate with the physiological
action of oxygen radicals rather than the stable N-centered radical of DPPH [57]. Galvinoxyl
exhibits strong absorption at 860 nm that is used for the spectrophotometric determination
of the antioxidant activity based on a decrease in the absorbance intensity in the presence
of antioxidants [58]. The same sensing mechanism of radical scavenging described in
Figure S1 can be applied to this radical. However, the color change induced by exposure to
antioxidants is not easily detected by the naked eye. The galvinoxyl radical-scavenging
reaction is given in Figure S2.

2.7. Data Analysis

The input data used in the multivariate data analysis were the CVs obtained with
three electrochemical sensors immersed in the hydromethanolic extracts of all oils under
study. Six replicates CVs of all electrochemical sensors were registered for all the oil
sample hydromethanolic extracts and all CV data were used as input in the multivariate
data analysis.

The cyclic voltammograms were registered between −0.4 and 1.3 V and the scan rate
was 0.1 V·s−1. No signal pretreatment was applied. All CVs were imported in Excel and
the constant variable (potential values) was removed. The current values of all replicates
and samples from the anodic scan were included in the input matrix. From the analysis of
the CVs it was observed that the main differences between the samples was in the anodic
part. In order to respect the convention that in the data matrix the samples must be the
lines and the variables the columns, the matrix containing the anodic current values was
transposed. In this way, a matrix with 264 rows (44 samples × 6 replicates) and 480 columns
(3 sensors × 160 current values) for the anodic part of CV was obtained.

Multivariate data analysis was performed to determine if there were significant dif-
ferences between the oils studied and for their classification as a function of type of oil, or
country of origin (in the case of EVOOs).

Principal component analysis (PCA) was used to reduce the variables and discriminate
into different classes. PCA is a multidimensional analysis that allows the transformation
of the original variables into new ones, called principal components. The role of principal
components is to explain the maximum amount of variance with the smallest number of
components [59,60].

PLS-DA (partial least squares—discriminant analysis) has been used as a deterministic
classification technique. The basis of PLS-DA consists primarily of applying a partial
regression model using the least squares method on variables that are indicators of groups.
The second step of PLS-DA is to classify the observations from the PLS regression results
on the indicator variables [61]. By projecting intercorrelated data from a high-dimensional
space into a low-dimensional orthogonal space, the newly formed variables, which are
linear combinations of the original variables, become orthogonal to each other [62]. By
finding the discriminant plane to effectively separate data into different classes, PLS-DA
is capable of separating “tight” classes of observations on the basis of the X-variables
(CVs of the sensors), according to a Y-vector that encodes the class membership in a set of
categorized variables, denoted as positive and negative (1 and 0 values, respectively) [63].

Partial Least Squares regression (PLS) is a method which reduces the variables used to
predict to a smaller set of predictors, which is then used to perform a regression [64]. PLS 1
corresponds to the case where there is only one dependent variable. The PLS1 regression
model was used to establish correlations between electrochemical sensor responses and
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antioxidant activity determined by the DPPH spectrophotometric method or galvinoxyl
method (% inhibition degree is the dependent variable).

Multivariate data analysis was performed using Matlab, Excel and Unscrambler.

3. Results and Discussion
3.1. Electrochemical Study of Oil Extracts with Nanomaterials-Based Sensors

To study electrochemical processes, reversibility of reactions and stability of the re-
sponse of the three sensors, the CV electrochemical method was used. The determinations
were carried out in the potential range between −0.4 and 1.3 V and the scan rate was
0.1 V·s−1.

In the first step, the behavior of the three electrodes CNT-GNP/SPE, CNF-GNP/SPE
and GPH-GNP/SPE immersed in the extract solutions was studied. Figure 1 shows the
CVs of the three sensors when immersed in the same extract from EVOO sample v1.
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Figure 1. Voltammetric responses of CNT-GNP/SPCE (red line), CNF-GNP/SPCE (black line) and
GPH-GNP/SPCE (green line) towards extract of EVOO sample v1. Scan rate: 0.1 V·s−1.

It can be seen that each sensor has a particular response when immersed in a solution
of the same extract. These differences among the responses of the three electrodes is
attributed to the redox activity of the phenolic compounds present in the sample to be
analyzed [65], the oxidation and reduction processes being facilitated differently by the
modifying nanomaterials present in the sensitive elements of the sensors [66,67].

It was also observed that the highest intensity at which the oxidation peak occurs
is obtained in the case of GPH-GNP/SPCE (276.22 µA), while the intensity at which
the reduction peak occurs is higher in the case of CNF-GNP/SPCE (−98.16 µA). These
increases in oxidation and reduction current intensity could be attributed to the association
of nanomaterials CNT, GPH and also CNF with GNP, achieving a synergistic effect and
contributing to increase the conductivity of the electrodes and the electron transfer rate,
thus increasing the sensitivity of the sensors [68,69]. Therefore, the three sensors immersed
in the same extract solution provide complementary chemical composition information
and the CVs are chemical fingerprints of the analyzed samples.

To highlight the differences occurring between extracts from different samples, the
following figure shows the response of the CNF-GNP/SPCE sensor when immersed in
EVOO sample v2, POO sample p2 and SFO sample s2 (Figure 2).
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Important differences in peak intensity, position and shape were observed from one
sample to another, depending mostly on the polyphenolic compound content of the respec-
tive samples. At the same time, a shift of oxidation peak potentials towards lower values
is observed with increasing polyphenolic compounds content [70]. The results shown in
Figure 2 indicate that the nature and concentration of the compounds found in different
classes of oils give rise to a variety of electrochemical signals that can be used to discrim-
inate between different types of oils. In particular, olive oils can be easily distinguished
from seed oils due to their high polyphenol content [71].

Figure 3 shows the detection mechanism of mono- and di-phenolic compounds in the
samples studied with voltammetric sensors. A single redox process is observed, involving
the exchange of one electron and one proton in the case of mono-phenolic compounds, and
the exchange of two electrons and two protons in a single step in the case of di-phenolic
compounds, with the formation of the respective quinone derivative in both cases.

The nanomaterials from the sensitive element of the sensors facilitate the detection of
phenolic compounds from the samples, the CVs being well defined, with reduced noise
and high current peaks. The peak potentials and currents are related to the nature of the
analyzed samples.

3.2. Discrimination and Classification of Oils Using Multivariate Data Analysis

In the first step, electrochemical data from the input matrix were used to perform the
PCA. The data from the input matrix were firstly pre-processed by centering the variables
and scaling them to unit variance. The purpose of this treatment was to give all variables
included in PCA an equal chance to influence the model, regardless of their original
variance. The normalization was performed with the 1/(Standard Deviation) method. For
this data analysis, the entire data matrix was split into two different data sets including
the specific samples and all the corresponding variables differentiated by different criteria:
type of the oils (all samples) and the country of origin (all the EVOO samples). The results
are presented as three-dimensional score plots, differentiated by EVOO, POO or SFO—all
samples were included in the model (Figure 4), and by country of origin—Italy, Greece,
Spain and Tunisia—for all the EVOO samples (Figure 5).
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The graph in Figure 4 shows that the system based on the three sensors immersed in
different solutions of hydromethanolic extracts is able to discriminate EVOO from POO and
SFO samples, with the first three main components explaining 92% of the variation. Thus,
the first principal component explains 55% of the variance of the electrochemical signal, the
second principal component accounts for 21% and the third principal component for 16%.
It can be seen that EVOO appeared in the right region of the score plot (mostly at positive
PC1 values), while POO appeared on the left side of the plot (at negative PC1 values). SFO
also appeared at the negative PC1 values, but was well discriminated from other types of
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oils. PC2 is relevant for the discrimination between POO and SFO. Furthermore, PC2 is
important for the discrimination of the samples of each category. As can be observed, the
three groups are very well separated and this indicates that the samples could be clearly
discriminated using the electrochemical sensors array based on nanomaterials.
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Another principal component analysis was carried out to explore the structure of the
data and the possibility of discriminating EVOO samples by country of origin. The scores
plot of PCA based on the CVs of all voltammetric sensors immersed in the extracts of
EVOOs is presented in Figure 5.

In the PCA score plot, four distinct groups of EVOOs could be found, grouped
according to country of origin (Figure 5). The members of the first group on the left
side of the scores plot are olive oil samples from Italy. This group is well separated from
the second group consisting of samples from Spain. The samples from Greece and Tunisia
are separated from the other two categories and are found on the right side of the plot
(at positive values of PC1). PC2 is very important in the discrimination of the EVOOs from
Greece and Tunisia. All three PCs, which explain 95% of the variance, have the highest
importance in the discrimination of the samples in agreement with EVOO country of origin,
indicating that the geographical location had a great influence on the chemical composition
of the olive oils.

The PLS-DA technique, a supervised classification method that allows verification of
the assignment of a sample to a particular group and calculation of the calibration and vali-
dation error, was used to confirm the groups observed in the principal component analysis.

PLS-DA modeling involves two main procedures, PLS-DA component construction
(dimension reduction) and prediction model construction (discriminant analysis). The
output of the PLS-DA algorithms is the X-score (PLS-DA scores), which represents the
original data X in a lower-dimensional subspace, and the predicted class membership
matrix (Ypred), which estimates the class membership of the samples [64]. PLS-DA is used
to optimize separation between different groups of samples, which is accomplished by
linking two data matrices X (sensor data) and Y (classes of samples).

PLS-DA aims to maximize the covariance between the independent variables X (sen-
sors data) and the corresponding dependent variable Y (classes of samples) of highly
multidimensional data by finding a linear subspace of the explanatory variables [62]. This
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new subspace permits the prediction of the Y variable based on a reduced number of factors
(latent variables, LV). These factors describe the behavior of dependent variables Y and they
span the subspace onto which the independent variables X are projected [63]. For example,
if the samples are divided into two different classes, then the variable Y will comprise a
single vector, which will have an entry of 0 for all samples in the first class and an entry of
1 for all samples in the second class. When the data contain three classes, then the three
groups will be binarily encoded in 3 variables with the Y matrix as [1 0 0] for all samples
from class A, [0 1 0] for samples from class B, and finally [0 0 1] for samples from class C.
This is the case for PLS-DA taking into account the type of oil: EVOO, POO and SFO.

Figure 6 shows the PLS-DA scores plots developed from the same data used for PCA
(X matrix), and the dependent variables were the classification criteria observed in PCA
scores plots (Y matrix): type of oil (Figure 6a) and country of origin (Figure 6b), respectively.
The random test cross-validation method was used to validate the models. In this method,
the training and test samples are randomly selected. The random test was performed for
100 runs by removing 2 randomly selected samples. The optimal number of latent variables
(LV) was determined according to the minimum predicted residual error sum of squares.
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In Figure 6, it can be seen that the distribution of the samples in the scores plots is
similar to that observed in the case of the PCA scores plots. However, a greater separation
of the sample groups based on different criteria was observed.

The quantitative data of all PLS-DA models are collected in Table 2, with correlation
coefficients greater than 0.97 and root mean square errors very low at both calibration
and validation.
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Table 2. Quantitative data of the PLS-DA regression using voltammetric data for two classifica-
tion models.

Classification
Criterium

Calibration Validation

Slope Offset RC RMSEC Slope Offset RP RMSEP

Type
EVOO 0.993 0.008 0.989 0.064 0.988 0.011 0.988 0.074

SFO 0.974 0.010 0.973 0.029 0.971 0.009 0.971 0.044
POO 0.985 0.005 0.983 0.016 0.981 0.006 0.980 0.041

Country of origin
Italy 0.993 0.009 0.992 0.022 0.991 0.011 0.986 0.048

Greece 0.990 0.012 0.986 0.044 0.989 0.010 0.980 0.063
Spain 0.994 0.004 0.990 0.032 0.992 0.006 0.984 0.054

Tunisia 0.991 0.007 0.989 0.026 0.988 0.005 0.981 0.052
Rc—correlation coefficient of calibration; Rp—correlation coefficient of prediction; RMSEC—Root Mean Square
Error of Calibration; RMSEP—Root Mean Square Error of Prediction.

From these results, it can be concluded that the electrochemical data obtained with the
voltammetric sensors based on different carbonaceous nanomaterials and gold nanoparti-
cles can be successfully used for the classification of the oils based on different criteria such
as type of oil for EVOO, POO and SFO samples, or country of origin for EVOO samples.

3.3. Determination of Antioxidant Activity. Correlation between Sensor Response and
Spectrophotometric Measurements to Determine Antioxidant Activity

An evaluation of antioxidant activity with the DPPH spectrophotometric method
was performed according to the method previously described by Gali et al. [72]. The
assay was carried out by adding volumes of 1 mL extract solution to 3 mL 0.1 mM DPPH
ethanolic solution in the spectrophotometer cuvettes and then measuring the absorbance at
λ = 517 nm towards ethanol.

For the application of the galvinoxyl method for the analysis of oil samples, volumes
of 1 mL extract solution were added to 3 mL 0.1 mM galvinoxyl solution in the spectropho-
tometer cuvettes and the absorbance for each sample was then measured at 860 nm towards
ethanol after 20 min [73].

For both methods, the percentage of DPPH inhibition and the percentage of galvinoxyl
inhibition were calculated according to the following equation [74]:

%Inhibition =

(
AD − AE

AD

)
× 100

where AD is the absorbance of the control solutions and AE is the absorbance of the
test solutions.

The % inhibition results obtained by both methods are shown in Table 3. All the
analyses were carried out in triplicate and the average values are reported. The standard
deviation of the measurements was lower than 2% for all the measurements.

As can be seen from the table above, the percentage inhibition values are mostly close
in value, but the highest inhibition percentage was obtained for Costa d’Oro L’Italiano
EVOO. This result can be correlated with a higher intensity of the anodic peak and, therefore,
with a higher content of polyphenolic compounds.

The next step of the study was to establish correlations between the electrochemi-
cal signals provided by the sensors and the data obtained from the spectrophotometric
determination of antioxidant activity by the DPPH and galvinoxyl methods.

PLS1 was used as a prediction technique to correlate the voltammetric data obtained
with the sensors with the antioxidant activity quantified as capacity of free radical scaveng-
ing. The independent variables (X matrix) were all CVs obtained with the sensors and the
dependent variable was the percentage of DPPH inhibition or the percentage of galvinoxyl
inhibition, respectively. The normalization of the data was performed with the 1/(Standard
Deviation) method.
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Table 3. Antioxidant activity of oil samples studied expressed as % inhibition of the free radicals
DPPH or galvinoxyl.

Sample % Inhibition
DPPH

% Inhibition
Galvinoxyl Sample % Inhibition

DPPH
% Inhibition
Galvinoxyl

1 65.00 23.53 23 64.72 23.53
2 58.89 13.73 24 62.44 19.47
3 60.83 15.79 25 63.72 20.45
4 56.45 13.45 26 64.24 20.35
5 57.50 12.76 27 66.94 27.45
6 59.44 16.98 28 65.83 25.89
7 60.56 13.73 29 66.31 26.64
8 63.89 18.65 30 67.98 27.53
9 51.67 7.76 31 66.27 25.98

10 65.28 25.49 32 65.71 27.41
11 64.72 21.97 33 68.12 25.54
12 63.89 17.75 34 63.33 17.65
13 67.50 31.37 35 64.52 18.54
14 64.44 19.00 36 62.66 16.43
15 64.72 22.57 37 63.98 17.61
16 71.39 36.18 38 62.08 17.21
17 65.56 25.69 39 60.56 15.69
18 70.83 34.33 40 59.84 17.65
19 69.72 33.33 41 56.88 20.67
20 63.56 20.43 42 57.65 19.96
21 63.15 16.76 43 58.98 16.82
22 64.72 21.57 44 60.74 16.45

The results of PLS1 regression models are presented in the form of the dependences
between predicted antioxidant activity and measured antioxidant activity.

Figure 7 shows the dependence plot between the percentage inhibition value of
DPPH free radical predicted from voltammetric data and the values measured by the
spectrophotometric method.
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As can be observed in Figure 7, the voltammetric data obtained with the sensors
are able to predict the antioxidant properties of the samples expressed as the capacity to
scavenge the free radical DPPH with good accuracy. Similar results were obtained for the
galvinoxyl test.

Table 4 shows the quantitative data obtained from the CV-DPPH and CV-galvinoxyl
PLS1 regression models. It can be noted that both calibration and validation values indicate
good model performance (correlation coefficient close to 1). In addition, low values of the
root mean square error at calibration (RMSEC) and root mean square error at prediction
(RMSEP) were obtained for both PLS1 models.

Table 4. Results of PLS1-DPPH and PLS1-galvinoxyl regression models in calibration and validation.

PLS1 DPPH
Regression Model

PLS1 Galvinoxyl
Regression Model

Calibration

Slope 0.963 0.959
Offset 2.752 0.984

Correlation 0.984 0.991
RMSEC 1.560 1.412

Validation

Slope 0.953 0.951
Offset 3.104 1.016

Correlation 0.975 0.984
RMSEP 1.628 1.712

From the data included in Table 4, it can be seen that, from the data obtained with
the electrochemical sensors by CV, it is possible to accurately estimate the antioxidant
activity of the oils expressed as the inhibition capacity towards the free radicals DPPH and
galvinoxyl, respectively.

4. Conclusions

In this study, models were developed for discriminating and classifying oil samples
based on different criteria, using an electrochemical method based on SPE modified with
different carbonaceous nanomaterials and GNP. The electrochemical signals were used as
input variables in multivariate data analysis studies. At the same time, it was established
that there was a very good correlation between the electrochemical responses of the sensors
when immersed in solutions from the 44 oil samples studied and the data obtained from
the DPPH and galvinoxyl spectrophotometric assays for the assessment of antioxidant
activity. As a result of this study, it can be concluded that electrochemical sensors can be
useful for the estimation of antioxidant activity of different types of oils, including EVOO,
but also that they can be used for the discrimination and classification of vegetable oils.

The use of sensors and biosensors in industry and quality control laboratories is still
limited, even though these have numerous advantages and adequate sensitivity. Further
studies will include biosensors capable of detecting biomarkers that could improve the per-
formance of the analytical system for discrimination, classification or authentication. Thus,
the development of databases using analytical information obtained by electroanalytical
methods, together with the use of appropriate statistical tools could be useful in increasing
the performance of systems for the quality control of EVOOs. Another research perspective
would be the development of a lab-on-a-chip device useful in the routine analysis of olive
oil at different stages of production, from harvesting to marketing, and also to analyse
oxidative stability.
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//www.mdpi.com/article/10.3390/ijms24033010/s1.

https://www.mdpi.com/article/10.3390/ijms24033010/s1
https://www.mdpi.com/article/10.3390/ijms24033010/s1


Int. J. Mol. Sci. 2023, 24, 3010 14 of 17

Author Contributions: Conceptualization, C.A.; methodology, C.A. and I.G.M.; validation, C.A.
and I.G.M.; formal analysis, I.G.M.; investigation, C.A. and I.G.M.; data curation, C.A. and I.G.M.;
writing—original draft preparation, I.G.M.; writing—review and editing, C.A.; supervision, C.A. All
authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by a grant from the Romanian Ministry of Education and
Research, CNCS—UEFISCDI, project number PN-III-P4-ID-PCE-2020-0923, within PNCDI III.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The work of author Irina Georgiana Munteanu was supported by the project
“PROINVENT”, Contract no. 62487/03.06.2022—POCU/993/6/13—Code 153299, financed by The
Human Capital Operational Programme 2014–2020 (POCU), Romania.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Dugo, L.; Russo, M.; Cacciola, F.; Mandolfino, F.; Salafia, F.; Vilmercati, A.; Fanali, C.; Casale, M.; De Gara, L.; Dugo, P.; et al.

Determination of the Phenol and Tocopherol Content in Italian High-Quality Extra-Virgin Olive Oils by Using LC-MS and
Multivariate Data Analysis. Food Anal. Methods 2020, 13, 1027–1041. [CrossRef]

2. Sain, A.; Sahu, S.; Naskar, D. Potential of Olive Oil and Its Phenolic Compounds as Therapeutic Intervention against Colorectal
Cancer: A Comprehensive Review. Br. J. Nutr. 2021, 128, 1257–1273. [CrossRef] [PubMed]

3. Bodurov, I.; Vlaeva, I.; Marudova, M.; Yovcheva, T.; Nikolova, K.; Eftimov, T.; Slavova, V. Detection of Adulteration in Olive Oils
Using Optical and Thermal Methods. Bulg. Chem. Commun. 2013, 45, 81–85.

4. Conte, L.; Bendini, A.; Valli, E.; Lucci, P.; Moret, S.; Maquet, A.; Lacoste, F.; Brereton, P.; García-González, D.L.; Moreda, W.;
et al. Olive Oil Quality and Authenticity: A Review of Current EU Legislation, Standards, Relevant Methods of Analyses, Their
Drawbacks and Recommendations for the Future. Trends Food Sci. Technol. 2020, 105, 483–493. [CrossRef]

5. International Olive Council (IOC). Olive World: Olive Oil. Available online: https://www.internationaloliveoil.org/olive-world/
olive-oil/ (accessed on 2 November 2022).

6. International Olive Council. Trade Standard Applying to Olive Oils and Olive-Pomace Oils. COI/T.15/NC No. 3/Rev. 16.
Available online: https://www.internationaloliveoil.org/wp-content/uploads/2021/07/COI-T15-NC3-REV-16-2021-_ENG.pdf
(accessed on 2 November 2022).

7. Codex Stan 33-1981 (2021). Standard for Olive Oils and Olive Pomace Oils. Adopted in 1981 Revision: 1989, 2003, 2015.
Amendment: 2009, 2013. Available online: http://www.fao.org/input/download/standards/88/CXS_033e_2015.pdf (accessed
on 10 November 2022).

8. Carrasco-Pancorbo, A.; Cerretani, L.; Bendini, A.; Segura-Carretero, A.; Gallina-Toschi, T.; Fernández-Gutiérrez, A. Analytical
Determination of Polyphenols in Olive Oils. J. Sep. Sci. 2005, 28, 837–858. [CrossRef]

9. Jeong, H.-M.; Kwon, H.-C.; Xu, B.; Jung, D.; Han, M.; Kwon, D.-H.; Kang, S.-W. Taste Sensor Based on the Floating Gate Structure
of a Lateral Double-Diffused Metal-Oxide Semiconductor. Sens. Actuators B Chem. 2020, 308, 127661. [CrossRef]

10. Paciulli, M.; Difonzo, G.; Conte, P.; Flamminii, F.; Piscopo, A.; Chiavaro, E. Physical and Thermal Evaluation of Olive Oils from
Minor Italian Cultivars. Foods 2021, 10, 1004. [CrossRef]

11. Gomes, T.; Caponio, F.; Bruno, G.; Summo, C.; Paradiso, V.M. Effects of Monoacylglycerols on the Oxidative Stability of Olive Oil.
J. Sci. Food Agric. 2010, 90, 2228–2232. [CrossRef]

12. Valli, E.; Ayyad, Z.; Bendini, A.; Adrover-Obrador, S.; Femenia, A.; Gallina Toschi, T. Extra Virgin Olive Oil Stored in Different
Conditions: Focus on Diglycerides. Ital. J. Food Sci. 2015, 27, 166–172. [CrossRef]

13. Grassi, S.; Jolayemi, O.S.; Giovenzana, V.; Tugnolo, A.; Squeo, G.; Conte, P.; De Bruno, A.; Flamminii, F.; Casiraghi, E.; Alamprese,
C. Near Infrared Spectroscopy as a Green Technology for the Quality Prediction of Intact Olives. Foods 2021, 10, 1042. [CrossRef]
[PubMed]

14. Bakre, S.M.; Gadmale, D.K.; Toche, R.B.; Gaikwad, V.B. Rapid Determination of Alpha Tocopherol in Olive Oil Adulterated with
Sunflower Oil by Reversed Phase High-Performance Liquid Chromatography. J. Food Sci. Technol. 2015, 52, 3093–3098. [CrossRef]
[PubMed]

15. Kyçyk, O.; Aguilera, M.P.; Gaforio, J.J.; Jiménez, A.; Beltrán, G. Sterol Composition of Virgin Olive Oil of Forty-Three Olive
Cultivars from the World Collection Olive Germplasm Bank of Cordoba. J. Sci. Food Agric. 2016, 96, 4143–4150. [CrossRef]

16. Hatzakis, E.; Koidis, T.; Boskou, D.; Dais, P. Determination of Phospholipids in Olive Oil by 31P NMR Spectroscopy. J. Agric. Food
Chem. 2008, 56, 6232–6240. [CrossRef]

17. Giuffrè, A.M. Wax Ester Variation in Olive Oils Produced in Calabria (Southern Italy) During Olive Ripening. J. Am. Oil Chem.
Soc. 2014, 91, 1355–1366. [CrossRef]

http://doi.org/10.1007/s12161-020-01721-7
http://doi.org/10.1017/S0007114521002919
http://www.ncbi.nlm.nih.gov/pubmed/34338174
http://doi.org/10.1016/j.tifs.2019.02.025
https://www.internationaloliveoil.org/olive-world/olive-oil/
https://www.internationaloliveoil.org/olive-world/olive-oil/
https://www.internationaloliveoil.org/wp-content/uploads/2021/07/COI-T15-NC3-REV-16-2021-_ENG.pdf
http://www.fao.org/input/download/standards/88/CXS_033e_2015.pdf
http://doi.org/10.1002/jssc.200500032
http://doi.org/10.1016/j.snb.2020.127661
http://doi.org/10.3390/foods10051004
http://doi.org/10.1002/jsfa.4075
http://doi.org/10.14674/1120-1770/ijfs.v183
http://doi.org/10.3390/foods10051042
http://www.ncbi.nlm.nih.gov/pubmed/34064592
http://doi.org/10.1007/s13197-014-1309-7
http://www.ncbi.nlm.nih.gov/pubmed/25892814
http://doi.org/10.1002/jsfa.7616
http://doi.org/10.1021/jf800690t
http://doi.org/10.1007/s11746-014-2476-4


Int. J. Mol. Sci. 2023, 24, 3010 15 of 17

18. Angelo Maria Giuffrè The Effect of Cultivar and Harvest Season on the N-Alkane and the n-Alkene Composition of Virgin Olive
Oil. Eur. Food Res. Technol. 2021, 247, 25–36. [CrossRef]

19. Kalua, C.M.; Allen, M.S.; Bedgood, D.R.; Bishop, A.G.; Prenzler, P.D.; Robards, K. Olive Oil Volatile Compounds, Flavour
Development and Quality: A Critical Review. Food Chem. 2007, 100, 273–286. [CrossRef]

20. Lozano-Castellón, J.; López-Yerena, A.; Domínguez-López, I.; Siscart-Serra, A.; Fraga, N.; Sámano, S.; López-Sabater, C.; Lamuela-
Raventós, R.M.; Vallverdú-Queralt, A.; Pérez, M. Extra Virgin Olive Oil: A Comprehensive Review of Efforts to Ensure Its
Authenticity, Traceability, and Safety. Compr. Rev. Food Sci. Food Saf. 2022, 21, 2639–2664. [CrossRef]

21. Marx, Í.M.G.; Casal, S.; Rodrigues, N.; Cruz, R.; Veloso, A.C.A.; Pereira, J.A.; Peres, A.M. Does Water Addition during the
Industrial Milling Phase Affect the Chemical-Sensory Quality of Olive Oils? The Case of Cv. Arbequina Oils. Food Chem. 2022,
395, 133570. [CrossRef]

22. Marx, Í.; Veloso, A.; Dias, L.; Casal, S.; Pereira, J.; Peres, A. Electrochemical Sensor-Based Devices for Assessing Bioactive
Compounds in Olive Oils: A Brief Review. Electronics 2018, 7, 387. [CrossRef]

23. Marx, Í.M.G.; Casal, S.; Rodrigues, N.; Veloso, A.C.A.; Pereira, J.A.; Peres, A.M. Estimating Hydroxytyrosol-Tyrosol Derivatives
Amounts in Cv. Cobrançosa Olive Oils Based on the Electronic Tongue Analysis of Olive Paste Extracts. LWT 2021, 147, 111542.
[CrossRef]

24. Franconi, F.; Coinu, R.; Carta, S.; Urgeghe, P.P.; Ieri, F.; Mulinacci, N.; Romani, A. Antioxidant Effect of Two Virgin Olive Oils
Depends on the Concentration and Composition of Minor Polar Compounds. J. Agric. Food Chem. 2006, 54, 3121–3125. [CrossRef]
[PubMed]

25. Vinha, A.F.; Ferreres, F.; Silva, B.M.; Valentao, P.; Goncalves, A.; Pereira, J.A.; Oliveira, M.B.; Seabra, R.M.; Andrade, P.B. Phenolic
Profiles of Portuguese Olive Fruits (Olea Europaea L.): Influences of Cultivar and Geographical Origin. Food Chem. 2005, 89,
561–568. [CrossRef]

26. Gómez-Rico, A.; Salvador, M.D.; La Greca, M.; Fregapane, G. Phenolic and Volatile Compounds of Extra Virgin Olive Oil (Olea
Europaea L. Cv. Cornicabra) with Regard to Fruit Ripening and Irrigation Management. J. Agric. Food Chem. 2006, 54, 7130–7136.
[CrossRef]

27. Gómez-Alonso, S.; Fregapane, G.; Salvador, M.D.; Gordon, M.H. Changes in Phenolic Composition and Antioxidant Activity of
Virgin Olive Oil during Frying. J. Agric. Food Chem. 2003, 51, 667–672. [CrossRef]

28. Bakhouche, A. Literature Review on Production Process To Obtain Extra Virgin Olive Oil Enriched in Bioactive Compounds.
Potential Use of Byproducts as Alternative Sources of Polyphenols. J. Agric. Food Chem. 2013, 61, 5179–5188.

29. García, A.; Brenes, M.; García, P.; Romero, C.; Garrido, A. Phenolic Content of Commercial Olive Oils. Eur. Food Res. Technol. 2003,
216, 520–525. [CrossRef]

30. Antonini, E.; Farina, A.; Leone, A.; Mazzara, E.; Urbani, S.; Selvaggini, R.; Servili, M.; Ninfali, P. Phenolic Compounds and Quality
Parameters of Family Farming versus Protected Designation of Origin (PDO) Extra-Virgin Olive Oils. J. Food Compos. Anal. 2015,
43, 75–81. [CrossRef]

31. Tasioula-Margari, M.; Tsabolatidou, E. Extraction, Separation, and Identification of Phenolic Compounds in Virgin Olive Oil by
HPLC-DAD and HPLC-MS. Antioxidants 2015, 4, 548–562. [CrossRef]

32. Suárez, M.; Macià, A.; Romero, M.-P.; Motilva, M.-J. Improved Liquid Chromatography Tandem Mass Spectrometry Method for
the Determination of Phenolic Compounds in Virgin Olive Oil. J. Chromatogr. A 2008, 1214, 90–99. [CrossRef]

33. Ríos, J.J.; Gil, M.J.; Gutiérrez-Rosales, F. Solid-Phase Extraction Gas Chromatography-Ion Trap-Mass Spectrometry Qualitative
Method for Evaluation of Phenolic Compounds in Virgin Olive Oil and Structural Confirmation of Oleuropein and Ligstroside
Aglycons and Their Oxidation Products. J. Chromatogr. A 2005, 1093, 167–176. [CrossRef] [PubMed]

34. Gómez Caravaca, A.M.; Carrasco Pancorbo, A.; Cañabate Díaz, B.; Segura Carretero, A.; Fernández Gutiérrez, A. Electrophoretic
Identification and Quantitation of Compounds in the Polyphenolic Fraction of Extra-Virgin Olive Oil. Electrophoresis 2005, 26,
3538–3551. [CrossRef] [PubMed]

35. Christophoridou, S.; Dais, P. Novel Approach to the Detection and Quantification of Phenolic Compounds in Olive Oil Based on
31P Nuclear Magnetic Resonance Spectroscopy. J. Agric. Food Chem. 2006, 54, 656–664. [CrossRef]

36. Mora-Ruiz, M.E.; Reboredo-Rodríguez, P.; Salvador, M.D.; González-Barreiro, C.; Cancho-Grande, B.; Simal-Gándara, J.; Frega-
pane, G. Assessment of Polar Phenolic Compounds of Virgin Olive Oil by NIR and Mid-IR Spectroscopy and Their Impact on
Quality. Eur. J. Lipid Sci. Technol. 2017, 119, 1600099. [CrossRef]

37. Bounegru, A.V.; Apetrei, C. Evaluation of Olive Oil Quality with Electrochemical Sensors and Biosensors: A Review. Int. J. Mol.
Sci. 2021, 22, 12708. [CrossRef]

38. Rodrigues, N.; Marx, Í.M.G.; Dias, L.G.; Veloso, A.C.A.; Pereira, J.A.; Peres, A.M. Monitoring the Debittering of Traditional Stoned
Green Table Olives during the Aqueous Washing Process Using an Electronic Tongue. LWT 2019, 109, 327–335. [CrossRef]

39. Harzalli, U.; Rodrigues, N.; Veloso, A.C.A.; Dias, L.G.; Pereira, J.A.; Oueslati, S.; Peres, A.M. A Taste Sensor Device for Unmasking
Admixing of Rancid or Winey-Vinegary Olive Oil to Extra Virgin Olive Oil. Comput. Electron. Agric. 2018, 144, 222–231. [CrossRef]

40. Martini, E.; Tomassetti, M.; Campanella, L.; Fortuna, A. Reducing the Pollutant Load of Olive Mill Wastewater by Photocatalytic
Membranes and Monitoring the Process Using Both Tyrosinase Biosensor and COD Test. Front. Chem. 2013, 1, 36. [CrossRef]

41. Astolfi, M.L.; Marini, F.; Frezzini, M.A.; Massimi, L.; Capriotti, A.L.; Montone, C.M.; Canepari, S. Multielement Characterization
and Antioxidant Activity of Italian Extra-Virgin Olive Oils. Front. Chem. 2021, 9, 769620. [CrossRef]

http://doi.org/10.1007/s00217-020-03604-x
http://doi.org/10.1016/j.foodchem.2005.09.059
http://doi.org/10.1111/1541-4337.12949
http://doi.org/10.1016/j.foodchem.2022.133570
http://doi.org/10.3390/electronics7120387
http://doi.org/10.1016/j.lwt.2021.111542
http://doi.org/10.1021/jf053003+
http://www.ncbi.nlm.nih.gov/pubmed/16608240
http://doi.org/10.1016/j.foodchem.2004.03.012
http://doi.org/10.1021/jf060798r
http://doi.org/10.1021/jf025932w
http://doi.org/10.1007/s00217-003-0706-3
http://doi.org/10.1016/j.jfca.2015.04.015
http://doi.org/10.3390/antiox4030548
http://doi.org/10.1016/j.chroma.2008.10.098
http://doi.org/10.1016/j.chroma.2005.07.033
http://www.ncbi.nlm.nih.gov/pubmed/16233882
http://doi.org/10.1002/elps.200500202
http://www.ncbi.nlm.nih.gov/pubmed/16167367
http://doi.org/10.1021/jf058138u
http://doi.org/10.1002/ejlt.201600099
http://doi.org/10.3390/ijms222312708
http://doi.org/10.1016/j.lwt.2019.04.024
http://doi.org/10.1016/j.compag.2017.12.016
http://doi.org/10.3389/fchem.2013.00036
http://doi.org/10.3389/fchem.2021.769620


Int. J. Mol. Sci. 2023, 24, 3010 16 of 17

42. Blandon-Naranjo, L.; Alaniz, R.D.; Zon, M.A.; Fernández, H.; Granero, A.M.; Robledo, S.N.; Pierini, G.D. Development of a
Voltammetric Electronic Tongue for the Simultaneous Determination of Synthetic Antioxidants in Edible Olive Oils. Talanta
2022, 124123. [CrossRef] [PubMed]

43. Marx, Í.M.G.; Rodrigues, N.; Veloso, A.C.A.; Casal, S.; Pereira, J.A.; Peres, A.M. Effect of Malaxation Temperature on the
Physicochemical and Sensory Quality of Cv. Cobrançosa Olive Oil and Its Evaluation Using an Electronic Tongue. LWT 2021,
137, 110426. [CrossRef]

44. Rodrigues, N.; Marx, Í.M.G.; Casal, S.; Dias, L.G.; Veloso, A.C.A.; Pereira, J.A.; Peres, A.M. Application of an Electronic Tongue as
a Single-Run Tool for Olive Oils’ Physicochemical and Sensory Simultaneous Assessment. Talanta 2019, 197, 363–373. [CrossRef]

45. Calvini, R.; Pigani, L. Toward the Development of Combined Artificial Sensing Systems for Food Quality Evaluation: A Review
on the Application of Data Fusion of Electronic Noses, Electronic Tongues and Electronic Eyes. Sensors 2022, 22, 577. [CrossRef]
[PubMed]

46. Tarapoulouzi, M.; Agriopoulou, S.; Koidis, A.; Proestos, C.; Enshasy, H.A.E.; Varzakas, T. Recent Advances in Analytical Methods
for the Detection of Olive Oil Oxidation Status during Storage along with Chemometrics, Authenticity and Fraud Studies.
Biomolecules 2022, 12, 1180. [CrossRef] [PubMed]

47. Di Rosa, A.R.; Leone, F.; Cheli, F.; Chiofalo, V. Fusion of Electronic Nose, Electronic Tongue and Computer Vision for Animal
Source Food Authentication and Quality Assessment–A Review. J. Food Eng. 2017, 210, 62–75. [CrossRef]

48. Leon-Medina, J.X.; Acosta-Opayome, D.; Fuenmayor, C.A.; Zuluaga-Domínguez, C.M.; Anaya, M.; Tibaduiza, D.A. Intelligent
Electronic Tongue System for the Classification of Genuine and False Honeys. Int. J. Food Prop. 2023, 26, 327–343. [CrossRef]

49. Apetrei, C. Novel Method Based on Polypyrrole-modified Sensors and Emulsions for the Evaluation of Bitterness in Extra Virgin
Olive Oils. Food Res. Int. 2012, 48, 673–680. [CrossRef]

50. Apetrei, I.M.; Apetrei, C. Detection of Virgin Olive Oil Adulteration Using a Voltammetric E-Tongue. Comput. Electron. Agric.
2014, 108, 148–154. [CrossRef]

51. Bounegru, A.V.; Apetrei, C. Sensitive Detection of Hydroxytyrosol in Extra Virgin Olive Oils with a Novel Biosensor Based on
Single-Walled Carbon Nanotubes and Tyrosinase. Int. J. Mol. Sci. 2022, 23, 9132. [CrossRef]

52. Carmona-Jiménez, Y.; García-Moreno, M.V.; Igartuburu, J.M.; Garcia Barroso, C. Simplification of the DPPH Assay for Estimating
the Antioxidant Activity of Wine and Wine By-Products. Food Chem. 2014, 165, 198–204. [CrossRef]

53. Comuzzo, P.; Battistutta, F.; Vendrame, M.; Páez, M.S.; Luisi, G.; Zironi, R. Antioxidant Properties of Different Products and
Additives in White Wine. Food Chem. 2015, 168, 107–114. [CrossRef]

54. Romanet, R.; Coelho, C.; Liu, Y.; Bahut, F.; Ballester, J.; Nikolantonaki, M.; Gougeon, R.D. The Antioxidant Potential of White
Wines Relies on the Chemistry of Sulfur-Containing Compounds: An Optimized DPPH Assay. Molecules 2019, 24, 1353. [CrossRef]
[PubMed]

55. Munteanu, I.G.; Apetrei, C. Tyrosinase-Based Biosensor—A New Tool for Chlorogenic Acid Detection in Nutraceutical Formula-
tions. Materials 2022, 15, 3221. [CrossRef] [PubMed]

56. Arteaga, J.F.; Ruiz-Montoya, M.; Palma, A.; Alonso-Garrido, G.; Pintado, S.; Rodríguez-Mellado, J.M. Comparison of the Simple
Cyclic Voltammetry (CV) and DPPH Assays for the Determination of Antioxidant Capacity of Active Principles. Mol. Basel Switz.
2012, 17, 5126–5138. [CrossRef] [PubMed]

57. Bendjedid, S.; Lekmine, S.; Tadjine, A.; Djelloul, R.; Bensouici, C. Analysis of Phytochemical Constituents, Antibacterial,
Antioxidant, Photoprotective Activities and Cytotoxic Effect of Leaves Extracts and Fractions of Aloe Vera. Biocatal. Agric.
Biotechnol. 2021, 33, 101991. [CrossRef]

58. Slagman, S.; Zuilhof, H.; Franssen, M.C.R. Laccase-Mediated Grafting on Biopolymers and Synthetic Polymers: A Critical Review.
ChemBioChem 2018, 19, 288–311. [CrossRef]
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