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CLASSIFICATION AND CLUSTERING OF SEQUENCING DATA

USING A POISSON MODEL

BY DANIELA M. WITTEN

University of Washington

In recent years, advances in high throughput sequencing technology have

led to a need for specialized methods for the analysis of digital gene ex-

pression data. While gene expression data measured on a microarray take on

continuous values and can be modeled using the normal distribution, RNA

sequencing data involve nonnegative counts and are more appropriately mod-

eled using a discrete count distribution, such as the Poisson or the negative

binomial. Consequently, analytic tools that assume a Gaussian distribution

(such as classification methods based on linear discriminant analysis and

clustering methods that use Euclidean distance) may not perform as well for

sequencing data as methods that are based upon a more appropriate distribu-

tion. Here, we propose new approaches for performing classification and clus-

tering of observations on the basis of sequencing data. Using a Poisson log

linear model, we develop an analog of diagonal linear discriminant analysis

that is appropriate for sequencing data. We also propose an approach for clus-

tering sequencing data using a new dissimilarity measure that is based upon

the Poisson model. We demonstrate the performances of these approaches in

a simulation study, on three publicly available RNA sequencing data sets, and

on a publicly available chromatin immunoprecipitation sequencing data set.

1. Introduction.

1.1. An overview of RNA sequencing data. Since the late 1990s, a vast liter-

ature has been devoted to quantifying the extent to which different tissue types,

biological conditions, and disease states are characterized by particular patterns

of gene expression, or mRNA levels [examples include DeRisi, Iyer and Brown

(1997), Spellman et al. (1998), Brown and Botstein (1999), Ramaswamy et al.

(2001), Nielsen et al. (2002), Monti et al. (2005)]. During most of that time, the

microarray has been the method of choice for quantifying gene expression. Though

the microarray has led to an improved understanding of many cellular processes

and disease states, the technology suffers from two fundamental limitations:

(1) Cross-hybridization can occur, whereby cDNA hybridizes to a probe for

which it is not perfectly matched. This can lead to high levels of background noise.
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(2) Only transcripts for which a probe is present on the array can be measured.

Therefore, it is not possible to discover novel mRNAs in a typical microarray ex-

periment.

In recent years, high throughput or second generation RNA sequencing has

emerged as a powerful alternative to the microarray for measuring gene expression

[see, e.g., Mortazavi et al. (2008), Nagalakshmi et al. (2008), Wilhelm and Landry

(2009), Wang, Gerstein and Snyder (2009), Pepke, Wold and Mortazavi (2009)].

This technology allows for the parallel sequencing of a large number of mRNA

transcripts. Briefly, RNA sequencing proceeds as follows [Mortazavi et al. (2008),

Morozova, Hirst and Marra (2009), Wang, Gerstein and Snyder (2009), Auer and

Doerge (2010), Oshlack, Robinson and Young (2010)]:

(1) RNA is isolated and fragmented to an average length of 200 nucleotides.

(2) The RNA fragments are converted into cDNA.

(3) The cDNA is sequenced.

This process results in millions of short reads, between 25 and 300 basepairs in

length, usually taken from one end of the cDNA fragments (though some tech-

nologies result in “paired-end” reads). The reads are typically then mapped to

the genome or transcriptome if a suitable reference genome or transcriptome is

available; if not, then de novo assembly may be required [Oshlack, Robinson and

Young (2010)]. The mapped reads can then be pooled into regions of interest. For

instance, reads may be pooled by gene or by exon, in which case the data consist

of nonnegative counts indicating the number of reads observed for each gene or

each exon. In this paper we will assume that mapping and pooling of the raw reads

has already been performed. We will consider RNA data sets that take the form of

n × p matrices, where n indicates the number of samples for which sequencing

was performed, and p indicates the number of regions of interest (referred to as

“features”). The (i, j) element of the data matrix indicates the number of reads

from the ith sample that mapped to the j th region of interest. Sequencing data

are generally very high dimensional, in the sense that the number of features p is

much larger than the number of observations n. Specifically, p is usually on the

order of tens of thousands, if not much larger.

RNA sequencing has some major advantages over the microarray. RNA se-

quencing data should in theory be much less noisy than microarray data, since

the technology does not suffer from cross-hybridization. Moreover, novel tran-

scripts and coding regions can be discovered using RNA sequencing, since unlike

studies performed using microarrays, sequencing experiments do not require pre-

specification of the transcripts of interest. For these reasons, it seems certain that

RNA sequencing is on track to replace the microarray as the technology of choice

for the characterization of gene expression.
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1.2. Statistical models for RNA sequencing data. Two aspects of sequencing

data are especially worth noting, as they result in unique statistical challenges.

(1) Due to artifacts of the sequencing experiment, different samples can have vastly

different total numbers of sequence reads. This issue is generally addressed by

normalizing the samples in some way, for instance, by the total number of reads

observed for each sample [Mortazavi et al. (2008)] or a more robust alternative

[Bullard et al. (2010), Robinson and Oshlack (2010), Anders and Huber (2010)].

Simply dividing the counts for a given sample by a normalization constant may

not be desirable, since the magnitude of the counts may contain information about

the variability in the data. (2) Since a sequencing data set consists of the number

of reads mapping to a particular region of interest in a particular sample, the data

are integer-valued and nonnegative. This is in contrast to microarray data, which is

measured on a continuous scale and can reasonably be modeled using a Gaussian

distribution.

Let X denote a n×p matrix of sequencing data, with n observations (e.g., tissue

samples) and p features (regions of interest; e.g., genes or exons). Xij is the count

for feature j in observation i. For instance, if feature j is a gene, then Xij is the

total number of reads mapping to gene j in observation i. A number of authors

have considered a Poisson log linear model for sequencing data,

Xij ∼ Poisson(Nij ), Nij = sigj(1)

[among others, Marioni et al. (2008), Bullard et al. (2010), Witten et al. (2010),

Li et al. (2011)]. To avoid identifiability issues, one can require
∑n

i=1 si = 1. This

model allows for variability in both the total number of reads per sample (via the si
term) and in the total number of reads per region of interest (via the gj term). Since

biological replicates seem to be overdispersed relative to the Poisson model, some

authors have proposed an extension to (1) involving the use of a negative binomial

model, a natural alternative to the Poisson model that allows for the variance to

exceed the mean [among others, Robinson, McCarthy and Smyth (2010), Anders

and Huber (2010)]. Specifically, one could extend (1) to obtain

Xij ∼ NB(Nij , φj ), Nij = sigj ,(2)

where NB indicates the negative binomial distribution and φj ≥ 0 is the dispersion

parameter for feature j . Throughout this paper, the negative binomial distribution

will be parametrized such that (2) implies that observation Xij has mean Nij and

variance Nij + N2
ijφj . When φj = 0, (2) reduces to (1).

RNA sequencing experiments are often designed such that the n observations

are drawn from K different biological conditions, or classes. To accommodate this

setting, a number of authors have extended (1) and (2) as follows:

Xij |yi = k ∼ Poisson(Nijdkj ), Nij = sigj ,(3)

Xij |yi = k ∼ NB(Nijdkj , φj ), Nij = sigj ,(4)
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where yi indicates the class of the ith observation, yi ∈ {1, . . . ,K}. Here the

d1j , . . . , dKj terms allow the j th feature to be differentially expressed between

classes. [However, as written in (3) and (4), the precise roles of d1j , . . . , dKj are

difficult to interpret because the model is overparametrized. We will address this

point in Section 2.1.] The models (3) and (4) have been used to identify features

that are differentially expressed between conditions [Marioni et al. (2008), Bullard

et al. (2010), Witten et al. (2010), Li et al. (2011), Robinson, McCarthy and Smyth

(2010), Anders and Huber (2010)].

Though the question of how best to identify differentially expressed features

has now been extensively studied, it is just one of many possible scientific ques-

tions that may arise from sequencing data. This paper addresses the following two

problems:

(1) If each sample is associated with a class label, then one might wish to build

a classifier in order to predict the class label of a future observation.

(2) If the samples are unlabeled, one might wish to cluster the samples in order

to identify subgroups among them.

Most of the methods in the statistical literature for classification and clustering im-

plicitly assume a normal distribution for the data. In this paper, due to the nature of

sequencing data, the Poisson log linear models (1) and (3) will be used to accom-

plish these two tasks. The importance of the model used can be seen on a simple

toy example. We generated two-dimensional Poisson distributed random variables

with two different means, each representing a different class. Each dimension was

generated independently. The Bayes-optimal decision boundaries obtained assum-

ing normality and assuming a Poisson distribution are shown in Figure 1.

FIG. 1. Two sets of two-dimensional independent random variables were generated. The first set of

random variables was generated according to the Poisson(10) distribution in each dimension, and

the second set was generated according to the Poisson(28) distribution in each dimension. In each

figure, the two sets of random variables are shown as black and grey circles, after jittering. The grid

in the background of each plot indicates the Bayes-optimal decision boundary, assuming a normal

distribution (left) or a Poisson distribution (right) with the correct mean and variance.
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1.3. Notation and organization. The following additional notation will be

used in this paper. Let xi = (Xi1 · · ·Xip)T denote row i of X, corresponding to the

feature measurements for observation i. Also, X·j = ∑n
i=1 Xij , Xi· = ∑p

j=1 Xij ,

X·· = ∑

i,j Xij . Moreover, in the classification setting where each observation

belongs to one of K classes, we let Ck ⊂ {1, . . . , n} contain the indices of the

observations in class k—that is, yi = k if and only if i ∈ Ck . Furthermore,

XCkj = ∑

i∈Ck
Xij .

The rest of this paper is organized as follows. In Section 2 the model (3) is

presented in greater detail, along with methods for fitting it that are based upon

recent proposals in the literature. This model is used as the basis for the classifier

proposed in Section 3 and as the basis for the clustering method proposed in Sec-

tion 4. In Section 5 the performances of the classification and clustering proposals

are evaluated in a simulation study. The proposals are applied to four sequencing

data sets in Section 6. Section 7 contains the Discussion.

2. A Poisson log linear model for multiple-class sequencing data.

2.1. The model. In this paper sequencing data are modeled using a Poisson

log linear model. However, the proposals in this paper could be extended to the

negative binomial model using techniques developed in Robinson, McCarthy and

Smyth (2010) and Anders and Huber (2010).

The model (1) captures the fact that sequencing data are characterized by high

levels of variation in both the number of counts per sample (si) and the number

of counts per feature (gj ), and (3) additionally allows for the level of expres-

sion of a given feature to depend upon the condition under which it is observed

(d1j , . . . , dKj ). Throughout this paper, we assume that the Xij ’s are independent

of each other for all i = 1, . . . , n, j = 1, . . . , p.

We first consider the problem of fitting the model (1). The maximum likelihood

estimate (MLE) for Nij is N̂ij = Xi·X·j
X··

[Agresti (2002)]. Combining this with the

identifiability constraint that
∑n

i=1 ŝi = 1 yields the estimates ŝi = Xi·/X·· and

ĝj = X·j . We can interpret ŝi as an estimate of the size factor for sample i, reflect-

ing the fact that different samples may have been sequenced to different depths.

A number of authors have used this size factor estimate [Marioni et al. (2008),

Mortazavi et al. (2008)]. Recently, it has been pointed out that Xi·/X·· is not a very

good estimate for si since changes in a few high-count features can have a great

effect on the value of Xi·, skewing any resulting analyses [Bullard et al. (2010),

Robinson and Oshlack (2010), Anders and Huber (2010), Li et al. (2011)]. For this

reason, several more robust estimates for the size factor si have been proposed. In

what follows we will consider three estimates for si :

(1) Total count. We simply use ŝi = Xi·/X··, the total count for the ith obser-

vation, which is based upon the MLE for Nij under the model (1).
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(2) Median ratio. Anders and Huber (2010) propose the use of ŝi = mi/
∑n

i=1 mi , where

mi = medianj

{

Xij

(
∏n

i′=1 Xi′j )
1/n

}

.(5)

That is, the size factor for the ith sample is obtained by computing the median,

over all p features, of the ith sample count for that feature divided by the geometric

mean of all sample counts for that feature.

(3) Quantile. Bullard et al. (2010) propose taking ŝi = qi/
∑n

i=1 qi , where qi is

the 75th percentile of the counts for each sample.

Thus, throughout this paper, we will estimate Nij in (1) according to N̂ij = ŝi ĝj ,

where ŝi is given by one of the methods described above, and ĝj = X·j .

We now consider the problem of fitting the model (3). Since we would like to

attribute as much as possible of the observed variability in the counts for each fea-

ture to sample and feature effects (si and gj ) rather than to class differences (dkj ),

we estimate Nij under the model (1) without making use of the class labels. We

then estimate dkj by treating N̂ij as an offset in the model (3). That is, we fit the

model

Xij |yi = k ∼ Poisson(N̂ijdkj ).(6)

Maximum likelihood provides a natural way to estimate dkj in (6), yielding d̂kj =
XCkj

∑

i∈Ck
N̂ij

. Now d̂kj has a simple interpretation: if d̂kj > 1, then the j th feature is

over-expressed relative to the baseline in the kth class, and if d̂kj < 1, then the j th

feature is under-expressed relative to the baseline in the kth class.

However, if XCkj = 0 (an event that is not unlikely if the true mean for feature

j is small), then the maximum likelihood estimate for dkj equals zero. This can

pose a problem for downstream analyses, since this estimate completely precludes

the possibility of a nonzero count for feature j arising from an observation in

class k. We can remedy this problem by putting a Gamma(β,β) prior on dkj in the

model (6). Here, the shape and rate parameters both equal β . Then, the posterior

distribution for dkj is Gamma(XCkj + β,
∑

i∈Ck
N̂ij + β), and the posterior mean

is

d̂kj = XCkj + β
∑

i∈Ck
N̂ij + β

.(7)

Equation (7) is a smoothed estimate of dkj that behaves well even if XCkj = 0 for

some class k. We took β = 1 in all of the examples shown in this paper.

2.2. A transformation for overdispersed data. A number of authors have ob-

served that, in practice, biological replicates of sequencing data tend to be overdis-

persed relative to the Poisson model, in the sense that the variance is larger than
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the mean. This problem could be addressed by using a different model for the

data, such as a negative binomial model [Robinson, McCarthy and Smyth (2010),

Anders and Huber (2010)]. Instead, we apply a power transformation to the data

[Witten et al. (2010), Li et al. (2011)]. The transformation X′
ij ← Xα

ij is used,

where α ∈ (0,1] is chosen so that

n
∑

i=1

p
∑

j=1

(X′
ij − X′

i·X
′
·j/X

′
··)

2

X′
i·X

′
·j/X

′··
≈ (n − 1)(p − 1).(8)

This is simply a test of the goodness of fit of the model (1) to the data [Agresti

(2002)], using the total count size factor estimate ŝi = X′
i·/X′

··.
Though the resulting transformed data are not integer-valued, we nonetheless

model them using the Poisson distribution. This simple transformation allows us

to use a Poisson model even in the case of overdispersed data, in order to avoid

having to fit a necessarily more complicated negative binomial model (a task made

especially complicated in the typical setting for sequencing data where the num-

ber of samples is small). In Section 5 we show that even when data are generated

according to a negative binomial model with moderate overdispersion, the classi-

fication and clustering proposals based on the Poisson model perform well on the

transformed data.

3. A proposal for classifying sequencing data.

3.1. The Poisson linear discriminant analysis classifier. Suppose that we wish

to classify a test observation x∗ = (X∗
1 · · ·X∗

p)T on the basis of training data

{(xi, yi)}ni=1. Let y∗ denote the unknown class label. By Bayes’ rule,

P(y∗ = k|x∗) ∝ fk(x
∗)πk,(9)

where fk is the density of an observation in class k and πk is the prior probabil-

ity that an observation belongs to class k. If fk is a normal density with a class-

specific mean and common covariance, then assigning an observation to the class

for which (9) is largest results in standard LDA [for a reference, see Hastie, Tibshi-

rani and Friedman (2009)]. If we instead assume that the observations are normally

distributed with a class-specific mean and a common diagonal covariance matrix,

then diagonal LDA results [Dudoit, Fridlyand and Speed (2001)]. The assumption

of normality is not appropriate for sequencing data, and neither is the assumption

of a common covariance matrix for the K classes. We instead assume that the data

arise from the model (3), and we also assume that the features are independent.

The assumption of independence is often made for high-dimensional continuous

data [e.g., see Dudoit, Fridlyand and Speed (2001), Tibshirani et al. (2002, 2003),

Bickel and Levina (2004), Witten and Tibshirani (2011)] since when p > n, there

are too few observations available to be able to effectively estimate the dependence

structure among the features.



2500 D. M. WITTEN

Evaluating (9) requires estimation of fk(x
∗) and πk . The model (3) states that

X∗
j |y∗ = k ∼ Poisson(s∗gjdkj ). We first estimate s1, . . . , sn, the size factors for

the training data, using the total count, quantile, or median ratio approaches (Sec-

tion 2.1). We then estimate gj and dkj by evaluating ĝj = X·j and (7) on the

training data. Finally, we estimate s∗ as follows:

• If the total count estimate for the size factors was used, then ŝ∗ = ∑p
j=1 X∗

j /X··,
where X·· is the total number of counts on the training data.

• If the median ratio estimate for the size factors was used, then ŝ∗ = m∗/
∑n

i=1 mi , where m∗ = medianj {
X∗

j

(
∏n

i=1 Xij )1/n }—note that the denominator is the

geometric mean for the j th feature among the training observations. Here mi is

given by (5).

• If the quantile estimate for the size factors was used, then ŝ∗ = q∗/
∑n

i=1 qi .

Here, q∗ is the 75th percentile of counts for the test observation, and qi is the

75th percentile of counts for the ith training observation.

Note that these estimates of s∗ are the direct extensions of the size factor estimates

presented in Section 2.1, applied to the test observation x∗.

We now consider the problem of estimating πk . We could let π̂1 = · · · = π̂K =
1/K , corresponding to the prior that all classes are equally likely. Alternatively,

we could let π̂k = |Ck|/n, if we believe that the proportion of observations in each

class seen in the training set is representative of the proportion in the population.

In the examples presented in Sections 5 and 6, we take π̂1 = · · · = π̂K = 1/K .

Plugging these estimates into (3) and recalling our assumption of independent

features, (9) yields

log ̂P(y∗ = k|x∗) = log f̂k(x
∗) + log π̂k + c

(10)

=
p

∑

j=1

X∗
j log d̂kj − ŝ∗

p
∑

j=1

ĝj d̂kj + log π̂k + c′,

where c and c′ are constants that do not depend on the class label. Only the first

term in (10) involves the individual feature measurements for the test observa-

tion x∗. Therefore, the classification rule that assigns the test observation to the

class for which (10) is largest is linear in x∗. For this reason, we call this classifier

Poisson linear discriminant analysis (PLDA). This name reflects the linearity of

the classifier, as well as the fact that it differs from standard LDA only in its use of

a Poisson model for the data.

3.2. The sparse PLDA classifier. PLDA’s classification rule (10) is quite sim-

ple, in that it is linear in the components of x∗. But when the estimate (7) is used

for dkj , then d̂kj �= 1 in general and so the classification rule (10) involves all p

features. For sequencing data, p may be quite large, and a classifier that involves
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only a subset of the features is desirable in order to achieve increased interpretabil-

ity and reduced variance. By inspection, the classification rule (10) will not involve

the data for feature j if d̂1j = · · · = d̂Kj = 1. We obtain a classification rule that is

sparse in the features by using the following estimate for dkj in (10), which shrinks

the estimate (7) toward 1:

d̂kj =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

a

b
− ρ√

b
, if

√
b

(

a

b
− 1

)

> ρ,

a

b
+ ρ√

b
, if

√
b

(

1 − a

b

)

> ρ,

1, if
√

b

∣

∣

∣

∣

1 − a

b

∣

∣

∣

∣

< ρ,

(11)

where a = XCkj + β and b = ∑

i∈Ck
N̂ij + β . Here, ρ is a nonnegative tuning

parameter that is generally chosen by cross-validation. When ρ = 0, (11) is simply

the estimate (7). As ρ increases, so does the number of estimates (11) that are

exactly equal to 1. Using the estimate (11) in the PLDA classifier (10) yields sparse

PLDA (sPLDA). The operation (11) can be written more concisely as d̂kj = 1 +
S(a/b − 1, ρ/

√
b), where S is the soft-thresholding operator, given by S(x, a) =

sign(x)(|x| − a)+. Note that the form of (11) combined with the definition of b

implies that if class k contains few observations, or if the mean for class k in

feature j is small, then the estimate for dkj will undergo greater shrinkage.

Sparse PLDA is closely related to the nearest shrunken centroids (NSC) classi-

fier [Tibshirani et al. (2002, 2003)], which is a variant of diagonal LDA that arises

from shrinking the class-specific mean vectors toward a common mean using the

soft-thresholding operator. In fact, sPLDA arises from replacing the normal model

that leads to NSC with the Poisson model (3). For this reason, NSC is a natural

method against which to compare sPLDA.

4. A proposal for clustering sequencing data.

4.1. Poisson dissimilarity. We now consider the problem of computing a n×n

dissimilarity matrix for n observations for which sequencing measurements are

available. For microarray data, squared Euclidean distance is a common choice

of dissimilarity measure. Another popular choice, correlation-based distance, is

equivalent to squared Euclidean distance up to a scaling of the observations

[Hastie, Tibshirani and Friedman (2009)]. Squared Euclidean distance can be de-

rived as the consequence of performing hypothesis testing on a simple Gaussian

model for the data. That is, consider the model

Xij ∼ N(µij , σ
2), Xi′j ∼ N(µi′j , σ

2),(12)

where we assume that the features and observations are independent. Consider

testing the null hypothesis H0 :µij = µi′j , j = 1, . . . , p, against Ha , which states
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that µij and µi′j are unrestricted. The resulting log likelihood ratio statistic is

proportional to

p
∑

j=1

(

Xij − Xij + Xi′j

2

)2

+
p

∑

j=1

(

Xi′j − Xij + Xi′j

2

)2

∝
p

∑

j=1

(Xij − Xi′j )
2

(13)
= ‖xi − xi′‖2.

Therefore, squared Euclidean distance is equivalent to a log likelihood ratio statis-

tic for each pair of observations, under a Gaussian model for the data.

Now, as discussed earlier, the model (12) does not seem appropriate for se-

quencing data. Instead, consider the model

Xij ∼ Poisson(Nijdij ), Xi′j ∼ Poisson(Ni′jdi′j ),
(14)

Nij = sigj , Ni′j = si′gj ,

where we assume that the features are independent. This is simply the model (3),

restricted to xi and xi′ . We first estimate Nij ,Ni′j under the simpler model

Xij ∼ Poisson(Nij ), Xi′j ∼ Poisson(Ni′j ),
(15)

Nij = sigj , Ni′j = si′gj

as described in Section 2.1—using total count, quantile, or median ratio size factor

estimates—but restricted to xi and xi′ . We then test the null hypothesis H0 :dij =
di′j = 1, j = 1, . . . , p, against the alternative Ha , which states that dij and di′j are

nonnegative. The resulting log likelihood ratio statistic can be used as a measure

of dissimilarity between xi and xi′ . A standard log likelihood ratio statistic would

involve computing the maximum likelihood estimates for dij and di′j under Ha .

However, to avoid the estimate d̂ij = 0 if Xij = 0, we instead compute a modified

log likelihood ratio statistic: we evaluate the log likelihood under Ha using the

estimates

d̂ij = Xij + β

N̂ij + β
, d̂i′j = Xi′j + β

N̂i′j + β
,(16)

which are the posterior means for dij and di′j under Gamma(β,β) priors. The

resulting modified log likelihood ratio statistic is

p
∑

j=1

(N̂ij + N̂i′j − N̂ij d̂ij − N̂i′j d̂i′j + Xij log d̂ij + Xi′j log d̂i′j ).(17)

Then (17) can be thought of as the dissimilarity between xi and xi′ under the

model (3). The dissimilarity between two identical observations is 0, and all dis-

similarities are nonnegative (see the Appendix). We will refer to the n × n dissim-

ilarity matrix with (i, j) element given by (17) as the Poisson dissimilarity matrix.
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Hierarchical clustering is a very popular approach for clustering in genomics

since it leads to a visual representation of the data and does not require prespecify-

ing the number of clusters. Hierarchical clustering operates on a n×n dissimilarity

matrix, and can be performed using the Poisson dissimilarity matrix. We will refer

to the clustering obtained using this dissimilarity matrix as Poisson clustering.

To obtain a p×p Poisson dissimilarity matrix of the features rather than a n×n

dissimilarity matrix of the observations, one could use a Poisson model and repeat

the arguments in this section, reversing the roles of observations and features in

each of the relevant equations. One could then use this dissimilarity matrix in order

to perform Poisson clustering of the features.

4.2. Alternative approaches for clustering count data. We briefly review some

approaches from the literature for computing dissimilarity matrices or performing

clustering using count data.

Serial analysis of gene expression (SAGE) is a sequencing-based method for

gene expression profiling that predates RNA sequencing [Wang (2007)]. In SAGE

a prespecified region of the RNA transcript is sequenced, and so the ability to de-

tect previously unknown RNA transcripts is somewhat limited. Cai et al. (2004)

propose a procedure for performing K-means clustering of SAGE data using a

Poisson model. Though their approach focuses on clustering features (known as

tags in the context of SAGE data) rather than observations, their approach is fun-

damentally very similar to the one proposed here in that a Poisson model is used

and deviations from the Poisson model (measured using a chi-squared statistic or

the log likelihood) are taken as an indication that two tags are different from each

other and hence belong in different clusters. They propose to fit the Poisson model

using the maximum likelihood parameter estimates, which is analogous to using

total count size factor estimates in our model. They fit the Poisson model using

all n observations at once rather than separately for each pair of observations as

in (15). In our experience, fitting the model separately for each pair of observations

leads to better results. Their approach yields a prespecified number of clusters K ,

whereas ours yields a dissimilarity matrix that can be hierarchically clustered to

obtain any number of clusters, or used for other purposes.

Berninger et al. (2008) propose a method for computing a dissimilarity matrix

using sequencing data that is also very closely related to ours. They assume that

each observation is drawn from a multinomial distribution, and they test whether or

not the multinomial parameters for each pair of observations are equal. This is al-

most identical to our Poisson model and associated hypothesis testing framework,

since if the observations are distributed according to (14), then their distribution

conditional on Xi·, Xi′· is multinomial. In fact, the log likelihood ratio statistics

under our model and theirs are identical for certain very natural estimates of Nij ,

Ni′j , dij , and di′j in (17) (see the Appendix). However, there are some important

differences between the two proposals. Berninger et al. (2008) place a Dirichlet

prior on the parameters for the multinomial distribution, and then use a Bayes
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factor as a measure of the dissimilarity between two observations. Consequently,

two identical observations can have nonzero dissimilarity according to Berninger

et al. (2008), and two different observations can have smaller dissimilarity than two

identical observations. This leads to problems in the interpretation of their dissim-

ilarity measure as well as in the performance of any clustering approach that is

based upon it. Finally, their approach can suffer from numerical issues where the

computed dissimilarity between a pair of observations rounds to zero.

The edgeR software package, available from Bioconductor [Robinson,

McCarthy and Smyth (2010)], provides a tool for measuring the dissimilarity be-

tween a pair of observations based upon a negative binomial model. The q fea-

tures with highest feature-wise dispersion across all n samples are selected, and

the common dispersion of those q features for each pair of observations is used as

a measure of pairwise dissimilarity.

Finally, Anders and Huber (2010) propose a variance-stabilizing transformation

based on the negative binomial model, and suggest performing standard clustering

procedures on the transformed data—for instance, one could perform hierarchi-

cal clustering after computing the squared Euclidean distances between the trans-

formed observations.

In Sections 5 and 6 we compare our clustering proposal to these competing

approaches. Details of the approaches used in the comparisons are given in Table 1.

5. A simulation study.

5.1. Simulation setup. We generated data under the model

Xij |yi = k ∼ NB(sigjdkj , φ),(18)

where φ is the dispersion parameter for the negative binomial distribution. There-

fore, given that yi = k, Xij has mean sigjdkj and variance sigjdkj + (sigjdkj )
2φ.

We tried three values of φ :φ = 0.01 (very slight overdispersion), φ = 0.1

(substantial overdispersion), and φ = 1 (very high overdispersion). There were

K = 3 classes. The size factors are independent and identically distributed,

si ∼ Unif(0.2,2.2). The gj ’s are independent and identically distributed, gj ∼
Exp(1/25). Each of the p = 10,000 features had a 30% chance of being differen-

tially expressed between classes. If a feature was not differentially expressed, then

d1j = d2j = d3j = 1. If a feature was differentially expressed, then logdkj = zkj

where the zkj ’s are independent and identically distributed, zkj ∼ N(0, σ 2). The

value of σ depended on the simulation and is specified in Tables 2 and 3 below.

5.2. Evaluation of sparse PLDA. We considered three classifiers:

(1) NSC [Tibshirani et al. (2002, 2003)] after dividing each observation by a

size factor estimate.



CLASSIFICATION AND CLUSTERING OF SEQUENCING DATA 2505

TABLE 1

Summary of approaches for computing dissimilarity measures

Method Description

EdgeR A proposal in the edgeR software package, based on a negative bino-

mial model [Robinson, McCarthy and Smyth (2010)]. The dissim-

ilarity between a pair of observations is computed as the common

dispersion of the 500 features with the highest feature-wise disper-

sion across all n samples.

Berninger An approach for computing dissimilarities between pairs of obser-

vations, using a multinomial model with a Dirichlet prior [Berninger

et al. (2008)].

VST A variance stabilizing transformation (VST) based on a negative bi-

nomial model [Anders and Huber (2010)] is applied to the data, and

then squared Euclidean distances between pairs of observations are

computed.

Sq. Euclidean total count Squared Euclidean distances are computed after scaling each sample

by the total count size factor estimate (Section 2.1).

Sq. Euclidean quantile Squared Euclidean distances are computed after scaling each sam-

ple by the quantile size factor estimate [Section 2.1; Bullard et al.

(2010)].

Sq. Euclidean median ratio Squared Euclidean distances are computed after scaling each sample

by the median ratio size factor estimate [Section 2.1; Anders and

Huber (2010)].

Poisson total count The data are transformed as in Section 2.2. Then Poisson dissimi-

larity is computed according to (17) using the total count size factor

estimate (Section 2.1).

Poisson quantile The data are transformed as in Section 2.2. Then Poisson dissimi-

larity is computed according to (17) using the quantile size factor

estimate [Section 2.1; Bullard et al. (2010)].

Poisson median ratio The data are transformed as in Section 2.2. Then Poisson dissimilar-

ity is computed according to (17) using the median ratio size factor

estimate [Section 2.1; Anders and Huber (2010)].

(2) NSC after dividing each observation by a size factor estimate, and then

transforming as follows: X′
ij ←

√

Xij + 3/8. This transformation should make

Poisson random variables have approximately constant variance [Anscombe

(1948)].

(3) sPLDA after performing the power transformation described in Section 2.2.

For each classifier, three size factor estimates were used: total count, quantile, and

median ratio. These are described in Section 2.1. Therefore, a total of nine classi-

fication methods were considered. Results are shown in Table 2. sPLDA performs
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TABLE 2

Simulation results: nine classification methods. NSC, NSC on
√

Xij + 3/8, and sPLDA were performed, using three different size factor estimates: total

count (TC), quantile (Q), and median ratio (MR). Cross-validation was performed on a training set of n observations, and error rates were computed on

n test observations. We report the mean numbers of test errors and nonzero features over 50 simulated data sets. Standard errors are in parentheses

n φ σ Method NSC err. NSC sqrt err. sPLDA err. NSC nonzero NSC sqrt nonzero sPLDA nonzero

12 0.01 0.05 TC 4.18 (0.34) 5.74 (0.28) 2.24 (0.26) 1947.6 (441.3) 2217.9 (509.0) 791.4 (111.7)

Q 4.38 (0.34) 5.82 (0.26) 2.26 (0.25) 1670.6 (394.5) 2010.1 (478.2) 782.3 (110.0)

MR 4.28 (0.34) 5.78 (0.27) 2.20 (0.24) 1731.8 (402.6) 2327.8 (517.9) 795.4 (110.8)

50 0.01 0.025 TC 19.14 (0.67) 24.06 (0.70) 16.84 (0.55) 2316.6 (398.8) 3122.5 (516.6) 1830.7 (217.9)

Q 20.32 (0.71) 24.82 (0.70) 17.14 (0.56) 1870.7 (335.2) 3380.9 (519.4) 1860.2 (229.6)

MR 19.66 (0.69) 24.48 (0.69) 16.88 (0.60) 2488.7 (437.8) 2698.7 (513.4) 1934.9 (224.5)

12 0.1 0.1 TC 2.52 (0.31) 2.66 (0.26) 1.58 (0.25) 5143.2 (527.2) 2738.5 (461.2) 3878.2 (369.4)

Q 2.12 (0.27) 2.68 (0.26) 1.62 (0.26) 5207.0 (536.8) 2879.8 (456.7) 3927.2 (371.7)

MR 2.28 (0.29) 2.88 (0.28) 1.60 (0.26) 4849.4 (531.2) 2932.0 (477.3) 3889.2 (368.6)

50 0.1 0.05 TC 16.80 (0.54) 17.76 (0.61) 17.94 (0.70) 3802.5 (408.1) 3785.5 (418.1) 3308.5 (355.1)

Q 17.08 (0.64) 17.16 (0.60) 17.88 (0.65) 4293.2 (479.1) 3921.5 (371.8) 3284.0 (352.8)

MR 16.78 (0.59) 17.34 (0.66) 17.96 (0.71) 3475.3 (392.4) 4398.3 (457.0) 3489.3 (371.9)

12 1 0.2 TC 3.24 (0.25) 4.28 (0.35) 4.26 (0.32) 8846.2 (380.7) 6127.8 (524.6) 4502.0 (509.9)

Q 3.20 (0.23) 4.04 (0.33) 4.08 (0.29) 8991.8 (318.8) 6342.1 (557.6) 4551.7 (512.1)

MR 3.22 (0.26) 3.60 (0.30) 4.00 (0.31) 8389.0 (396.4) 7082.7 (515.5) 4518.9 (514.6)

50 1 0.1 TC 25.56 (0.61) 25.80 (0.55) 25.66 (0.50) 4237.8 (503.5) 4293.5 (495.9) 3150.5 (433.0)

Q 25.82 (0.61) 25.90 (0.64) 26.02 (0.55) 4629.1 (516.2) 4170.5 (491.7) 3131.2 (406.6)

MR 25.92 (0.68) 25.86 (0.59) 25.52 (0.51) 4427.5 (524.0) 4362.6 (498.0) 3156.8 (410.4)
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TABLE 3

Simulation results: ten clustering methods. Complete-linkage hierarchical clustering was applied to

the nine dissimilarity measures described in Table 1, and each dendrogram was cut in order to

obtain three clusters. The proposal of Cai et al. (2004) is also included; this required specifying

K = 3. Mean CERs over 50 simulated data sets are reported, with standard errors in

parentheses. The Poisson-based measures perform quite well when overdispersion is low,

but tend to be outperformed by EdgeR in the presence of substantial overdispersion

φ σ Method Clustering error rate

0.01 0.15 Cai 0.3592 (0.0071)

Berninger 0.5704 (0.0173)

EdgeR 0.0000 (0.0000)

VST 0.6201 (0.0029)

Squared Euclidean total count 0.5675 (0.0191)

Squared Euclidean quantile 0.5662 (0.0215)

Squared Euclidean median ratio 0.5755 (0.0178)

Poisson total count 0.0045 (0.0045)

Poisson quantile 0.0057 (0.0047)

Poisson median ratio 0.0045 (0.0045)

0.1 0.2 Cai 0.3803 (0.0058)

Berninger 0.1905 (0.0258)

EdgeR 0.0000 (0.0000)

VST 0.6204 (0.0029)

Squared Euclidean total count 0.3051 (0.0327)

Squared Euclidean quantile 0.2875 (0.0325)

Squared Euclidean median ratio 0.3297 (0.0350)

Poisson total count 0.2053 (0.0225)

Poisson quantile 0.2067 (0.0228)

Poisson median ratio 0.2006 (0.0219)

1 0.5 Cai 0.3797 (0.0063)

Berninger 0.5309 (0.0143)

EdgeR 0.0098 (0.0054)

VST 0.6058 (0.0089)

Squared Euclidean total count 0.1630 (0.0242)

Squared Euclidean quantile 0.2190 (0.0235)

Squared Euclidean median ratio 0.1998 (0.0305)

Poisson total count 0.2699 (0.0255)

Poisson quantile 0.2699 (0.0255)

Poisson median ratio 0.2749 (0.0254)

quite well when there is little overdispersion relative to the Poisson model—that

is, when the dispersion parameter, φ, in the model (18) is small. The performance

of sPLDA relative to NSC deteriorates when the data are very overdispersed rela-

tive to the Poisson model. Moreover, the square root transformation on the whole

seemed to lead to substantially worse results for the NSC classifier.
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Interestingly, the choice of size factor estimate (total count, quantile, or me-

dian ratio) seems to have little effect on the classifiers’ performances, despite the

fact that the choice of estimate has been found to play a critical role in the de-

tection of differentially expressed features [Bullard et al. (2010), Robinson and

Oshlack (2010), Anders and Huber (2010)]. This is likely because the size factor

estimates yield very different results primarily in the setting where a subset of the

features containing a large proportion of the counts are highly differentially ex-

pressed. However, in such a setting, classification tends to be quite easy. In more

challenging classification settings in which differentially expressed features have

fewer counts and display smaller differences between classes, such as in Table 2,

the effect of the size factor estimate appears to play a less important role.

5.3. Evaluation of Poisson clustering. We compare the performances of ten

clustering proposals: the K-means clustering proposal of Cai et al. (2004) which

assumes a Poisson model, as well as complete-linkage hierarchical clustering ap-

plied to the nine dissimilarity measures described in Section 4.2. Cai et al.’s (2004)

proposal was performed with K = 3 (the true number of clusters), and the hier-

archical clustering dendrograms for the other methods were cut at a height that

resulted in three clusters.

To evaluate the performances of these clustering methods, we use the clustering

error rate (CER), which measures the extent to which two partitions P and Q of a

set of n observations disagree. Let 1P(i,i′) be an indicator for whether observations

i and i′ are in the same group in partition P , and define 1Q(i,i′) analogously. Then

CER is defined as
∑

i>i′

∣

∣1P(i,i′) − 1Q(i,i′)
∣

∣

/

(

n

2

)

.(19)

This is also one minus the Rand Index [Rand (1971)]. We took P to be the true

class labels and Q to be the class labels estimated via clustering; a small value

indicates an accurate clustering.

Simulation study results with n = 25 observations are shown in Table 3. The

Poisson clustering proposed in this paper performs well for the full range of

overdispersion parameters considered. This is in part because the transformation

described in Section 2.2 makes the data approximately Poisson even when the

overdispersion parameter φ is large. Even though the method of Berninger et al.

(2008) is based on a model that is very similar to ours, it exhibits worse perfor-

mance. This is likely due to numerical issues with their proposal whereby two dif-

ferent observations can have zero dissimilarity and two identical observations can

have nonzero dissimilarity. It is difficult to compare the Poisson-based proposal of

Cai et al. (2004) directly to the other nine since it uses a K-means approach, where

the number of clusters must be specified in advance. Moreover, the proposals of

Berninger et al. (2008) and Cai et al. (2004) do not entail first performing a power

transformation on the data.
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In Table 3 the EdgeR dissimilarity measure exhibited essentially the same per-

formance as our Poisson clustering measure when φ = 0.01, and better perfor-

mance in the presence of moderate or severe overdispersion. However, it is quite

computationally intensive. The example shown in Table 3 contains only 25 obser-

vations because running EdgeR using the Bioconductor package provided by

the authors [Robinson, McCarthy and Smyth (2010)] is too slow for larger values

of n. For instance, on a simulated example with n = 50 and p = 10,000, it took

6 minutes to compute the dissimilarity matrix on a AMD Opteron 848 2.20 GHz

processor. In contrast, computing the Poisson dissimilarity matrix on the same ex-

ample took 14 seconds.

In summary, the Poisson dissimilarity measure outperforms all of the methods

besides EdgeR. EdgeR is the overall winner, but is much more computationally

demanding.

6. Application to sequencing data sets.

6.1. Data sets. We present results based on four data sets. The first three are

RNA sequencing data sets, and the fourth is a chromatin immunoprecipitation

(ChIP) sequencing data set intended as a preliminary assessment of the extent to

which the methods proposed here can be applied to other types of sequencing data.

Liver and kidney. An RNA sequencing data set quantifying the expression of

22,925 genes [Marioni et al. (2008)]. There are seven technical replicates from

a liver sample and seven technical replicates from a kidney sample, each from

a single human male. The liver and kidney samples are treated as two separate

classes. The data are available as a Supplementary File associated with Marioni

et al. (2008).

Yeast. An RNA sequencing data set consisting of replicates of Saccharomyces

cerevisiae (yeast) cultures [Nagalakshmi et al. (2008)]. Three replicates were ob-

tained for each of two library preparation protocols, “random hexamer” (RH) and

“oligo(dT)” (dT). For each library preparation protocol, there is an “original” repli-

cate, a “technical” replicate of that original replicate, and also a “biological” repli-

cate. The number of reads mapping to each of 6,874 genes is available as a Sup-

plementary File associated with Anders and Huber (2010). In the analysis that

follows, we treat the RH and dT library preparations as two distinct classes.

Cervical cancer. An RNA sequencing data set quantifying the expression of

microRNAs in tumor and nontumor human cervical tissue samples [Witten et al.

(2010)]. MicroRNAs are small RNAs, 18–30 nucleotides in length, that have been

shown to play an important regulatory role in a number of biological processes.

The data take the form of 29 tumor and 29 nontumor cervical tissue samples with

measurements on 714 microRNAs. Of the tumor samples, 6 are adenocarcinomas

(ADC), 21 are squamous cell carcinomas (SCC), and 2 are unclassified. The two

unclassified samples are excluded from the analysis. Normal, ADC, and SCC are
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treated as three separate classes. The data are available from Gene Expression

Omnibus [Barrett et al. (2005)] under accession number GSE20592. Since this is a

small RNA data set, the experimental protocol differs slightly from the description

in Section 1.1: small RNAs were isolated before being converted to cDNA, which

was then amplified and sequenced. As pointed out by a reviewer, Linsen et al.

(2009) found that small RNA digital gene expression profiling is biased toward

certain small RNAs, and so small RNA sequencing data sets cannot be used to

accurately determine absolute numbers of small RNAs. However, this bias is sys-

tematic and reproducible, and so small RNA sequencing data sets can be used to

determine relative expression differences between samples. The classification and

clustering proposals in this paper rely on relative rather than absolute expression

differences in the sense that accurate classification or clustering can be performed

even if certain small RNAs contain a disproportionately large number of counts

relative to the true abundance in the original sample.

Transcription factor binding. ChIP sequencing is a new approach for mapping

protein-DNA interactions at a genome-wide level that relies upon recently devel-

oped techniques for high throughput DNA sequencing [Johnson et al. (2007)]. Like

RNA sequencing, the results of a ChIP sequencing experiment can be arranged as

a n×p matrix with n observations and p features. The features represent the DNA

binding regions for a protein of interest, and the (i, j) element of the data matrix

indicates the number of times that the protein was observed to bind to the j th

binding region in the ith sample. In Kasowski et al. (2010), the binding sites of

RNA polymerase II were mapped in each of ten individuals. 19,061 binding re-

gions were identified, each of which was treated as a distinct feature. At least three

replicates were available for each individual, and there were 39 observations in

total. This data are available as a Supplementary File associated with Anders and

Huber (2010). In what follows, we treat each of the ten individuals as a distinct

class.

6.2. Evaluation of sparse PLDA. A total of nine classification methods were

compared: NSC, NSC on
√

Xij + 3/8, and sPLDA, each with three different size

factor estimates. Details are given in Section 5.2. These methods were applied

to the four data sets described in Section 6.1. Results on the cervical cancer and

transcription factor binding data sets are shown in Figure 2. Results for the liver

and kidney data and the yeast data are not shown since on those two data sets,

all methods gave 0 cross-validation errors for all of the tuning parameter values

considered.

6.3. Evaluation of Poisson clustering. We clustered the observations in each

of the four data sets described in Section 6.1. Eight dissimilarity measures were

used to perform complete-linkage hierarchical clustering (Table 1). The liver and

kidney data resulted in a perfect clustering by all methods of comparison (results
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FIG. 2. A comparison of classification methods on the cervical cancer data of Witten et al. (2010)

and the transcription factor binding data of Kasowski et al. (2010). NSC, NSC on the square root

transformed data, and sPLDA were performed each with three distinct size factor estimates—total

count, quantile [Bullard et al. (2010)], and median ratio [Anders and Huber (2010)], each of which

is described in Section 2.1. Five-fold cross-validation was performed. The resulting cross-validation

error curves are shown as a function of the number of features included in the classifier. Results for

the yeast data of Nagalakshmi et al. (2008) and the liver and kidney data of Marioni et al. (2008) are

not shown because all methods gave 0 cross-validation errors for all of the tuning parameter values

considered.

not shown). The cervical cancer, yeast, and transcription factor binding results are

shown in Figures 3, 4 and 5. The cervical cancer data are challenging: the Pois-

son dissimilarity measures are best able to distinguish between tumor and non-

FIG. 3. Complete-linkage hierarchical clustering dendrograms obtained by computing eight dis-

similarity measures on the cervical cancer data of Witten et al. (2010). The dissimilarity measures

are described in Table 1. Normal samples are shown as red solid lines, ADC as blue dotted lines, and

SCC as green dashed lines. The Poisson-based approaches seem to do the best job of separating the

normal samples from the tumor samples.
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FIG. 4. Complete-linkage hierarchical clustering dendrograms obtained by computing eight dis-

similarity measures on the yeast data of Nagalakshmi et al. (2008). The dissimilarity measures are

described in Table 1. The dT samples are shown in red and RH samples are in green. The three meth-

ods based on Euclidean distance and the three methods based on Poisson dissimilarity give the most

accurate dendrograms on this data, since they successfully group the dT samples together.

tumor samples, but no method is able to convincingly distinguish between ADC

and SCC (Figure 3). For the yeast data, all methods but EdgeR and VST yield

essentially the same dendrogram—one RH sample appears to be distinct from all

the other samples, but the remaining RH and dT samples are quite distinct. For

that data, EdgeR and VST yield different (and presumably worse) clusterings. The

transcription factor binding data are the most complex since there are ten groups

FIG. 5. Complete-linkage hierarchical clustering dendrograms obtained by computing eight dis-

similarity measures on the transcription factor binding data of Kasowski et al. (2010). The dissimi-

larity measures are described in Table 1. Replicates from each of the ten individuals are shown in a

different color.
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FIG. 6. For each of the eight dissimilarity measures described in Table 1, the figure displays the

CERs that result from cutting the complete linkage hierarchical clustering dendrogram at various

cutpoints.

(one per individual). There is no clear winner, but EdgeR seems to perform quite

well (Figure 5). The CERs for each dendrogram can be found in Figure 6.

7. Discussion. In this paper we have proposed approaches for the classifica-

tion and clustering of sequencing data. As sequencing technologies become in-

creasingly widespread, the importance of statistical methods that are well suited

to this type of data will increase. The approaches proposed in this paper were de-

signed for RNA sequencing data, but could likely be extended to other sequencing

technologies such as DNA and ChIP sequencing. In fact, an application to ChIP

sequencing data was presented in Section 6.

The methods proposed in this paper follow naturally from a simple Poisson log

linear model (3) for sequencing data. Similar approaches could be taken using an

alternative model, for instance, one based on the negative binomial distribution.

The methods proposed seem to work very well if the true model for the data is

Poisson or if there is mild overdispersion relative to the Poisson model. Perfor-

mance degrades in the presence of severe overdispersion. Most sequencing data

seem to be somewhat overdispersed relative to the Poisson model. It may be that

extending the approaches proposed here to the negative binomial model could re-

sult in improved performance in the presence of overdispersion.

A number of authors have proposed detecting differentially expressed features

in sequencing data by making inference on a Poisson log linear model [see, e.g.,

Marioni et al. (2008), Bullard et al. (2010), Li et al. (2011)]. In this paper we have

used such a model to develop proposals for classification and clustering. However,

many other types of inference based on sequencing data are likely to be of interest

in the future. For instance, in a recent paper, Lee, Huang and Hu (2010) proposed a

method for performing principal components analysis (PCA) for high-dimensional

binary data. In a similar vein, one could develop an approach for PCA for sequenc-

ing data using the Poisson log linear model (1). We leave this as a topic for further

research.
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It has been shown that the manner in which samples are normalized is of great

importance in identifying differentially expressed features on the basis of sequenc-

ing data [Bullard et al. (2010), Robinson and Oshlack (2010), Anders and Huber

(2010)]. However, in Sections 5 and 6, the normalization approach appeared to

have little effect on the results obtained. This seems to be due to the fact that the

choice of normalization approach is most important when a few features with very

high counts are differentially expressed between classes. In that case, identifica-

tion of differentially expressed features can be challenging, but classification and

clustering are quite straightforward.

It is known that RNA-sequencing data suffer from transcript length bias—that

is, longer transcripts tend to result in a greater number of reads, resulting in an

increased tendency to call such transcripts differentially expressed [Oshlack and

Wakefield (2009)]. In a similar manner, the classification and clustering proposals

made in this paper are affected by the total number of counts per feature; this can

be seen by inspection of (7), (11) and (17). It seems clear that bias due to the total

number of counts per feature is undesirable for the task of identifying differentially

expressed transcripts, since it makes it difficult to detect differential expression for

low-frequency transcripts. However, it is not clear that such a bias is undesirable in

the case of classification or clustering, since we would like features about which we

have the most information—namely, the features with the highest total counts—to

have the greatest effect on the classifiers and dissimilarity measures that we use.

More investigation into this matter is left as a topic for future work.

Our proposal for clustering sequencing data is based on the development of

a dissimilarity measure that is potentially more appropriate for count data than

standard Euclidean distance. The resulting dissimilarity matrix can then be input

to a standard clustering algorithm, such as hierarchical clustering. Other statistical

techniques that rely upon a dissimilarity matrix, such as multidimensional scaling,

could also be performed using the Poisson dissimilarity measure developed here.

An R language package implementing the methods proposed in this paper will

be made available.

APPENDIX A: PROPERTIES OF THE POISSON

DISSIMILARITY MEASURE

We wish to prove that the dissimilarity between xi and xi′ specified in (17) is

nonnegative, and that it equals zero when xi = xi′ .

To prove nonnegativity, first notice that g(dij ) = −N̂ijdij +Xij logdij is a con-

cave function of dij , and is maximized when dij = Xij

N̂ij
. Therefore, g(

Xij

N̂ij
) ≥ g(1).

And since
Xij+β

N̂ij+β
is between 1 and

Xij

N̂ij
, concavity of g ensures that g(

Xij+β

N̂ij+β
) ≥

g(1); that is, N̂ij − N̂ijdij +Xij logdij ≥ 0. It follows directly that (17) is nonneg-

ative.

Now, if xi = xi′ , then N̂ij = N̂i′j = Xij = Xi′j and so by (16), d̂ij = d̂i′j = 1.

By inspection, (17) equals zero.



CLASSIFICATION AND CLUSTERING OF SEQUENCING DATA 2515

APPENDIX B: EQUIVALENCE OF LOG LIKELIHOOD RATIO STATISTICS

UNDER POISSON MODEL AND MULTINOMIAL MODEL

Here, we show that the log likelihood ratio statistic (17) under the Poisson model

is identical to the log likelihood ratio statistic under the model of Berninger et al.

(2008), if appropriate estimates of Nij , Ni′j , dij , and di′j are used in (17).

In Section 4.1 we assumed that the ith and i′th observations take the form

Xij ∼ Poisson(Nijdij ),Xi′j ∼ Poisson(Ni′jdi′j ),Nij = sigj ,Ni′j = si′gj . Under

the null hypothesis, dij = di′j = 1. Under the alternative, dij and di′j are uncon-

strained. Suppose we estimate Nij and Ni′j under the null using the MLEs, or,

equivalently, using the total count size factor estimates given in Section 2.1: then

N̂ij = Xi·(Xij +Xi′j )/(Xi· +Xi′·), N̂i′j = Xi′·(Xij +Xi′j )/(Xi· +Xi′·). Treating

these estimates as offsets under the alternative, the MLE for dij is Xij/Nij , and

the MLE for di′j is Xij/Ni′j . Plugging these estimates into (17) yields

p
∑

j=1

(

Xi·(Xij + Xi′j )/(Xi· + Xi′·) + Xi′·(Xij + Xi′j )/(Xi· + Xi′·)

− Xij − Xi′j + Xij log(Xij/Nij ) + Xi′j log(Xi′j/Ni′j )
)

=
p

∑

j=1

(

Xij log(Xij/Nij ) + Xi′j log(Xi′j/Ni′j )
)

(20)

=
p

∑

j=1

(

Xij logXij + Xi′j logXi′j − (Xij + Xi′j ) log(Xij + Xi′j )
)

+ (Xi· + Xi′·) log(Xi· + Xi′·) − Xi· logXi· − Xi′· logXi′·.

Now, Berninger et al. (2008) instead assume a multinomial model for

the data: Xi1, . . . ,Xip ∼ Multinomial(Xi·, q1, . . . , qp) and Xi′1, . . . ,Xi′p ∼
Multinomial(Xi′·, r1, . . . , rp). Under the null, qj = rj ∀j . Under the alternative,

qj and rj are unconstrained. This results in the likelihood ratio statistic

p
∏

j=1

(Xij/Xi·)Xij (Xi′j/Xi′·)
Xi′j

((Xij + Xi′j )/(Xi· + Xi′·))
Xij+Xi′j

.(21)

Taking the logarithm of (21) yields (20).

Note that, in practice, the dissimilarity measures proposed in Section 4.1 and in

Berninger et al. (2008) are not identical, since in Section 4.1 we estimate dij and

di′j as the posterior means using a Gamma prior. Berninger et al. (2008) instead

use a Dirichlet prior on q1, . . . , qp and r1, . . . , rp and use the Bayes factor as the

dissimilarity measure. In fact, the proposal of Berninger et al. (2008) seems to

perform substantially worse than that of Section 4.1 in the simulation study in

Section 5.
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