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The dynamical determination of the boundary conditions in SU(N) gauge theory on
the orbifold S1/Z2 is investigated. We classify the equivalence classes of the boundary
conditions, and then the vacuum energy density of the theory in each equivalence class is
evaluated at one loop order. Unambiguous comparison of the vacuum energy densities in the
two theories in different equivalence classes becomes possible in supersymmetric theories. It
is found that in the supersymmetric SU(5) models with the Scherk-Schwarz supersymmetry
breaking, the theory with the boundary conditions yielding the standard model symmetry
is in the equivalence class with the lowest energy density, though the low energy theory is
not identically the minimal supersymmetric standard model. We also study how particular
boundary conditions are chosen in the cosmological evolution of the universe.

§1. Introduction

In higher-dimensional grand unified theory (GUT), the gauge fields and the Higgs
fields in the adjoint representation in the lower four-dimensions are unified.1), 2) Pre-
viously Manton attempted to unify the doublet Higgs fields with the gauge fields
in the electroweak theory by adopting a monopole-type gauge field configuration in
the extra-dimensional space in a larger gauge group.3) However, such a configuration
with nonvanishing field strengths has a higher energy density, and the dynamical
stability of the field configuration remains to be justified. It since has been recog-
nized that in higher-dimensional GUT defined on a multiply connected manifold,
the dynamics of Wilson line phases can induce dynamical gauge symmetry breaking
by developing nonvanishing expectation values through radiative corrections. This
provides real unification of the gauge fields and Higgs fields. Here the symmetry is
broken by dynamics, not by hand. This Hosotani mechanism has been extensively
investigated since that time,4)−7) but the incorporation of chiral fermions has been
a major obstacle to constructing a realistic model.6), 8), 9) This idea has been recently
revived under the name of ‘gauge-Higgs unification’.10) Further, when the extra di-
mensions are deconstructed, some of the extra-dimensional components of the gauge
fields acquire masses through radiative corrections, and pseudo-Nambu-Goldstone
bosons in the lower four dimensions become ‘little Higgs’.11)

Significant progress has been made in this direction by considering GUT on an
orbifold. This provides a new way to solve such problems as the chiral fermion prob-
lem of how four-dimensional chiral fermions are generated from a higher-dimensional
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266 N. Haba, Y. Hosotani and Y. Kawamura

space-time and the Higgs mass splitting problem12) (the ‘triplet-doublet mass split-
ting problem’ in SU(5) GUT13), 14)). In formulating gauge theory on an orbifold,14)−24)

however, there arise many possibilities for boundary conditions (BCs) to be imposed
on the fields in the extra-dimensional space. This leads to the problem of which type
of BCs should be imposed without relying on phenomenological information. We
refer to this problem as the ‘arbitrariness problem’.25)

The arbitrariness problem is partially solved at the quantum level by the Hosotani
mechanism as shown in our previous paper.24),∗) The rearrangement of gauge sym-
metry takes place through the dynamics of the Wilson line phases. The physical
symmetry of the theory, in general, differs from the symmetry of the BCs. Several
sets of BCs with distinct symmetry can be related by large gauge transformations,
belonging to the same equivalence class. This implies the reduction of the number
of independent theories.

The remaining problem is to determine how a realistic theory is selected among
various equivalence classes. We have not obtained a definite solution to this problem,
partially because of a lack of understanding of a more fundamental theory that
contains dynamics which select various BCs. Nevertheless, one can expect that the
classification and characterization of equivalence classes will provide information as
to how one of them is selected dynamically. In particular, the evaluation of the
vacuum energy density in each equivalence class would provide critical information
needed to solve the arbitrariness problem.25) This motivates the present work.

In the present paper, we classify the equivalence classes of the BCs in SU(N)
gauge theory on S1/Z2, and evaluate the vacuum energy density in each equivalence
class. Some discussion is given with regard to the question of how particular BCs
are selected in the cosmological evolution of the universe.

In §2 general arguments are given for BCs in gauge theories on the orbifold
S1/Z2, and we classify those BCs with the aid of equivalence relations originating
from the gauge invariance. In §3 generic formulas for the one-loop effective poten-
tial at vanishing Wilson line phases are derived. These can be applied to every
equivalence class. The arguments are generalized to supersymmetric theories in §4.
There it is recognized that unambiguous comparison of the vacuum energy densities
in theories on different equivalence classes is possible. In §5, we discuss how partic-
ular boundary conditions are chosen in the cosmological evolution of the universe.
Section 6 is devoted to conclusions and discussion.

§2. Orbifold conditions and classification of equivalence classes

In this article, we focus on SU(N) gauge theory defined on a five-dimensional
space-time M4 × (S1/Z2) where M4 is the four-dimensional Minkowski spacetime.
The fifth dimension, S1/Z2, is obtained by identifying two points on S1 by parity. Let
x and y be coordinates of M4 and S1, respectively. S1 has a radius R, and therefore a
point y+2πR is identified with a point y. The orbifold S1/Z2 is obtained by further

∗) See Refs. 26) and 27) for SUSY breaking and Ref. 18) for gauge symmetry breaking on S1/Z2

by the Hosotani mechanism.
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Classification and Dynamics of Equivalence Classes 267

identifying −y and y. The resultant fifth dimension is the interval 0 ≤ y ≤ πR,
which contains the information on S1.

2.1. Boundary conditions

For Z2 transformations around y = 0 and y = πR and a loop translation along
S1, each defined by

Z0 : y → −y, Z1 : πR+ y → πR− y, S : y → y + 2πR , (2.1)

the following relations hold:

Z2
0 = Z2

1 = I, S = Z1Z0, SZ0S = Z0 . (2.2)

Here I is the identity operation. Although we have the identification y ∼ y+2πR ∼
−y on S1/Z2, fields do not necessarily take identical values at (x, y), (x, y + 2πR)
and (x,−y) as long as the Lagrangian density is single-valued. The general BCs for
a field ϕ(x, y) are given by

ϕ(x,−y) = Tϕ[P0]ϕ(x, y), ϕ(x, πR− y) = Tϕ[P1]ϕ(x, πR+ y),
ϕ(x, y + 2πR) = Tϕ[U ]ϕ(x, y), (2.3)

where Tϕ[P0], Tϕ[P1] and Tϕ[U ] represent appropriate representation matrices, in-
cluding an arbitrary sign factor. The counterparts of (2.2) are given by

Tϕ[P0]2 = Tϕ[P1]2 = I, Tϕ[U ] = Tϕ[P0]Tϕ[P1], Tϕ[U ]Tϕ[P0]Tϕ[U ] = Tϕ[P0]. (2.4)

In (2.4) I represents an unit matrix. For instance, if ϕ belongs to the fundamental
representation of the SU(N) gauge group, then Tϕ[P0]ϕ is ±P0ϕ where P0 is a
hermitian U(N) matrix, i.e., P †

0 = P0 = P−1
0 . The same property applies to P1.

The BCs imposed on a gauge field AM are

Aµ(x,−y) = P0Aµ(x, y)P
†
0 , Ay(x,−y) = −P0Ay(x, y)P

†
0 , (2.5)

Aµ(x, πR− y) = P1Aµ(x, πR+ y)P †
1 , Ay(x, πR− y) = −P1Ay(x, πR+ y)P †

1 , (2.6)
AM (x, y + 2πR) = UAM (x, y)U †. (2.7)

The BCs of scalar fields φA are given by

φA(x,−y) = TφA [P0]φA(x, y) ,

φA(x, πR− y) =
∑
B

(
eiπβM

)A
B
TφB [P1]φB(x, πR+ y) ,

φA(x, y + 2πR) =
∑
B

(
eiπβM

)A
B
TφB [U ]φB(x, y) , (2.8)

where A and B are indices and M is a matrix in the flavor space. If nontrivial Z2

parity is assigned in the flavor space and M anti-commutes with the Z2 parity, then
β can take an arbitrary value. For Dirac fields ψA defined in the bulk, the gauge
invariance of the kinetic energy term requires

ψA(x,−y) = TψA [P0]γ5ψA(x, y) ,
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ψA(x, πR− y) =
∑
B

(
eiπβM

)A
B
TψB [P1]γ5ψB(x, πR+ y) ,

ψ(x, y + 2πR) =
∑
B

(
eiπβM

)A
B
TψB [U ]ψB(x, y) . (2.9)

To summarize, the BCs in gauge theories on S1/Z2 are specified with (P0, P1, U, β)
and additional sign factors. The matrices P0 and P1 need not be diagonal in general.
One can always diagonalize one of them, say P0, through a global gauge transfor-
mation, but P1 might not be diagonal. For the reasons described in the subsequent
sections, we consider BCs with diagonal P0 and P1.

The diagonal P0 and P1 are specified by three non-negative integers (p, q, r) such
that

diag P0 = (
N︷ ︸︸ ︷

+1, · · · ,+1,+1, · · · ,+1,−1, · · · ,−1,−1, · · · ,−1) ,
diag P1 = (+1, · · · ,+1︸ ︷︷ ︸

p

,−1, · · · ,−1︸ ︷︷ ︸
q

,+1, · · · ,+1︸ ︷︷ ︸
r

,−1, · · · ,−1︸ ︷︷ ︸
s=N−p−q−r

) , (2.10)

where N ≥ p, q, r, s ≥ 0. We denote each BCs specified by (p, q, r) (or a theory with
such BCs) as [p; q, r; s]. The matrix P0 is interchanged with P1 by the interchange
of q and r such that

[p; q, r; s] ↔ [p; r, q; s]. (2.11)

2.2. Residual gauge invariance and equivalence classes

Given the BCs (P0, P1, U, β), there still remains residual gauge invariance. Recall
that under a gauge transformation Ω(x, y), we have

AM → A′
M = ΩAMΩ

† − i

g
Ω∂MΩ

† ,

φA → φ′A = TφA [Ω]φA , ψA → ψ′A = TψA [Ω]ψA , (2.12)

where g is a gauge coupling constant. The new fields A′
M satisfy, instead of (2.6) –

(2.7), (
A′
µ(x,−y)

A′
y(x,−y)

)
= P ′

0

(
A′
µ(x, y)

−A′
y(x, y)

)
P ′†

0 − i

g
P ′

0

(
∂µ
−∂y

)
P ′†

0 ,

(
A′
µ(x, πR− y)

A′
y(x, πR− y)

)
= P ′

1

(
A′
µ(x, πR+ y)

−A′
y(x, πR+ y)

)
P ′†

1 − i

g
P ′

1

(
∂µ
−∂y

)
P ′†

1 ,

A′
M (x, y + 2πR) = U ′A′

M (x, y)U ′† − i

g
U ′∂MU ′† , (2.13)

where

P ′
0 = Ω(x,−y)P0Ω

†(x, y) , P ′
1 = Ω(x, πR− y)P1Ω

†(x, πR+ y) ,

U ′ = Ω(x, y + 2πR)U Ω†(x, y) . (2.14)
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Classification and Dynamics of Equivalence Classes 269

Other fields φ′A and ψ′A satisfy relations similar to (2.8) and (2.9) where (P0, P1, U)
are replaced by (P ′

0, P
′
1, U

′).
The residual gauge invariance of the BCs is given by gauge transformations

which preserve the given BCs, namely those transformations which satisfy U ′ = U ,
P ′

0 = P0 and P ′
1 = P1:

Ω(x,−y)P0 = P0Ω(x, y) , Ω(x, πR− y)P1 = P1Ω(x, πR+ y) ,
Ω(x, y + 2πR)U = U Ω(x, y). (2.15)

We call the residual gauge invariance of the BCs the symmetry of the BCs.
The low energy symmetry of the BCs which is defined independently of the

y-coordinate, is given by

Ω(x)P0 = P0Ω(x) , Ω(x)P1 = P1Ω(x) , Ω(x)U = U Ω(x) , (2.16)

that is, the symmetry is generated by generators that commute with P0, P1 and U .
Theories with different BCs can be equivalent with regard to physical content.

The key observation is that in gauge theory, physics should not depend on the gauge
chosen so that one is always free to choose the gauge. If (P ′

0, P
′
1, U

′) satisfies the
conditions

∂MP
′
0 = 0 , ∂MP

′
1 = 0 , ∂MU

′ = 0 , P ′†
0 = P ′

0 , P ′†
1 = P ′

1 , (2.17)

then the two sets of the BCs are equivalent:

(P ′
0, P

′
1, U

′) ∼ (P0, P1, U) . (2.18)

It is easy to show that (P ′
0, P

′
1, U

′) satisfy the relations (2.4). The equivalence re-
lation (2.18) defines equivalence classes of the BCs. Here we stress that the BCs
indeed change under general gauge transformations. To illustrate this, let us con-
sider an SU(2) gauge theory with (P0, P1, U) = (τ3, τ3, I). If we carry out the gauge
transformation Ω = exp{i(αy/2πR)τ2}, we find the equivalence

(τ3, τ3, I) ∼ (τ3, eiατ2τ3, eiατ2) . (2.19)

In particular, for α = π we have the equivalence

(τ3, τ3, I) ∼ (τ3,−τ3,−I) . (2.20)

Using this equivalence, we can derive the following equivalence relations in SU(N)
gauge theory:

[p; q, r; s] ∼ [p− 1; q + 1, r + 1; s− 1], for p, s ≥ 1 ,

∼ [p+ 1; q − 1, r − 1; s+ 1], for q, r ≥ 1. (2.21)

The symmetry of the BCs in one theory differs from that in the other, but the two
theories are connected by the BCs-changing gauge transformation and are equivalent.
This equivalence is guaranteed by the Hosotani mechanism as explained in the next
subsection.
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2.3. The Hosotani mechanism and physical symmetry

The two theories with distinct symmetry of BCs are equivalent to each other in
physics content. This statement is verified by the dynamics of the Wilson line phases
as a part of the Hosotani mechanism. The Hosotani mechanism in gauge theories
defined on multiply connected manifolds consists of several parts.1), 2)

(i) Wilson line phases are phases of WU defined by

WU ≡ P exp
{
ig

∫
C
dyAy

}
U, (2.22)

where C is a non-contractible loop. The eigenvalues of WU are gauge invariant and
become physical degrees of freedom. Wilson line phases cannot be gauged away and
parametrize degenerate vacua at the classical level.
(ii) The degeneracy is lifted by quantum effects in general. The physical vacuum is
given by the configuration of Wilson line phases that minimizes the effective potential
Veff .
(iii) If the configuration of the Wilson line phases is non-trivial, the gauge symmetry
is spontaneously broken or restored by radiative corrections. Nonvanishing expec-
tation values of the Wilson line phases give masses to those gauge fields in lower
dimensions whose gauge symmetry is broken. Some of matter fields also acquire
masses.
(iv) A nontrivial Veff also implies that all extra-dimensional components of gauge
fields become massive.
(v) Two sets of BCs for fields can be related to each other by a BCs-changing gauge
transformation. They are physically equivalent, even if the two sets have distinct
symmetry of the BCs. This defines equivalence classes of the BCs. Veff depends
on the BCs so that the expectation values of the Wilson line phases depend on the
BCs. The physical symmetry of the theory is determined by the combination of the
BCs and the expectation values of the Wilson line phases. Theories in the same
equivalence class of the BCs have the same physical symmetry and physical content.
(vi) The physical symmetry of the theory is mostly dictated by the matter content
of the theory.
(vii) The mechanism provides unification of gauge fields and Higgs scalar fields in
the adjoint representation, namely the gauge-Higgs unification.

Let us spell out the part (v) of the mechanism in gauge theory defined on M4 ×
(S1/Z2). Dynamical Wilson line phases are given by {gπRAay , 1

2λ
a ∈ HW }, where

HW is a set of generators which anti-commute with P0 and P1:

HW =

{
λa

2
; {λa, P0} = {λa, P1} = 0

}
. (2.23)

Suppose that with (P0, P1, U, β), Veff is minimized at 〈Ay 〉 such that W ≡
exp(i2πgR〈Ay 〉) 
= I. Perform a BCs-changing gauge transformation given by
ω = exp{iπg(y + α)〈Ay 〉}. This transforms 〈Ay 〉 into 〈A′

y 〉 = 0. Under this
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Classification and Dynamics of Equivalence Classes 271

transformation, the BCs change to

(P sym
0 , P sym

1 , U sym, β) ≡ (P ′
0, P

′
1, U

′, β) = (e2igα〈Ay〉P0, e
2ig(α+πR)〈Ay〉P1,WU, β).

(2.24)
Because the expectation values of A′

y vanish in the new gauge, the physical symmetry
is spanned by the generators that commute with (P sym

0 , P sym
1 , U sym):

Hsym =

{
λa

2
; [λa, P sym

0 ] = [λa, P sym
1 ] = 0

}
. (2.25)

The group generated by Hsym, Hsym, is the unbroken physical symmetry of the
theory.

2.4. Classification of equivalence classes

The classification of equivalence classes of the BCs is reduced to the classification
of (P0, P1). As briefly mentioned in §2.1, P0 can be made diagonal through a suitable
global gauge transformation. Then P1 is not diagonal in general. As explained in
§2.3 two BCs, (P0, P1) and (P ′

0, P
′
1), can be in the same equivalence class. In each

equivalence class the vacuum with the lowest energy density is chosen by the dynam-
ics of Wilson line phases. Each equivalence class is characterized by (P sym

0 , P sym
1 ) in

(2.24).
Let (P0, P1) be said to be diagonal if both P0 and P1 are diagonal. There are

three questions of physical relevance;
(Q1) Does each equivalence class have a diagonal representative (P0, P1)?
(Q2) Can we choose (P sym

0 , P sym
1 ) to be diagonal?

(Q3) Which (P sym
0 , P sym

1 ), among all equivalence classes, has the lowest energy den-
sity?

The answer to (Q1) is affirmative. The proof is given in Appendix A. It is
shown there that nontrivial BCs are reduced to BCs in SU(2) subspaces. As for
(Q2), we do not have a satisfactory answer at the moment. In a previous paper,24)

it is found that in many of the BCs of physical interest, (P sym
0 , P sym

1 ) is diagonal.
Even if one starts with a non-diagonal (P0, P1), the Hosotani mechanism yields a
diagonal (P sym

0 , P sym
1 ). If the answer to (Q2) is affirmative, the investigation of (Q3)

becomes feasible. What is to be done is (1) to list all diagonal pairs (P0, P1) and (2)
to evaluate the energy density or the effective potential at the vanishing Wilson line
phases in each diagonal (P0, P1).

One can show that the number of equivalence classes of BCs is (N + 1)2 in the
SU(N) model. The proof goes as follows. We count the number n1 of diagonal pairs
(P0, P1) and the number n2 of equivalence relations among those diagonal (P0, P1).
As proved in Appendix A, every equivalence class has a diagonal representative
(P0, P1). Hence, the number of equivalence classes is given by n1 − n2.

The number n1 is found by counting all the different [p; q, r; s] (p+q+r+s = N)
defined in (2.10). We write [p; q, r; s] = [N − k; q, r; k − j], where j = q + r. The
value k runs from 0 to N , while j runs from 0 to k. Given (k, j), there are (j + 1)
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272 N. Haba, Y. Hosotani and Y. Kawamura

combinations for (q, r). Hence,

n1 =
N∑
k=0

k∑
j=0

(j + 1) =
1
6
(N + 1)(N + 2)(N + 3) . (2.26)

The equivalence relation (2.21) is written as [N − k; q, r; k − j] = [N − k − 1; q +
1, r+1; k− j− 1]. In this case, k runs from 1 to N − 1, while j runs from 0 to k− 1.
Therefore

n2 =
N−1∑
k=1

k−1∑
j=0

(j + 1) =
1
6
(N − 1)N(N + 1) . (2.27)

Thus the number of equivalence classes is n1 − n2 = (N + 1)2.

§3. Effective potential

There exist (N+1)2 equivalence classes in SU(N) gauge theory onM4×(S1/Z2).
We examine the question of which equivalence class has the lowest energy density. It
may well be that such an equivalence class is preferentially chosen by the dynamics
governing BCs, the arbitrariness problem thus being solved. Other scenarios are
possible, however, in the cosmological evolution of the universe. We come back to
this point in §5.

We evaluate the one-loop effective potential Veff for each theory with diagonal
(P0, P1). The effective potential Veff depends not only on Wilson line phases but
also on BCs, i.e., Veff = Veff [A0

M ;P0, P1, β] where A0
M is a background configuration

of the gauge field AM , in SU(N) gauge theory. In a more fundamental theory, the
BCs (P0, P1) would not be parameters at our disposal, but would be determined by
dynamics. The resultant effective theory belongs to a specific equivalence class of
BCs.

Our goal is to find the global minimum of Veff . This is not an easy task, as
it is difficult to write down a generic formula for Veff including A0

M explicitly. We
consider the case of vanishing VEV’s of AM with diagonal (P0, P1). As remarked in
the previous section, the global minimum of Veff in many cases of physical interest
has been found at diagonal (P sym

0 , P sym
1 ).

The effective potential for A0
M is derived by writing AM = A0

M + AqM , taking a
suitable gauge fixing and integrating over the quantum part AqM . If the gauge fixing
term is also invariant under the gauge transformation, i.e.,

DM (A0)AM = 0 → DM (A′0)A′
M = ΩDM (A0)AMΩ† = 0 , (3.1)

it is shown that Veff on M4 × (S1/Z2) satisfies the relation

Veff [A0
M ;P0, P1, U, β] = Veff [A′0

M ;P ′
0, P

′
1, U

′, β] . (3.2)

This property implies that the minimum of Veff corresponds to the same symmetry
as that of (P sym

0 , P sym
1 , U sym).
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The one-loop effective potential for A0
M on M4 × (S1/Z2) is given by

Veff [A0
M ;P0, P1, U, β] =

∑
∓ i

2
Tr lnDM (A0)DM (A0) , (3.3)

=
∑

∓ i

2

∫
d4p

(2π)4
1
πR

∑
n

ln(−p2 +M2
n − iε) , (3.4)

where we have supposed that F 0
MN = 0 and every scalar field is also massless. The

sums extend over all degrees of freedom of fields in the bulk in (3.3) and all degrees of
freedom of 4-dimensional fields whose masses are Mn in (3.4). The sign is negative
(positive) for bosons (FP ghosts and fermions). DM (A0) denotes an appropriate
covariant derivative with respect to A0

M . The quantity Veff depends on A0
M and the

BCs, (p, q, r;β). Hereafter we take A0
M = 0 on the basis of the assumption that Veff

has a minimum there when both P0 and P1 are taken in an appropriate diagonal
form.

On the orbifold S1/Z2 all fields are classified as either Z2 singlets or Z2 doublets.
The mode expansion of Z2 singlet fields φ(P0P1)(x, y) is given by

φ(++)(x, y) =
1√
πR

φ0(x) +

√
2
πR

∞∑
n=1

φn(x) cos
ny

R
,

φ(−−)(x, y) =

√
2
πR

∞∑
n=1

φn(x) sin
ny

R
,

φ(+−)(x, y) =

√
2
πR

∞∑
n=0

φn(x) cos
(n+ 1

2)y
R

,

φ(−+)(x, y) =

√
2
πR

∞∑
n=0

φn(x) sin
(n+ 1

2)y
R

, (3.5)

where ± indicates the eigenvalue ±1 of Z2 parity. The mass terms in four-dimensional
space-time are derived from the kinetic y-derivative terms after compactification.
They are ( n

R

)2
(n ≥ 0) ,

( n
R

)2
(n ≥ 1) ,

(
n+ 1

2

R

)2

(n ≥ 0) (3.6)

for φ(++), φ(−−) and φ(+−) / φ(−+), respectively. Let us define N (P0P1) = N
(P0P1)
B −

N
(P0P1)
F , where N (P0P1)

B (N (P0P1)
F ) is the number of bosonic (fermionic) fields whose

Z2 parities are P0 and P1. The value N (P0P1) depends on (p, q, r) of the BCs. For
Z2 singlet fields, the formula for Veff becomes

Veff |Z2 singlet = N0ε0 +N∆∆ε+Nvv(1
2) (3.7)

where

N0 = N (++) +N (−−) +N (+−) +N (−+) , (3.8)
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N∆ = N (++) −N (−−) , (3.9)
Nv = N (+−) +N (−+) , (3.10)

ε0 ≡ −1
4

∫
d4pE
(2π)4

1
πR

∞∑
n=−∞

ln
[
p2
E +

( n
R

)2
]

, (3.11)

∆ε ≡ −1
4

∫
d4pE
(2π)4

1
πR

ln
[
p2
E

]
, (3.12)

v(β) ≡ −1
4

∫
d4pE
(2π)4

1
πR

∞∑
n=−∞

(
ln

[
p2
E +

(
n+ β

R

)2
]
− ln

[
p2
E +

( n
R

)2
])

=
3

256π7R5

∞∑
n=1

1
n5

(1 − cos 2πnβ) . (3.13)

Here, pE is a four-dimensional Euclidean momentum. Also the Wick rotation has
been applied. The quantities ε0 and ∆ε are divergent, whereas v(β) is finite.

In gauge theory on the orbifold S1/Z2, there appears another important repre-

sentation, a Z2 doublet. A Z2 doublet field φ =
(
φ1

φ2

)
satisfies

φ(x,−y) = τ3φ(x, y) ,

φ(x, y + 2πR) = e−2πiβτ2 φ(x, y) =
(

cos 2πβ − sin 2πβ
sin 2πβ cos 2πβ

)
φ(x, y) . (3.14)

Its expansion is given by

(
φ1(x, y)
φ2(x, y)

)
=

1√
πR

∞∑
n=−∞

φn(x)

cos
(n+ β)y

R

sin
(n+ β)y

R

 , (3.15)

or, more concisely, we write(
φ1(x, y)
φ2(x, y)

)
=
{
φn(x) ; β

}
. (3.16)

This type of BCs frequently appears in the SU(2)R space in supersymmetric theories.
As the mass for φn(x) is given by [(n+ β)/R]2, Veff for a Z2 doublet bosonic field is
given by

Veff |Z2 doublet = −1
2

∫
d4pE
(2π)4

1
πR

∞∑
n=−∞

ln

[
p2
E +

(
n+ β

R

)2
]

= ε0 + v(β), (3.17)

where ε0 and v(β) are defined in (3.11) and (3.13).
Let us apply the above result to non-supersymmetric SU(N) gauge theories.

To be definite, the matter content in the bulk is assumed to consist of ns species
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of complex scalar fields in the fundamental representation, nfF species of Dirac
fermions in the fundamental representation, and nfA species of Dirac fermions in
the 2nd rank antisymmetric representation. We further suppose no additional flavor
symmetry that can generate Z2 doublets whose BCs are given in (3.14).

The values n(η0η1)
s , n(η0η1)

fF and n(η0η1)
fA are the numbers of scalar fields and Dirac

fermions, whose BCs are given by

φ(x,−y) = η0P0φ(x, y) , φ(x, πR− y) = η1P1φ(x, πR+ y) ,

ψF (x,−y) = η0P0γ
5ψF (x, y) , ψF (x, πR− y) = η1P1γ

5ψF (x, πR+ y) ,

ψA(x,−y) = η0P0γ
5ψA(x, y)P t0 , ψA(x, πR− y) = η1P1γ

5ψA(x, πR+ y)P t1 ,(3.18)

respectively. Here, η0 and η1 take the value 1 or −1. The sums of the numbers
n

(η0η1)
s , n(η0η1)

fF and n(η0η1)
fA are denoted ns, nfF and nfA:

ns =
∑

(η0η1)

n(η0η1)
s , nfF =

∑
(η0η1)

n
(η0η1)
fF , nfA =

∑
(η0η1)

n
(η0η1)
fA . (3.19)

Let us introduce N (P0,P1)
rep for each representation by

N
(++)
Ad = p2 + q2 + r2 + s2 − 1 ,

N
(−−)
Ad = 2(ps+ qr) ,

N
(+−)
Ad = 2(pq + rs) ,

N
(−+)
Ad = 2(pr + qs) ,

N
(++)
F = p , N

(−−)
F = s , N

(+−)
F = q , N

(−+)
F = r ,

N
(++)
A = 1

2

{
p(p− 1) + q(q − 1) + r(r − 1) + s(s− 1)

}
,

N
(−−)
A = ps+ qr ,

N
(+−)
A = pq + rs ,

N
(−+)
A = pr + qs . (3.20)

Under the Z2 parity assignment (2.10), the quantities N (P0P1) are found to be

N (P0P1) = N (P0P1)
g +N (P0P1)

s −N
(P0P1)
f , (3.21)

N (P0P1)
g = 2N (P0,P1)

Ad +N
(−P0,−P1)
Ad , (3.22)

N (P0,P1)
s =

∑
η0,η1

2n(η0,η1)
s N

(η0P0,η1P1)
F , (3.23)

N
(P0P1)
f =

∑
η0,η1

2n(η0,η1)
fF (N (η0P0,η1P1)

F +N
(−η0P0,−η1P1)
F )

+
∑
η0,η1

2n(η0,η1)
fA (N (η0P0,η1P1)

A +N
(−η0P0,−η1P1)
A ), (3.24)
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where N (P0P1)
g , N (P0P1)

s and N
(P0P1)
f are the contributions from the gauge and FP

ghost fields, complex scalar fields and Dirac fermions. The Ay components of the
gauge fields are opposite in parity to the four-dimensional components Aµ. This
leads to the expression (3.22). For fermions, the factor γ5 in (3.18) implies that
(P0, P1) states are always accompanied by (−P0,−P1) states. This leads to (3.24).

By use of (3.21), the formula for one-loop effective potential at A0
M = 0 is given

by

Veff = N0ε0 +N∆∆ε+Nvv(1
2) ,

N0 = 3(N2 − 1) + 2nsN − 4nfFN − 2nfAN(N − 1) ,

N∆ = (p− s)2 + (q − r)2 − 1 + 2(n(++)
s − n(−−)

s )(p− s)
+2(n(+−)

s − n(−+)
s )(q − r) ,

Nv = (6 − 4nfA)(p+ s)(q + r)
+2(n(++)

s + n(−−)
s − 2n(++)

fF − 2n(−−)
fF )(q + r)

+2(n(+−)
s + n(−+)

s − 2n(+−)
fF − 2n(+−)

fF )(p+ s) . (3.25)

At this stage, we recognize that N0 is independent of the BCs, and therefore
independent of [p; q, r; s]. The N0 term does not distinguish BCs. By contrast, N∆

and Nv do depend on [p; q, r; s]. There appears a difference in the energy density
among theories in different equivalence classes. It is tempting to seek a theory
with the lowest energy density which may be most preferred, provided there exists
dynamics connecting different equivalence classes. However, there arises fundamental
ambiguity in the N∆ term: ∆ε is divergent. There is no symmetry principle that
dictates unique regularization. One cannot compare the energy densities in two
theories in different equivalence classes.

In a previous paper,24) we evaluated Veff in one equivalence class as a function
of the Wilson line phases. The value of N∆ is the same in all theories in a given
equivalence class, and therefore there appeared no ambiguity there. [See (2.21) and
(3.25).] For instance, in the SU(5) model, we have the equivalence relations

[p; q, r; s] = [2; 0, 0; 3] ∼ [1; 1, 1; 2] ∼ [0; 2, 2; 1] . (3.26)

Suppose that all matter fields satisfy η0 = η1 = 1 and set n(++)
s = Nh, n

(++)
fF = N5

f ,

n
(++)
fA = N10

f . It then follows from (3.25) for the effective potential Veff [p, q, r, s] ≡
Veff [A0 = 0; p, q, r, s] that

Veff [1, 1, 1, 2] − Veff [2, 0, 0, 3] = 4(9 +Nh − 2N5
f − 6N10

f )v(1
2) ,

Veff [0, 2, 2, 1] − Veff [2, 0, 0, 3] = 8(3 +Nh − 2N5
f − 2N10

f )v(1
2) . (3.27)

These agree with the result in Ref. 24).∗) When N5
f = N10

f = 0, for instance, the
theory with [p; q, r; s] = [2; 0, 0; 3], which has the SU(3) × SU(2) × U(1) symmetry,
has the lowest energy density.

∗) v(β) is related to f5(β) in Ref. 24) by v(β) = 1
4
C[f5(0) − f5(2β)] and C = 3/64π7R5. There

was a factor 2 error in the normalization of the effective potential in Ref. 24).
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However, if one tries to compare theories in different equivalence classes, the
ambiguity in the N∆ term cannot be avoided. This ambiguity naturally disappears
in supersymmetric theories, as we spell out below.

§4. Supersymmetric gauge theory

In this section, we derive generic formulas for the one-loop effective potential at
vanishing Wilson line phases in supersymmetric (SUSY) SU(N) gauge theories and
compare the vacuum energy density in the theories belonging to various equivalence
classes of the BCs.

If the theory has unbroken supersymmetry, then the effective potential for Wilson
lines remains flat due to the cancellation among contributions from bosonic fields and
fermionic fields. A nontrivial dependence of Veff appears if SUSY is softly broken as
the nature demands. There is a natural way to introduce soft SUSY breaking on an
orbifold. N = 1 SUSY in five-dimensional space-time corresponds to N = 2 SUSY in
four-dimensional spacetime. A five-dimensional gauge multiplet V = (AM , λ, λ′, σ) ≡
(AM , λ1

L, λ
2
L, σ) is decomposed into a vector superfield V = (Aµ, λ) and a chiral

superfield Σ = (Φ ≡ σ + iAy, λ
′) in four dimensions. Similarly, a hypermultiplet

H = (h, hc†, h̃, h̃c†) ≡ (h1, h2, h̃L, h̃R) is decomposed into two chiral superfields in
four dimensions asH = (h, h̃) andHc = (hc, h̃c) whereH andHc undergo conjugated
transformation under SU(N). After a translation along a non-contractible loop,
these fields and their superpartners may have different twist, depending on their
SU(2)R charges.15), 17) This is called the Scherk-Schwarz breaking mechanism.28) We
adopt this mechanism for the SUSY breaking, which makes the evaluation of the
effective potential easy.

The theory can contain several kinds of hypermultiplets in various kinds of rep-
resentations in the bulk, some of which play the role of the Higgs multiplets or of
the quark-lepton multiplets. Further there may exist N = 1 supermultiplets on the
boundary branes.∗) Here we write down the bulk part of the typical Lagrangian
density Lbulk for V and H to discuss their BCs:

Lbulk =
1
g2

(
−1

2
TrF 2

MN + Tr|DMΦ|2 + Tr(iλ̄iγMDMλ
i) − Tr(λ̄i[Φ, λi])

)
+|DMhi|2 + ¯̃H(iγMDM − Φ)H̃ − (i

√
2h†i λ̄

i ¯̃H + h.c.)

−h†iΦ2hi − g2

2

∑
m,α

(
h†i (τ

m)ijTαh hj
)2

. (4.1)

Here the quantities λi are the symplectic Majorana spinors defined in Ref. 31):

λj =
(

λjL
iεjkσ2λkL

∗
)

. H̃ is a Dirac spinor, H̃ =
(
h̃L
h̃R

)
, and Tαh ’s are representation

∗) It is known that anomalies may arise at the boundaries with chiral fermions.29) These anoma-

lies must be cancelled in the four-dimensional effective theory, for instance, by such local counter

terms as the Chern-Simons term.29), 30) We assume that the four-dimensional effective theory is

anomaly free.
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matrices of SU(N) gauge generators for h.
The requirement that the Lagrangian density be single valued allows the follow-

ing nontrivial BCs. For the gauge multiplet, we have(
V
Σ

)
(x,−y) = P0

(
V
−Σ

)
(x, y) P †

0 ,

Aµ(x, πR− y) = P1 Aµ(x, πR+ y) P †
1 ,

Ay(x, πR− y) = −P1 Ay(x, πR+ y) P †
1 ,(

λ
λ′

)
(x, πR− y) = e−2πiβτ2 P1

(
λ

−λ′
)

(x, πR+ y) P †
1 ,

σ(x, πR− y) = −P1 σ(x, πR+ y) P †
1 ,

AM (x, y + 2πR) = U AM (x, y) U † ,(
λ
λ′

)
(x, y + 2πR) = e−2πiβτ2 U

(
λ
λ′

)
(x, y) U † ,

σ(x, y + 2πR) = U σ(x, y) U † . (4.2)

For a hypermultiplet H, the BCs are given by(
h
hc†

)
(x,−y) = η0TH[P0]

(
h

−hc†
)

(x, y) ,(
h
hc†

)
(x, πR− y) = e−2πiβτ2 η1TH[P1]

(
h

−hc†
)

(x, πR+ y) ,(
h
hc†

)
(x, y + 2πR) = e−2πiβτ2 η0η1TH[U ]

(
h
hc†

)
(x, y) ,

(
h̃

h̃c†

)
(x,−y) = η0TH[P0]

(
h̃

−h̃c†
)

(x, y) ,(
h̃

h̃c†

)
(x, πR− y) = η1TH[P1]

(
h̃

−h̃c†
)

(x, πR+ y) ,(
h̃

h̃c†

)
(x, y + 2πR) = η0η1TH[U ]

(
h̃

h̃c†

)
(x, y) . (4.3)

Here TH[P0]h represents P0h or P0hP
†
0 for h in the fundamental or adjoint representa-

tion, respectively. A hypermultiplet with parity (η0, η1) gives the same contribution
to the vacuum energy density in the bulk as a hypermultiplet with parity (−η0,−η1).

With a nonvanishing β, there appear soft SUSY breaking mass terms for gaugi-
nos λi and scalar fields hi in the four-dimensional theory.∗) From the above BCs (4.2)
and (4.3), mode expansions of each field are obtained. Let (P0, P1)λ be the parity
assignment of each component of λ(x, y) defined by P0λP0 and P1λP1. Depending

∗) β should be of order 10−14, on the basis of phenomenological consideration, for the soft SUSY

breaking masses to be O(1) TeV if 1/R ∼ 1016 GeV.
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on (P0, P1)λ, the mode expansion for each component of gauginos is given by

(P0, P1)λ = (+1,+1) :
(
λ(x, y)
λ′(x, y)

)
=
{
λn(x) ; β

}
,

(−1,−1) :
(
λ′(x, y)
λ(x, y)

)
=
{
λn(x) ; − β

}
,

(+1,−1) :
(
λ(x, y)
λ′(x, y)

)
=
{
λn(x) ; β + 1

2

}
,

(−1,+1) :
(
λ′(x, y)
λ(x, y)

)
=
{
λn(x) ; − β − 1

2

}
. (4.4)

Hence the contribution to Veff from the gauginos is given by

Veff |gauginos = −4
{
N

(++)
Ad (ε0 + v(β)) +N

(−−)
Ad (ε0 + v(−β))

+N (+−)
Ad (ε0 + v(β + 1

2)) +N
(−+)
Ad (ε0 + v(−β − 1

2))
}

, (4.5)

where the factor 4 comes from the number of the degrees of freedom for each Majo-
rana fermion. The values N (P0P1)

Ad are defined in (3.20).
The boson part of a gauge multiplet contains an additional scalar field σ, which

has the same parity assignment as Ay. Hence the contributions from the boson part
are

Veff |gauge,ghost,σ = (2N (++)
Ad + 2N (−−)

Ad )(ε0 +∆ε) + (2N (−−)
Ad + 2N (++)

Ad )(ε0 −∆ε)

+(2N (+−)
Ad + 2N (−+)

Ad )(ε0 + v(1
2)) + (2N (−+)

Ad + 2N (+−)
Ad )(ε0 + v(1

2)) . (4.6)

Notice that the ∆ε terms cancel among the contributions from the bosons in the
supersymmetric theory.

The gauge multiplet part of Veff is obtained by adding (4.5) and (4.6):

Veff |gauge multiplet = −4(N2 − 1)v(β) + 4(N (+−)
Ad +N

(−+)
Ad )w(β)

= −4(N2 − 1)v(β) + 4(p+ s)(q + r)w(β) ,

w(β) ≡ v(1
2) + v(β) − v(β + 1

2) ≥ 0 , (4.7)

where the relation v(−β) = v(β) has been used. Veff |gauge multiplet takes its minimum
value, −4(N2 − 1)v(β), at p = s = 0, q + r = N or p+ s = N , q = r = 0. Each case
corresponds to

diag P0 = (
N︷ ︸︸ ︷

+1, · · · · · · ,+1,−1, · · · · · · ,−1) ,
diag P1 = (−1, · · · · · · ,−1︸ ︷︷ ︸

q

,+1, · · · · · · ,+1︸ ︷︷ ︸
r

) (4.8)
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or

diag P0 = (
N︷ ︸︸ ︷

+1, · · · · · · ,+1,−1, · · · · · · ,−1) ,
diag P1 = (+1, · · · · · · ,+1︸ ︷︷ ︸

p

,−1, · · · · · · ,−1︸ ︷︷ ︸
s

) , (4.9)

respectively. The gauge symmetry is broken to SU(q)×SU(N−q)×U(1) or SU(p)×
SU(N − p) × U(1), respectively.

It is interesting to examine what types of breaking patterns are induced by
the introduction of hypermultiplets. The mode expansion for the hypermultiplet
H = (h, hc†, h̃, h̃c†) is found in a similar manner. Let (P0, P1)h = (a, b)h be the
parity assignment of each component of h(x, y) defined by η0(TH[P0]h)j = ahj and
η1(TH[P1]h)j = bhj . Then, depending on (P0, P1)h, one finds

(P0, P1)h = (+1,+1) :
(
h
hc†

)
=
{
hn(x) ; β

}
,

(−1,−1) :
(
hc†

h

)
=
{
hn(x) ; − β

}
,

(+1,−1) :
(
h
hc†

)
=
{
hn(x) ; β + 1

2

}
,

(−1,+1) :
(
hc†
h

)
=
{
hn(x) ; − β − 1

2

}
. (4.10)

For their fermionic superpartners, the mode expansions are obtained by setting β = 0
in (4.10). Hence the contribution to Veff from H is given by

Veff |H = 4
(
N

(++)
h +N

(−−)
h

)
v(β) + 4

(
N

(+−)
h +N

(−+)
h

)(
v(β + 1

2) − v(1
2)
)

= 4N total
h v(β) − 4

(
N

(+−)
h +N

(−+)
h

)
w(β) . (4.11)

Here N (P0,P1)
h is the number of components of h(x, y) with parity (P0, P1). The value

N total
h =

∑
a,bN

(ab)
h is independent of (p, q, r, s). We note that

N
(P0,P1)
h =

∑
rep=Ad,F,A

n(η0,η1)
rep N (η0P0,η1P1)

rep , (4.12)

where the quantities N (a,b)
rep are given in (3.20).

Suppose that the matter content in the bulk is given by n
(±)
Ad , n(±)

F and n
(±)
A

species of hypermultiplets with η0η1 = ±1 in the adjoint, fundamental, and 2nd
rank antisymmetric representations, respectively. (Note that n(+)

rep = n
(++)
rep + n

(−−)
rep

and n
(−)
rep = n

(+−)
rep + n

(−+)
rep .) It is straightforward to extend our analysis including
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hypermultiplets in bigger representations. The total effective potential is given by

Veff =

4

{
(−1 + n

(+)
Ad + n

(−)
Ad )(N2 − 1) + (n(+)

F + n
(−)
F )N + (n(+)

A + n
(−)
A )

N(N − 1)
2

}
v(β)

+4

{
(p+ s)(q + r)(2 − 2n(+)

Ad + 2n(−)
Ad − n

(+)
A + n

(−)
A )

−n(−)
Ad (N2 − 1) − n

(−)
A

N(N − 1)
2

− n
(+)
F (q + r) − n

(−)
F (p+ s)

}
w(β)

= (p, q, r, s-independent terms) + 4w(β) h(q + r) . (4.13)

Here the function h(x) (0 ≤ x = q + r = N − (p+ s) ≤ N) is defined by

h(x) = ax(N − x) − bx ,{
a = 2 − 2n(+)

Ad + 2n(−)
Ad − n

(+)
A + n

(−)
A ,

b = n
(+)
F − n

(−)
F .

(4.14)

As w(β) > 0 for nonintegral β, the minimum of the energy density is given by that
of h(x), which is determined by a and b.

Let us classify various cases.
(i) The case with a = 0

In this case the BCs which give the minimum energy density are
n

(+)
F > n

(−)
F ⇒ q + r = N ,

n
(+)
F = n

(−)
F ⇒ completely degenerate ,

n
(+)
F < n

(−)
F ⇒ q + r = 0 .

(4.15)

(ii) The case with a > 0
In this case, h(x) is minimized either at x = 0 or at x = N . As h(N) − h(0) =

−Nb, we have 
n

(+)
F > n

(−)
F ⇒ q + r = N ,

n
(+)
F = n

(−)
F ⇒ q + r = 0, N ,

n
(+)
F < n

(−)
F ⇒ q + r = 0 .

(4.16)

(iii) The case with a < 0
In this case, we have

h(x) = |a|
{
(x− x0)2 − x2

0

}
, x0 =

N

2
+

b

2|a| , (4.17)
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so that h(q + r) can have a minimum at q + r between 1 and N − 1. Let [x0]nearest

be the integer nearest to x0. Then
x0 ≤ 0 ⇒ q + r = 0 ,
0 < x0 < N ⇒ q + r = [x0]nearest ,

x0 ≥ N ⇒ q + r = N .

(4.18)

Let us examine a couple of examples. In the SU(5) GUT proposed in Ref. 13),
only the gauge multiplet and the fundamental Higgs multiplets exist in the bulk,
whereas the quark and lepton multiplets are confined on one of the boundary branes.
The parity of the Higgs hypermultiplets is assigned such that n(++)

F = n
(−−)
F = 1.

This corresponds to the case with n
(+)
F = 2 and n

(−)
F = n

(±)
A = n

(±)
Ad = 0. In one of

the models considered in Ref. 17), the quarks and leptons also reside in the bulk. The
three generations of quarks and leptons add n

(++)
F = n

(+−)
F = n

(++)
A = n

(+−)
A = 3.

In all, n(+)
F = 5, n(−)

F = 3, n(±)
A = 3 and n

(±)
Ad = 0. The same matter content was

examined in Ref. 24). In all of those models, a = b = 2, and thus the equivalence
classes with q + r = N have the lowest energy density. In Refs. 13) and 17), the
BC [p; q, r; s] = [2; 3, 0; 0] has been adopted to reproduce MSSM at low energies. In
Ref. 24), the BC [p; q, r; s] = [2; 0, 0; 3] is examined. The result in the present paper
shows that with the given matter content, the equivalence classes to which these
BCs belong are not those with the lowest energy density. They may not be selected,
provided that there exist dynamics connecting different equivalence classes.

This, however, does not preclude the possibility of having these BCs. As pointed
out in Refs. 13) and 14), [p; q, r; s] = [2; 3, 0; 0] has the nice feature of reproducing
MSSM at low energies with the natural triplet-doublet splitting. To obtain exactly
three families of matter chiral multiplets and two weak Higgs chiral multiplets as
zero modes (namely, massless particles or light particles with masses of O(β/R) in
four dimensions) of hypermultiplets in the bulk and of chiral multiplets on the brane,
the relations

n
(++)
5 + n

(−−)

5
= 1 ,

n
(++)

5
+ n

(−−)
5 + n

(Brane)

5
= 4 ,

n
(+−)

5
+ n

(−+)
5 + n

(Brane)

5
= 3 ,

n
(++)
10 + n

(−−)

10
+ n

(Brane)
10 = 3 ,

n
(+−)
10 + n

(−+)

10
+ n

(Brane)
10 = 3 ,

n
(+)
24 = n

(−)
24 = 0 , (4.19)

must hold, as can be inferred from Table I. Here n(Brane)

5
and n(Brane)

10 are the numbers
of chiral multiplets on the brane whose representations are 5 and 10, respectively.
In order for the class [p; q, r; s] = [2; 3, 0; 0] to have the lowest energy density, we
need a < 0 and [x0]nearest = 3. In other words we need

2
{

2n(+)
Ad − 2n(−)

Ad + n
(+)
A − n

(−)
A − 2

}
≥ n

(+)
F − n

(−)
F ≥ 0 . (4.20)
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Table I. Standard model gauge quantum numbers of zero modes in SU(5) hypermultiplets with

(η0, η1).

(η0, η1) = (++) (−−) (+−) (−+)

5(η0,η1) (1,2)1/2 (1,2)−1/2 (3,1)−1/3 (3,1)1/3

5
(η0,η1)

(1,2)−1/2 (1,2)1/2 (3,1)1/3 (3,1)−1/3

10(η0,η1) (3,1)−2/3 + (1,1)1 (3,1)2/3 + (1,1)−1 (3,2)1/6 (3,2)−1/6

10
(η0,η1)

(3,1)2/3 + (1,1)−1 (3,1)−2/3 + (1,1)1 (3,2)−1/6 (3,2)1/6

24(η0,η1) (8,1)0 + (3,1)0 (8,1)0 + (3,1)0 (3,2)−5/6 (3,2)−5/6

+(1,1)0 +(1,1)0 +(3,2)5/6 +(3,2)5/6

The set of relations in (4.19) is incompatible with the first inequality in (4.20).
In order to reconcile these relations, we need an extension of the model with extra
hypermultiplets (and brane fields). Then there appear additional zero modes, which
might threaten the stability of protons and the successful gauge coupling unification
based on MSSM. If these zero modes acquire large masses, say, through coupling
with extra singlets on the brane, the phenomenological disaster can be avoided.

Let us give an example with a < 0 and [x0]nearest = 3. It is realized with a = −2
and b = 2, that is, (n(+)

Ad −n(−)
Ad , n

(+)
A −n(−)

A ) = (0, 4), (1, 2), (2, 0) and n(+)
F −n(−)

F = 2.
The latter equality holds in (4.19). Consider (n(−)

Ad , n
(−)
A ) = (0, 0) for simplicity. To

have (n(+)
Ad , n

(+)
A ) = (0, 4), we need to pick two extra sets of hypermultiplet pairs

in (10(++),10(−−)), (10(++),10(++)), (10(++)
,10(−−)) or (10(−−),10(−−)). There

appear two pairs of zero modes with representations (3,1)−2/3+(1,1)1 and (3,1)2/3+
(1,1)−1 with the standard model gauge group. They can form SUSY mass terms
through the interactions (3,1)−2/3 · (3,1)2/3 · (singlet) and (1,1)1 · (1,1)−1 · (singlet)
and decouple from the low energy theory if the magnitudes of the VEVs of singlets
on the brane are sufficiently large. In other cases with (n(+)

Ad , n
(+)
A ) = (1, 2) and

(n(+)
Ad , n

(+)
A ) = (2, 0) as well, phenomenologically interesting low energy theories can

be derived in a similar manner. A careful analysis is necessary to check whether or
not this scenario is realistic.

Another possibility is to have [p; q, r; s] = [2; 0, 0; 3] as the preferred equivalence
class. For this end we need a ≥ 0 and n

(+)
F ≤ n

(−)
F . This is realized if, for instance,

n
(±)
F = 5, n(±)

A = 3 and n(±)
Ad = 0. In this scenario, however, there appear additional

light particles which may threaten the stability of protons without further imple-
menting such symmetry as U(1)R to forbid it and also may ruin the gauge coupling
unification in MSSM.

Further, irrespective of the matter content in the bulk, there remains the degen-
eracy. The effective potential (4.13) is a function of q + r only. It does not select
unique [p; q, r; s]. We need to find a mechanism to lift the degeneracy.

§5. Cosmological evolution

In the present paper we have evaluated the vacuum energy density in each equiv-
alence class of BCs in SUSY SU(N) gauge theory on the orbifold S1/Z2. With the
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soft SUSY breaking there arise energy differences among different vacua.
An imminent question of great concern is how the BCs are selected or deter-

mined. Although it is natural to expect that the BCs yielding the lowest energy
density would be selected, the problem is not so simple, as the mechanism for tran-
sitions among different BCs is not well understood.

Here we have to distinguish two kinds of transitions. In each equivalence class
there are, in general, infinitely many theories with different BCs. There are Wilson
line phases whose dynamics yield and guarantee the same physics in the equivalence
class. The effective potential for the Wilson line phases has, in general, more than
one minimum. These minima are separated by barriers whose heights are about
β2/R4 in the four-dimensional energy density for |β| � 1. In the GUT picture,
MGUT ∼ 1/R and MSUSY ∼ β/R. The energy scale characterizing the barrier is
V

(1)
B ∼ √

β/R ∼ √
MGUTMSUSY. Transitions among different minima occur either

thermally or quantum mechanically. The quantum tunneling transition rate at zero
temperature, however, is negligibly small.24)

Nothing definite can be said about transitions among different equivalence classes
without an understanding of the dynamics connecting these different equivalence
classes. We are supposing that there exist such dynamics. This must certainly be
true if the structure of the spacetime is determined dynamically as in string theory.
One needs to know the height, V (2)

B , of the effective barrier separating the different
equivalence classes. It would be below MGUT where the spacetime structure S1/Z2

is selected. As the typical energy difference among different equivalence classes is
β2/R4 for |β| � 1, it should be above V (1)

B . Hence we have

V
(1)
B ∼

√
MGUTMSUSY ≤ V

(2)
B ≤MGUT . (5.1)

The quantum tunneling rate at zero temperature from one equivalence class to an-
other is probably negligibly small.

To understand how the low energy symmetry is determined, one needs to trace
the cosmological evolution of the universe. At the very early stage around the scale
MGUT ∼ 1/R, it is suspected that the effective five-dimensional orbifold M4 ×
(S1/Z2) emerges. The universe then can be either cold or hot.

If the universe is cold, the selection of the equivalence class is due solely to
the dynamics connecting different classes. Without understanding the dynamics,
nothing can be said for sure about the selection.

If the universe is hot with temperature T ∼MGUT, there is an ample amount of
thermal transitions among theories with different BCs in various equivalence classes.
When the temperature drops below V

(2)
B , thermal transitions among different equiv-

alence classes would cease to exist. In each region of the space one of the equivalence
classes would be selected. It is possible that the universe forms a domain structure
such that each domain is in its own equivalence class. Then, at the edge of each
domain, there forms a domain wall that connects two distinct equivalence classes.
Such domain walls would be something exotic which could not be described in the
language of gauge theory alone.

The universe continues to expand and the temperature drops further. When
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V
(2)
B > T > V

(1)
B , the entire universe or each domain in the universe remains in one

equivalence class. Wilson line phases are thermally excited. When T drops below
V

(1)
B , the Wilson line phases settle into one of the minima of the effective potential,

which determines the low energy symmetry. The Wilson line phases may happen to
be trapped in a ‘false’ vacuum (a local minimum) instead of the ‘true’ vacuum (the
global minimum).

The inflation may take place somewhere between the scales MGUT and MSUSY.
In this connection we recognize that V (1)

B ∼ √
MGUTMSUSY defines the intermedi-

ate scale. The Wilson line phases themselves may serve as inflatons at the scale√
MGUTMSUSY. As shown in Ref. 24), the potential for the Wilson line phases (or

the extra-dimensional components of the gauge fields) takes a special form which
may be suited for natural inflation.32) Such a scenario has been employed in Ref.
33) to realize the quintessence scenario. In our case, the effective cosmological con-
stant obtained is of O(

√
MGUTMSUSY), not of the order of the cosmological constant

observed recently.

§6. Conclusions

We have tackled the arbitrariness problem of the boundary conditions (BCs)
in SU(N) gauge theory on the orbifold S1/Z2; i.e., we have attempted to explain
how one particular set of the boundary conditions is dynamically selected over many
other possibilities. Two theories are equivalent if they are related by a BC-changing
gauge transformation. According to the Hosotani mechanism, the physical symmetry
of each equivalence class is uniquely determined by the dynamics of the Wilson line
phases. Hence the number of inequivalent theories is equal to the number of the
equivalence classes of the BCs. We have classified the equivalence classes of the
BCs. It is found that each equivalence class always has a diagonal representative
(P0, P1) and that the number of equivalence classes is (N + 1)2 in SU(N) gauge
theory.

Next, we have derived generic formulas for the one-loop effective potential at
the vanishing Wilson line phases. These formulas can be applied to any equivalence
class. It has been presumed that (P sym

0 , P sym
1 ) is diagonal, as has been confirmed

in many examples investigated to this date. When applied to non-supersymmetric
theory, there arises an intrinsic ambiguity in comparing the energy densities in two
theories in different equivalence classes; the difference between the vacuum energy
densities is, in general, infinite, and therefore one cannot compare them.

The unambiguous comparison of the vacuum energy densities in two theories
in different equivalence classes becomes possible in supersymmetric theories. We
have found that in the supersymmetric SU(5) models with the Scherk-Schwarz su-
persymmetry breaking, the theory with the BCs yielding the standard model sym-
metry can be in the equivalence class with the lowest energy density, though the
low energy theory may not reproduce the minimal supersymmetric standard model.
Possibilities to derive a low energy theory with the standard model gauge group
have been studied particularly for the equivalence classes [p; q, r; s] = [2; 3, 0; 0] and
[p; q, r; s] = [2; 0, 0; 3].
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Further, we have discussed how particular BCs are selected in the cosmological
evolution of the universe. It is believed that the quantum tunneling transition rate at
zero temperature from one equivalence class to another is probably negligibly small,
though the dynamics connecting such different equivalence classes are not understood
at all. In one scenario, the thermal transitions among different equivalence classes
cease to exist below a temperature whose magnitude is roughly that of the energy
barrier separating them. The universe may or may not form a domain structure and
settle into one of the minima of the effective potential as the universe cools further.

We would like to stress that the arbitrariness problem has not been completely
solved yet as there remains a degeneracy among the theories of the lowest energy
density. A new mechanism must be found to lift this degeneracy. It is certainly
necessary to understand the dynamics in a more fundamental theory in order to
determine the boundary conditions.
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Appendix A
Diagonal Representative of (P0, P1)

The boundary condition matrices P0 and P1 are N × N hermitian, unitary
matrices. As discussed in §2, two distinct sets, (P0, P1) and (P ′

0, P
′
1), can be related by

a large gauge transformation. The two theories are said to be in the same equivalence
class when (2.17) and (2.18) hold. In this appendix we prove that in every equivalence
class there is at least one diagonal (P0, P1).

Through a global SU(N) transformation, P0 can be diagonalized as

P0 =
(
Im

−In
)

, P1 =
(
A C†

C B

)
, (A.1)

where Im is an m ×m unit matrix and m + n = N . P0 still has SU(m) × SU(n)
invariance. Utilizing this invariance, one can diagonalize the hermitian matrices A
and B. Let us write
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P1 =



a1 �c1
†

. . .
...

am �cm
†

b1

�c1 · · · �cm
. . .

bn


=



a1

. . . �d1 · · · �dn
am

�d1
† b1

...
. . .

�dn
† bn


. (A.2)

As P1 is unitary, we have

a2
j + �cj

†�cj = 1 , b2j + �dj
†�dj = 1 ,

�cj
†�ck = �dj

†�dk = 0 for j 
= k . (A.3)

Let the rank of C be r. Only r of the vectors �cj are linearly independent. (A.3)
implies that the other (m−r) of the vectors �cj identically vanish. Similarly, only r of
the vectors �dj are nonvanishing. Through a rearrangement of the rows and columns,
one can bring P1 into the form

P1 =
(
P̃1

ÎN−2r

)
,

P̃1 =



a1

. . . C̃†
ar

b1

C̃
. . .

br


. (A.4)

Here, C̃ is a square r × r matrix, and ÎN−2r is a diagonal matrix whose diagonal
elements are either +1 or −1. Notice that (P̃1)2 = I2r implies

(aj + bk) C̃jk = 0 . (1 ≤ j, k ≤ r) (A.5)

Making use of (A.3) and (A.5), one can reshuffle rows and columns such that

P̃1 =

P̃
(1)
1

. . .

P̃
(t)
1

 ,

P̃
(l)
1 =

(
alIsl

C†
l

Cl −alIsl

)
,

(s1 + · · · + st = r) . (A.6)
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Now, consider the submatrix P̃
(l)
1 . It is also hermitian and unitary, which in

particular implies that U (l) = (1 − a2
l )

−1/2C†
l is unitary; U (l)†U (l) = Isl

. Through
another global unitary transformation, P̃ (l)

1 is brought into the canonical form:

(
Isl

U (l)

)
P̃

(l)
1

(
Isl

U (l)†

)
=

 alIsl

√
1 − a2

l Isl√
1 − a2

l Isl
−alIsl

 . (A.7)

We note that P0 remains invariant under this transformation. The new P̃
(l)
1 decom-

poses into SU(2) submatrices. In each subspace, we have

P̂0 = τ3 , P̂1 = cos θτ3 + sin θτ1 = e−iθτ2τ3 , cos θ = al . (A.8)

Finally, the y-dependent transformation Ω(y) = ei(θy/2πR)τ2 in the subspace, with
(2.14), transforms (P̂0, P̂1) into (τ3, τ3) in the subspace. Hence, the original general
(P0, P1) has been transformed into a diagonal one under a series of transformations.
This completes the proof.
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