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Abstract: The Stochastic Blockmodel [16] is a mixture model for hetero-
geneous network data. Unlike the usual statistical framework, new nodes
give additional information about the previous ones in this model. Thereby
the distribution of the degrees concentrates in points conditionally on the
node class. We show under a mild assumption that classification, estima-
tion and model selection can actually be achieved with no more than the
empirical degree data. We provide an algorithm able to process very large
networks and consistent estimators based on it. In particular, we prove a
bound of the probability of misclassification of at least one node, including
when the number of classes grows.
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1. Introduction

Strong attention has recently been paid to network models in many domains
such as social sciences, biology or computer science. Networks are used to rep-
resent pairwise interactions between entities. For example, sociologists are in-
terested in observing friendships, calls and collaboration between people, com-
panies or countries. Genomicists wonder which gene regulates which other. But
the most famous examples are undoubtedly the Internet, where data traffic in-
volves millions of routers or computers, and the World Wide Web, containing
millions of pages connected by hyperlinks. A lot of other examples of real-world
networks are empirically treated in Albert and Barabdsi [1], and book Faust
and Wasserman [12] gives a general introduction to mathematical modelling of
networks, and especially to graph theory.

One of the main features expected from graph models is inhomogeneity. Some
articles, e.g. Bollobds et al. [5] or Van Der Hofstad [26], address this question.
In the Erdds-Rényi model introduced by Erdds and Rényi [11] and Gilbert [14],
all nodes play the same role, while most real-world networks are definitely not
homogeneous.

2574


http://projecteuclid.org/ejs
http://dx.doi.org/10.1214/12-EJS753
mailto:channarond@agroparistech.fr

Classification and estimation in the SBM with the degrees 2575

In this paper, we are interested in the Stochastic Blockmodel (SBM), intro-
duced by Holland et al. [16] and inspired by Holland and Leinhardt [17] and
Fienberg and Wasserman [13]. This model assumes discrete inhomogeneity in
the underlying social structure of the observed population: n nodes are split
into 2 homogeneous classes, called blocks, or more generally clusters. Then it
is assumed that the distribution of the edge between two nodes, depends only
on the blocks to which they belong. Thereby, within each class, all nodes have
the same connection behavior: they are said to be structurally equivalent [20].
When the class assignment is known, the social structure can possibly be vi-
sualized through the meta-graph [23], which emphasizes the role of each class.
However the block structure is supposed to be not observed or latent. Thus the
assignment Z and the model parameters must be estimated a posteriori through
the observed graph X, which is a real challenge, especially in large networks.

Our main purpose in this paper is to present a consistent inference method
under SBM, which can above all process very large graphs. Snijders and Nowicki
[25] have proposed a maximum likelihood estimate based on the EM algorithm
for very small graphs with @ = 2 blocks. They have also proposed a Bayesian
approach based on Gibbs sampling for larger graphs (hundreds of nodes), which
they have extended to arbitrary block numbers in Nowicki and Snijders [22].
However the usual techniques enables the processing of only relatively small
graphs, because they suffer severely from the complexity of graph structure. In
particular the EM algorithm deals with the conditional distribution of the labels
Z given the observations X, whose dependency graph is actually a clique in the
case of SBM (see paragraph 5.1 in Daudin et al. [9]). Inspired by Wainwright
and Jordan [27], Daudin et al. [9] have developed approximate methods using
variational techniques in the context of SBM. From a physical point of view, the
variational paradigm amounts to mean-field approximation, see Jaakkola [18].
Thus thousands of nodes can be processed with this variational EM algorithm.
Lastly, Celisse et al. [6] proves the variational method to be consistent precisely
under SBM.

All previous methods treat both classification and parameter estimation di-
rectly and at the same time. They are alternatively updated at each step of EM-
based algorithms. Yet those tasks are actually not symmetrical, and moreover
estimators are quite simple when Z is known. The classification — remaining
the main pitfall thus far — can be completed first, and then the latent assign-
ment Z just replaced with this classification by plug-in in order to estimate the
parameters.

Searching for clusters from a graph is computationally difficult and has differ-
ent meanings. Many algorithms, especially coming from physics and computer
science, aim at detecting highly connected clusters, which are self-defined as
optimizing some objective function. See Lancichinetti et al. [19], Girvan and
Newman [15] and methods based on modularity in Newman [21] and Bickel and
Chen [3]. In contrast, the blocks under SBM have a model-based definition and
do not necessarily have many inner connections (see examples in Daudin et al.
[9]). Therefore, most algorithms designed for community detection are generally
not suitable in this context.



2576 A. Channarond et al.

Bickel and Chen [3], Choi et al. [7], Celisse et al. [6] and Rohe et al. [24]
prove that it is asymptotically possible to uncover the latent structure of the
graph Z. In this work, we additionally show under a separability assumption
that it is possible to do so, just by utilizing degree data instead of the whole
graph X. As a consequence, we can work with n variables instead of n?, which
makes classification computations much faster. The basic reason why so little
information is needed — compared with other models with latent structure —
is specific to SBM. The number of observed variables (X;;)1<i j<n grows faster
than the number of latent variables Z, therefore even marginal distributions of
X concentrate very fast. Our algorithm actually expands the procedure intro-
duced by Snijders and Nowicki [25] when @ = 2. Like Bickel and Chen [3], we
provide probabilistic bounds for the occurrence of one error at least. Moreover
we take the random assignment into account, even when the number of classes
@ increases and the average degree vanishes. Related results are given in Choi
et al. [7] and Rohe et al. [24]. Nevertheless the bounds in these papers concern
the rate of misclassified nodes instead, and do not prevent the number of errors
from growing to infinity. They also require the assignment Z to be fixed.

Furthermore a simulation study was carried out and shows that the method
converges faster than expected from the theoretical bounds but slower than
other existing methods. However it is much more computationally efficient, and
does not require the storage of the whole adjacency matrix. For large networks,
this trade-off might be necessary.

The paper is organized as follows. In Section 2, we begin by presenting the
model we shall study and some notations are fixed. Above all a concentration
property of the degree distribution is stated in paragraph 2.2, which will be very
useful in proving the consistency of the method mentioned above. The classifi-
cation algorithm (called LG) and the main results are presented in this section
as well. In particular, Theorem 2.2 provides a bound of the error probability
and Proposition 5.0.1 gives some convergence rates when the number of classes
is allowed to grow. The consistency proof of the LG algorithm is provided in
Section 3. Section 4 is devoted to deriving simple estimators of the parameters
by plug-in and their consistency is also demonstrated. Section 5 adresses the
issues related to the separability assumption and provides convergence rates of
the LG algorithm as well. A simulation study in Section 6 illustrates the behav-
ior of the LG algorithm, which is discussed afterwards. In Section 7, the model
and the algorithm are more accurately studied. As an application, it is lastly
proved that it is likewise possible to find out asymptotically the right number
Q@ of blocks of the model. That completes the method relying just on degrees.

2. The Stochastic Blockmodel
2.1. Model

We first recall the SBM. For all integers n > 1, [n] denotes the set {1,...,n}. The
undirected binary graphs with n nodes are defined by the pair ([n], X) where X
is a symmetric binary square matrix of size n. X is called the adjacency matrix
of the graph. Let @ > 1 be the number of blocks.
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® 7 = (Z;)ie[n) denotes the latent vector of [Q]™ such that Z; = ¢ if the node
i is g-labeled. Let o = (a1, ..., ag) be the vector of the block proportions
in the whole population.

Z = (Zi)i iid. ~ M(l;a)

e Conditionally on the labels Z, the variables {X;;,4,j € [n]} are indepen-
dent Bernoulli variables. Conditionally on {Z; = ¢, Z; = r}, the parameter
of Xij is Tgr-

(Xij1Zi = g, Zj = 1) ~ B(mgr)

Tgr is the connection probability between any g-labeled node and any r-labeled
node. Noting m = (7 )qre[q) the connection matrix, the parameters of the
model are (a,7). This model will be denoted by G(n,, «). Note that in the
sequel n will be often removed in the notations for the sake of simplicity.

This is a classical problem in mixture models: the block labeling is naturally
not identifiable. The content of the blocks remains unchanged by permutating
labels. But equivalence classes are identifiable as soon as n > 2@Q), see Celisse
et al. [6].

2.2. Degree distribution

For all i € [n], let D' = _,,; X;; the degree of the node i, that is the number
of neighbors of this node.

Proposition 2.0.1. For all q € [Q], let Tq = 3, g uTgr- D} is a binomial
distributed random variable conditionally on Z; = q with parameters (n—1,7,).

(D}")ie[n) is therefore a sample of a mixture of binomial distributed random
variables with parameters (n — 1,7,)q4ec[q and proportions (g )qe(o)-

These variables are correlated. Thus we are not in the validity range of the
usual algorithms for mixtures like EM. But there is only one edge shared by any
pair of nodes and the degrees are consequently not heavily correlated. Using the
EM algorithm would make sense for practical purposes. Nevertheless we have
chosen to use a faster one-step algorithm, unlike EM which is iterative.

A concentration inequality for binomial random variables

The following inequality will be useful throughout the article. This will especially
account for the fast concentration of the degree distribution. It is a straightfor-
ward consequence of Hoeffding’s inequality for bounded variables.

Theorem 2.1 (Hoeffding). Let n > 1, p €]0,1[ and (Y;)iem) @ sequence of
independent identically distributed Bernoulli random variables with parameter p.

Let S, =Y. Yi. Then for all t > 0:

Sn _ p‘ > t> < 22t (CCT)

r(|2
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Concentration property of the normalized degrees

Define the normalized degree of node i € [n]:

D}

(T7")ien) cluster around their average conditionally on the node class when n is

increasing, according to (CCT):
P(|T" = 7| > t]Z; = q) < 2e72"° (1)

Hence normalized degrees corresponding to g-labeled nodes gather around 7.
Consequently, in the degree distribution, nodes from different classes split up
into groups centered around 7,, provided that all conditional averages (7¢)qe(q)
are different. From now on, we will assume that they are:

Assumption
Vg,r €[Q] q#T=TqFTr (H)

Also define 0 the size of the smallest gap between two distinct conditional
averages (Assumption (H) amounts to § > 0):

Definition 1.
0 = min |7, — 7,
q#r

Because of the concentration, a larger gap is expected between normalized
degrees of nodes from different classes than nodes from the same class. The LG
algorithm relies on this remark. It consists in building @ blocks by finding the
@ — 1 largest gaps formed by two consecutive normalized degrees.

The smaller ¢ is, the closer the degrees are and so the harder the separation of
the classes between them is: § can be regarded as separability parameter of the
model. Given ¢, n must be large enough so that the classes are clearly separated.
This issue is explicitly discussed in Section 5.

Note that this assumption rules out some models, for example the case of
Tqq €qual for all ¢ and 7y, equal for all ¢ # r and equal proportions which was
studied in Decelle et al. [10] with a physical point of view.

2.3. Largest Gaps algorithm

If (u;)ie[m] is a sequence of real numbers, (u(;))ic[,) denotes the same sequence
but sorted in increasing order.
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Algorithm
e Sort the sequence of the normalized degrees in increasing order:
Ty = =Tw
e Calculate every gap between consecutive normalized degrees:
T(iy1) — T(iy for alli € [n — 1]

e Find the indexes of the ) — 1 largest gaps: i; < -+ < ig—1, such that for
all k € [Q — 1] and for all i € [n]\ {i1,...,i0-1}:

L) = Tt 2 Ty — T

e Noting (ig) = 0 and (ig

)

n, associate with each index (7) a class number:
i+ k such that (ix_1 ) <

) =
< (#) < (ix)-
Erample

On the figure below, the largest gaps correspond to the intervals [T\2), T(s)l,
denoted by O, and [T\g), T{10)[, denoted by 0. Nodes (1) and (2) are therefore
classified in class 1, nodes from (3) to (9) in 2, nodes (10) and (11) in 3.

O: Class 1, ¢: Class 2, (O: Class 3

O 0
| fmul ] AAVANN '\ |
T T = K O I
0 Ta Tz Ty - T Taoy Tay 1

FiG 1. Repartition of the normalized degrees.

This algorithm has all the qualities mentioned in Introduction and makes
good use of the concentration, which makes the consistency easy to prove.
Whereas variational EM algorithms runs as many quadratic steps as needed to
reach convergence and classical spectral clustering runs in cubic time, this algo-
rithm is especially fast. Indeed the sorting runs in quasilinear time and although
the computation of the degrees is quadratic, this is a very basic operation which
is very quickly performed. Note that Condon and Karp [8] gave an algorithm
running in linear time and consistent under SBM — called planted ¢-partition
model in this paper —, but provided that the weights of the blocks are equal.

2.4. Main result

The true (respectively estimated) partition of [n] in classes is denoted by the set
{Cq Yaelq)s (resp. by {Cy'}ee(q)) and the cardinality of the true g-labeled class
by N (resp. by ]V;) We expect the estimated partition to be almost surely
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the true partition when n is large enough. Define F,, as the event “The LG
algorithm makes at least one mistake”, that is:

En = {{C} # €4}
Definition 2. {CAg}qe[Q} is said to be consistent if

P§7F(En) — 0

n—oo

Let us define o the smallest proportion of the model:

op = min oy
a€[Q]

Theorem 2.2. Under Assumption (H),
Py (E,) < Ine~ 570" 4 Q(1 — ap)"™!

The proof of this theorem is given in the paragraph 3.3. Note that the bound
is uniform over all models with the same 4, even though these do not behave
exactly the same way. In particular the intraclass variability has a certain effect
on the concentration of the node degrees of the class. Sparse models concentrate
faster than models with a medium density for example.

3. Consistency proof of the LG algorithm
3.1. An ideal event for the algorithm

The LG algorithm delivers the true partition especially when none of the classes
is empty, and the spreading of the normalized degrees is small compared with
the minimal gap . A,, denotes the event “No true class is empty”, that is

A, = () {ep # 2y = [ {Ny =0}

q€(Q] q€(Q]

Definition 3. We call maximal intraclass distance (or spreading) the random
variable d,, defined by:
d, = max sup |T* — 7,|
aclQliecy
This is the maximal distance between the normalized degree of a node and
its own conditional mean, over all nodes and all classes. This is basically a
measurement of the within-class spreading of the normalized degrees.

Proposition 3.0.1. Under Assumption (H), the following inclusion holds for

all e > 0:
Anm{dng 0 }CFn
4+¢
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Proof. Suppose that A, N{d, < ffrs} is true. For all 4,5 € [n] and ¢,r € [Q]:

e If nodes ¢ and j have label ¢, then:
20
4+¢
e Inversely, if they have different labels, respectively ¢ and r, then:

|Ti_Tj| > |Tj_?q| - |Ti_%q|

|Ti_Tj| < |Ti_7q|+|Tj_fq| <

. 1)
Z|Tj—ﬂq|—m
_ _ 1)
Z|7Tl—7fq|—|Tj—7Tz|—4+E
L0 5 24e. . 2

- _4+5_4+5_4+5 >4—|—£

As a conclusion of this alternative, ¢ and j are in the same class if and only

if |T; — T < 42—Jf5. Notice moreover that there exjsts exactly  — 1 intervals
2

among the set ([T}, T}[);,; strictly greater than ;5 on this event. Hence the

@ — 1 largest intervals lie between groups of normalized degrees from different
classes; whereas all others lie between degrees of the same class. In this case the
algorithm returns the true partition. O

3.2. Bound of the probability of large spreading

In this paragraph we shall show that the dispersion d,, converges to 0 thanks to
the subgaussian tail of the binomial distributions. This is a basic result of this
article, because all others require controlling the dispersion.

Proposition 3.0.2. For allt > 0:
P(d, >t) < 2ne 2
Proof. 1t consists in conditioning by the class of each node, in order to apply the
concentration inequality (CCT), and of a union bound. Since D} ~ B(n,7,),
(CCT) gave the inequality (1):
P(|IT, — 74| > t|Z; = q) < 2e~2""
Hence:
P(d, >t) =E (P(d, > t|Z))
=E (P (Ugejq) Yiee, {ITi —Tq| > t}|2))

gm(z S P(T 7| > 112)

q€[Q]1€Cq

<E| Y Y P(Ti =7 > tZi=q)

q€[Q] i€Cq
< one—2nt” O
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Remark. Furthermore d, almost surely converges to 0 because the upper
bound is summable, by applying a usual consequence of the Borel-Cantelli
lemma.

3.3. Bound of the error probability (proof of Theorem 2.2)

Thanks to the bound of the probability of large spreading, one can easily con-
clude that the ideal event A, N {d < ﬁ} is actually strongly likely for n large
enough and for all € > 0:

Proof. First we have A, N {d < 4;;} C E, according to Proposition 3.0.1,
hence:

P(E,) <P (An N{d, < &}) <P (dn > 4%{5) + P(A,)

On the one hand, Proposition 3.0.2 implies that:

Pld >L <2e —2n Y
" aye) =P 4+4¢€

On the other hand A,, corresponds to “There exists an empty class”. For all
q € [Q], Ng ~ B(n, ag), hence:

P(Zn) =P (UqE[Q]{Nq = O})
<Y P(Ng=0)= > (1-0y)" <Q(1—ag)"
]

q€[Q q€(Q]

Once the both previous inequalities have been put together, we have an upper
bound of P(E,,) which depends on . The limit of the upper bound when ¢ tends
to zero yields the bound of the Theorem. O

4. Consistency of the plug-in estimators

If the true classes were known, the usual moment estimators would be enough to
estimate («, ). Indeed the empirical proportions estimate « and the connection
frequencies estimate the connection probabilities. We first prove that if we knew
the classes, we would obtain a consistent estimate. However those variables are
not observed but latent. That is why we plug the partition delivered by any
consistent classification algorithm into these estimators. Notice that it does not
depend on the choice of the consistent algorithm.

Notations For all ¢,r in [Q], Cgr denotes Cq % C,, and Ny, its cardinality. If

g # 1, Ngyp = NgN, and if ¢ = 7, Ngg = w We define the following
estimators: N .
&q =1 and %qr = Xij
n

qr .~
(4,5)ECqr
Recall that all of these variables are hidden thus far.
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4.1. Estimation with revealed classes

Theorem 4.1. (@, 7) is a consistent estimator of (o, ).

Proof. For all ¢ € [Q)], Ny is the sum of n independent Bernoulli random vari-
ables with parameter ;. Applying directly the concentration inequality, we get
for all t > 0 and ¢q € [Q]: P(‘% — aq| > 1) < 2¢=2nt" . Applying the concen-
tration inequality (CCT) conditionally on N, and then taking the expectation,
we get for all t > 0:

P ([fgr = ar| > 8) = E [P ([fgr = Torl > tINy)] < 2 (e72V0")

Define:
2

ozqrzaqarifq#randaqq:fifq:r.

Let (r,,) be a non-negative sequence tending to infinity. We split up the support
of the expectation into two pieces, depending on the values of Ng,.. On the one
hand the exponential term inside the expectation is bounded on the first piece
of the support by a deterministic sequence. On the other hand, the probability
of the support of the second piece of the expectation {|qu — agn?| > ’I”n} is
accurately controlled by using the concentration inequality derived from (CCT)
in Appendix A.

E [exp(—Qqut2)} =K [exp(—?qutQ)]l{‘qu,aqrnzKTn}
+exp(_2qut2)]]‘{‘qu*aqrn2|>rn}:|
< E [exp(—2t*(agn® — )] + P(|Ngr — agrn®| > 1)

Nyr n
< exp(—2t%(agrn® — 1)) + P (’ nl; > ﬁ)

2.2 172
<o |-nt (D0 1)| vaew(-53) @
Tn n

In order to have a vanishing bound (B), we just have to choose (r,) such
that:

— Qgr

2,2 2
. asn r
lim —2— > 1 and —g — 400
n—+oo Tn ne n—+oo

For example, r, = n"/*, hence:
1
E [exp(—2Ng4t%)] < exp {—n7/4t2 (n1/4a(2) - 1)} + 4exp (—5\/ﬁ>
Then we conclude with a union bound:
P(|7 = 7lloc > t) < 2Q7 (e‘"7/4t2("”4“3‘1) + 4e‘%ﬁ)
Finally we conclude for all parameters:
P(| (7 @) = (0, 7)o > t) < 2Q° (e‘"”“tz("“aﬁ—l) tdemd ") +2Qe 2t
O
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4.2. Estimation with hidden classes

We now assume that we have got a partition of the nodes {CAq}q returned by any
classification algorithm. The estimators a and 7 are defined by plug-in with the
estimated partition {C,}, instead of the true one {C,},. If the classification is
right, then estimators both with hat and with tilde are equal.

N, 1
aquandwqrzﬁ— Z Xij

o=
4 (%J)ecqr

Theorem 4.2. If {(j’;}q is consistent, then (Q,T) is a consistent estimator of
(a, ).
Proof. For all t > 0, let B} = {||(a,7) — (o, m)|| > t}.
vt >0 P(B}')=P(B}NE,)+P(BNE,)
< P(BY NEn) + P(Ey)
On the event E,, the equality (a,7) = (&, ) holds, hence:
vVt > 0P(B}) < P(||(a,7) — (a,m)| >t) + P(Ey).

The first term converges to 0 according to Theorem 4.1 and the second one as
well, provided the algorithm is consistent (see Theorem 2.2). O

4.3. Conclusions

The previous paragraphs did not depend on the algorithm chosen. Now putting
together the results of the previous section and the results concerning the LG
algorithm, we get:

Theorem 4.3. For allt >0
P([[(7,8) = (0, m)lloo > 1) < 2Q2 (7 (96 =7") 4 4=V 4 2@e 20"
+ 2ne ' 4 Q1 — o)™

Note that the estimation procedure requires larger graphs to achieve consis-
tency than does the classification procedure with the LG algorithm alone. This
is basically due to the variability of the empirical proportions.

Since the upper bound is summable, a usual consequence of the Borel-Cantelli
lemma implies the strong consistency of these estimators.

5. Using LG algorithm under weak separability

The case of a weak separation of the classes is now considered, that is when §
vanishes or is exactly zero.
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5.1. Convergence rates of the LG algorithm

Here the separability parameter § is supposed to be vanishing when n is increas-
ing. This amounts to remove asymptotically the assumption (H). Moreover the
number of classes @ is supposed to be growing with n. It is actually connected
because if ) is growing and all of the 7, are distinct at the same time, then ¢ is
necessarily vanishing. Convergence rates ensuring LG to be consistent are pro-
vided for §, @ and ag, in order to illustrate up to where, at least, the algorithm
theoretically works.

In this subsection only, another asymptotic framework is chosen. The param-
eters (o, ) are assumed to be functions of n. Consistency does not mean con-
vergence under the distribution of G(n, a, ) anymore, but under G(n,a™, "),

with a” = (af,...,a¢ ) and 7 = (77,.)1<¢,r<qQ, - It is assumed that:
On 0, ag 0 and @, —— +00
n— o0 n—o00 n— 00

Proposition 5.0.1. The classification procedure with LG algorithm is still con-
sistent under the following assumptions:

(a) lLm 6, L > 2\/5, implying Q. = O o
notoo Y Inn lnn

. nin(l — af)
b)) llm —————>1
( ) n~1>_rJIrloo ann ~

For example, if Q, =1+ b /ﬁj, it is sufficient that: of > 1;_7?

Proof. Assumption (a) implies that there exists C' > 2v/2 such that for n large

enough:
n né2
6py/— > C and then —= —8>C?-8>0
Inn Inn

2
nexp <—%n5i> = exp [—%lnn <% — 8>}

< exp [—%lnn (02 —8)] —0

Therefore

n—-+oo

Secondly the model requires (@, — 1)d, < 1 as a necessary condition. Hence,

applying (a):
1 n
Wn<1l+—= =
@ns it On O( lnn)

According to Assumption (b), there exists €’ > 1 such that for n large
enough:
nin(l — of)

' )
ma, > (", so that:
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Qn(l—ay)" =exp[In@Q, +nln(l — af)]

o[-, (F) )]

< — r_
Sexp(=nQu (C"~1)) =0
Thus it has been just proved that the two terms of the bound of the theorem
2.2 were vanishing, which finishes the proof. o

Large graphs are more and more sparse as n increases, which results in the
decrease in the connectivity defined by 7, = Eqn = (T7"). Convergence rates
are now given when sparsity increases.

Proposition 5.0.2. The LG algorithm is still consistent in the following cases:

— Inn\*?
e T,=0 (—) , if Qn 1s bounded.
n

. %n_o<./h17”>, if Qu ~ /.

Proof. We sketch the proof with the following inequality, where the right hand
side estimates the connectivity of the sparsest model:

Qn Qn
Tn = Zaqwq > Zaq (g —1)on > of ftsn
qg=1 q=1

5.2. Separation of mized classes

In this paragraph, it is supposed to be known that two average normalized
degrees are equal, so that § = 0. there are () classes and 7, = 7, for some ¢
and r. For the sake of simplicity, all other conditional averages are assumed to
be pairwise distinct.

The LG algorithm can be previously applied to the graph with the input
parameter @ — 1. The @ — 1 groups returned by LG are asymptotically the true
classes, except classes ¢ and 7, which are mixed together in one group of nodes,
denoted by M C [n].

We shall briefly explain a procedure to separate this group, using the concen-
tration of some additional binomial variables, namely the number of common
neighbors of each pair of nodes (or number of paths of length 2 between each
pair of nodes). Since there is a quadratic number of node pairs, this is not as
fast as our procedure using degrees only.

Note that the paths of length 2 have been considered in the stochastic block
model in some papers, for spectral clustering in Rohe et al. [24] or for parameter
estimates in Ambroise and Matias [2]. More general motifs are also studied in
Bickel et al. [4].
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Notation. Define o the diagonal matrix the diagonal coeflicients of which are
(0tq)qef@) and the bilinear map on R?:

(e (X,Y) > XaY

which is a scalar product, as soon as «, is non-negative for all q. || - || denotes
the associated norm.

For all pairs of nodes (4,7) € M x M, define

D;; = Z Yijr, where Y = XXk,
ki,

Yi;k is a Bernoulli distributed variable, that equals one if and only if ¢ and j
are both connected to k. Its parameter conditionally depends on each class of
nodes ¢ and j:

e If i and j both belong to the g-labeled class:

P(Yiyr =11Z; = Z; = q) = Zamé’z = |Imqll2
=1

where 7, is the row vector (mg);. Symmetrically, if they both belong to
the r-labeled class, the parameter is ||7,||2.
e Otherwise, if they belong to distinct classes g # r:

Q
PV =11Zi = ¢, 25 =1) = Y umqmrs = (7q, T )a
=1

The behavior of the new variables D;; looks like that of the degrees; they
once more quickly concentrate around their average value as a consequence of
the concentration of binomial variables. There are three groups of node pairs,
concentrating around |7y |2, [|7,||2, or (g, T )a. The first two contain only pairs
of nodes of the same membership, whereas the last one is made up of pairs of
nodes of different memberships.

Up to a label switch, it can be supposed that ||74||e < ||7r]|a. The following
lemma shows that the group with pairs of nodes of different memberships is well
separated from one of the other two. This will be sufficient to separate classes
q and 7.

Lemma 5.1.
0 < (g, Tr)a < [Imr |2

Proof. First of all (my, 7)o > 0 because this was defined as a probability. Then,
by applying the Cauchy-Schwarz inequality:

<7Tq=7Tr>a < qu”aHWT”a < ||7TT||Z
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The case of equality in the Cauchy-Schwarz inequality cannot arise; if it did,
then 7, and 7, would be collinear vectors. Noting c the constant of collinearity,
it would yield 7, = c,.. But 7, and 7, are assumed to be equal in this section;
hence ¢ = 1. my and 7, would be equal. This is not allowed by the model for
identifiability reasons. The inequality is eventually strict. o

Now the LG algorithm is applied to the set of variables (D;; ) jenm with @ = 2
as input parameter. Define W as the set of the pairs which are returned in the
second group — the groups being sorted in increasing order — and F' as the
set of nodes, which are involved in those pairs. Let K be the graph defined by
(F,W).

Note that K has no obvious relation to the observed graph X. An edge
between ¢ € M and j € M just means that the pair (¢,) has been classified in
the second group by LG.

Proposition 5.1.1. In the graph K there are edges only between modes from
the same class with high probability when n is large enough. As a consequence
K is asymptotically made of one or two cliques and each clique of K is made
of all nodes from either class q or class r.

Proof. There are two major cases, depending on the relative position of ||m,]|2,
||7T7‘||(21 and <7Tq77rr>a-

o If ||my|2 < (mg,m)a < ||7r]|2, the gap between ||m,||2 and (7, 7 ) is

actually strictly smaller than the gap between (m,, 7,)q and |m,|%:

”777“”2 - <7Tqa77r>a - (<7Tqa7"r>a - ||7Tq||i)

= ||7Tq||i + ||7Trl|i - 2<7Tq77rr>a = ||7Tq - 77T||i >0

As a consequence, LG selects asymptotically the gap between (7, 7r)a
and |7, || as the largest one. Then the second group returned by LG is
asymptotically made up of the node pairs concentrated around ||, |%, i.e.
the pairs of nodes from class r. K forms asymptotically one clique, which
is made up of all nodes from class r.

o If (my,mr)a < |Imgll2 < |72, LG selects asymptotically either the gap
between ||74|2 and ||7-||2 and then there is only one clique as in the
previous case, or the gap between (r,, 7.}, and ||m,||2 and then the second
group returned is made up of the node pairs concentrated around |7 |2
and ||7,||2. There are two cliques and each one corresponds to one class.

O

Since the content of one of the two classes is known, the node group M which
contains nodes with mixed memberships can be separated for large enough n.

Remark. Here it is supposed to be known that 7, = 7,.. However we do not
provide here any procedure to know if the averages degrees are really equal.
Further developments would be needed to test this hypothesis, using the size
of the tail of the observed distribution of the variables (D;;);jenm for instance.
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Indeed these variables concentrate around only one value when there is only one
class, and around several values when there are more than one class.

6. Simulation study

Our main purpose in this study is to figure out how the LG algorithm behaves
in practice, and above all, to check whether the bounds of Theorem 2.2 are
pessimistic or not. The empirical frequency of the graphs with no error would be
of great interest, because that is the quantity the bound concerns. But actually
this frequency has no smooth evolution: it suddenly shifts from 0 to almost 1.
We shall use two types of classification error rates: a global one and one for each
class, so as to examine more accurately the results given by the algorithm.

Moreover the results of LG are compared with these of the variational method
[9], which is available online in the packages MixNet!, MixeR? and WMixnet?.
The latter has been chosen in the current simulation study. In WMixnet the
variational EM-algorithm (VEM) is initialized by a spectral clustering algorithm
[24]. VEM can be additionally run several times with multiple reinitializations
in order to prevent from getting caught in a local maximum. WMixnet also
proproses a smoothing option working the following way. VEM algorithm is
run with several values of Q. As soon as the likelihood is nonincreasing or the
ICL criterion is not convex with respect to @, the VEM is run once more for
the problematic values of @. It is basically reinitialized with the classification
returned by VEM either for @ — 1 classes after having split one class or for @ +1
classes after having merged two classes.

The results will be given with and without smoothing.

6.1. Simulation design

The parameters used in the simulation are:

0.03 0.02 0.045
a=(03055015) 7=/ 002 0.05 0.09
0.045 0.09 0.25

Hence 7 = (0.0267 0.047 0.1005) and § = 0.0203. The parameters have been
chosen so that the graphs are relatively sparse.

200 graphs are drawn from the model G(n,a,w) for n from 200 to 11000.
Then both LG and WMixnet are applied to each graph so as to obtain the
node classification and the parameter estimators. Above 3000 nodes (respec-
tively 5600) WMixnet with smoothing (resp. without) turned out too slow to
be run in reasonable time. However it has already converged from n = 2200
nodes (resp. n = 5200).

1See at http://stat.genopole.cnrs.fr/logiciels/mixnet.
2See at http://cran.r-project.org/web/packages/mixer/index.html.
3See at http://ssbgroup.fr/mixnet/wmixnet.html.


http://stat.genopole.cnrs.fr/logiciels/mixnet
http://cran.r-project.org/web/packages/mixer/index.html
http://ssbgroup.fr/mixnet/wmixnet.html
http://stat.genopole.cnrs.fr/logiciels/mixnet
http://cran.r-project.org/web/packages/mixer/index.html
http://ssbgroup.fr/mixnet/wmixnet.html
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The evolutions of the classification error rates and the estimators with respect
to the number of nodes n are averaged over the 200 graphs and displayed from
200 to 11000 nodes for the LG algorithm, and to 5600 nodes for the variational
method.

Error rates First of all, the global error rate g, is defined as the proportion
of node pairs (i, j), either classified in distinct classes whereas their true labels
are identical, or classified together whereas their true labels are different. That
is, denoting Z the label vector returned by the classification algorithm:

PN 2
gn(Z, Z) = Z (]]'Zi:Zj ]127&2; + ]lzﬁgzj]l/z\i:’z';)

n(n —1) 1<i<j<n

Secondly, we also propose error rates per class. Define I, resp. My, the rate
of intruders (or false positive rate) in the class ¢ predicted by the algorithm,
resp. the rate of missing nodes of the true class ¢ (or false negative rate):

IN2,2) = 7 Z]lz;éqandM (Z,Z) Z Ztq
zqu zeC

Labels will be allocated to the nodes in order of increasing degree in the
classification algorithms. Indeed the true labels are expected to be sorted this
way, because T < Ty < m3. This partially solves the label switching problem
which arises when trying to identify the true labels instead of the equivalence
classes.

6.2. Results
The evolution is quite satisfactory because the global error rate g, of LG com-
pletely vanishes from n = 8600 nodes, which is even earlier than expected from

the bound of Theorem 2.2 (see Figures 2 and 3). Indeed this bound predicted

+: LG; o: WM; >: WMS

L A Sg0ee L -2 L L L L L
O0 2000 4000 6000 8000 10000 12000 10 0 2000 4000 6000 8000 10000 12000

Number of nodes

FiG 2. Error rates gn and running time as functions of the graph size n.
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+: LG; o: WM; >: WMS
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Fic 3. Means of the estimators

that the probability of at least one error would not be less than 0.05 earlier than
n = 300000. The bound seems to be pessimistic, basically because of the union
bound, used in the proof of Proposition 3.0.2. Note nevertheless that (see also
the remark following the theorem 2.2) since the model is relatively sparse, the
classification is not as intricate as for models with medium density. For instance
we have also tried a model with § = 0.02 and average normalized degrees close
to 0.6, and the global error rate vanished only from n = 40000 nodes (not shown
here).

WMixnet with smoothing (WMS) converges so fast that its error rate com-
pletely vanished from n = 2400 nodes, much earlier than LG. Up to n = 3000,
both WMixnet without smoothing (WM) and LG return poor and very similar
results. Then the error rate of WM suddenly vanishes from n = 5200 nodes.
Thus there is a gap between n = 5600 and n = 8600 where WMixnet is hardly
usable and LG does not provide good results.

The running time of LG seems to be constant with respect to n, because the
asymptotical regime (quasilinear) has not been reached yet, whereas these of
the WMixnet algorithms are dramatically increasing.

Transitional phase of LG Now the behavior of LG alone is more accurately
discussed. After a dramatic decrease of the error rate of LG at the beginning,
its evolution encounters a slight stagnation between n = 1000 and n = 3000
nodes (see Figure 4). An interpretation of this transitional phase of LG is given
using the error rates per class.
The third class is much better detected even at small graph sizes, unlike class
1 and class 2. Indeed it is sufficient that the maximal intraclass distance d,, is
less than (73 —72)/4 to detect this class, whereas the other two are not supposed
to be separated before
Ty — T

5
dy < 2 =2
< 1 4<

T3 — T2

4
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Fic 5. Standard deviations of the estimators for LG.

according to our previous study. That is the reason why the global error rate
dramatically decreases until reaching n = 1000 nodes, and why it does not
decrease anymore before reaching n = 3000. Note that the bound of Theorems
3.0.2 and 2.2 had not predicted this before reaching n = 39000 and n = 317000
respectively.

In short, as long as the tails of the normalized degree distribution are overlap-
ping, the classes are mixed and cannot be properly detected. The curves show
in particular that most nodes of class 2 seem to be caught by class 1, since there
are many missing nodes in class 2 (the biggest class) and many intruders in class
1. Thus the proportion of class 2 is underestimated in the transitional phase,
whereas the proportion of class 1 is overestimated. This inversion is clearly
shown again on the graphics of the estimates (see Figure 3) and results in a
high variability of the estimators (see Figure 5) related to these classes.

Moreover missing nodes of class 3 must be caught by class 2 as well. Therefore
interconnectivity 2-3 is overestimated, close to 3-3, and the estimator has a
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strong variability. Moreover the graphics related to the connectivities estimates
(on Figure 3 and Figure 5) illustrates that as long as there is a lot of missing
nodes in a class, the intraconnectivity estimator of the class is not good and has
a high variability (see the curves of 2-2 and 3-3, unlike 1-1).

6.3. Conclusions

As a conclusion of this practical comparison, the LG algorithm should be used
only for very large graphs, when nothing else is computationally feasible. LG
can deal with millions of nodes on the same computers we used for the current
simulation. For small graphs, other techniques provide better results.

This algorithm lacks robustness because it takes every normalized degree
into account and each one carries the same weight, even if it is isolated and not
statistically representative. In the worst case, one untypical node is sufficient to
trick the algorithm, making the classification wrong by a majority. This often
arises at small graph size in generated data and may occur at any size also in
real data.

7. Model selection

Up to this section, the number of classes was supposed to be known and was an
input parameter of the LG algorithm. Our main purpose hereafter is to examine
more accurately the sequence of the gaps sorted in increasing order and then
the sequence of the intervals between the means of the groups given by the LG
algorithm, depending on the selected number of classes @ for the model. As an
application of this study, we finally show that degrees are once more sufficient
to select the right number of classes for large enough n.

7.1. Study of the gap sequence

We will use the same notations as in the last section. Moreover Q¢ denotes the
true number of classes, and @) the current input parameter of the LG algorithm.
We will often use the event B, = A, N{d, < g}, where no class is empty
and the dispersion d,, is so small that the Qg — 1 largest intervals separate the
true classes (see Proposition 3.0.1 with € = 1). Then we can affirm that two
normalized degrees are in the same class if and only if their distance is less
than 2d,,.

Let (G7)4e[n—1) be the sequence of the distances between consecutive nor-
malized degrees (Tg+1) — T(?))ie[n—l]a but sorted in decreasing order:

Gl >2Gy > >Gpy

The Qo —1 largest gaps in the LG algorithm have lengths G, ..., Gg,—1. Define
also (7¢)qe[@o—1) the sequence (T(g41) =7 (q))ge[@o—1]» SOrted in decreasing order.
This is called the sequence of the theoretical gaps. The following theorem states



2594 A. Channarond et al.

that largest empirical gaps converge to the corresponding theoretical gaps, which
enforces our intuition about the model.

Theorem 7.1. For all ¢ < Qq, G, —+> Yq G-S.
n—-+0oo

Refer to Appendix B to see the proof. One can easily realize that the only
gap (among the Qo — 1 largest) lying between 7T(q) and 7(,41) converges to
T(q+1) — T(q)- However the index of this interval is random and depends on n.
This interesting but technical problem is solved in the second part of the proof.
For the moment we provide a weaker version of this theorem, the proof of which
is much simpler. Its conclusion is sufficient for our purposes.

Theorem 7.2. For all ¢ < Qq, lim Gy >0

———n—+o0

Proof. If ¢ < Qp: on the event B,,, the Qo — 1 largest intervals necessarily lie
between normalized degrees from different classes. There exists ¢ € C, and j €
Cs, where s # r such that Gy = |T; — Tj|. But |T; — 7| < dy, and |Tj — 75| < dp,
hence

2 3

Namely B, C {G, > 24}.

P (Gq < %S) <P (Bn) < 2e~H"" 4 Qo(1 — ap)”

As the upper bound is summable, according to the Borel-Cantelli lemma,
P T (G, <25) =
nbeo T2 S B0 ) T

Therefore lim Gq > %5 > 0 almost surely. O

n—+00

All further gaps lie between degrees of nodes of the same class and then
converge to zero. The next theorem gives an estimation of the convergence rate.

Theorem 7.3. For all 5 €]0, 1], the triangular array
1-8
n 2 GyiQo<qg<n-1}
converges uniformly w.r.t. ¢ and a.s. to zero when n tends to infinity.
Proof. First of all, recall that for all n,
By > Glyyr > > Gy >0

Therefore we can just prove that n'z" Gq, —+> 0, and the uniform conver-
n—-—+0o0

gence will follow.
On the event B,,, the Qg — 1 largest intervals lie between normalized degrees
from different classes. The next intervals lie between degrees from the same
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class, and the distance to their corresponding conditional mean is at most d,,.
As G, is one of these, G, < 2d,,. Hence, for all 0 < t < g:

1-8 1-8 1-8 —
P(n 2 Gg, >t) =P(nz Gaq, >tﬁBn)+P(n 2 Go, >tﬂBn)
< P@2n' 2" d, > 1)+ P (B,)
<2 4 e E) 4 Qo(1 — ap)”

7.2. Study of the intervals between estimated classes

By distances between estimated classes, we mean distances between empirical
averages of the normalized degrees of each class, provided by the LG algorithm.
Define my to be the average of the normalized degrees of the g-labeled class
estimated by the algorithm:

mq:NiqZTi

ieC,

The sequence of the gaps between consecutive averages (m411) — M(q))qe[@—1]
is sorted in order of decreasing length, just as the sequence of the gaps (T(;11) —
T(i))ien—1) is in the previous paragraph. This new sequence is denoted by
(H{)qej@-1)- Of course it depends on the current @, whereas (G,), does not.

When @ = Qo, Hy and G, are very close for all ¢ < Qg — 1. On the contrary,
when Q < Qo, some of the (H,)4e(q,—1) stretch over several classes and include
more than one of the G,. As a result, there is at least one g such that H, differs
from G, for large enough n.

Theorem 7.4.
Qil a.s
L IfQ=Qo, then Y (Hy— Gq) =250
q=1 n—-+o0o

Q-1
2. If Q < Qo, then lm Y (Hy—Gy) >0 as.

n—+oo g=1

Proof. Let (Jy)qejo—1] the Qo — 1 largest intervals between consecutive nor-
malized degrees, hence for all ¢, |J;| = G. Define also Jjj = [0, min;e, 73] and
Jo = [max;e(n) T3, 1[. The union of Jj, Ji,. .., Jo-1, Jg partially covers the in-
terval [0, 1[. These intervals are separated and the distance between the bounds
of consecutive intervals is at most 2d,,. As a result:

Qo—1 Q
1-2Qdn < Y Gy+Ho+Ho<1=>» H,
0

q=1 q=
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1. If @ = Qo, subtracting the right-hand side (which actually equals 1), we
deduce from both previous inequalities that:

Qo—1
—2Qodn < Y (Gy— Hy) <0
q=1

Qo—1

Z (Hy — Gg)| >

The first assertion follows directly from this inequality; for all ¢ > 0:
t) < P(2Qod, > t)
q=1

o |
<ao (21 (5t ) <2000 ()

2. If @ < @, subtracting the right-hand side from the second inequality

yields:
Qo—1 Q-1
I
q=Q q=1

But as shown in Theorem 7.2, the lower limit of G is non-negative for all
q < Qo — 1. A fortiori, the second assertion of the theorem 7.4 follows.

O

7.3. Application to model selection

To sum up the rev10us paragraph, when @ is the right number of classes,
the quantity Z ( q — G¢) converges to zero, and when @ is too small, it
converges to a non negative value, because one of the H, does not match G,.
Thus this quantity measures the risk of underestimating the number of classes.

However, its minimization over all @ € {2,...,n} yields the unexpected
solution @) = n, for all Qy. Therefore we have to penalize overly small gaps. We
chose to use an ad hoc penalty, that can be easily inferred from our previous
study. Define for all Q € {2,...,n}:

Q-1
1
fo = E (Hy — Gq) + ———— € [0, 4+00] where § €]0,1].
q=1 n 2 GQ—I

Theorem 7.5.
1. If Q = Qo, then fo “—+> 0
n—-+oo
2. If Q@ < Qo, then lim fo >0 a.s.

n—-+o0o

3. If Q > Qo, then fg L> +o00 uniformly w.r.t. Q

It follows that Q = arg r%ln fo —— Qo a.s.

n—-+oo



Classification and estimation in the SBM with the degrees 2597

Proof.

1. If @ = Qo, applying Theorem 7.4, the sum E?;ll (Hy — G4) converges
a.s. to 0. According to Theorem 7.2, lim Gg,—1 > 0 almost surely.
n—-+o0o
Therefore:

1 a.s.

1-8

n—z GQfl n—-+oo

O, and then fQ m 0

2. If @ < Qo, according to the second assertion of Theorem 7.4, the lower
limit of the first term is non-negative. There is no change by adding the
second term, because it is positive. Hence:

lim fo >0

n—-+o0o

3. If Q > Qo, the sum Y"27" H, — G, is lower bounded by -1 (notice that it
is even positive), and according to the second assertion of Theorem 7.3,
(n# G@Q—-1)n uniformly converges to 0 w.r.t. Q > Qo. The last assertion
follows.

O

8. Conclusions

Unlike most of the methods known thus far, the LG algorithm is able to process
very large graphs. In fact it provides good results only for such graphs. Neverthe-
less, according to the simulation study, the algorithm is efficient even for smaller
graphs than theoretically expected. Moreover it is self-sufficient: it provides con-
sistent methods for node clustering, parameter estimation and model selection.
It performs every task using the degree data alone. Lastly, this algorithm is free
from any preliminary setting. There is need neither for any prior knowledge nor
for multiple runnings of the algorithm. Thus it can quickly provide initialization
values for other algorithms which depend severely on them.

However other techniques provide better results for small graph size and it
does not seem to be a practical method for real data, because of the lack of
robustness above all.

As a conclusion, the LG algorithm is a good theoretical tool which proves this
statement: for large enough n, when the average degrees are separated enough,
the degree data alone is a sufficient statistics to achieve all of the statistical
inference under SBM.
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Appendix A: Concentration inequality for products of binomial
distributed variables

Proposition A.0.1. Let X (respectively Y ) be a sum of n independent bernoulli
distributed variables with parameter p, respectively q. Then for all t > 0

XY 1
P (‘F —pq‘ > t) < 4exp(—§nt2)

Proof.

P(5m =) =2 (G ) (Gl
r Xy r (o)
SEERNRE
<2 x2exp (—2n (%) ) =4exp(—%nt2)

The last line is obtained by applying the usual concentration inequality (CCT)
to both X and Y. O

With a similar proof, we prove that for all ¢ €]0,1/4]:

qum—n 2

2n2 2

> t) <4exp (—2nt2)

Appendix B: Proof of Theorem 7.1

Let us define (J;);e[) the sequence of the intervals [T(;), T(;11)[ sorted in order
of decreasing length, hence for all i € [n], |J;| = G;. We suppose hereafter that
the sequence (74)q is sorted in increasing order: 7 < --- < 7q.

Proof. On the event B,,, among the Qo — 1 largest intervals, we can associate
with each 7, the only one lying between 7, and 7,;. Namely the only J; with
i € [Qo — 1] such that J;N|7q, Tg+1[# @. S(q) denotes the index in [Qo — 1]
corresponding to this unique interval.

Moreover, s(q) denotes one of the indexes s € [Qo — 1] such that s = Tg41 —
T4, chosen so that s is injective. Let us point out that S is a random permutation
whereas s is deterministic. In order to simplify notations, we silently make the
deterministic index change r = s(g). Thereby (74)q still denotes the sequence
(Vs(q))q» and S the permutation S o s~

Notice that on B,, and especially when d,, < g:

[Tq 4 dn, Tgr1 — dn] C Js(q) C [Tg — dn, Tgi1 + dn]

Hence |Gg(q) — 7q| < 2dn. (2)
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1. We first prove that the gap Gg(,) converges to the theoretical gap ~,. For
all ¢ > 0:

P(IGs() — 7l > 1) = P(IGs(0) — %l > t 1 Ba) + P(IGs(q) — %l > t N B)

< P(2d, > t) + P(B,)
2(e™2™ 4757 4 Qo1 — ag)” (3)

2. Secondly, none of the @y — 1 largest intervals permute anymore expect for
those having the same theoretical values. It follows from the inequality (2) that
for all ¢,r € [Qo — 1],

Yq — Vr — 4dn S GS(q) - GS(’I‘) S Yq — Vr + 4dn

Define n = %(minqe[Q] (Vg — Yg+1) N 6), a threshold designed to distinguish dis-
tances converging to one value from those converging to another. On the event
d, <1, the previous inequality yields:

Yo=Y — W < Gsg) — Gsry <vg — Y +41

o If v, — v, <0, then v4 — 7 +4n < 0 is also true by the definition of 7. As
a result of the inequality just above, G — Gg(ry < 0.
o If v, — v >0, then v, — v —4n > 0, and Gg(g) — Gs() > 0.

If (u;)1<i<m is & sequence, we write ¢ ~,, j if and only if u; = u;. ~, is an
equivalence relation. Applying the Lemma B.1 stated and proved afterwards,
if d, < n, there exists r ~. ¢ such that ¢ = S(r). Notice furthermore that
the sequence (74)qe[@,—1] is constant on the ~,-equivalence classes. The term
|G — 74| is necessarily in the sum ) |Gg(y — 7¥r|. Finally, define

req

P(|Gq_7q|>t):P(|Gq_7q|>thn)+P(|Gq_'7q|>tﬁ§n)

<P (Z |GS(r) —’7T| > t) + P(En)

r~q

¢ _
<y p <|Gs<r> > @) 1 P(B.)
reg

1 _nt?
< 2Qo(e Q3" 4 ef%"éz) +2e72" according to (3).

O

Lemma B.1. Let (u;)1<i<m, (Vi)1<i<m be two real decreasing sequences. Let p
be the number of ~.,-equivalence classes and o one permutation of {1,...,m}.
We especially assume that for all i,j € {1,...,m},

® U < U = Vo(i) < Vg(y)

® Uj > Uj = Vg(i) = Vs(y)

Then o = o1 0--- 00, where the support of o; is the ith ~,-equivalence class.
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Proof. Since u is decreasing, the ~,-equivalence classes are just sets of consec-
utive natural integers. Define recursively (r;)1<;<p the increasing sequence of
indexes j when the value of u; changes:

o Let ry = 1.
e For ¢ > 1, let r;41 be the smallest integer j > r; such that u,, = --- =
Uj—1 > Uj.
The construction of (r;); implies that for all j < 7, all r; <1 < r;y1 and all
k> riy1: uj < up < g, and furthermore vg(j) < vok) < vy as well. As v

decreases, o({ri,...,rit1 — 1}) = {rs,...,rix1 — 1}. The result follows directly
from this. O
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