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Abstract

In the last decades several cost aggregation methods
aimed at improving the robustness of stereo correspondence
within local and global algorithms have been proposed.
Given the recent developments and the lack of an appro-
priate comparison, in this paper we survey, classify and
compare experimentally on a standard data set the main
cost aggregation approaches proposed in literature. The ex-
perimental evaluation addresses both accuracy and compu-
tational requirements, so as to outline the best performing
methods under these two criteria.

1. Introduction

Given a pair of stereo images, the aim of stereo match-
ing algorithms is to determine the disparity values of the
pixels belonging to the image selected as reference view.
Scharstein and Szelinski [23] provided a valuable taxon-
omy and evaluation of dense stereo matching algorithms
for rectified image pairs, arguing that most algorithms per-
form four steps: matching cost computation, cost aggrega-
tion, disparity computation/optimization and disparity re-
finement. This paper focuses on the cost aggregation step
and addresses methods that perform cost aggregation on a
variable support. The idea at the basis of the variable sup-
port concept is to determine the best set of pixels on which
to compute the matching cost (i.e. the support) at each pair
of candidates under evaluation (i.e. the correspondence).
Hence, unlike the basic approach that relies on a fixed static
support (typically a squared window or a single point), these
methods deploy a support which varies along the potential
correspondences in order to adapt itself to the local charac-
teristics of each correspondence. This allows for obtaining
higher accuracy along depth borders and lower matching

ambiguity, especially within low textured regions.
Although works dealing with cost aggregation on a

variable support date back to the 70s, 80s and early 90s
[19, 2, 21, 11], only in the last years a broad research ac-
tivity has provided effective ideas allowing local algorithms
based on a variable support to yield an accuracy comparable
to that of many global methods. Moreover, though typically
performed by local algorithms, cost aggregation on a vari-
able support proved to be very effective in improving the
performance of global algorithms such as based on Belief
Propagation (BP) [31], Dynamic Programming (DP) [28],
Scanline Optimization (SO) [20].

We believe that the variety of approaches, as well as the
excellent results achieved, deserve a specific classification,
highlighting similarities and differences between the main
cost aggregation strategies, together with a comparative per-
formance evaluation of the different methods. Recent sur-
veys on stereo matching [23, 6, 16, 14] do not address the
above topics since they consider the whole class of stereo
methods [23], review advances in computational stereo with
particular emphasis on occlusion detection and real-time
methods [6], focus on matching functions robust to photo-
metric distortions and noise [16] or address only those cost
aggregation methods that are suited to real-time implemen-
tation on a GPU [14]. Differently, this paper is specifically
focused on classifying the main variable support-based cost
aggregation strategies and comparing them experimentally
within a plain vanilla Winner-Take-All (WTA) framework.

In particular, we firstly compare the considered strategies
in terms of accuracy of the retrieved disparity maps based
on the methodology proposed in [23]. Then, we extend
the evaluation methodology in [23] by comparing strate-
gies also in terms of computational complexity. Moreover,
by evaluating jointly the two parameters of comparison we
highlight the methods that better trade-off between accuracy
and computational complexity.
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2. Classification of cost aggregation strategies

Although several methods concerning the idea of vari-
able support constrain the cost aggregation step to rely on
rectangular windows with fixed weights only, alternatives
to this basic idea aimed at improving accuracy and mainly
based on either two different approaches, have been pro-
posed. The former generalizes the concept of variable sup-
port by allowing the support to have any shape instead of
being built upon rectangular windows only. The latter as-
signs adaptive - rather than fixed - weights to the points
belonging to the support. While these approaches aim at
improved accuracy, on the other hand the irregularity of the
support hardly allows for deployment of incremental calcu-
lation schemes, thus yielding potentially higher computa-
tional costs. It is also worth to point out that, with a few ex-
ceptions, most of the cost aggregation strategies determine
the support on the basis of a symmetric scheme deploying
information from both images.

As for the matching (or error) function employed, this is
typically based on the Lp distance between the two vectors
representing the supports in the stereo images, such as the
Sum of Absolute Differences (SAD) or Sum of Squared Dif-
ferences (SSD). Often M-estimators are used to achieve bet-
ter robustness toward outliers. The basic one simply trun-
cates the values of the matching measure up to a threshold
(e.g. Truncated SAD [30, 25]), while sometimes other more
complex M-estimators are used [12]. Another popular solu-
tion regards the use of a measure insensitive to image sam-
pling [3] (e.g. used in [27]). Moreover, a promising similar-
ity function based on point distinctiveness has been recently
proposed in [32].

Finally, it is worth pointing out that this work addresses
aggregation strategies based on fronto-parallel variable sup-
ports only, thus not considering proposals that account for
three-dimensional supports (e.g. [33]).

2.1. Cost aggregation based on rectangular win-
dows

Let Ir and It be respectively the reference and target im-
age of a rectified stereo pair. Let p, the point at coordinate
(x, y) in Ir, and q, the point at coordinate (x + d, y) in It,
be the two points for which stereo correspondence is cur-
rently being evaluated, and let wr

n(i, j), wt
n(i, j) denote two

squared windows of side n centered on (i, j) respectively in
Ir, It. We also denote as Wn(i, j, d) the pair of windows
wr

n(i, j), wt
n(i + d, j).

A first category of variable support methods relies on a
fixed set of rectangular window pairs, S(p, q), symmetri-
cally defined on Ir and It. When evaluating correspondence
(p, q) a subset of S(p, q), determined according to a specific
criterion and referred to hereinafter as SV (p, q) represents
the current support. Since SV (p, q) varies at each corre-

spondence under evaluation, it should adapt itself to the lo-
cal characteristics of p and q, thus enabling better handling
of depth borders and low-textured areas with respect to the
use of a fixed static support. The local matching cost is then
obtained by computing an error function over SV (p, q).

It is worth observing that within this category the sup-
port at each correspondence depends on both Ir and It,
since its determination is typically based on the error func-
tion itself, whose value depends on both images. Moreover,
each weight assigned to the points in the various windows
is fixed and does not depend on the image content. Finally,
an important advantage of the methods based on this idea is
that, since they deploy rectangular windows, they can often
exploit incremental schemes in order to achieve significant
computational efficiency.

2.1.1 Varying window size and/or offset

One of the first algorithms exploiting the idea of using a set
of windows to improve the accuracy of stereo correspon-
dence is Shiftable windows [23]. In this case, the set of
windows S(p, q) is defined as:

S(p, q) = {Wn(i, j, d) : i ∈ [x−n, x+n], j ∈ [y−n, y+n]}
(1)

where n is a parameter of the algorithm representing the
chosen window size. The support at each correspondence,
SV (p, q), is given by the window minimizing the error func-
tion over S(p, q). This approach is useful along depth bor-
ders, since it aims at determining the most appropriate dis-
placement with respect to p on which to center the window
in order to aggregate points lying at the same depth plane
as p. A variation of this basic strategy concerns including
in S(p, q) only 9 squared windows in symmetrical positions
with respect to the central point [4, 10].

An alternative approach [21, 1] is to vary the size of the
window rather than its displacement by properly selecting
n between a minimum value Nmin and a maximum value
Nmax:

S(p, q) = {Wn(x, y, d) : n ∈ [Nmin, Nmax]} (2)

This allows, e.g., to employ bigger windows within low-
textured regions.

These schemes can be generalized by selecting the best
support between a set of window pairs having different sizes
and different displacements. In [17] the best displacement is
selected by means of a shiftable window approach, while, to
determine the size of the support, starting from n = Nmin

the window is iteratively enlarged until a given minimum
variance of the error function is reached.

A slightly more general approach is represented by the
method proposed in [27], which selects as support the win-
dow minimizing a matching cost over a set of windows



S(p, q) defined as:

S(p, q) = {Wn(i, j, d) : n ∈ [Nmin, Nmax],
i ∈ [x − n, x + n], j ∈ [y − n, y + n]} (3)

The 3 criteria on which the matching cost is based include
minimization of the error function and its variance, plus the
use of a biasing weight to favor the choice of large windows
within low-textured regions, where the error function and
its variance might not vary significantly along the evaluated
window sizes. Moreover, this method explicitly proposes
an incremental scheme aimed at efficiently computing (3)
at each new correspondence.

An analogous approach was proposed in [7]. As for this
method, the best displacement is selected out of 9 using the
shiftable windows approach. Then, the window size is iter-
atively decreased until either the error function gets worse
or the minimum window size is reached.

In [9] the displacements considered at each correspon-
dence are 4, disposed on the four window corners. As for
the window size, starting from an initial value, the window
horizontal and vertical sides are iteratively increased until
either the error variance on a direction gets higher than a
certain threshold or the error function gets worse. Differ-
ently from previous approaches, this allows to obtain rect-
angular supports.

2.1.2 Selecting more than one window

All previous schemes select, for each correspondence, one
window on each image representing the best support over
S(p, q). A generalization of this approach is represented by
SV (p, q) being not one single window pair, but a subset of
window pairs. In [22], S(p, q) is the same as in (1) and
the outcome of the error measure computation on the var-
ious window pairs is used to assess whether each point is
close or not to a depth edge. Based on that, a variable sup-
port strategy is deployed on all points detected as close to a
depth edge, where the final matching cost assigned to each
correspondence is obtained by averaging the error function
along those displacement positions detected as lying on the
same border side as p and q.

In one version of method [15], S(p, q) is defined as a set
of 5 squared windows

S(p, q) = Wn(x, y, d) ∪ {Wn (x ± n, y ± n, d)} (4)

At each correspondence the variable support is obtained as
the union of 3 best supporting windows (i.e., on Ir, the one
centered on p plus those 2 out of the 4 windows around
p scoring the lowest error function, and symmetrically on
It). Variations of this scheme employ variable supports of a
total of either 5 or 13 best supporting windows out of a set
including, respectively, 9 and 25 windows.

2.1.3 Associating different weights to window points

It is worth pointing out that with the methods described in
Section 2.1.2 the resulting shape of the support is no longer
constrained to a rectangle. Moreover, getting a support
made out of several partially overlapping windows having
uniform weights is equivalent to getting a support made
out of a single rectangular window where each point is
weighted differently. This latter strategy concerns the ex-
plicit assignment of different weights to the points of each
window belonging to S(p, q). In method [18], the aggrega-
tion stage defines S(p, q) as a set of 108 rod-shaped win-
dows. Each window is characterized by a specific orienta-
tion and weight set, and the support at each correspondence
is determined by the window minimizing the error function.
Each point is then classified as homogeneous or heteroge-
neous based on the outcome of the application of a LoG
filter, and on those points denoted as homogeneous the min-
imum error score determined on S(p, q) is also compared to
that yielded by a basic shiftable windows approach.

In the strategy proposed in [13], S(p, q) is defined as
a set of 5 × 5 window pairs centered on (p, q), each win-
dow point being characterized by a weight belonging to the
set {0, 1, 2, 4}. For each correspondence a window pair is
selected according to the local structure of Ir, which is ex-
tracted by means of either edge detection or segmentation.
The authors propose also to iterate the process k times, and
suggest to use k = 4 or k = 2 respectively in a local or
global framework.

2.2. Cost aggregation based on unconstrained
shapes

An important generalization to the idea of determining
S(p, q) as a set of rectangular windows is to allow supports
to have any shape. This potentially allows supports to better
adapt to the local characteristics of the data, though some-
times this approach does not translate into computationally
efficient algorithms.

The first method exploiting this idea was proposed in [5].
At each correspondence (p, q), each pixel pi on Ir is clas-
sified either as plausible or not-plausible based on an esti-
mation of the photometric relation between pi and its corre-
spondent on Iq at the same disparity as (p, q). The best dis-
parity for p is simply selected as that yielding the largest set
of connected plausible pixels. This allows to have variable
supports which can ideally extend to all pixels of the image.
Differently, in [26] the support shape at each correspon-
dence is represented by a polygonal line around p, which
is extracted by applying the minimum ratio cycle technique.

Finally, in [12] the support shape is represented by the
intersection between the segment on which p lies, Gp, and
a squared window centered on p, wr

n(x, y). This approach
is intrinsically based on the assumption, introduced by [24],



that disparity is constant over each segment obtained from a
segmentation process. Moreover, this approach relies only
on segmentation information concerning Ir (i.e. it is not
symmetrical). Those points belonging to wr

n(x, y) and not
to Gp are included in the error function by means of a small
constant weight.

2.3. Use of adaptive weights

Another important generalization of the variable support
concept refers to the assignment of different and variable
weights to the points surrounding p and q. The concept of
support and shape are more controversial in this case: since
every point receives a weight, the distinction between points
belonging or not to the support is seamless. Moreover, since
the whole set of weights has to be re-computed at each new
correspondence, the variable support typically does not in-
clude the whole image but only a subset of points repre-
sented by a squared or a round window centered on p and q,
with the assumption that points lying farther than a certain
distance are uncorrelated. Once the weights are determined,
the error function is typically computed by weighting each
pixel-wise error measurement with the corresponding coef-
ficient.

The method proposed in [29] can be regarded as the first
proposal for stereo exploiting this idea. It was inspired by
[8], which proposed a method to segment a foreground ob-
ject from its background in an image based on the radial
propagation of similarity starting from a foreground point.
In [29] 3 different cues are deployed to determine the sup-
port weights for points belonging to the reference view Ir .
The first one (the certainty) is based on the variance of the
error function: since weights are propagated radially start-
ing from p, each point weight depends from the error vari-
ance of previous points along its ray. With increasing vari-
ances, the assigned weight is lower since it corresponds to
a low certainty. The two other cues are color and disparity
distribution correlation: the weight assigned to a point pi in-
creases as the difference in the color space between pi and
p decreases and as the correlation between pi and p dispar-
ity distribution increases. Each cue is weighted by means
of a gaussian function in the final weight formulation, the 3
gaussian variances being 3 parameters of the method.

In [30] this approach is enhanced by symmetrically ex-
tending the weight computation to points on It. Weights
are computed based on the two cues of distance in the
color space and distance in the coordinate space (proximity)
by means of gaussian functions, this approach being moti-
vated by the Gestalt principles of similarity. Then, a final
weighted error function is proposed including normaliza-
tion by means of the weight coefficients. Points farther than
a certain distance from p and q are not evaluated. An effi-
cient though simplified asymmetric version of this method
is proposed within a Dynamic Programming framework in

[28], so to allow a GPU implementation with real-time ca-
pabilities.

Finally, the method proposed in [25] improves [30] by
demonstrating that the cue of proximity can lead to incor-
rect weight assignments along depth borders as well as in
presence of low-textured regions, high-textured regions and
repetitive patterns. Hence, instead of this cue, the output of
a segmentation process is exploited so as to embody more
effectively information about color-spatial connectivity be-
tween points.

3. Experimental evaluation and comparison

In this section an extensive performance evaluation and
comparison between different cost aggregation strategies
based on a variable support is proposed. Since the aim is
to specifically evaluate the effectiveness and efficiency of
the various aggregation methods, all the considered strate-
gies have been embodied into the same plain WTA frame-
work. The two criteria used for the evaluation are accuracy
and computational cost. Evaluation according to the first
criterion is accomplished by using the Middlebury Stereo
Evaluation Dataset1 [23]. Computational cost is assessed
by measuring for each method the execution time needed to
process a reference stereo pair on the same machine (Intel
Core Duo 2.14 GHz CPU, 2 GB RAM).

The selected approaches are those that represent the
state-of-the-art for the different classes of cost aggregation
strategies identified in Section 2. In particular, 14 methods
are compared, which are now listed together with the nick-
name used hereinafter to refer them to. The basic method
that uses a fixed square window is referred to as Fixed win-
dow. As for the approaches based on a selection over a set
of windows, we evaluated Shiftable window [4], Reliability
[17], Variable windows [27], Recursive adaptive [7], Mul-
tiple adaptive [9], Multiple windows [15] (tested in the 3
versions based respectively on 5, 9 and 25 supporting win-
dows), Oriented rod [18], Gradient guided [13]. With re-
gards to the approaches that allow for unconstrained sup-
port shapes we evaluated Max connected [5] and Segmenta-
tion based [12]. Finally, within the methods based on adap-
tive weights we considered Radial adaptive [29], Adaptive
weight [30] and Segment support [25].

In order to carry out an as fair as possible comparison,
all method were implemented using the same criteria, ex-
cept in the case of Adaptive weight [30] for which the au-
thors’ source code is publicly available. For each method,
only the proposed aggregation stage was implemented and
tested. In particular, neither pre-processing stages nor typ-
ical post-processing stages, such as median filtering and
left-right consistency check, were applied. In order to bet-
ter assess the performance of Oriented rod and Multiple

1http://vision.middlebury.edu/stereo



windows, where the proposed pre-processing stage is in-
trinsically connected with the aggregation stage, for both
methods we considered two versions, that is with and with-
out pre-processing. Those versions where pre-processing
was excluded will be denoted hereinafter with the symbol
∗. Since for Oriented rod pre-processing served as a way
to discriminate between homogeneous and heterogeneous
points, in the version without pre-processing all points are
considered homogeneous and thus compared with the result
of a shiftable filter. This generally implies higher compu-
tation times and in some case better accuracy. Moreover,
for the sake of fairness the cost function is the same for all
methods. In particular, since many aggregation strategies
rely on colour information [13, 12, 29, 30, 25], the selected
cost function is the Sum of Absolute Differences (SAD) on
RGB pixels, exception made for method Max connected,
which was implemented as originally proposed by the au-
thors since it is not explicitly based on a cost function. Fi-
nally, for each method which was not originally proposed
with this cost function or where parameter values were not
explicitly specified by authors, parameter values were se-
lected by means of a tuning process ran on the considered
dataset.

As far as execution times are concerned, in our imple-
mentations we took into account all the guidelines and de-
tails originally proposed by the authors, including e.g. the
use of incremental schemes for a more efficient implemen-
tation (e.g. Variable windows [27]). Our implementations
of the basic Fixed window and of Shiftable windows also
deploy incremental schemes. When implementation details
were not explicitly provided by the authors we adopted the
same plain criteria across the considered algorithm, so as
to the render the comparison of execution times as fair as
possible. However, it is clear that by extensively optimising
each algorithm according to its own structure one would get
different and perhaps much faster execution times. There-
fore, the reported measurements should be interpreted only
as useful indicators aimed at comparing the computational
costs of the considered methods.

3.1. Analysis of extracted supports

Fig. 1 allows for a qualitative evaluation and comparison
of the variable supports extracted by the considered meth-
ods on 6 representative hand-chosen points of the stereo pair
Teddy. The selected points, highlighted in the top picture of
Fig. 1, refer to regions where stereo methods based on fixed
or variable support are often ambiguous due to one or more
of the following causes: presence of depth borders (points
1, 2, 4, 6), low-textured areas (points 2, 5), highly textured
areas (point 3). For those methods associating weights to
points belonging to the support, higher weights are rep-
resented by brighter grayscale values. Furthermore, since
method Max connected can have supports extending to the

whole image area, only for this method, for each of the eval-
uated point, each extracted support is shown on a different
picture (indicated in brackets in the figure). Moreover, for
the sake of simplicity the supports displayed for [13] are
relative to k = 1 (although in our implementation we use
k = 4, as originally proposed in [13], to obtain the experi-
mental results shown in Subsection 3.2).

From a qualitative point of view, it is worth noticing how
aggregation strategies deploying sets of window pairs are
generally able to adapt their supports according to the posi-
tion of the depth border (points 1, 2, 4, 6), though it seems
clear that supports made out of rectangular windows lack
in flexibility. For instance, this can be clearly seen at point
4 for methods Shiftable windows, Reliability, Multiple win-
dow (25W).For what regards low-textured regions (points
2, 5), only a subset of methods which allow the support
windows to vary their size (i.e. Multiple Adaptive, Relia-
bility and, to some extent, Variable windows) succeeds in
correctly expanding over these regions.

As for methods deploying supports characterized by un-
constrained shapes, method Segmentation based seems to
adapt very well its supports along depth borders as well as
in presence of low-textured regions. As for method Max
connected, though generally it correctly limits the support
shape when approaching a depth border, it often annexes
points at different disparities causing ambiguities in the dis-
parity retrieval stage. Moreover, this causes the extracted
supports for points 4 and 5 to coincide, even though these
two points lie at a different disparity.

Finally, all methods deploying adaptive weights seem
to extract the supports with notable accuracy. Together
with Segmentation based, they outperform other aggrega-
tion schemes, leading to the best variable supports. More-
over, since they evaluate a high number of points surround-
ing the correspondence currently evaluated, this often al-
lows them to include within the same support a high num-
ber of points lying at the same disparity: this turns out to be
effective especially in presence of depth borders and low-
textured regions. Between these methods, Segment sup-
port and Radial adaptive seem more effective than Adap-
tive weight within low-textured regions (points 2, 5), while
Segment support also handles better the considered high-
textured region (point 3) compared to the other two ap-
proaches which, conversely, at this point retrieve very small
supports.

3.2. Accuracy and computational cost

For what concerns accuracy we rely on a testbed and
evaluation methodology analogous to that adopted on the
Middlebury Stereo Evaluation site. In particular, as it can be
seen from Table 1, we use 4 reference stereo pairs (Tsukuba,
Venus, Teddy and Cones) and for each of them evaluate
the error rates on the two ground truth maps NonOcc (all



Rank Tsukuba Venus Teddy Cones Rank Time Average
Algorithm Accuracy NonOcc Disc NonOcc Disc NonOcc Disc NonOcc Disc Time (mm:ss) Rank
Segment support [25] 1.00 2.28 1 7.50 1 1.21 1 5.88 1 10.99 1 22.01 1 5.42 1 11.83 1 17 33:34 9.00
Adaptive weight [30] 2.50 4.66 3 8.25 2 4.61 3 13.30 4 12.70 2 22.40 2 5.50 2 11.90 2 15 18:14 8.75
Variable Windows [27] 4.00 4.10 2 10.79 3 10.66 13 9.94 2 13.93 3 25.53 3 7.24 3 13.86 3 11 00:25 7.50
Reliability [17] 5.38 5.14 4 18.31 5 3.86 2 11.51 3 16.96 6 30.62 6 13.52 13 21.55 4 16 21:51 10.69
Shiftable Windows [4] 5.63 6.53 7 21.80 8 6.60 5 13.54 5 16.16 5 30.19 5 9.55 4 22.99 6 7 00:15 6.31
Segmentat. based [12] 7.38 8.18 10 18.77 6 8.06 8 20.85 7 15.78 4 29.66 4 13.22 12 24.55 8 2 00:02 4.69
Multi. Win. (25W)* [15] 8.13 6.52 6 21.91 9 6.77 6 21.57 8 18.60 10 33.11 9 11.87 10 23.69 7 9 00:16 8.56
Recursive Adaptive [7] 10.00 9.22 14 26.69 16 8.36 9 14.86 6 18.48 9 32.93 8 11.60 9 24.80 9 14 16:55 12.00
Gradient Guided [13] 10.50 7.51 9 16.20 4 13.07 14 33.10 13 20.39 13 32.82 7 13.67 14 25.60 10 3 00:03 6.75
Mult. Win. (9W)* [15] 10.75 8.51 11 27.59 17 6.47 4 34.30 15 17.57 8 38.04 13 10.75 6 26.60 12 6 00:13 8.38
Mult. Win. (5W)* [15] 11.25 9.36 15 25.74 14 8.57 10 38.65 17 17.11 7 37.45 11 9.86 5 25.33 11 8 00:16 9.63
Mult. Win. (25W) [15] 11.38 6.34 5 24.13 11 9.04 11 29.61 10 20.77 14 36.77 10 14.20 15 27.45 15 10 00:17 10.69
Mult. Win. (9W) [15] 11.50 7.12 8 25.00 13 10.21 12 33.44 14 18.91 12 37.76 12 10.95 7 27.05 14 5 00:09 8.25
Mult. Win. (5W) [15] 13.00 8.94 13 23.55 10 16.33 15 35.56 16 22.29 15 38.09 14 11.13 8 26.99 13 4 00:07 8.50
Fixed Window 14.25 8.66 12 36.67 20 7.05 7 40.53 19 18.68 11 41.95 17 12.79 11 33.32 17 1 < 1 s 7.63
Multiple Adaptive [9] 15.88 15.11 19 32.85 19 16.88 16 22.31 9 25.40 16 39.44 15 21.40 17 29.66 16 18 39:47 16.94
Max Connected [5] 15.88 11.81 17 26.39 15 42.47 20 50.87 20 34.46 18 41.01 16 17.70 16 22.70 5 20 ≈ 2 h 17.94
Oriented Rod [18] 16.63 11.29 16 24.21 12 26.33 18 30.09 11 37.68 19 47.94 19 39.60 19 47.88 19 12 12:22 14.31
Oriented Rod* [18] 17.50 15.87 20 27.75 18 26.40 19 30.58 12 30.65 17 42.72 18 30.52 18 41.82 18 13 12:33 15.25
Radial Adaptive [29] 17.50 14.84 18 21.79 7 22.40 17 40.40 18 49.64 20 50.13 20 50.18 20 53.60 20 19 58:52 18.25

Table 1. Performance evaluation in terms of accuracy and execution times of the considered variable-support based strategies.

points except for occluded areas) and Disc (only points
along depth discontinuities, not including occluded areas).
Each single error rate is also denoted by its respective rank-
ing along the considered methods. Error rates on all im-
age points including occlusions have not been taken into
account since the tested algorithms do not explicitly handle
disparity retrieval for occluded points due to the adopted
WTA framework. Besides, an overall accuracy ranking
obtained by averaging the single rankings of each method
along the dataset is shown in the second column.

As for computational costs, Table 1 reports for each
method the measured execution time on the stereo pair
Teddy. Similarly to the evaluation of accuracy, the Table
shows the ranking of methods according to the measured
execution times. Finally, the Table reports in the rightmost
column the ranking obtained by averaging the overall ac-
curacy ranking and the time ranking, so as to highlight the
methods that better trade-off between accuracy and compu-
tational efficiency.

Coherently with the qualitative analysis based on Fig. 1,
the Table shows that the most accurate methods are those
deploying adaptive weights. In particular, Segment support
[25] and Adaptive weight [30] outperform the other methods
almost on the whole dataset, followed by Variable Windows
[27]. Conversely, the fastest methods are those based on the
evaluation of the support over a set of windows or based on
unconstrained shapes. It is worth observing that, apart from

the basic Fixed window approach, methods such as Segmen-
tation based [12], Gradient guided [13], Multiple window
[15], Shiftable window [4] and Variable windows [27] can
run in seconds or tens of seconds, while some methods, i.e.
Max connected [5] and Radial adaptive [29] may require
hours. As regards the accuracy/efficiency trade-off, the best
method turned out to be Segmentation based [12], with sim-
ilar rankings obtained by Shiftable Windows [4] and Gradi-
ent guided [13].

The disparity maps obtained by the various methods on
the Middlebury dataset as well as the qualitative comparison
of the extracted supports concerning the Tsukuba and Teddy
stereo pairs can be found on-line2. In addition, this web
site includes the results dealing with other cost measures
(Truncated SAD, SSD) and the program used for generating
the supports depicted in Fig. 1.

4. Conclusions

A survey and evaluation of stereo matching methods
based on a variable support has been proposed. The first
part, concerning classification, illustrated a categorization
of the approaches proposed in literature. Then, in the sec-
ond part, a vast experimental comparison between variable
support-based methods within a WTA framework has been
presented. The evaluation work has been aimed at assess-

2available at www.vision.deis.unibo.it/spe



ing both accuracy and computational complexity of the con-
sidered methods. This allowed us to determine also which
methods provide better trade-offs between accuracy and
computational complexity. Future work will be aimed at ex-
tending this comparison by including other cost aggregation
methods not considered in this paper, such as e.g. [26] and
[22], as well as at evaluating variable support-based method
on images affected by photometric distortions and noise us-
ing stereo pairs with ground-truth.
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Figure 1. Qualitative comparison of the supports obtained by different strategies on 6 points of stereo pair Teddy. The 6 points are depicted
in the top-most image. The images corresponding to Gradient guided and Oriented rod display also enlarged pictures of the supports to
enable better visual analysis of the results


