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Classification and Feature Extraction for Remote
Sensing Images From Urban Areas Based on

Morphological Transformations
Jon Atli Benediktsson, Senior Member, IEEE, Martino Pesaresi, and Kolbeinn Arnason

Abstract—Classification of panchromatic high-resolution data
from urban areas using morphological and neural approaches is
investigated. The proposed approach is based on three steps. First,
the composition of geodesic opening and closing operations of dif-
ferent sizes is used in order to build a differential morphological
profile that records image structural information. Although, the
original panchromatic image only has one data channel, the use
of the composition operations will give many additional channels,
which may contain redundancies. Therefore, feature extraction or
feature selection is applied in the second step. Both discriminant
analysis feature extraction and decision boundary feature extrac-
tion are investigated in the second step along with a simple feature
selection based on picking the largest indexes of the differential
morphological profiles. Third, a neural network is used to classify
the features from the second step. The proposed approach is ap-
plied in experiments on high-resolution Indian Remote Sensing 1C
(IRS-1C) and IKONOS remote sensing data from urban areas. In
experiments, the proposed method performs well in terms of classi-
fication accuracies. It is seen that relatively few features are needed
to achieve the same classification accuracies as in the original fea-
ture space.

Index Terms—Classification, mathematical morphology, feature
extraction, feature selection, high-resolution imagery.

I. INTRODUCTION

I
T IS WELL KNOWN that there are two fundamentally dif-

ferent strategies for image segmentation, i.e., edge detection

and region growing. Even though the standard approach to seg-

mentation based on mathematical morphology [1] is dependent

on edge detection, it is possible to consider a different morpho-

logical approach to the segmentation problem. In this paper, we

define image features by their morphological intrinsic charac-

teristics, instead of using their boundary [2], [3]. The method

is focused on image structural information, and this structural

information is collected by applying morphological operators

with a multiscale approach and by looking at the residues be-

tween the multiscale morphologically transformed image and

the original one.
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The fundamental operators in mathematical morphology

are erosion and dilation [1]. When mathematical morphology

is used in image processing, these operators are applied to

an image with a set of a known shape, called a structuring

element (SE). The application of the erosion operator to an

image gives an output image, which shows where the SE fits

the objects in the image. On the other hand, the application of

the dilation operator to an image gives an output image, which

shows where the SE hits the objects in the image. The erosion

and dilation operators are dual but noninvertible, in general.

All other morphological operators can be expressed in terms of

erosion and dilation.

Two commonly used morphological operators are opening

and closing. The idea behind opening is to dilate an eroded

image in order to recover as much as possible of the eroded

image. In contrast, the idea behind closing is to erode a dilated

image in order to recover the initial shape of image structures

that have been dilated. The filtering properties of the opening

and closing operators are based on the fact that not all structures

from the original image will be recovered when these operators

are applied. It is a common practice to use the opening and

closing transforms in order to isolate bright (opening) and

dark (closing) structures in images, where bright/dark means

brighter/darker than the surrounding features in the images.

In order to isolate features with a thinner support than a given

SE, a widely used technique is to take the residuals of the

opening, closing, and original images, by a morphological

transformation called top-hat and inverse top-hat (or bot-hat)

[2]. Here, the chosen approach for the opening and closing

calculation uses a non-Euclidean metric known as filtering

by reconstruction [4]. The reason for using the reconstruction

approach is that this family of morphological filters has proven

to have a better shape preservation than classical morphological

filters. In fact, reconstruction filters introduce nominally no

shape noise, since the shape of the structuring element used

in the filtering are adaptive with respect to the structures

present in the image itself [5].

Some structures may have a high response for a given SE

size, and a lower response for other SE sizes, depending on the

interaction between the SE size and the size of the structure.

Sometimes we know exactly the size of the structures that we

want to detect. However, that is often not possible, and then a

single-SE-size approach appears to be too simplistic. For these

reasons, in exploratory or more complex cases, it can be a good

idea to use a multiscale approach based on a range of different

SE sizes. This can allow us to explore a range of different hy-
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pothetical spatial domains, and to use the best response of the

structures in the image for the classification process.

The idea to use a composition of opening transforms for a

morphological segmentation of satellite data was originally pro-

posed for the detection of different urban structures [6], [7]. In

the experiments in [6] and [7], segmentation labels were ob-

tained after the arithmetic addition of a series of openings with

an increasing SE. The method is only applicable to Boolean

maps (binary or two-gray-level images), and it does not use

geodesic metric. More recently, Pesaresi and Kanellopoulos [8]

used a composition of geodesic opening and closing operations

of different sizes in order to build a morphological profile. Then,

they used a neural network approach for the classification of

features. In [3], Pesaresi and Benediktsson proposed a method,

which is based on differential morphological profiles (DMPs),

which is both more general and more robust than the methods in

[6]–[8]. Here, the method in [3] will be applied in classification

of urban remote sensing data.

A potential problem with approaches based on morpholog-

ical profiles is that these methods create a large feature set from

one original image by applying a series of opening and closing

transforms. Although, the use of morphological profiles should

help in creating an image feature set which is more effective in

discrimination of different urban features, a lot of redundancy

will be evident in the feature set. Therefore, it is of interest to see

if feature extraction or feature selection can help in finding the

most important features in the feature space and if similar clas-

sification accuracies can be achieved with a reduced feature set

as in the original feature space. Here, we will investigate the use

of two feature extraction methods, discriminant analysis feature

extraction and decision boundary feature extraction for neural

networks, and a simple approach based on sorting the indexes

of morphological profiles. After the feature extraction or selec-

tion, a conjugate gradient neural network with one hidden layer

will be used to classify the data.

The paper is organized as follows. In Section 2, differential

morphological profiles will be reviewed. In Section 3, feature

extraction and feature selection will be discussed. Experimental

results will be given in Section 4 and conclusions drawn in

Section 5.

II. DIFFERENTIAL MORPHOLOGICAL PROFILES

Here, we will review the concepts of the morphological pro-

file and of the derivative of the morphological profile (DMP)

[3]. Both of these concepts are used to create a feature vector

from a single image, . Both are based on the repeated use of

the opening and closing operators, which are commonly used in

mathematical morphology [1].

Let be a morphological opening operator by reconstruc-

tion using structuring element SE and be the

opening profile at the pixel of the image . is defined

as a vector

(1)

Also, let be a morphological closing operator by reconstruc-

tion using structuring element SE . Then, the closing profile

at pixel of the image is defined as the vector

(2)

In the above, for by the

definition of opening and closing by reconstruction [3]. Given

(1) and (2), the opening profile can also be defined as a gran-

ulometry [1] made with opening by reconstruction, while the

closing profile can be defined as antigranulometry made with

closing by dual reconstruction. The derivative of the morpho-

logical profile is defined as a vector where the measure of the

slope of the opening-closing profile is stored for every step of

an increasing SE series.

The derivative of the opening profile is defined as the

vector

(3)

By duality, the derivative of the closing profile is the

vector

Generally, the derivative of the morphological profile or

the DMP can be written as the vector

(5)

with equal to the total number of iterations, , and

the size of the morphological transform. Let us take a

closer look at (5). Near the central position of the DMP vector,

, we have the response for the derivative calculated using small

SEs, while at the beginning (position ) and at the end

(position ), we record the response for the greatest SEs

in the closing and opening profiles, respectively. Therefore, if

we observe a “centered” DMP, we can argue that small struc-

tures are present in the image. On the other hand, an unbalanced

DMP (either on the left or right side) indicates the presence of

larger structures. These larger structures are either darker [high

response in the closing profile ] or lighter [high response

in the opening profile ] than the surroundings. Generally

speaking, the signal response recorded in the DMP gives infor-

mation about the size and the type of the structures in the image

by observing the placement of the area of the DMP histogram.

The size is the distance form the center of the DMP,

while the type of a structure (darker or lighter than the sour-

rounding ones) can be argued by observing on which side it is

placed in the histogram of the DMP vector values. While the

above-mentioned approaches do not require a particular metric

for the morphological transforms, the DMP approach requires

the use of granulometry and antigranulometry made by opening

and closing by reconstruction, using a geodesic metric [1].

Examples of differential morphological profiles for four

information classes are given in Fig. 1 for a panchromatic

IKONOS image from Reykjavik, Iceland. From Fig. 1, it can be

seen that strikingly different characteristics are achieved for the

different classes. Therefore, the use of the differential profiles

should help in discrimination. However, a lot of redundancy

can be seen in the profiles, i.e., the information from all the
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Fig. 1. Differential profiles for four information classes (Shadow, Street, Small house, and Large house) from an IKONOS image from Reykjavik, Iceland. A
circular morphological structuring element was used with an increasing diameter. The original image is a 975� 639 pixel subsample from an IKONOS frame
with full 1-m spatial resolution. The image was acquired on August 9, 2001, when the sun elevation was 42 . The relatively low sun elevation has the effect that
shadows of houses are obvious in the image.

channels may not be necessary. Thus, feature extraction or

feature selection from the differential profiles is of interest.

III. FEATURE EXTRACTION AND FEATURE SELECTION

Feature extraction can be viewed as finding a set of vectors

that represent an observation while reducing the dimensionality.

In pattern recognition, it is desirable to extract features that are

focused on discriminating between classes. Although a reduc-

tion in dimensionality is desirable, the error increment due to

the reduction in dimension has to be without sacrificing the dis-

criminative power of the classifiers. The development of feature

extraction methods has been one of the most important problems

in the field of pattern analysis and has been studied extensively

[9]. Feature extraction methods can be both unsupervised and

supervised, and also linear and nonlinear. Here, we will con-

centrate on linear feature extraction. In linear feature extraction,

the number of input dimensions corresponds to the number of

eigenvectors selected [9]. The transformed data are determined

by

(6)

where is the transformation matrix composed of the eigenvec-

tors of the feature matrix; is the data in the original feature

space; and is the transformed data in the new feature space.

Several feature extraction approaches have been proposed

and applied successfully in classification of remote sensing data

[10]. The best known feature extraction approach for represen-

tation is the principal component analysis. Although principal

component analysis is optimal in the mean square sense for rep-

resentation, it is not appropriate for classification [9]. Therefore,

other feature extraction approaches have been explored when

classification is the main objective. One such method is dis-

criminant analysis feature extraction (DAFE), which is a well-

known feature extraction method to enhance separability [9],

[10]. However, DAFE has the weakness that it is not directly

related to the probability of error in classification. The deci-

sion boundary feature extraction (DBFE) [10], [11] proposed by

Lee and Landgrebe overcomes many of the problems with the

DAFE. Lee and Landgrebe have extended DBFE for neural net-

works [12], but few feature extraction methods have been pro-

posed for neural networks. DAFE and DBFE will be discussed

next, followed by a discussion of a simple feature selection ap-

proach, which can be used for the problem at hand.

A. DAFE

As stated above, DAFE is a method, which is intended to en-

hance separability. A within-class scatter matrix and a be-

tween-class scatter matrix are defined [9], [10]. The crite-

rion used for optimization of separability may be defined as

(7)

where denotes the trace of a matrix. New feature vectors are

selected to maximize the criterion. The necessary transforma-

tion from to in (6) is found by taking the eigenvalue-eigen-

vector decomposition of the matrix . The transforma-

tion matrix then becomes the set of normalized eigenvectors

of corresponding to the eigenvalues in a decreasing
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Fig. 2. Example of a discriminantly informative feature, � . Here, X denotes
a pattern, b a constant, h(X) a likelihood ratio, and t the decision boundary.
As X is moved along the direction of � , the decision changes [11].

order. For this method, the maximum rank of is for a

class problem, which indicates that at maximum fea-

tures can be extracted by this approach [9], [10].

B. DBFE

Lee and Landgrebe [11] showed that discriminantly infor-

mative features and discriminantly redundant features can be

extracted from the decision boundary itself. They also showed

that discriminating informative feature vectors have a compo-

nent, which is normal to the decision boundary at least at one

point on the decision boundary. Further, discriminating redun-

dant feature vectors are orthogonal to a vector normal to the

decision boundary at every point on the decision boundary. In

[11], a decision boundary feature matrix (DBFM) was defined

in order to extract discriminatly informative features (see Fig. 2)

and discriminatly redundant features (see Fig. 3) from the deci-

sion boundary. It can be shown that the rank of the DBFM is the

smallest dimension where the same classification accuracy can

be obtained as in the original feature space. Also, the eigenvec-

tors of the DBFM, corresponding to nonzero eigenvalues, are

the necessary feature vectors to achieve the same classification

accuracy as in the original feature space [11]. As stated above,

Lee and Landgrebe have extended their approach for neural net-

works [12] as demonstrated by the procedure below.

1) DBFE Procedure for Neural Networks (Two-Pattern Class

Case) [12]:

Step 1) Train the neural network using all features.

Step 2) For each training sample correctly classified as class

, find the nearest sample correctly classified as

class . Repeat the same procedure for the samples

classified as class .

Step 3) The line connecting a pair of samples found in Step 2

must pass through the decision boundary, since the

pair of samples are correctly classified differently.

By moving along this line, find the point on the deci-

sion boundary or near the decision boundary within

a threshold.

Step 4) At each point found in Step 3), estimate the normal

vector .

Fig. 3. Example of a discriminantly redundant feature, � . Here, X denotes a
pattern, b a constant, h(X) a likelihood ratio, and t the decision boundary. As
X is moved along the direction of � , the classification result will be the same
[11].

Fig. 4. Use of the indexes of the DMP for feature selection. Here, the heights
h10 and h12 are greater than the heights for other indexes. For the pixel in this
example, the input vector of the neural network would be three dimensional,
i.e., the original gray level value of the pixel and the vector (10, 12).

Step 5) Estimate the decision boundary feature matrix using

the normal vectors found in Step 4) by

(8)

where is the number of correctly classified sam-

ples and T is the transpose operator.

Step 6) Select the eigenvectors of the decision boundary fea-

ture matrix as new feature vectors according to the

magnitude of the corresponding eigenvalues.

If there are more than two classes, the procedure can be repeated

for each pair of classes after the network is trained for all the

classes. Then the total decision boundary feature matrix can be

calculated by averaging the decision boundary feature matrices

of each pair of classes.

C. Feature Selection Based on the Sorting of the Indexes of

the DMP

Using feature extraction methods can be computationally in-

tensive, since they are based on estimating parameters in full

feature space. Therefore, a simple feature selection approach is

proposed here for comparison. This approach is based on the

idea to characterize each pixel with the index corresponding to

the size and kind of morphological transformation where we ob-

serve the maximum values of the DMP, since these “maximum

indexes” should reflect the most important information about

morphological characteristics of the structures in the image (see

Fig. 4). These indexes can then be used in conjunction with
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Fig. 5. (a) (upper left) Original Panchromatic IRS-1C Image, (b) (upper right) reference map, (c) (lower left) classification based on the gray value of each pixel
(one feature used), (d) (lower right) classification based on the full DMP for each pixel (16 features used).

the original gray level image. We can continue sorting the in-

dexes according to the value of the corresponding DMP (in a

descending order) and to extract only the first indexes. The

goal is to find stepwise the “ ,” which gives good classifica-

tion accuracies without much computation load. However, it

should be kept in mind that this simple feature selection ap-

proach should not in general be expected to outperform feature

extraction methods, which are based on the linear combination

of the features. The goal here is to see if such a heuristic ap-

proach can be used to pick out the most important feature with

very little effort.

IV. EXPERIMENTAL RESULTS

The proposed approaches where applied on two high-res-

olution images: 1) Indian Remote Sensing 1C (IRS-1C)

panchromatic image from Athens, Greece and 2) IKONOS

panchromatic image from Reykjavik, Iceland. In both exper-

iments, a 17-dimensional morphological profile was created

(eight closings, eight openings along with the original image)

using a circular morphological structuring element with an

increasing diameter. A conjugate gradient neural network was

used for classification. The two feature extraction approaches,

DAFE and DBFE, were applied along with the feature selection

based on the sorting of the indexes. The classification accura-

cies for the different feature sets were compared to accuracies

achieved for the full differential morphological profile. In

each case, the number of hidden neurons in a neural network

classifier was selected based on empirical experiments. The

general rule was to select the number of hidden neurons as

twice the number of input features. However, in all cases

several different implementations were investigated and the

one that gave the highest overall accuracies was reported.
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TABLE I
INFORMATION CLASSES, TRAINING, AND TEST SAMPLES FOR

IRS-1C PANCHROMATIC DATA

A. Experiment With IRS-1C Data From Athens, Greece

The satellite image in experiment 1 is taken from an agri-

cultural area connoted by scattered settlement (northeast of

Athens, Greece) and was recorded by the IRS-1C panchromatic

sensor, which has a ground spatial resolution of 5 m. The

image is a subsample of 800 800 pixels (4 km 4 km) from

an original scene of about 15 15 pixels (75 km 75 km).

Fig. 5(a) shows the subsampled image with a min-max his-

togram stretching. The copresence of objects and regions of

different sizes is obvious in the scene. A reference image with

six information classes is available [see Fig. 5(b)]. From the

available training data, training samples and test samples were

selected (see Table I). Approximately, one third of the samples

were used for training and the rest for testing the approaches.

The data were at first classified using the original IRS-1C

image and the results compared to the classification of the entire

DMP; see Fig. 5(c) and (d). The difference between Fig. 5(c)

and (d) is striking. In the figures, there are two colors for the

open spaces; green for the open space outside urban areas and

dark blue for the open space inside urban areas. In Fig. 5(c), the

neural network cannot distinguish between the two classes. This

stresses the fact that the morphological operations on the orig-

inal image give information about the size of each structure. In

the same way, big buildings (magenta) and small houses (gray)

are successfully classified only in Fig. 5(d). We also notice the

yellow class (wastelands), which is very successfully classified

in Fig. 5(d).

Table II shows the classification accuracies for the test sam-

ples when the original IRS-1C image was used, along with fea-

ture sets based on the sorting of indexes method, and the en-

tire differential morphological profile. In Table II, overall ac-

curacy represents the accuracy for all samples whereas average

accuracy represents the average classification accuracy for the

samples. The visual classification results in Fig. 5(c) and (d)

are reflected in Table II where it is seen that using the original

IRS-1C image alone, only gave 69.4% overall accuracy for test

data. By adding more features, both the overall and average ac-

curacies improved. Also, when the original IRS-1C was used

as the only input, all large buildings (class 1) were classified as

TABLE II
TEST ACCURACIES IN PERCENTAGE FOR ORIGINAL IRS-1C IMAGE, THE

ENTIRE DIFFERENTIAL PROFILE, AND ADDED FEATURES BASED ON

THE SORTING APPROACH

small buildings (class 2). The reason is that there is no informa-

tion about the size of the structures in the original image but the

use of morphological transformations helped in providing that.

It is also interesting that the two maximum indexes were needed

to classify large buildings with any accuracy at all.

The best overall and average accuracies in Table II were

achieved for the entire differential profile as was expected.

In Table II, the entire differential profile was the only feature

set that could be used to discriminate wastelands (class 7)

and open spaces inside urban (class 6) from the other classes.

However, in terms of overall accuracies, using the feature set

consisting of the original IRS-1C image and the two maximum

indexes (76%) gave similar results to the case when the entire

differential profile (77%) was used.

The DAFE method and the DBFE for neural networks ap-

proach were applied on the DMP data. The cumulative eigen-

values for these approaches are shown in Fig. 6. According to

Fig. 6 four transformed features contain almost all the variance,

for both approaches. Here, it must be kept in mind that the cri-

teria for the approaches are different.

Table III shows the achieved accuracies when up to six chan-

nels were used for the DAFE but six channels represent the

full transformed feature set based on the DAFE. According to

Table III it is evident that the DAFE did not perform according

to expectations. The overall classification accuracies for the first

three feature sets [DA(1), DA(2), and DA(3)] were lower than

for the original gray value in Table II. With four and five fea-

tures, similar accuracies were achieved as for the sorting fea-

ture selection with two and three features. However, when six

DAFE features were used, similar overall accuracies and higher

average accuracies were achieved as compared to the classifica-

tion of the entire differential profile in Table II. The main reason

for the poor performance of the DAFE, especially when few

features were used, is due to the relatively small variation be-

tween adjacent differential morphological features. Because of

the low variation, the matrix was close to being sin-

gular for many of the classes. These singularity problems make

the DAFE results unreliable.
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Fig. 6. IRS-1C data. The cumulative eigenvalues in percentage for the DBFE
and DAFE approaches.

TABLE III
IRS-1C DATA. TEST ACCURACIES IN PERCENTAGE FOR THE MOST IMPORTANT

DAFE CHANNELS. THE NUMBER IN PARENTHESES REPRESENTS THE NUMBER

OF DISCRIMINANT ANALYSIS FEATURES USED IN CLASSIFICATION

Table IV shows the achieved accuracies when up to four chan-

nels were used for the DBFE. It is interesting to note that using

three and four DBFE channels outperformed even the classifica-

tion of the entire differential profile in Table II in terms of overall

andaverageaccuracies.Using thefeaturesetbasedonDBFEwith

four features gave higher accuracies than the classification of the

entire differential profile for classes 6 and 7. However, higher ac-

curacies were achieved for class 4 (roads outside urban) using the

feature set based on the entire differential profile. In contrast to

the DAFE, the DBFE had no singularity problems.

The overall classification accuracies for test data as a func-

tion of the number of features for the different feature extraction

methods and the simple feature selection approach are shown in

Fig. 7. From Fig. 7, it is clear in all cases that classification of the

featuresetbasedonthedecisionboundarywasmoreaccurate than

classificationof the feature setsbasedonDAFEandonsorting the

indexes in theDMP.Thisresult is inaccordancewithTablesII–IV.

It is interesting to see in Fig. 7 that the overall accuracies for the

DBFE and the simple sorting feature selection did not improve

much after four features had been included in the feature sets. On

the other hand, the accuracies fluctuated a lot.

B. Experiment With IKONOS Data From Reykjavik, Iceland

An IKONOS panchromatic image (see Fig. 1) from Reyk-

javik, Iceland was used in the second experiment. The image is

TABLE IV
IRS-1C DATA. TEST ACCURACIES IN PERCENTAGE FOR THE MOST IMPORTANT

DBFE CHANNELS ACCORDING TO THE DBFM. THE NUMBER IN PARENTHESES

REPRESENTS THE NUMBER OF DECISION BOUNDARY FEATURES

USED IN CLASSIFICATION

Fig. 7. IRS-1C data. Overall classification accuracies for test data as a function
of the nmber of features for the DBFE and DAFE approaches and the approach
based on sorting the maximum indexes in the DMP (index).

TABLE V
INFORMATION CLASSES, TRAINING, AND TEST SAMPLES FOR

IKONOS PANCHROMATIC DATA

a 975 639 pixel subsample from an IKONOS frame with full

1-m spatial resolution. The image was acquired on August 9,

2001, when the sun elevation was 42 . The relatively low sun

elevation has the effect that shadows of houses are obvious in

the image. Therefore, shadows are defined as a separate class.

The test area is in the middle part of Reykjavik. It comprises

residential, commercial, and open areas.

In this experiment, we concentrated on six information

classes (see Table V). These classes were: large buildings,
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TABLE VI
TEST ACCURACIES IN PERCENTAGE FOR ORIGINAL IKONOS IMAGE, THE ENTIRE DIFFERENTIAL PROFILE,

AND ADDED FEATURES BASED ON THE SORTING APPROACH

small buildings, streets, open areas, residential lawns, and

shadows. The large buildings are mainly confined to the com-

mercial area in the upper and middle part of the image. They

appear in different shades of gray, from bright to very dark.

Most of these houses are flat-topped but some of them have an

uprise resulting in facets of different slopes and different gray

values in the IKONOS image. The small houses are mostly

apartment houses in the lower part and the upper right corner

of the image. Most of the apartment houses are single but some

are semidetached. As with the large houses, the individual

residential houses appear in different gray values, from dark

gray to white. They are situated on private lots with trees,

bushes and grass lawns. There are actually two types of streets

in the imagery; broad streets and narrow streets—but they are

considered as a single class. Broad streets are streets with two

lanes in each direction. The main broad street in the test area

separates the commercial area from the residential area in the

lower part of the IKONOS image. Narrow streets have a single

lane in each direction or they are one-way streets. Narrow

streets are both in the residential area and in the commercial

area. Open areas are rather homogeneous grass grown areas,

completely void of other types of vegetation such as trees. They

are scattered throughout the image but the most prominent open

areas are adjacent to the broad street across the lower part of the

image. The residential lots or lawns are small areas connected

with the individual apartment houses. They are covered with

heterogeneous vegetation, i.e., trees, grass, and bushes.

The information classes and training and test samples are

listed in Table V. As can be seen from Table V, approximately

half of the labeled samples where used for training. The other

samples were used to test the neural network classifiers.

Table VI shows the classification accuracies for the test sam-

ples when the original IKONOS image was used, along with

feature sets based on the sorting of indexes method, and the

entire differential morphological profile. As in experiment one;

using the original image only (now IKONOS) gave neither high

overall nor high average accuracies. Again, by adding more fea-

tures, both the overall and average accuracies improved. Also,

when the original IKONOS image was used as the only input, all

Fig. 8. IKONOS data. The cumulative eigenvalues in percentage for the DBFE
and DAFE approaches.

large buildings (class 1) were classified as small buildings (class

2). It is also interesting (similar to experiment 1) that two max-

imum indexes were needed to classify large buildings with an

accuracy that is greater than chance. As in experiment 1, the best

overall and average accuracies in Table VI were achieved for

the entire differential profile. The difference from experiment

one is that much more improvement was achieved. A probable

reason for this improvement is that the area being classified here

is more uniform than in experiment 1. In this experiment, pro-

portionately more training samples were used when compared

to experiment 1. Here, the ratio of training and test samples was

approximately 1 whereas in experiment 1, this ratio was 1/3.

The DAFE method and the DBFE for neural networks ap-

proach were applied on the DMP data. The cumulative eigen-

values for these approaches are shown in Fig. 8. As can be seen

in Fig. 8, four transformed features contain approximately 95%

or more of the variance, for both approaches.

Table VII shows the achieved accuracies when up to five

channels were used for the DAFE but five channels represent

the full transformed feature set based on the DAFE. As can be

seen from Table VII, classification based on the DAFE under-

performed classification using the simple sorting feature selec-

tion in a similar way to the results achieved in experiment 1.

However, in this experiment when the full DAFE feature set was

used [DA(5)], the overall accuracies were not close to the overall

accuracies achieved by the use of the entire differential profile.
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TABLE VII
IKONOS DATA. TEST ACCURACIES IN PERCENTAGE FOR THE MOST

IMPORTANT DAFE CHANNELS. THE NUMBER IN PARENTHESES REPRESENTS

THE NUMBER OF DISCRIMINANT ANALYSIS FEATURES USED IN CLASSIFICATION

TABLE VIII
IKONOS DATA. TEST ACCURACIES IN PERCENTAGE FOR THE MOST

IMPORTANT DBFE CHANNELS ACCORDING TO THE DBFM. THE

NUMBER IN PARENTHESES REPRESENTS THE NUMBER OF DECISION

BOUNDARY FEATURES USED IN CLASSIFICATION

As in experiment 1, the main reason for the poor performance

of the DAFE is due to the low variation between adjacent dif-

ferential morphological features. Here, the matrix was

close to being singular for many of the classes. Therefore, the

DAFE results should be taken with reservations.

Table VIII shows the achieved accuracies when up to four

channels were used for the DBFE. In contrast to experiment 1,

using three and four DBFE channels was outperformed in clas-

sification when the entire differential profile was used in terms

of both overall and average accuracies. However, using the fea-

ture sets based on DBFE with three and four features gave out-

standing overall and average accuracies in the experiment (more

than 90% accuracy). It is interesting that three DBFE features

were needed to classify class 3 (streets) with any accuracy at all.

On the other hand, class 3 was classified very accurately when

only the original image was used (see Table VI).

The overall classification accuracies for test data as a function

of the number of features for the DBFE and DAFE approaches

and the feature selection method based on sorting the indexes

Fig. 9. IKONOS data. Overall classification accuracies for test data as a
function of the number of features for the DBFE and DAFE approaches and
the approach based on sorting the maximum indexes in the DMP (index).

are shown in Fig. 9. From Fig. 9 it is seen that classification of

the feature set based on the decision boundary was in most cases

more accurate than classification of the feature set based on

sorting indexes in the DMP. The overall test accuracies seem to

reach “saturation” when the DBFE feature set with five features

was used. However, the overall classification accuracies based

on sorting the indexes of the DMP show an increasing trend.

The overall accuracies for both methods were similar when 15

or more features are used. The results using the DAFE were

comparable to the simple sorting approach when three to five

features were used. However, the DAFE results should be taken

with reservations because of the singularity problems.

V. CONCLUSION

Classification and feature extraction for urban data have been

considered. It is well known that remote sensing images with

high-resolution are needed for classification of urban images.

However, using only single band high-resolution panchromatic

data is not sufficient to classify structural information accu-

rately. To overcome this problem, Pesaresi and Benediktsson

[2] proposed the use of morphological transformations to build

a differential morphological profile that could be used for

classification by neural networks. However, the drawback of

their method concerns the necessity of looking at a range of

increasing opening and closing by reconstruction operations.

Therefore, the resulting differential profile can be high-dimen-

sional. In this paper, methods to preprocess the differential

morphological profiles were investigated in order to reduce the

computational load when differential morphological profiles

are used for classification by neural networks.

In the paper, the use of two feature extraction methods and a

simple feature selection approach were investigated. The con-

sidered approaches were: 1) decision boundary feature extrac-

tion for neural networks, 2) discriminant analysis feature ex-

traction, and 3) simple feature selection based on sorting the

indexes of the DMP using the value of the discrete derivative.

The approaches were applied on two datasets. One dataset con-

sisted of IRS-1C panchromatic data from Athens, Greece and

the other of panchromatic IKONOS data from Reykjavik, Ice-

land. The use of the differential profiles in classification was

seen to be valuable. Although the original data were different in

many ways (e.g., resolution, sun angle), good overall accuracies

were achieved for both datasets.

The DBFE has the advantage that it is based on the classi-

fier used (here a neural network), and it can provide as many

features as the input data. In experiments, the classification of
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the feature sets based on the DBFE outperformed the other ap-

proaches in terms of overall and average accuracies. In com-

parison, the DAFE had singularity problems and did not give

reliable results. The simple sorting feature selection performed

relatively well. It is computationally simple and does not rely

on statistics in the full feature space. Consequently, the simple

method does not explore all aspects of the feature space. Other

more advanced feature selection approaches should give higher

accuracies and will be investigated in our future research. Exam-

ples of such methods are approaches based on forward feature

selection or backward feature elimination. On the other hand,

the proposed simple feature selection could be used when com-

putational speed is more important than accuracy.
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