
CLASSIFICATION AND INTEGRATION OF MASSIVE 3D POINTS CLOUDS IN A

VIRTUAL REALITY (VR) ENVIRONMENT

A.Kharroubi 1, R.Hajji 1, R.Billen 2, F.Poux 2, *

1 Geomatics and Surveying Engineering school, Hassan 2 Agronomic and Veterinary Institute, Rabat, Morocco

2 Geomatics Unit, University of Liège, 4000 Liège, Belgium - fpoux @uliege.be

Commission II

KEY WORDS: Virtual reality, 3D Point cloud, Segmentation, Classification, Spatial Indexation, Octree data structure

ABSTRACT:

With the increasing volume of 3D applications using immersive technologies such as virtual, augmented and mixed reality, it is very

interesting to create better ways to integrate unstructured 3D data such as point clouds as a source of data. Indeed, this can lead to an

efficient workflow from 3D capture to 3D immersive environment creation without the need to derive 3D model, and lengthy

optimization pipelines. In this paper, the main focus is on the direct classification and integration of massive 3D point clouds in a

virtual reality (VR) environment. The emphasis is put on leveraging open-source frameworks for an easy replication of the findings.

First, we develop a semi-automatic segmentation approach to provide semantic descriptors (mainly classes) to groups of points. We

then build an octree data structure leveraged through out-of-core algorithms to load in real time and continuously only the points that

are in the VR user's field of view. Then, we provide an open-source solution using Unity with a user interface for VR point cloud

interaction and visualisation. Finally, we provide a full semantic VR data integration enhanced through developed shaders for future

spatio-semantic queries. We tested our approach on several datasets of which a point cloud composed of 2.3 billion points, representing

the heritage site of the castle of Jehay (Belgium). The results underline the efficiency and performance of the solution for visualizing

classifieds massive point clouds in virtual environments with more than 100 frame per second.

1. INTRODUCTION

The use of laser scanners and photogrammetric reconstruction

methods, coupled with the development of processing algorithms

and the increase of computational power have led to the creation

of massive point cloud data sets (Scheiblauer et al., 2014). In

addition to position information, the laser scanner data is

enhanced through different attributes (e.g. colour information for

each point) which can be used through different point cloud

rendering algorithms (Mures et al., 2016). Very interestingly,

point cloud can be enhanced by integrating semantics (Poux,

2019; Poux et al., 2016a) through intelligent processes such as

those based on semantic segmentation (Poux and Billen, 2019a).

In this article, we will investigate the use of semantics for

interaction and rendering purposes for highly immersive

applications and decision-making. We will focus on low cost and

open source solutions for better integrating semantically rich 3D

point clouds in Virtual reality (VR) environments.

In several fields such as architecture, archaeology and cultural

heritage, the production of 3D models representing a physical

reality in a detailed and fast manner has gain a lot of attention.

Indeed, through the application of new 3D visualization methods,

one can visualize and manipulate virtual objects of interest in a

virtual environment. As highlighted by (Mures et al., 2016;

Whyte, 2018), these interactive renderings permit among other to

see and control the progress and the quality of the work done on

the worksite. It also allows archaeologists and curators to analyze

archaeological and heritage sites remotely, also usable for

teaching and training purposes. Also, architects can control the

state of buildings and extract information for the exploitation and

updating of their digital models. The immersive dimension in

visualization techniques replaces the real environment with a

* Corresponding author

complete virtual one using a headset (VR) or a Cave Automatic

Virtual Environment (CAVE), which permits the user to interact

with objects without the limitations that the real world represents.

In addition, visualization on a two-dimensional screen gives less

immersion effect and less realism of the acquired environment.

The current integration state of point cloud data in VR set-ups is

very low, often needing data derivation through lengthy

optimization pipeline to obtain coherent 3D models with multiple

levels of Details (LoD) (Nebiker et al., 2010). Given their large

volume and their discrete nature, visualization and 3D rendering

is a great challenge, especially in terms of storage and processing

capabilities (Scheiblauer et al., 2014). On top, to our knowledge,

there is no work done on exploring the integration of semantics

in VR environments to extend the possibilities by using both

spatial and semantic attributes (Poux et al., 2016a; Poux and

Billen, 2019b).

In order to structure semantics, we first provide a semi-automatic

point cloud segmentation and classification (2) using solely

Cloud Compare (CloudCompare, 2019). Then, after indexing and

structuring the data into a coherent Octree structure (Schuetz,

2016), we implement the solution (3) under the Game Engine

Unity (Unity, 2018) for loading and visualizing the results of

classification. Finally, the application is deployed for immersive

visualization with the Oculus rift VR headset (Oculus, 2019). At

the end, performance tests are performed based on multiple

criteria such as memory consumption and the number of frames

per second (4). We finally provide several perspectives for future

work (5).

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-2/W17, 2019

6th International Workshop LowCost 3D – Sensors, Algorithms, Applications, 2–3 December 2019, Strasbourg, France

This contribution has been peer-reviewed.

https://doi.org/10.5194/isprs-archives-XLII-2-W17-165-2019 | © Authors 2019. CC BY 4.0 License.

165

2. POINT CLOUD SEGMENTATION AND

CLASSIFICATION

In this section, we first present the datasets and acquisition

specificities (2.1). Then, we present a semi-automatic workflow

(2.2) & (2.3) for classifying different datasets. Finally, we

address the hierarchical structuration of the data (2.4).

2.1 3D point cloud data specificities

In addition to the point clouds acquired on site (Jehay Castle,

(Poux et al., 2016b), Figure 1), we processed several points cloud

(Table 1) from different sensors such as NavVIS M6 (NavVIS,

2019), GeoSLAM ZEB REVO (GeoSLAM, 2019), Structure

From Motion(SfM) and terrestrial laser scanner(TLS) Leica P30

(Leica, 2019). Seven point cloud datasets were used and the

purpose of this diversity is to test the influence of adding/lacking

information (RGB, intensity) on the difficulty of segmentation

especially when this operation is assisted by an operator. The

second goal is to test the solution developed on several point

clouds with variable sizes ranging from small to large number of

points per cloud. The third goal is to create labelled datasets that

can be used as training data and deep learning algorithms for

semantic segmentation for the scientific community.

Figure 1. Point cloud of Jehay castle with approximately

3 billion points.

Id Points number Attribute sensor Size Go

1 2.300.247.428 RGB, intensity Leica P30 69.636

2 312.710.687 RGB, intensity TLS 4,907

3 259.101.028 RGB, intensity TLS 4,807

4 115.190.236 RGB, intensity TLS 3,824

5 44.847.540 RGB NavVIS 0,657

6 53.800.194 without REVO 0,630

7 4.244.416 RGB NavVIS 0,062

Table 1. Different points clouds to segment.

2.2 Segmentation

Segmentation is a crucial step for the introduction of semantic

information on the physical objects contained in the point cloud.

Shi Pu and George Vosselman, (2006) define it as a “the process

of labeling each point of the point cloud, so that these points

belonging to a particular surface or region, have the same

label”.

The segmentation is done under CloudCompare software

(CloudCompare, 2019). We started by segmenting the point

cloud into subspaces as defined in (F. Poux et al., 2017) (e.g.

rooms for building), then segmenting each subspace into smaller

significant segments corresponding to classes (walls, doors,

windows, chairs, offices, closets, etc.) as in Figure 2. The

segmentation is done semi-automatically with the selection tools

available on CloudCompare, assisted by the following automatic

plugins:

• RANSAC Shape Detection: based on an automatic shape

detection algorithm as proposed by (Wahl and Klein, 2007). It

can detect geometric shapes, planes, spheres, cylinders, cones,

and tori.

• CSF: is a tool used to separate ground points from the rest of

the point cloud, based on the cloth simulation filter developed by

(Zhang et al., 2016)

• Histogram filtering: filters the points of the selected cloud

according to their associated scalar value (e.g. the Z value). A

new cloud is created with points in the specified range.

• Label Connected Components: this tool segments the selected

cloud(s) into smaller parts separated by a minimum distance.

• CANUPO: it allows to create classifiers (by forming them on

small samples) and / or to apply a classifier at the same time on a

cloud of points in order to separate it in two subsets. It also

generates a classification trust value for each point to quickly

identify cases that are classification problems or misclassification

(usually at the class boundaries).

(a)

(b)

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-2/W17, 2019

6th International Workshop LowCost 3D – Sensors, Algorithms, Applications, 2–3 December 2019, Strasbourg, France

This contribution has been peer-reviewed.

https://doi.org/10.5194/isprs-archives-XLII-2-W17-165-2019 | © Authors 2019. CC BY 4.0 License.

166

(c)

Figure 2. Multi scale segmentation :(a) raw point cloud ;(b) The

point cloud segmented into a subspaces ;(c) Subspace

segmented into several smaller elements.

2.3 Classification

In this step, we assign for each created segment a specific class

pointer. First, a classification list is established regrouping

several indoor classes and outdoor classes that holds a great

potential for several applications (Table 2). Then, a new scalar

field with a constant integer value is created named

"Classification", in order to respect the specifications of the

export format which is the “.las” format. This point cloud format

supports this attribute by default. A class number is assigned to

this created classification field.

Indoor Outdoor

class number class number

0 Floor 40 LowVegetation

1 Ceiling 41 Human

2 Wall 42 Pole

3 Beam 43 LightingPole

… … … …

24 Poster 50 Roof

Table 2. An extract from the list of established classes.

Finally, any object in the point cloud has its corresponding class

information (Figure 3), and the point cloud is exported in “.las”

format or its compressed one “.laz”

Figure 3. Classification results: a piece with different objects

and their labels.

2.4 Structuration in a Potree’s octree structure

The main purpose of a data structure is to permit an easier/better

access to the underlying data. As such, we orient ourselves by

spatially indexing massive point clouds based on a Potree’s

octree data structure for real time purposes. Potree uses a

variation of the modifiable nested octree structure with a different

subsampling method and a partition of the hierarchy into smaller,

quickly streamable, chunks. The point cloud is iteratively

subdivided into eight cubic parts (nodes in a tree) by starting from

an initial "Bounding Cube" with an initial spacing. Then each part

is subdivided in the same way and the spacing is halved to

increase the density. The resolution of a node is defined by the

spacing property, which specifies the minimum distance between

points. Thus, as the depth of the tree increases, the spacing

decreases and the level of detail increases, as shown in Figure 4.

This step is done based on Potree Converter 1.6 (Potree, 2019).

To have a structured point cloud in a Potree format, we take into

account desired attributes being classification and intensity,

which are kept during the on-disk structuring.

 (a)

 (b)

Figure 4. Potree’s octree structure explained in 2D: (a) Raw

data; (b) the octree structure with a root with subsampling point

and level 1 and level 2.

3. APPLICATION IN VIRTUAL REALITY

This rendering system was developed and implemented in C #

under the Game Engine Unity version 2018.4.1f1, based on the

scripts developed as part of Simon Maximilian Fraiss bachelor's

thesis (Fraiss, 2017), entitled "Rendering Large Points Cloud in

Unity".

3.1 Point cloud loading

The rendering of objects in Unity (Unity, 2018) is done by

creating one or several GameObjects for each object to render.

For each node of the structured point cloud that must be visible,

one or more GameObjects must be created with an appropriate

Mesh Filter and a Renderer Filter. For each node of the Octree

that we want to display, we use a GameObject. If the node has

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-2/W17, 2019

6th International Workshop LowCost 3D – Sensors, Algorithms, Applications, 2–3 December 2019, Strasbourg, France

This contribution has been peer-reviewed.

https://doi.org/10.5194/isprs-archives-XLII-2-W17-165-2019 | © Authors 2019. CC BY 4.0 License.

167

more than 65,000 vertices as specified by Unity, several

GameObjects are needed.

The loading process uses three threads: the Unity main thread, a

traversing thread, and a loading thread. In the main thread,

visible GameObjects are updated once per image if any necessary

changes have been detected in the traversing thread. Game

objects are created for Octree nodes that should be visible and do

not yet have game objects, nodes that should no longer be visible

have their game objects removed. Determining which node the

game objects should be created or deleted is the job of the

traversing thread. The loading thread is used to load point data

from files (Fraiss, 2017).

(a)

(b)

Figure 5. The nodes in front of the camera (in white) are

rendered in more detail than those partially in the view: (a)

original point cloud, (b) after classification.

A Least Recently Used Cache (LRU) was implemented in order

to keep the memory usage below a certain threshold. The cache

has a maximum number of points it can store and if this threshold

is breached, the points of the least recently used node are

removed from memory.

3.2 Point rendering

To give a more realistic look to the point cloud, different point

rendering techniques have been implemented based on the work

of (Fraiss, 2017). No lighting model has been implemented

because the test data sets do not contain normals, and has been

colored using photos presenting static lightning. But with the

addition of the classification (each class represented with one

different color), the point cloud no longer has a realistic aspect of

3D and depth such as in Figure 7.a. Thus, the creation of a shader

to enhance the depth perception of a scene and to make the results

look more pleasant is necessary.

This improvement in visual appearance is shown in Figures 6 and

Figure 7.

The principle of this shader is simple, it consists in creating an

effect like the Eye-Dome lighting (Boucheny and Ribes, 2017)

by representing each point in the form of a square or circle, then

assigning a black color to a corner (bottom left). In our case of

square or circle rendering, it results as presented in figure 6:

 (a) (b)

Figure 6. Principle of the implemented shader: (a) shown with

the square shape, (b) and a circle.

To manage occlusion situations between points, Schütz and

Wimmer,(2016) have developed a method that creates an

interpolation of nearest neighbor type points (Scheiblauer and

Wimmer, 2011; Schuetz, 2016). To do this, the points are

represented in the form of 3D shapes, such as cones, spheres or

paraboloids, facing the screen, instead of simple squares. In this

work, interpolations with cones and paraboloids have been

implemented.

(a)

(b)

Figure 7. Classified point cloud rendered;(a) before and after(b)

application of the implemented Shader.

3.3 User interface

To facilitate interaction and to make the virtual reality experience

more immersive, a user interface is created by adding a canvas

that is a GameObject encompassing the elements of the user

interface, Figure 8.

Once displayed in the virtual world directly in front of the user,

it keeps the same fixed position for easy selection and pointing

by a laser pointer (element 5) created by adding a Graphic

Raycaster to our canvas (Menu that includes the different

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-2/W17, 2019

6th International Workshop LowCost 3D – Sensors, Algorithms, Applications, 2–3 December 2019, Strasbourg, France

This contribution has been peer-reviewed.

https://doi.org/10.5194/isprs-archives-XLII-2-W17-165-2019 | © Authors 2019. CC BY 4.0 License.

168

elements of type: Button, slider, check box, and text). After

changing the parameters, the interface can be hidden and

redisplayed when needed. This interface makes possible to

change the size of the points (element 1), to change their shapes

(element 2) (square or circle), to choose the interpolation to use

between the types of paraboloid, cone, or without interpolation

(element 3), to select the attributes (element 4) (rgb,

classification, intensity) to display, and to check and uncheck the

classes to be visualized (element 6).

Figure 8. User interface for interacting directly with point cloud.

Then, we integrated the Oculus Rift in the Unity project to allow

rendering on the headset (the version of the Oculus application

used is Oculus 1.39.0.272909).

The OVRPlayerController is the easiest way to start navigating

in a virtual environment. It is basically an OVRCameraRig prefab

attached to a simple character controller. It includes a physics

capsule, a movement system, a simple menu system with stereo

rendering of text fields, and a cross-hair component.

OVRCameraRig contains one Unity camera, the pose of which is

controlled by head tracking. The result as seen in the headset is

shown in figure 9.

Figure 9. The scene as seen in the headset by the user.

4. RESULTS

In order to validate the proposed methodology and the solution

implemented in this paper, several tests are done in Runtime (in

play mode). It consist of testing the performance of the rendering

methods used, the ability of the application to visualize classified

massive point clouds, and comparative tests on the influence of

the number of points loaded on its performance in term of

memory consumption and number of frames per second (FPS).

While the use of the oculus rift requires minimal computing

power especially in terms of graphics card (Nvidia GeForce GTX

1060 or better, AMD Radeon RX 480 or better), the application

test is done on a computer with the following technical

characteristics (Table 3):

Processor Intel® Core™ i6-6800K CPU @

3.40GHz 3.40 GHz

Graphic card NVIDIA GeForce GTX 1080

RAM 48.0 Go

Exploitation system Windows 10 Pro, 64 bits

Table 3. Technical characteristics of the computer used with the

Oculus headset.

4.1 Influence of the number of points loaded in the scene on

the FPS

From figure 10 we clearly see the impact of the number of points

allowed to be loaded in the scene (budget points) on the number

of images rendered per second.

0

20

40

60

80

100

120

2000000 4000000 6000000 8000000 10000000

F
P

S

Loaded Points

Figure 10. The variation of the FPS number according to the

number of points loaded, JEHAY with 2.3 billion.

It is visible that the more this number increases, the more the FPS

decreases, due to numerous additional computing to display and

render. With a number of 2 million, one ensures a good visual

appearance of the visible scene, while keeping 90 FPS, which

more than enough to ensure a smooth and comfortable viewing

for the user as specified by Oculus rift (Oculus, 2019).

4.2 Influence of cache on memory consumption

The results of testing the influence of cache on memory

consumption is given in Figure 11. We see that memory

consumption increases proportionally when cache increases and

the number of points loaded increases. For example, for a cache

(LRU) of 100 million points, it is clear that the memory

consumed passes from 1,475 Giga Byte for 2 Million points to be

loaded to 1.985 GB for 10 Million points to load.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-2/W17, 2019

6th International Workshop LowCost 3D – Sensors, Algorithms, Applications, 2–3 December 2019, Strasbourg, France

This contribution has been peer-reviewed.

https://doi.org/10.5194/isprs-archives-XLII-2-W17-165-2019 | © Authors 2019. CC BY 4.0 License.

169

Figure 11. Variation of the memory consumption (in Mo)

according to the size of the point cloud loaded and the LRU

cache.

4.3 Influence of point size on the number of FPS

Among the rendering methods used in this work, we use a shader

that allows to visualize each point as a square or circle on the

screen, instead of viewing it on a single pixel. This type of

visualization makes possible to circumvent the effects of point

clouds density that form voids between points when this density

is too low. However, this comes at the price that these methods

are expensive in terms of rendering, greatly reducing the

available FPS as seen in Figure 12.

Figure 12. Influence of the variation of the point size on the

FPS, JEHAY with a budget of 2Million, interpolation =

paraboloid, LRU = 2M

The graph in Figure 12 shows the effect of varying the point size

in the number of pixels on the screen to see its effect on the

number of FPS. It is clearly visible that the number of FPS

decreases inversely proportional to the size of the point. More the

size of points increases more the number of FPS decreases.

5. DISCUSSIONS & PERSPECTIVES

Our methodology has three main essentials steps: The

segmentation and classification workflow; the structuration in

Potree’s octree data structure; the integration and interaction with
classified point clouds in VR.

The segmentation and classification step presented includes

semi-automatic methods. It has the advantage of being based on

algorithms and open source tool but it remains time-consuming

and requires the intervention of the experienced operator. Future

use of semantic segmentation algorithms such as presented in

(Florent Poux et al., 2017) will be investigated to reduce the

intervention of the user.

For visualization of massive point cloud we use Potree’s octree
structure. This structuration makes it possible to considerably

optimize the real-time visualization of large point clouds but

remains a data structure that does not allow efficient edition of

the contained point data. In addition to this, the structuring takes

a considerable time that can range from a few minutes to ten

hours when the point cloud exceeds billions of points, which

orient us to investigate new indexation ways for data handling

For immersive viewing, we demonstrated the usage of virtual

reality technology with the Oculus rift headset for point cloud

rendering. On top, we provide an improved shader to permit to

grasp the depth through rendering, as well as the ability to interact

with classification data. Thus, we facilitate the interaction via a

user interface allowing a set of operation and change on the

methods of rendering.

The future works will mainly investigate the following 3 points:

 Development of semantic segmentation process to automate

the enhancement of point cloud with class information.

 Creation of a dual spatial and classification indexing to make

possible querying and direct interaction with the point cloud in

the VR environment.

 Implementation of the Continuous Level of Detail (Schütz et

al., 2019) rendering method.

6. CONCLUSION

In this work, we propose a comprehensive approach for

classifying and visualizing point clouds with several billion of

points in real time, and continuously in a virtual reality (VR)

environment. After a semi-automatic segmentation and

classification, our approach proposes to leverage Potree’s data
structure derived from the Modifiable Nested Octree to organize

efficiently spatial and semantic attributes, primarily toward real-

time VR visualisation. The implementation in the open source

Unity application has shown great performance in visualisation

of massive point cloud. The future will focus mainly on the

automation of semantic enrichment and their usage in VR

interactions. Then we will address our point rendering approach

toward a continuous level of detail tailored to perform both

search queries and modifications on the point cloud in a VR

environment.

ACKNOWLEDGEMENTS

The authors are thankful to the developers of CloudCompare,

Potree and Unity. We also thank a lot the users of the Github

forum especially Simon Fraiss that helped us in several steps of

this research.

1 304 1 475 1 489 1 495 1 503

1 342
1 482 1 494 1 519 1 528

1 475

1 661 1 770 1 840 1 985

2 000 000 4 000 000 6 000 000 8 000 000 10 000 000

M
em

o
ry

 C
o

n
su

m
p

ti
o

n
 e

n
 M

o

Loaded points

LRU=1 000 000 LRU=10 000 000 LRU=100 000 000

0

20

40

60

80

100

120

2 4 6 8 10 12 14

F
P

S

Point size in pixel

Circle Square

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-2/W17, 2019

6th International Workshop LowCost 3D – Sensors, Algorithms, Applications, 2–3 December 2019, Strasbourg, France

This contribution has been peer-reviewed.

https://doi.org/10.5194/isprs-archives-XLII-2-W17-165-2019 | © Authors 2019. CC BY 4.0 License.

170

REFERENCES

Boucheny, C., Ribes, A., 2017. Eye-Dome Lighting : a non-

photorealistic shading technique.

CloudCompare, 2019. CloudCompare 3D point cloud and mesh

processing software Open Source Project. cloudcompare.org

(Accessed 25 August 2019).

Fraiss, S.M., 2017. Rendering Large Point Clouds in Unity,

bachelor thesis.

GeoSLAM, 2019. GeoSLAM ZEB REVO.

https://geoslam.com/solutions/zeb-revo/ (Accessed 25 August

2019).

Leica, 2019. Leica P30. https://leica-geosystems.com/fr-

ma/products/laser-scanners/scanners/leica-scanstation-p40--p30

(Accessed 25 August 2019).

Mures, O.A., Jaspe, A., Padrón, E.J., Rabuñal, J.R., 2016. Virtual

Reality and Point-Based Rendering in Architecture and Heritage.

NavVIS, 2019. NavVIS M6. https://www.navvis.com/m6

(Accessed 25 August 2019).

Nebiker, S., Bleisch, S., Christen, M., 2010. Rich point clouds in

virtual globes - A new paradigm in city modeling? Comput.

Environ. Urban Syst. 34, 508–517.

Oculus, 2019. Oculus Rift. https://www.oculus.com/rift/

(Accessed 25 August 2019).

Potree, 2019. PotreeConverter.

https://github.com/potree/PotreeConverter (Accessed 25 August

2019).

Poux, F., 2019. The smart point cloud Structuring 3D intelligent

point data.

Poux, F., Billen, R., 2019a. Voxel-based 3D Point Cloud

Semantic Segmentation: Unsupervised Geometric and

Relationship Featuring vs Deep Learning Methods. ISPRS Int. J.

Geo-Information 8, 213.

Poux, F., Billen, R., 2019b. A Smart Point Cloud Infrastructure

for intelligent environments, in: Lindenbergh, R., Belen, R.

(Eds.), Laser Scanning: An Emerging Technology in Structural

Engineering, ISPRS Book Series. Taylor & Francis Group/CRC

Press, United States.

Poux, F., Hallot, P., Neuville, R., Billen, R., 2016a. Smart point

cloud: definition and remaining challenges. ISPRS Ann.

Photogramm. Remote Sens. Spat. Inf. Sci. IV-2/W1, 119–127.

Poux, F., Neuville, R., Hallot, P., Billen, R., 2017. Model for

semantically rich point cloud data. ISPRS Ann. Photogramm.

Remote Sens. Spat. Inf. Sci. IV-4/W5, 107–115.

Poux, F., Neuville, R., Hallot, P., Billen, R., 2016b. Point clouds

as an efficient multiscale layered spatial representation, in:

Vincent, T., Biljecki, F. (Eds.), Eurographics Workshop on

Urban Data Modelling and Visualisation. The Eurographics

Association, Liège, Belgium.

Poux, Florent, Neuville, R., Van Wersch, L., Nys, G.-A., Billen,

R., 2017. 3D Point Clouds in Archaeology: Advances in

Acquisition, Processing and Knowledge Integration Applied to

Quasi-Planar Objects. Geosciences 7, 96.

Scheiblauer, C., der Arbeit, V., Wimmer, M., Gervautz, M., gang

Knecht, W.-, Marek, S., Hebart, G., Gschwantner, F.-M.,

Zimmer, N., Mayer, I., Fugger, V., Barsukov, Y., Preiner, R.,

Mayer, J., Pregesbauer, M., Tragust, M., Arikan, M., 2014.

Interactions with Gigantic Point Clouds.

Scheiblauer, C., Wimmer, M., 2011. Out-of-core selection and

editing of huge point clouds. Comput. Graph. 35, 342–351.

Schuetz, M., 2016. Potree: Rendering Large Point Clouds in Web

Browsers 84.

Schütz, M., Krösl, K., Wimmer, M., 2019. Real-Time

Continuous Level of Detail Rendering of Point Clouds. IEEE VR

2019, 26th IEEE Conf. Virtual Real. 3D User Interfaces 1–8.

Unity, 2018. Unity Personal. https://unity3d.com/fr/get-

unity/download (Accessed 25 August 2019).

Wahl, R., Klein, R., 2007. Efficient RANSAC for Point-Cloud

Shape Detection 0, 1–12.

Whyte, J., 2018. Industrial applications of virtual reality in

architecture and construction.

Zhang, W., Qi, J., Wan, P., Wang, H., Xie, D., Wang, X., Yan,

G., 2016. An easy-to-use airborne LiDAR data filtering method

based on cloth simulation. Remote Sens. 8, 1–22.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-2/W17, 2019

6th International Workshop LowCost 3D – Sensors, Algorithms, Applications, 2–3 December 2019, Strasbourg, France

This contribution has been peer-reviewed.

https://doi.org/10.5194/isprs-archives-XLII-2-W17-165-2019 | © Authors 2019. CC BY 4.0 License.

171

