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Abstract

The ability to identify human movements can be an important tool in many dif-
ferent applications such as surveillance, military combat situations, search and
rescue operations, and patient monitoring in hospitals. This information can
provide soldiers, security personnel, and search and rescue workers with critical
knowledge that can be used to potentially save lives and/or avoid a dangerous
situation. Most research involving human activity recognition is focused on using
the Short-Time Fourier Transform (STFT) as a method of analyzing the micro-
Doppler signatures. Because of the time-frequency resolution limitations of the
STFT and because Fourier transform-based methods are not well-suited for use
with non-stationary and nonlinear signals, we have chosen a different approach
for classification. Empirical Mode Decomposition (EMD) has been shown to be a
valuable time-frequency method for processing non-stationary and nonlinear data
such as micro-Doppler signatures and EMD readily provides a feature vector that
can be utilized for classification. For classification, the method of a Support Vec-
tor Machine (SVMs) was chosen. SVMs have been widely used as a method of
pattern recognition due to their ability to generalize well and also because of their
moderately simple implementation.

In this dissertation, we discuss the ability of these methods to accurately iden-
tify human movements based on their micro-Doppler signatures obtained from
S-band and millimeter-wave radar systems. Comparisons will also be made based
on experimental results from each of these radar systems. Furthermore, we will
present simulations of micro-Doppler movements for stationary subjects that will
enable us to compare our experimental Doppler data to what we would expect
from an “ideal” movement.

The Doppler radars that were developed for human activity classification con-
sisted of a transmitter and a single receiver that are colocated in a quasi-monostatic
configuration. Thus, only the radial component of the target’s velocity produces
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a Doppler signal. If the target is moving tangentially to the radar line of sight,
Doppler signals cannot be detected. To remedy this, multiple bistatic radars can
be utilized so that if one receiver does not detect Doppler, the other will. In ad-
dition to providing more information for classification purposes, multiple Doppler
sensors can also be employed to determine a moving target’s orientation by com-
paring the Doppler frequency shift at each sensor. The algorithm developed here
uses the relationship between the Doppler frequencies measured at each sensor to
determine the oscillation angle of the target. Experiments have been performed
which show excellent agreement with simulations for both the mechanical motion
of a swinging pendulum and also for simple human motions. These capabilities
are discussed in detail and the experimental results are shown for a micro-Doppler
radar system with a single transmitter and two receivers. Classification results
using a 2-sensor micro-Doppler radar are be presented.
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Chapter 1

Introduction

The detection of human targets and the ability to identify their movements is a

growing area of interest recently. The ability to sense human targets through walls,

at long ranges, and through light foliage is a challenging problem which has many

potential applications in a diverse range of areas. Some applications for the de-

ployment of this radar sensor include areas such as surveillance, search and rescue,

and medical sensing where contact sensors are undesirable. One such example of

a medical application where contact sensors cannot be used is for monitoring the

respiration of burn victims.

The primary motivation for the work described in this dissertation is to provide

the warfighter with additional information that will improve safety and effective-

ness. To accomplish this goal, we propose the development of a lightweight sensor

that can be mounted on small arms platforms such as rifles and pistols. It is desired

that the sensor be capable of detecting targets concealed behind walls and light

foliage. It should be able to operate when the wall barrier is constructed from ma-

terials that are commonly used in homes and commercial buildings, such as brick,

concrete, wood, and drywall. Additionally, it is desired that both the range to

the target and the target’s micro-Doppler signature be extracted. Additional sig-

nal processing techniques can then be implemented to analyze the micro-Doppler

signature to infer additional information about the target.

Because target localization is desired, ranging information alone is not ade-

quate. In order to localize the target in azimuth, the antenna beamwidths must

be appropriately chosen so as to isolate the width of a typical human target and
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avoid illuminating two targets simultaneously. If only one human target can be

within the antenna beam, then the above-mentioned capability of ensuring maxi-

mum lethality can be achieved. Otherwise, if more than one human target is within

the antenna beam, the warfighter cannot be confident that the radar sensor will

aid in hitting the target and the warfighter may not even be aware of the presence

of a second target.

For this radar sensor to be mounted directly onto small arms platforms it is

necessary to operate the radar at high frequencies. The higher the frequency, the

smaller the antenna footprint. Using as small and as light a system as possible

is desired because the warfighter is limited in the amount of weight that can be

carried. In order to achieve a small size, microwave or millimeter-wave (mm-wave)

frequencies should be chosen. High frequencies such as mm-wave, however, are not

suitable for through-wall operation because of the high losses that are involved.

However, mm-wave frequencies are desired because the system is capable of being

smaller and the Doppler frequency shifts from moving targets will be much greater

than that of a system operating in microwave frequencies. If the radar sensor is to

be operated in situations where the target is concealed behind light foliage, then

mm-wave frequencies may be used because the loss will not be as great since the

barrier is not as thick or dense as a wall barrier.

For the reasons described above, two covert, multi-modal radar systems have

been developed at the Radar and Communications Laboratory at The Pennsylvania

State University. Both radar systems utilize a composite waveform consisting of a

noise waveform that is used for target ranging and a single, continuous wave (CW)

tone for detecting micro-Doppler signatures that arise from human motions. The

micro-Doppler signals that are detected are processed separately from the noise

waveform so that the radar operator can identify the type of movement that the

target is performing. For ranging, a noise waveform is utilized, which permits

the radar to be covert and have low probability of intercept and anti-jamming

capabilities.

The first radar operates in the S-band so that wall barriers can be penetrated.

This radar is designed with close range scenarios in mind, where a target is con-

cealed behind a wall barrier. At close ranges, reasonable antenna apertures can be

designed that will localize a single human target and Doppler frequencies will be
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observable.

The second radar operates at mm-wave frequencies, more specifically in the W-

band. This radar is designed with longer range applications in mind or possibly for

scenarios where the target is concealed behind light foliage. The high frequency of

operation allow the antenna beamwidths to be narrow enough to localize a single

human target, while still having a reasonably small aperture size to be mounted on

small arms. In addition to this, the higher transmit frequency will result in larger

Doppler frequency shifts that will improve the identification of human movements.

Noise radar systems have been around for a long time now. The theory for

noise and noise-like waveforms for radar began in the 1950’s and by the 1960’s,

Cooper [9, 10] constructed some of the first noise radar systems. Noise radar sys-

tems have some unique advantages over traditional radar waveforms due to their

being inexpensive to generate, having covert properties, and their low probability

of intercept and anti-jamming capabilities. Covertness arises from the signal hav-

ing no distinguishable features and also because the power is spread over a large

bandwidth. This means the spectral density is low across the entire bandwidth of

the noise waveform and this is difficult to detect. Anti-jamming and low probabil-

ity of intercept capabilities are due to the random nature of the signal. White noise

is independent and uncorrelated, therefore a correlation receiver can pick up the

noise waveform despite the presence of any additional interference or background

noise. In addition to this, because noise is uncorrelated, multiple noise radars

can operate at the same time and over the same frequency bandwidth without

interfering with each other much.

The most popular method for generating a noise waveform is to heat up diodes

and amplify their thermal noise. Filters are then used to achieve the desired noise

bandwidth. Another method is to use arbitrary waveform generators (AWGs) to

produce a noise waveform. Using an AWG costs more than amplifying thermal

noise; however, if you wish to adapt your noise waveform, an AWG allows for more

flexibility in selecting the bandwidth.

In order to measure Doppler frequency shifts from targets that are moving, a

noise signal alone is not appropriate. Doppler measurements rely on comparing

the phase of the transmitted and received signals and a noise waveform does not

have any measurable phase. In order to detect Doppler, a single CW tone is
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embedded within the noise waveform. By embedding this tone within the noise

waveform, covertness is maintained and the radar can now detect Doppler from

human movements. The term micro-Doppler is used to refer to signals where

there are additional, time-varying components in the Doppler signal in addition to

Doppler that arises from translational movement. Micro-Doppler is produced by

target vibrations and rotations. Over the past 15 years, both the theoretical and

experimental aspects of micro-Doppler have been investigated. The primary focus

of past research has been on human gait and simple vibrating and rotating targets

such as cylinders [2, 5, 11, 12, 13, 14, 15].

Others have performed research on vital signs monitoring with micro-Doppler

radar. Sasan Bakhtiari has built a 94 GHz sensor for the monitoring of vital signs.

His work resulted in a system that was capable of remotely monitoring human vital

signs such as respiration and heart beat by measuring the displacement of the tar-

get’s chest [16, 17]. David Tahmoush and Victor Lubecke are two other researchers

who have also worked in this area [18, 19, 20]. Previous work has been constrained

to cooperative targets, where the human target is seated or laying down. This

allows breathing or heartbeat signals to be detected more easily, whereas if the

person is standing, additional movements will obscure the vital signs signals.

In addition to studying micro-Doppler signatures due to human gait or vital

signs. Some work has been performed on the classification of human gait signa-

tures. This work has been primarily by Hao Ling. In his work, Ling has human

targets perform various gait movements such as walking, running, crawling, etc. He

is able to accurately classify the type of movement using micro-Doppler signatures

[2].

One other area of interest that will be discussed in this dissertation is the

bistatic micro-Doppler effect and also the use of multiple sensors for determining

the orientation of oscillating targets. Some previous work with bistatic Doppler

has been performed by various researchers and here, many of these concepts will

be built upon. Additionally, bistatic micro-Doppler radar and multiple sensors can

be employed for the classification of human micro-Doppler signatures.

The remainder of this dissertation is organized as follows. Chapter 2 describes

background material on radar design principles, the attenuation of electromagnetic

waves through wall materials, the Doppler frequency shift, the effects a wall bar-
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rier has on Doppler signals, and a summary of previous work with micro-Doppler

signatures. These works focus on human gait and some animal signatures, with

which we are not as concerned. We are primarily concerned with human targets

that do not have a translational velocity due to their desire to remain concealed,

but still exhibit small micro-motions. Chapter 3 describes the S-band radar in

detail and Chapter 4 describes the mm-wave radar in detail. Chapter 5 discusses

commonly used time-frequency transforms and also the Hilbert-Huang transform

and Empirical Mode Decomposition, which play a prominent role in the algorithm

for classification of human gestures. Chapter 6 describes in detail simulations of

human gestures of interest and compares the simulated micro-Doppler signatures

to experimentally measured micro-Doppler signatures using both the S-band and

mm-wave radars. Chapter 7 describes the human activity classification algorithm

in detail. Chapter 8 discusses the effect of modifying the EMD stopping criteria

on the classification results and also on the time that it takes to complete EMD

and classification. Chapter 9 describes work that has been done to expand the

micro-Doppler signature work to multiple sensors. Chapter 10 summarizes the

conclusions and puts forth some recommendations for future work.



Chapter 2

Background

2.1 Noise Radar

2.1.1 Radar Basics

Radar systems operate on the basic principle of transmitting an electromagnetic

wave and detecting the electromagnetic wave that is backscattered off of a target.

The radar transmits an electromagnetic wave, receives the backscatter from the

target, and processes the reflected signal to extract information about the tar-

get. Among the important design considerations for any radar is the selection

of frequency, bandwidth, transmit power, and the type of waveform to transmit.

Waveform design is a broad area, which involves selecting the best transmit wave-

form for a given application. Radar systems can transmit continuously or they

can transmit short pulses. They can transmit a single frequency or a wide band of

frequencies. For this system, a continuously transmitted noise waveform has been

chosen for its covertness and the desirable properties of low probability of inter-

cept and anti-jamming. A single frequency CW tone is embedded within the noise

waveform for Doppler detection. Our approach involves generating this composite

noise-plus-single-tone signal at low frequencies and mixing up to a higher frequency.

Another consideration for radar systems is the location and number of transmitters

and receivers. Many radars share a single antenna for transmitting and receiving

and are called monostatic radars. These radars often transmit short pulses so that

a circulator and switches can be used to select either the transmit chain or the
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receive chain to turn on. In cases where the transmit and receive antennas are not

co-located, the radar is said to be operating in a bistatic configuration. Because

our radar sensor is intended to be mounted on small arms weapons, a bistatic

configuration cannot be utilized. In addition to this, a monostatic configuration

also cannot be used because the noise waveform is transmitted continuously and

will leak into the receive chain, causing saturation of the receiver. To remedy this,

a quasi-monostatic configuration is used. This means that the radar uses separate

antennas for transmitting and receiving, which are closely spaced. For all intents

and purposes, this configuration acts exactly like a monostatic radar.

The most fundamental and well-known equation for radar is the Radar Range

Equation (RRE). The RRE has many forms, but most common form is shown in

Equation 2.1 [21].

Pr =
PtGtGrλ

2σ

(4π)3R4L
(2.1)

Here, Pt is the transmitted power, Pr is the received power, Gt is the gain of the

transmit antenna, Gr is the gain of the receiving antenna, λ is the wavelength of the

transmit waveform, σ is the target’s radar cross section (RCS), R is the range to

the target, and L represents additional losses/gains that the radar may experience.

These additional losses/gains include atmospheric attenuation, attenuation due to

penetration through materials, or signal processing gain.

2.1.2 Range Resolution

Another important radar equation is the equation for range resolution. This de-

scribes how closely two targets can be placed and still be detected by the radar

as two separate targets. If the targets are spaced closer than the range resolution,

the radar detects them as a single target. For a single frequency, pulsed radar the

range resolution is:

∆R =
cτ

2
(2.2)

where c is the speed of light and τ is the pulse width (in seconds) of the trans-

mit waveform [21]. The range resolution from a single frequency pulsed radar is
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generally large, so by transmitting a wide bandwidth, the range resolution can be

improved. The range resolution for a wideband waveform is:

∆R =
c

2B
(2.3)

where B is the bandwidth of the waveform.

2.1.3 Target Ranging and Matched Filtering

In order to determine the target range using a noise waveform, a matched filter

receiver must be used. Essentially, a matched filter receiver measures the similarity

between two signals and for a noise radar is identical to cross correlation between

the received signal and a stored copy of the transmitted signal. Because we are

using a random noise signal, it will not correlate strongly with any other signals

except for itself. Matched filtering can be done in either hardware or software,

but software implementation is most common. To implement matched filtering

in hardware, a mixer and a low-pass filter are used [22]. To implement matched

filtering in software, a copy of the transmitted noise waveform is digitized and

saved. The received signal is also digitized and saved. The two waveforms are

multiplied together and averaged. Then, the transmit waveform is delayed by one

sample and the process is repeated. This is done repeatedly for all delay values

until the two waveforms no longer overlap. The time delay can then be related to

the range to the target using R = cτ
2
, where c is the speed of light and τ is the

time delay. The result is the range profile for the noise radar. Large amplitude

peaks in the range profile correspond to target locations because, at those delays,

the two waveforms are scaled copies of each other.

The matched filter receiver can be expressed mathematically and is briefly

described now [21]. The matched filter is represented by h(t) in the time domain

and H(ω) in the frequency domain. The received signal is represented by x(t) and

X(ω) in the time and frequency domains respectively. The matched filter output

is represented by y(t).

The filtering process can be represented mathematically in the frequency do-

main by multiplication, so
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Y (ω) = X(ω)×H(ω). (2.4)

Taking the inverse Fourier transform of this Equation produces the matched

filter output in the time domain:

y(t) =
1

2π

∫

b exp (jφ)X(ω) exp (−jωtd)H(ω) exp (jωt), (2.5)

where b exp (jφ)X(ω) exp (−jωtd) is the spectrum of the received signal that is

backscattered from a point target, td is the time delay, b is the amplitude of the

received signal, and φ is the measured phase of the received signal. There is also

thermal noise that is present in the received signal. Here we assume this to be white

Gaussian noise, so the power spectrum (N0) is constant across all frequencies. The

expected value of the noise after filtering is then given by:

E[n2(t)] =
N0

2π

∫

|H(ω)|2dω (2.6)

and the output of the matched filter (without noise) at time td is:

y(td) =
b exp(φt)

2π

∫

X(ω)H(ω)dω. (2.7)

The matched filter is selected to maximize the signal to noise ratio at the output

of the filter, so

SNR =
b2|

∫

X(ω)H(ω)dω|2
2πN0

∫

|H(ω)|2dω (2.8)

The Schwartz inequality is then applied to the numerator, yielding:

∣

∣

∣

∫

X(ω)H(ω)dω
∣

∣

∣

2

≤
∫

|X(ω)|2dω
∫

|H(ω)|2dω. (2.9)

In order to maximize the SNR, we must have equality in Equation 2.9 and

this means that H(ω) = aX∗(ω) or h(t) = ax∗(−t), where a is an arbitrary

scaling factor. This means the matched filtering process is equivalent to the cross

correlation of the received signal with a delayed copy of the transmit signal [21].
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2.2 Doppler

When an electromagnetic wave is scattered off of a moving target, the initial fre-

quency of the electromagnetic wave is shifted by an amount that is directly pro-

portional to the velocity of the target and is inversely proportional to the initial

frequency of the electromagnetic wave. The Doppler equation is given by Equation

2.10. Another form of the Doppler equation relates the phase of the backscattered

signal to the time-varying range to the target. This form is given by Equation

2.11.

fd(t) =
2v(t)

λ
(2.10)

ϕd(t) =
4πr(t)

λ
(2.11)

In the equations above, v is the radial velocity of the target, λ is the wavelength

of transmitted signal, and r is the radial range to the target. Because the Doppler

shift is measured by the phase difference between the transmitted and received

signals, noise waveforms are not well-suited for Doppler processing.

Any movement by the target will produce a shift in frequency and often different

locations along a target produce different Doppler shifts. This results in a com-

plex return Doppler signal. This is evident in human motions, where the torso,

arms, legs, and head all move at different velocities and thus, produce different

Doppler shifts. In addition to this, each location along the arms will be moving at

different velocities, which only adds to the complexity of the returned Doppler sig-

nal. Because the Doppler shift depends on wavelength, higher frequency transmit

waveforms will produce larger Doppler shifts. This means that higher frequencies

will allow more detail to be observed in the micro-Doppler signature. This will be

clearly demonstrated later in this dissertation.

The noise waveforms that we use for target ranging have the desired proper-

ties of covertness, anti-jamming, and low probability of intercept; however, white

Gaussian noise waveforms do not have a measurable phase. Thus, CW radars

are ideal for Doppler processing because their phase can be easily ascertained and

compared to the received signal.
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2.3 Through-the-Wall Radar Considerations

Due to the very nature of electromagnetic propagation through various types of me-

dia, through-the-wall sensing poses additional challenges that must be considered

and overcome in the design of any through-the-wall radar system. Micro-Doppler

radars are no exception to these challenges. Once the radar has been designed

appropriately, the limitations imposed by the wall barrier can be minimized and

a through-wall micro-Doppler radar system can be operated in much the same

manner as a barrier-free radar system. Some of the considerations that must be

taken into account include reflections from the front and back faces of the wall

(and possibly resonant cavities within the wall), attenuation of electromagnetic

waves through different materials, and the dispersive characteristics of the media.

It is well established that higher frequencies exhibit much larger losses than

lower frequencies. For this reason through-wall radars typically operate at fre-

quencies of 5 GHz or less. Wall losses also reduce the signal-to-noise ratio of the

radar returns, thus limiting the maximum range of the radar. This also means

that some walls may induce too great a loss to detect some targets due to their

material properties or simply because of the thickness of the wall itself.

The electromagnetic properties of building materials are critical in through-

the-wall radar design and data analysis. Attenuation, dispersion, reflection, and

refraction all are important considerations when dealing with through-wall micro-

Doppler signatures. The type of building material may not pose a considerable

challenge if it is wood, glass, or drywall where the attenuation is relatively small.

On the other hand, materials such as concrete, cinder block, or brick may cause sig-

nificant attenuation of the signal to the point where the signal cannot be detected.

As we would expect, the material properties are frequency dependent, therefore

selecting appropriate frequencies will alleviate some of the challenges that arise

due to barrier effects.

2.3.1 Wall Attenuation

The attenuation of electromagnetic waves through materials depends on the ma-

terial properties of the material. The permittivity (ǫ), permeability (µ), and con-

ductivity (σ) all vary depending on the type of material in question and they also
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vary depending on the frequency of the incident wave. If these material properties

are known, then the attenuation constant can be approximated as:

α =
σ

2

√

µ

ǫ
. (2.12)

Here we are assuming that the wall is made of a dielectric material because con-

ducting walls act as opaque barriers for through-the-wall radars. Often, the loss

tangent (tan δ) is reported instead of the attenuation constant, where δ = 1
α
. Be-

cause ǫ and σ are frequency dependent, the attenuation constant is also frequency

dependent. Table 2.1 shows the attenuation as measured experimentally in [7] for

some selected materials at 100 MHz. Table 2.2 shows the attenuation measured

experimentally in [8] for some common wall materials at 500 MHz. Because the

loss increases as the frequency increases, through-the-wall radars are limited to

lower frequencies. The loss that is encountered may not be significant for many

materials; however, when considering a material such as concrete or cinder block

the loss can have a crippling effect on the received power by the radar. It is also

important to remember that the losses that are reported in Table 2.1 are one-way

loss factors. The loss experienced by the radar system is two-way and the loss

factor must be doubled.

A more complete plot of the attenuation through various materials at frequen-

cies ranging from 4 GHz to 100 GHz is shown in Figure 2.1 [1]. Because through-

wall radars are often desired to work in worst-case scenarios, the radar operating

frequency is chosen to be less than 5 GHz so that the total attenuation due to

2-way propagation through concrete block is less than 15 dB.
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Table 2.1: Attenuation and relative permittivity of some selected materials at 100
MHz [7].

Material Attenuation (α in dBm−1) Relative permittivity (ǫr)

Air 0 1

Asphalt 2-15 2-4

Dry Concrete 2-12 4-10

Wet Concrete 10-25 10-20

Sandy dry soil 0.1-2 4-6

Sandy wet soil 1-5 15-30

Table 2.2: Attenuation of typical wall materials at 500 MHz [8].

Wall 2-Way Attenuation (dB)

Typical Interior Wall

(two 1/2-in. gypsum panels filled

with wood)

8

Reinforced concrete wall

(6-in. deKhotinsky concrete with

1/2-in. rebar on 3-ft. centers)

11

Stucco/concrete wall

(1-in. 22AWG chicken-wire with

1/2-in. concrete)

19

Chain-link (cyclone) fence 11
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Figure 2.1: One-way attenuation of EM waves (in dB) through various materials
[1].

Additional measurements by [23] for 20 cm thick concrete and wooden walls

at a frequency of 2.4 GHz show a transmission loss at the air-wall interface of 3.9

dB and 0.9 dB, respectively. The through-wall propagation loss was found to be

1.2 dB and 0.7 dB for 20 cm thick concrete and wooden walls, respectively. Many

other resources can be found which discuss attenuation through wall materials. A

sampling of some of these resources can be found in [24, 25, 26].
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2.3.2 Wall Reflection

As discussed in the previous section, the material properties determine the loss

due to propagation through lossy media, such as a wall. These same material

properties are responsible for reflecting part of the incident wave back to the radar

without penetrating the wall. The reflections are caused by the discontinuity

in the intrinsic impedance of the material through which the wave is traveling.

The reflection coefficient Γ and the transmission coefficient T (assuming normal

incidence) for a wave traveling from Medium 1 into Medium 2 are well known and

are given in Equations (2.13) and (2.14) respectively, where η =
√

jωµ
σ+jωε

is the

material intrinsic impedance. Because transmission through conductive materials

is not practical due to high losses, we can assume that the wall material is a good

dielectric, for which the intrinsic impedance can be approximated as η ≈
√

µ
ε
.

Γ =
η2 − η1
η1 + η2

(2.13)

T =
2η2

η1 + η2
= 1 + Γ (2.14)

The average reflected and transmitted power densities Sr
avg and St

avg, respec-

tively are given by:

|Sr
avg| = |Γ|2Si

avg (2.15)

and

|St
avg| = (1− |Γ|2)Si

avg. (2.16)

Because a large fraction of the power is reflected and never reaches the other

side of the wall, reflections are another source of losses in through-wall radars.

2.3.3 Dispersion

Many Doppler radars utilize a CW wave that consists of a single frequency. For

these radars, dispersion obviously does not play a role. However, for pulsed

Doppler, multi-frequency, or ultra wideband (UWB) radars, dispersion can have
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some degrading effects on radar performance. Dispersion is caused because the

individual dipoles created by an induced electric field take some small amount of

time to align themselves in the direction of the electric field. In the presence of

an oscillating electric field, the response time of the dipoles will depend on the

frequency of the electric field oscillations. This will cause the different frequency

components of a UWB signal to travel at different speeds. Because of this, disper-

sive media will have the effect of broadening pulses and distorting the signal. The

broadening of the pulse will effectively decrease the signal bandwidth.

Most materials can be assumed to follow classical models such as the well-known

Debeye equation. This model can be used to calculate the complex permittivity

as a function of frequency. Using the Debeye equation, the complex permittivity

of a material is:

ε̇r
′(ω) = ε′r(ω)− jε′′r(ω) = ε′r∞ +

ε′rs − ε′r∞
1 + jωτe

(2.17)

where ε′rs and ε
′

r∞ are the real parts of the complex permittivity at zero frequency

and at a very large frequency (optical frequency), respectively, and τe is a new

relaxation time constant that is related to the original relaxation time constant τ

by

τe = τ
ε′rs + 2

ε′r∞ + 2
(2.18)

For a more complete and thorough discussion of dispersion, including the

Lorentz model, which accounts for multiple resonances, see [27, 28]. (The Debeye

model only accounts for a single resonance). Our through-wall radar performs well

despite the fact that we did not counteract dispersive effects. This demonstrates

that, even if the signal is slightly distorted due to a wall barrier, noise waveforms

still correlated well.

2.3.4 Signal-to-Noise Ratio and Maximum Detectable Range

As with all radar systems, micro-Doppler radars have a maximum detectable range

that depends on SNR. Because of the attenuation that electromagnetic waves ex-

perience when traveling through wall materials, the SNR will decrease and thus
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decreasing the maximum detectable range of a micro-Doppler radar. Equation

(2.19) shows the radar range equation in a form that shows the maximum de-

tection range at which a target with a given RCS can be detected with a given

SNR.

Rmax =

[

PtGtGrλ
2σ

(4π)3SNRminL

]1/4

. (2.19)

In Equation (2.19), Pt is the transmit power, Gt is the gain of the transmitting

antenna, Gr is the gain of the receiving antenna, λ is the wavelength, σ is the

Radar Cross Section (RCS), and SNR is the signal-to-noise ratio. Here all of the

losses from wall attenuation are included in L ≥ 1. This means that the maximum

detectable range of the radar will decrease significantly as L increases. However,

due to reflections, not all of the power is transmitted through the wall, so Equation

(2.19) must be modified according to the transmission power from Equation (2.16).

Because of 2-way transmission, Equation (2.19) becomes:

Rmax =

[

PtGtGrλ
2σ
(

1− |Γ|2
)2

(4π)3SNRminL

]1/4

. (2.20)

As an example, let us consider a two-way wall loss of 20 dB and a maximum

range of 50 meters when operating in an environment without a wall (L = 1).

For now, neglect the effect of wall reflections and only consider wall losses. A 20

dB wall attenuation is a loss factor of 100 and will decrease our maximum range

by a factor of (1/100)1/4 = 1/
√
10 ≈ 0.32. This means that our radar can only

detect targets up to a range of 50 × 0.32 = 15.8 meters. At higher frequencies

for materials such as concrete, cinder block, or brick, the losses may be significant

enough that it is impossible to detect micro-Doppler signals at any distance.

The distances from the radar to the wall and from the radar to the target are

also important. Using our previous example, suppose that the wall is located at

20 meters from the radar. This would mean that it is necessary for the target to

be in front of the wall in order to detect the micro-Doppler. In this case the wall

no longer has an effect and the wall losses are irrelevant.

Now, let us consider a target that is located 10 meters behind a wall. The
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two-way wall loss is again 20 dB. In order to detect this object, the radar must

be located closer than 5.8 meters from the wall. This ensures that the target is

within the maximum detectable range of 15.8 meters.

Figure 2.2 illustrates the effect of attenuation on the maximum range. It is

clear that the maximum range is halved for every additional 12 dB of loss.
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Figure 2.2: Maximum detectable range for a given loss (relative to L = 1).

As another example, consider the first scenario once again, except we will now

include a reflection coefficient of |Γ| = 0.5. The
(

1−|Γ|2
)2

term is equal to 0.5625,

which corresponds to an additional 2.5 dB of loss. Figure 2.3 illustrates the effect

of the wall reflections on maximum range. Larger values for the magnitude of Γ

will increase the loss significantly and if we have a perfect conductor (|Γ| = 1)

then, as should be expected, the target cannot be detected.
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Figure 2.3: Maximum detectable range versus Γ.

2.3.5 Wall Effects on Micro-Doppler Signatures

As discussed in Chapter 2, electromagnetic waves that travel through media will

experience the effects of attenuation, dispersion, and limitations on the maximum

range. These effects are non-specific to micro-Doppler signatures. Aside from these

effects, a constant phase offset occurs because of the stationary wall.

2.3.5.1 Constant Phase Offset

The familiar expression for the Doppler frequency shift and Doppler phase shift

are shown in Equations 2.10 and 2.11 respectively.

Each scatterer in the radar beam will introduce a component to the total re-

ceived radar signal, some of which will have a micro-Doppler component and some

of which will not. If, for simplicity, we assume a single frequency continuous wave

Doppler radar system and that the received radar signal consists of only two com-

ponents, one from a wall and another from an object that exhibits micro-Doppler

motion, the received signal can be expressed as:

rx(t) = awall cos [2πfct+ ϕwall] + aobj(t) cos [2πfct+ ϕobj(t)]. (2.21)
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where awall and aobj are the amplitudes of the received component due to the wall

and the moving object respectively, ϕwall and ϕobj are the phase shifts due to the

path lengths to the wall and the object respectively, and fc is the transmitted

frequency.

Because the range to the wall is constant, it does not produce a time-varying

phase shift. Conversely, the object that exhibits micro-Doppler motion will have

a range to the target, r(t) that will vary with time and therefore the Doppler

phase shift will vary with time. In addition to this, the amplitude of the wall

will not vary with time because its RCS remains constant. The amplitude of the

object, however, will generally vary with time because its RCS will depend on

its orientation relative to the radar. Typically the carrier signal is removed via

frequency mixing and filtering, which will simplify Equation (2.21) to:

rx(t) = awall cos (ϕwall) + aobj(t) cos (ϕobj(t)). (2.22)

The first term of Equation (2.22) shows that there will be a DC component

present in the micro-Doppler signature because of the wall. This DC component

depends on the magnitude of the wall component and also on the distance to the

wall as a fraction of the carrier wavelength. Because the phase can be represented

by Equation (2.11) and because the cosine function repeats every 2π, the DC

offset will repeat when the distance from the radar to the wall is a multiple of

λ/2. This is illustrated in Figure 2.4 and experimentally verified by measurements

shown in Figure 2.5. Because the wavelength for the experiments was small (on

the order of a couple of centimeters) it was very difficult to measure the exact

distance to the wall and led to some error in the measurements; however, these

experiments show that the phenomenon of a constant offset due to a stationary

barrier will have an effect on the radar micro-Doppler returns. Based on Figure

2.4, the DC offset should achieve negative values for some distances. This is not

the case in Figure 2.5 and this is due to antenna coupling and other additional

components. In the development of the theoretical DC offset, only a single constant

phase term was considered for simplicity. In general, this is not realistic. In

practical measurements, multipath, antenna coupling, and clutter will all produce

constant phase terms contributing to the DC offset. In Figure 2.5 the combined

DC value of the other components caused the DC offset to remain positive for all
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but a single distance to the wall. It should also be noted that if a target exhibits

micro-motions, but is otherwise remaining stationary, the distance to the target

can be expressed as: R0+r(t). This constant distance will also produce a constant

DC term, which will add together with the wall’s DC component.
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Figure 2.4: Theoretical DC offset versus range to the wall as a fraction of λ.
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Figure 2.5: Experimental DC offset versus range to the wall as a fraction of λ.
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The DC component does not have a great effect on the micro-Doppler signa-

ture; however, when viewing the signal using a time-frequency representation, low

frequency signals may be obscured by a very strong, constant DC offset. This can

be remedied by simply subtracting the DC offset from the signal.

2.4 Micro-Doppler Signals of Targets with a Trans-

lational Velocity

Some common applications of micro-Doppler radar include identification of sig-

natures from human gait, vehicles, and animals. If vehicles or animals are to be

considered, in many cases a through-wall environment is not considered. However,

in some cases it may be desirable to sense objects in an outdoor environment from

within a building. In these cases, a through-wall environment is applicable.

Under normal circumstances, vehicle micro-Doppler will include some trans-

lational velocity, in which case the micro-Doppler will be centered around the

constant Doppler frequency that arises from the translational motion. This is also

true for human gait, where the translational velocity of the human will shift the

micro-Doppler from the legs, arms, etc. away from being centered at DC.

In the case of a signal with a constant translational velocity combined with a

micro-Doppler frequency component, the radar received signal can be simulated

as:

xr(t) = a(t) cos (2πfct+ 2πfd0t+ ϕ(t)). (2.23)

where a(t) is the time-varying amplitude of the received signal, fc is the carrier

frequency of the transmitted wave, fd0 is the Doppler frequency shift of the target’s

constant velocity, and ϕ is the time-varying micro-Doppler phase shift that is pro-

duced by micro-motions (vibrations and rotations) of the target. As was the case

in Section 2.3.5, the carrier is usually removed and the micro-Doppler signature is:

xr(t) = a(t) cos (2πfd0t+ ϕ(t)). (2.24)

Here the constant velocity produces a constant frequency according to Equation
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(2.10) in addition to a micro-Doppler component with a time-varying phase.

2.4.1 Walking Humans

A common area of current research is in the analysis and identification of human

gait movements. The motion of walking is a complex motion that consists of many

different components, all of which are moving in sync with other parts of the body.

An example of the micro-Doppler signature of a human walking is described in [3].

The micro-Doppler of a human walking toward a radar and moving from about

8 meters from the radar to about 2 meters from the radar is shown in Figure 2.6

[2]. This time-frequency representation shows a strong response from the torso

and weaker responses due to the arms and legs. The torso is restricted to a small

bandwidth, whereas the arms and legs exhibit larger Doppler shifts. The mean

frequency of the walking signature is shifted in the positive direction, indicating a

translational velocity toward the radar.

Figure 2.6: Spectrogram of a human walking toward a radar [2].
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In [29], the human walking movement is simulated. This simulation is shown

in Figure 2.7 and clearly shows some of the distinct Doppler traces that arise from

each moving part of the body (left toe, left ankle, torso, right ankle, right toe,

etc.).

Figure 2.7: Spectrogram of a human walking toward a radar [3].

Figure 2.8 shows a human walking toward a non-coherent micro-Doppler radar

operating in the S-Band. The person was located behind a 4-inch thick brick

wall. Because the radar is non-coherent, only positive frequencies can be observed.

Nonetheless, many of the same features can be clearly seen in the time-frequency

representation of the walking signal and, in fact, the walking signature appears

very similar to the walking signature of Figure 2.6 that was reported in [2].
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Figure 2.8: Spectrogram of a human walking using an S-band, non-coherent, micro-
Doppler radar.

For additional information with more detail on human gait micro-Doppler, see

[2, 3, 11, 30, 31, 32, 29].

2.4.2 Animals

The ability to differentiate human signatures from the signatures of animals is

another ongoing research topic. This is especially important in surveillance and

security applications, where animals do not pose a threat and it is wished to

ignore their signatures. Animals move in such a way that their movements are

much different than that of humans. For example, consider dogs, horses, and

birds. Dogs and horses both walk on four legs and birds have wings. These micro-

Doppler signatures are all much different than human movements and in fact, the

motions of dogs and horses are also different from each other (albeit much more

subtle differences).

Below are some examples of micro-Doppler signatures due to various animals,

as reported in the literature. Figure ?? shows experimentally measured micro-

Doppler of a horse walking using acoustic waves [4]. The principle for measuring

micro-Doppler with acoustic waves is the same as that for electromagnetic micro-

Doppler except the frequency shifts are relative to the speed of sound instead of
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the speed of light for radar. Figure 2.10 shows micro-Doppler of a dog (Pit Bull)

walking. Figure 2.11 shows the micro-Doppler from human walking away from

the acoustic system as a reference. The micro-Doppler signature from a horse

exhibits a slow repetition frequency which corresponds to the stride rate of the

horse. For dogs, we observe a much faster stride rate. Intuitively, this makes sense

because a horse has very long legs and takes longer strides, whereas a dog has

shorter legs and a faster stride rate. Both of these signatures can be distinguished

from a human walking. Not only does a human being have different body part

proportions, but because the animals walk on four legs, the Doppler components

will be much different from that of a human [4].

The motion of a walking horse has also been simulated in [5]. This simulation

is shown in Figure 2.12.

Figure 2.9: Spectrogram of a horse walking toward a Sonar [4].
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Figure 2.10: Spectrogram of a Pit Bull walking toward a Sonar [4].
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Figure 2.11: Spectrogram of a human walking away from a Sonar [4].
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Figure 2.12: Spectrogram of a horse walking [5].



Chapter 3

S-Band Radar Design

Two separate radar systems were designed for ranging and Doppler detection of

human targets. Each radar was designed with different operational environments

in mind. The first radar system that I will discuss is the S-band radar. This radar

system is intended for through-the-wall environments, where the target is located

behind some barrier and is at close distances from the radar. To achieve signal

covertness, low probability of intercept, and anti-jamming capabilities, a noise

radar architecture was chosen. The noise waveform is desirable to use because it

has no distinct features and is non-repeating. Because of the random nature of

noise, the signal is covert, difficult to jam, and has a low probability of intercept.

3.1 Design Considerations

Because of the intended operational environment, the main design consideration

is the selection of the transmitted frequency. As discussed in section 2.3.1, high

frequencies experience higher loss when penetrating materials. For this reason,

through-the-wall radars typically operate at frequencies less than 5 GHz. The

lower the frequency, the less loss and the better the radar can range targets behind

walls. Another consideration is the size of the components, specifically the size

of the antennas. When operating at low frequencies, the size of the components

and the antennas are large. For this reason, higher frequencies are desired to keep

the size reasonable. The main reason for wanting to keep the size as small as

possible is that the system should have the potential of being modified to fit onto



31

small arms weapons in future applications of the radar. Soldiers are limited in how

much weight they can carry and adding large, bulky components will limit their

maneuverability and effectiveness in combat.

Another design consideration is the range resolution. We desired to be able to

isolate human targets, so we chose a noise bandwidth of 500 MHz to allow us to

isolate the width of an average human. With a bandwidth of 500 MHz, the range

resolution is 0.3 meters (approximately 1 foot).

In addition to the ranging considerations, we also desire to detect micro-Doppler

signals from human gestures. The Doppler frequency shift is directly proportional

to the transmit frequency. This means that in order to detect small human move-

ments, it is desired to operate at as high a frequency as possible.

Because of all of these design considerations, we chose to transmit a 500 MHz

noise waveform in the S-band for ranging and a continuous wave (CW) tone, also

in the S-band, for Doppler detection. A switch is used to select between the two

modes of operation: ranging and Doppler measurement. The switch will select

either the noise waveform or the CW tone to transmit.

3.2 System Description

Here I will describe the S-band radar system in some detail. Figure 3.1 shows the

block diagram of the S-band radar system and Figure 3.2 shows a photograph of

the final system.
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Figure 3.1: Block diagram of S-band noise radar.
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Figure 3.2: Photograph of the S-band noise radar.

3.2.1 Transmit Chain

The transmit chain depends on the mode of operation for the radar. If ranging is

desired, the RF switch is set so that only a noise waveform is transmitted, whereas

if Doppler mode is selected, a CW tone is transmitted. The frequency of the CW

tone corresponds to the center frequency of the noise bandwidth that was selected

for ranging. Regardless of which mode is selected, the remainder of the transmit

chain is the same. The signal is split using a 90◦ splitter. This step is necessary

because a single-sideband I/Q upconverter is used to mix the frequency of the

transmitted signal to the S-band. The single-sideband upconverter requires the

use of both in-phase and quadrature signals to operate properly and produces only

the upper sideband. After amplification and filtering, the signal is transmitted

using a helical antenna.

When ranging, the transmitted noise power is −68 dBm/Hz. Integrating over

the 500 MHz noise bandwidth gives a total noise power of −68 + 10 log10(500 ×
106) = 19 dBm. When operating in Doppler mode the power in the CW tone is

17 dBm.

To ensure the safety of the radar operator and anyone who is downrange from
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the radar, the IEEE Maximum Permissible Exposure (MPE) limits were checked.

At 3 GHz, the MPE limit is f/30 W/m2 for controlled environments and 10 W/m2

for uncontrolled environments [33]. Even if the lower limit of the S-band is used

for calculations, this means that it is permissible for a human to be exposed to up

to 66.7 W/m2. The transmitted power for this radar operating in either of its two

modes is therefore well below the allowed limits.

3.2.2 Receive Chain

The receive chain begins with the receiving antenna, which is also helical, but is

opposite in polarization from the transmit antenna. Right-hand circularly polar-

ized incident waves will be reflected off of objects as either left-hand circularly

polarized or left-hand elliptically polarized waves. Because of this, the helical an-

tennas used for transmission and reception must be wound in opposite directions

to achieve opposite polarizations.

After this, the received signal is amplified with a low noise amplifier and is

downconverted back to baseband for digitization. The signals are filtered again to

remove the high frequency components that arise from the downconverter mixer.

Next, the signal is split and one of the outputs is filtered to isolate only the DC-

500 MHz noise signal and the other output of the splitter is filtered separately

to isolate only the Doppler tone. Because of the switch that was used in the

transmit chain, only one of these splitter outputs are relevant, but because all of

the components are passive, another switch was not necessary to select which one

to use. If the radar is used for ranging the signal is digitized using a GaGe Cobra

CompuScope digitizer. If the radar is used for Doppler detection the signal is

digitized using a National Instruments M Series Multifunction DAQ (USB-6251).

The maximum sample frequency of the GaGe digitizer is 2 GS/s per channel.

Because we are digitizing two channels, the digitizer can sample these signals at

1 GS/s, which is the Nyquist rate of the noise signal. The sampling rate for the

National Instruments DAQ is set to 2 kS/s, which is suitable for digitizing the

expected Doppler signals due to typical human behavior. In fact, this sampling

rate is greater than is necessary for the S-band radar, but is set to be the same as

the sampling rate for the millimeter-wave radar. The reasons for selecting a 2 kHz
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sampling rate will be discussed in Chapter 4.

3.2.3 Antennas

As discussed above, this system is designed for through-the-wall operation. One

additional consideration in the design of this radar system is the possibility of en-

countering wall materials containing rebar. If this is the case, the radar results will

be degraded when using antennas with either horizontal or vertical polarization.

If there is vertical rebar, using antennas with horizontal polarization would be

desired and vice versa. However, because we may not know the orientation of the

rebar, circularly polarized antennas are desirable. Because of this, helical antennas

were chosen for this system. A diagram of a helical antenna with the important

parameters labeled is shown in Figure 3.3 [34]. In this figure D is the diameter

of the helix, S is the spacing between turns, α = arctan S
πD

is the pitch angle, L

is the length of one turn, n is the number of turns, A = nS is the axial length, d

is the diameter of the conducting wire, and C = πD is the circumference of the

helix.
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Figure 3.3: Diagram of helical antenna with important parameters highlighted.

For our antennas, we desire that the antenna operate in axial mode, which will

produce an end fire beam pattern. Although there is some minor discrepancies in

the literature, the antenna beamwidth (measured in degrees) and the antenna gain

can be approximated by the equations given by [35]. These equations are:

HPBW =
65◦

C
λ

√

N S
λ

(3.1)

and
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G =
26000

HPBW 2
= 6.2

(C

λ

)2

N
S

λ
. (3.2)

The parameters for the helical antenna that was designed for this radar system

are summarized in Table 3.1. Using these values the half-power beamwidth is

approximately 29◦ and the gain is approximately 14.8 dB.

Table 3.1: Helical Antenna Parameters

Parameter Value

Diameter (D) 0.028 (m)

Spacing (S) 0.022 (m)

Pitch Angle (α) 14.1◦

N 19

Axial Length (A) 0.353 (m)

In addition to the design of the helix, an additional conical backplane was added

to reduce the back lobe of the antenna beam so that the radar (especially when

considering the micro-Doppler) did not pick up signals from the radar operator.

This will also serve to increase the antenna’s actual Gain and reduce the antenna’s

actual half-power beamwidth. An image of the final antenna design is shown in

Figure 3.4 and a plot of the antenna’s S11 parameters are shown in Figure 3.5.
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Figure 3.4: Final design of the helical antennas.
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Figure 3.5: S11 measurements of the helical antennas.

3.3 Through-wall Ranging Results

The S-band radar system is capable of ranging targets behind common wall ma-

terials such as brick and concrete. Figure 3.6 shows a comparison of ranging plots

both with and without a trihedral target placed 6 feet behind a 4-inch thick brick

wall. As is typical in all of our through-wall experiments, the antenna coupling

appears first, followed by a strong peak representing the wall barrier. In addition

to this there is some additional delay time in the system, which causes the ranging

plot to shift to the right. This can be canceled by measuring the delay time and

subtracting it out.

In the top plot of Figure 3.6, there is not a target behind the wall, but another

correlation peak can be clearly seen after the wall. This is due to the reflection

coefficient of the brick wall. Energy is reflected back toward the radar operator and
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our experimental setup produced an undesired correlation peak. The appearance of

all of these correlation peaks (antenna coupling, wall, and other clutter targets) can

be mitigated by collecting background data and subtracting the saved background

from new data. The bottom plot of Figure 3.6 shows that when a trihedral target

is placed behind the wall, the target can be detected by the radar. In the top

plot of Figure 3.6 the largest peak represents the reflection from the wall and the

next, smaller peak represents a clutter target. In the bottom plot of Figure 3.6 a

peak is present in between the wall peak and the clutter peak, which represents a

reflection from a trihedral corner reflector.
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Figure 3.6: Range profiles of a 4 inch thick brick wall that is 6 feet from the radar
with (Top) no target behind it and (Bottom) a small trihedral target 4 feet behind
the brick wall.

Figure 3.7 shows another comparison of ranging plots when the wall barrier is

constructed of 5 inch thick concrete slabs. The top plot shows the scenario where

a target was not placed behind the wall and the bottom plot shows the scenario
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where a trihedral target was placed approximately 5 feet behind the concrete wall.

Because electromagnetic waves experience large attenuation when passing through

concrete material, the radar has much more difficulty detecting the trihedral target

behind the wall. However, when comparing the two range profiles, a small peak

can still be identified in the bottom plot, which represents the trihedral target.
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Figure 3.7: Range profile of a 5-inch thick wall made of concrete slabs. The wall is
5 feet from the radar and (Top) no target is placed behind the wall and (Bottom)
a small trihedral target is placed 6 feet behind the wall.

Figure 3.8 shows ranging plots with and without a trihedral target for sensing

through a laboratory wall. This scenario clearly indicates that the target can be

detected. The left plot shows the range profile without a target present and the

right plot shows the range profile when a trihedral target is placed between 4 and

5 feet behind the laboratory wall. This scenario involved placing a trihedral target

in a room containing clutter from shelves and the other walls of the room. This

clearly illustrates that targets can be detected in cluttered environments at close
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range.
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Figure 3.8: Range profile of a 4-inch thick concrete wall located at 5 feet from
the radar and (Top) with no target behind the wall and (Bottom) with a small
trihedral target placed 5 feet behind the wall.

As mentioned above, by collecting data on the background, clutter targets

can be removed from the range profiles by subtracting the average background

range profile from new range profiles. If no target is present, the ideal result of

background subtraction is that the range profile is nearly flat and no prominent

peaks should be visible. If a target is present, after background subtraction it

should be the most prominent peak visible in the range profile. This is illustrated

in Figure 3.9, where the peaks due to the antenna coupling and background have

been reduced and the target peak is now the most prominent peak in the range

profile. Even though averaging has been used, small fluctuations in the peaks for

the antenna coupling and background result in the background not being entirely

eliminated. The peak due to the brick wall is still prominent in the range profile,
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Figure 3.9: Range profile of a trihedral target located 6 feet behind a 4 inch
thick brick wall (Top) without additional signal processing and (Bottom) after
background subtraction.



Chapter 4

Millimeter-Wave Radar Design

The millimeter-wave radar system was designed with longer range applications in

mind. Initially, we desired to detect human targets at ranges of 100 ft and possibly

targets concealed by light foliage. In fact, this radar system can range targets at

ranges of up to 700 feet and can detect micro-Doppler signatures at ranges of up

to 300 feet. Many of the same considerations went into the design of the mm-

wave radar system as went into the design of the S-band radar system. A noise

waveform was chosen for its covertness, low probability of intercept, and anti-

jamming capabilities. The operational environment for this radar system meant

that we could choose a different transmit frequency to achieve the system goals.

In addition to this, there are slight differences in the transmit waveforms due to

slightly different approaches that were taken.

4.1 Design Considerations

Many design considerations for the mm-wave radar are identical to those of the

S-band radar. We still desire to transmit a noise waveform with a bandwidth that

will give a range resolution that can be used for human detection. For this radar,

just like for the S-band radar, a 500 MHz bandwidth is utilized, resulting in a 1 foot

range resolution. Because of the longer range application of the mm-wave radar,

the antenna beamwidth must be much narrower in order to isolate the width of a

single human target (approximately 1.5−2 feet). In order to achieve this and keep

the antenna size as small as possible, high frequency signals must be transmitted.
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Another consideration is the atmospheric absorption that the wave will undergo.

Figure 4.1 shows the attenuation of the signal through the atmosphere versus

frequency. The W-band (75 − 110 GHz) is one of the high frequency bands that

offer low loss when propagating through the atmosphere. Even though this radar

operates at ranges where the atmospheric loss is not a large factor, if we choose a

frequency in one of the transmission bands, more manufacturers were available and

a larger selection of off-the-shelf components were at our disposal. Even though

our minimum detection range was 100 feet, we desired to be able to detect human

targets at much longer distances.

If 60 GHz was chosen, Figure 4.1 shows that the attenuation is around 20

dB/km. This will diminish our maximum detectable range by decreasing our

signal to noise ratio. As will be seen in Section 4.2, this radar system is capable of

ranging human targets at distances of up to 700 feet (91 meters). At this distance,

the two-way path length is 181 meters and the loss in the atmosphere would be

approximately 3.6 dB at 60 GHz. Referring to Figure 2.2, the maximum detectable

range will be reduced by approximately 20%. This would mean that we could

only detect targets at ranges of approximately 560 feet. In fact, our maximum

detectable range is actually longer than 700 feet because we were limited by the

environment and our ability to align our antennas to a target.

Figure 4.1: Atmospheric absorption vs. frequency.

Another reason for choosing higher frequencies, as discussed in Chapter 3, is
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that larger transmit frequencies are desirable when considering Doppler signals.

Because human motions are typically small and slow, large transmit frequencies

will cause larger Doppler frequency shifts and make Doppler detection more accu-

rate and reliable.

For these reasons, we chose to transmit a 500 MHz, W-band noise waveform

for ranging. The CW tone for Doppler detection was also in the W-band, but was

transmitted simultaneously with the noise waveform instead of switching between

two modes of operation. The frequency of the CW tone slightly less than the

lowest frequency of the noise waveform.

4.2 System Description

Here I will describe the mm-wave radar system in some detail. The block diagram

of the mm-wave radar system is shown in Figure 4.2 and a photograph of the

completed system is shown in Figure 4.3.
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Figure 4.2: Block diagram of the mm-wave radar system.
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Figure 4.3: Photograph of the completed mm-wave radar system.

4.2.1 Transmit Chain

The system transmit chain consists of an L-band and a W-band section. In the

L-band section, the transmit signal is generated by the use of a noise source. The

noise signal is filtered to achieve a 500 MHz bandwidth. Rather than generating

noise from DC to 500 MHz, the 500 MHz bandwidth is set to 1.1 − 1.6 GHz.

This allows the lower sideband and the local oscillator (LO) leakage to be easily

removed via filtering when the signal is upconverted to theW-band. This is because

the upper and lower sidebands are separated by 2.2 GHz and the LO leakage is

separated from the upper sideband by 1.1 GHz. Filtering easily removes the lower

sideband and the LO leakage. Next, the noise waveform is split so that we can

digitize a copy of the transmitted waveform for correlation later. One of the splitter

outputs is downconverted to DC-500 MHz and digitized for a reference waveform

and the other is combined with a continuous wave tone for Doppler detection.
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The tone is chosen to be at the beginning of the noise frequency band so that

the noise and the single tone can be easily filtered separately for ranging and

Doppler detection. The composite signal, consisting of the noise waveform with

the embedded CW tone is then upconverted to the W-band. The L-band composite

signal is shown in Figure 4.4. The power of the 1.1 GHz CW tone is +7 dBm.

The noise waveform has an average power density of −19 dBm/MHz. Because of

the 500 MHz bandwidth, this means that the noise waveform has a total power

of +8 dBm. The composite signal, consisting of both the noise waveform and the

embedded CW tone has a total power of +10.5 dBm.

After the composite waveform has been upconverted to the W-band, it is filtered

to remove the lower sideband and the LO leakage and then it is transmitted via a

dielectric horn antenna. The composite signal power is reduced by 6 dBm because

of the conversion loss of the upconversion mixer, so the final transmitted power is

+4.5 dBm, with +1 dBm power in the embedded CW tone and 2 dBm power in

the noise waveform.

As was the case with the S-band radar, to ensure the safety of the radar op-

erator and anyone who is downrange from the radar, the IEEE MPE limits were

checked [33]. At mm-wave frequencies, the MPE limit is 100 W/m2 for controlled

environments and 10 W/m2 for uncontrolled environments. The total transmitted

power for this radar is clearly well below the allowed limits.
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Figure 4.4: L-band waveform consisting of a 500 MHz bandwidth noise waveform
with an embedded CW tone.

4.2.2 Receive Chain

The receiver chain also consists of an L-band section and a W-band section. After

being received by a second dielectric horn antenna, the signal is passed through a

low noise amplifier and is downconverted back to the L-band. After downconver-

sion to the L-band, the signal is downconverted a second time to baseband. Here

the signal consists only of a DC-500 MHz signal with a CW tone that has been

shifted according to the Doppler equation (Equation 2.10). If the target is not

moving, the CW tone will be at DC.

The noise and Doppler signals are processed separately. The baseband receive

signal is split and one of the outputs is filtered to remove the Doppler tone and

the other is filtered to remove the noise waveform. Once this is completed, the

received noise signal and the reference noise signal (a copy of the transmitted noise
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signal) is digitized using a GaGe Cobra CompuScope digitizer. The digitizer has

a maximum sampling rate of 2 GS/s per channel. Because we are digitizing two

channels, the digitizer can sample these signals at 1 GS/s, which is the Nyquist

rate of the noise signal. The Doppler signal is digitized separately using a National

Instruments M Series Multifunction DAQ (USB-6251). The sampling rate for the

National Instruments DAQ is set to 2 kS/s, which is suitable for digitizing the

expected Doppler signals due to typical human behavior. If the Doppler signal is

equal to half the sample frequency, the velocity of the target would be between

1.35 and 2.0 m/s. For micro-Doppler signals due to human motions, where the

human target does not have a translational velocity, the sampling frequency of 2

kHz will be adequate since most human motions are slow.

4.2.3 Antennas

The antennas described for the S-band radar required that we consider the possi-

bility of vertical or horizontal rebar. For the mm-wave radar, this is not necessary,

so circular polarization is not needed to ensure good results for any situation. How-

ever, because of the longer range of operation, the mm-wave radar antennas must

have a very narrow beamwidth in order to isolate the width of a single human

target. At 100 feet and assuming a typical human body width of approximately

2 feet, the antenna’s beamwidth must be approximately 1.1◦. This is achievable

because of the large frequency of the mm-wave radar. We chose to use a 6 inch

diameter dielectric horn antenna with a theoretical 3 dB beamwidth of 1◦. The

length of this antenna is 1 foot. This antenna is shown in Figure 4.5. Because

of the narrow beamwidth, a red dot scope was added for ease of alignment when

performing experiments. The beam pattern of this antenna is shown in Figure 4.6.
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Figure 4.5: Dielectric horn antennas used with the mm-wave radar.
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4.3 Ranging Results

4.3.1 Long Range Detection

As discussed earlier, the maximum range of this radar system was experimentally

measured to be at least 700 feet. Because of the environment and our inability to

accurately align the antennas to our target at these long ranges, the theoretical

maximum range of the system is much larger. Figure 4.7 shows the ranging plot

of a human target standing at 700 feet (213 meters) and Figure 4.8 shows the

ranging plot of the data after background subtraction. These ranging plots show

some clutter targets that obscure the human target at 700 feet if background

subtraction is not performed. After background subtraction, there are still some

clutter targets, but the human target at 700 feet is clearly identifiable.

At 213 meters, the SNR of the human target is approximately 13 dB. Signals

with a SNR of less than 13 dB can be detected, so if we assume that a 1 dB SNR

is required to detect the target, using the radar range equation, the theoretical

maximum range of detection is approximately 425 meters (1400 feet).
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Figure 4.7: Correlation plot of human target standing at 700 feet (213 meters)
prior to background subtraction.
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Figure 4.8: Correlation plot of human target standing at 700 feet (213 meters)
after background subtraction.

4.3.2 Through Foliage Detection

As discussed earlier, it is desired that this system be capable of detecting tar-

gets concealed by light foliage (foliage penetration or FOPEN). Tests have been

performed that confirm this capability of the radar. The radar was directed at a

Forsythia Intermedia bush located at approximately 100 feet. The dimensions of

the bush were approximately 2 m × 2 m × 10 m. Ranging data for the FOPEN

scenario were collected for both a corner reflector and a human target. The results

are shown in Figure 4.9. The top left figure shows the correlation results of a bush

without leaves with no target behind it, the top right figure shows the results of a

corner reflector target concealed behind the bush without leaves, the bottom left

figure shows the correlation results of a corner reflector target concealed behind

the bush with leaves, and the bottom right figure shows a human target concealed



57

behind the bush when it had no leaves on it.
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Figure 4.9: Correlation plots of the bush at 100 feet (a) without leaves and no
target behind it, (b) without leaves and with a corner reflector behind it, (c) with
leaves and with a corner reflector behind it, and (d) without leaves and with a
human target behind it.

It is clear from these plots that the presence or absence of leaves has a large

effect on the ability of a radar to detect targets concealed in light foliage. Because

the corner reflector had a larger RCS than a human, the corner reflector was

detectable regardless of whether there were leaves or not. In the bottom right plot

of Figure 4.9, the human target is more difficult to detect even without leaves on

the bush. When leaves were present, the human target was completely concealed

by the bush.
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Time-Frequency Transforms

When analyzing micro-Doppler signals, the time-varying nature of the signal makes

traditional analysis techniques such as the Fourier transform inadequate for get-

ting a complete picture of how the target is moving relative to the radar. The

Fourier transform assumes a linear time-invariant system. Because the Doppler

frequency changes over time, we can easily see how the Fourier transform is not

suitable for analyzing micro-Doppler signatures. While the Fourier transform can

be useful in many applications to Doppler radar, other techniques must be explored

if knowledge of how the velocity of the target changes over time is desired. Among

the simplest of these is the Short-Time Fourier Transform (STFT). Many other

techniques have also been developed. Wavelet theory has recently been gaining

in popularity, and other techniques such as the Wigner-Ville distribution (WVD),

Choi-Williams distribution (CWD), and the Hilbert-Huang transform (HHT) are

also widely used in practice. For an in-depth discussion of these and other time-

frequency transforms, see [36, 37, 38, 39, 40, 41]

5.1 Short-Time Fourier Transform

The Fourier transform is the fundamental signal processing tool today. However, it

has drawbacks when analyzing non-linear and non-stationary signals. The Fourier

transform projects a signal x(t) onto a set of orthonormal bases that are complex

sinusoids with infinite extent, as shown in Equation 5.1. The Fourier transform

assumes linearity and time-invariance and these basis functions are formulated
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in such a manner that time-frequency information cannot be extracted from the

signal. The Fourier transform can only give information as to which frequencies

were present within the duration of the signal, but cannot give information as to

when they occurred (except that they occurred sometime within the duration of

the signal).

X(ω) =

∫

∞

−∞

x(t)e−jωtdt (5.1)

In order to evaluate how a function changes over time, the simplest approach is

to window the data and slide the window across the entire duration of the signal.

This approach is the well-known Short-Time Fourier transform (STFT) and is

expressed in Equation 5.2, where w(t) is the window function. Here the signal is

projected onto the basis functions: w(t− τ)ejωt.

STFT (t, ω) =

∫

x(τ)w(τ − t)e−jωτdτ (5.2)

By the uncertainty principle ∆t∆ω ≥ 1
2
, where ∆t is the time resolution and ∆ω

is the frequency resolution, the smaller the time window, the poorer the frequency

resolution. Because of the windowing operation, in order to gain information on

how the signal varies with time, we must sacrifice some of our frequency resolution.

The window function and the width of the window both must be selected

appropriately depending on the application. Hanning, Hamming, and rectangular

windows are frequently used. Some are selected for their simplicity, others for their

sidelobe suppression A Gaussian window, as shown in Equation 5.3 is sometimes

chosen because it has the desirable property of achieving the lowest possible time-

frequency product (∆t∆ω = 1
2
).

w(t) =
1

π1/4
√
σ
e−

t
2

2σ2 (5.3)

5.2 Continuous Wavelet Transform

In the STFT discussed above, the frequency resolution is a constant. Low frequency

signals and high frequency signals alike will have the same frequency resolution.

In many cases, this is not desirable. For example, assume that the frequency
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resolution of the STFT is 10 Hz and the signal to be analyzed has a frequency

of 20 Hz for the first half of the signal duration and a frequency of 1 kHz for the

second half of the signal duration. The frequency resolution is 50% of the 20 Hz

component but is only 1% of the 1 kHz component. When analyzing this signal,

having equally spaced frequency resolution bins is not desirable.

The Continuous Wavelet Transform (CWT) solves this problem by introducing

multi-resolution. The mathematical expression for the CWT is shown in Equa-

tion 5.4, where a is the scale parameter, b is the translation parameter, and ψ

is the mother wavelet. The scale parameter is analogous to frequency and the

translation parameter is analogous to time, resulting in a “scale-translation” or

time-frequency representation of the signal. Common wavelet functions include

the Haar, Daubechies, Symlet, Coiflet, Mexican Hat, Morlet, and Meyer wavelets.

The wavelet selection is dependent on the application. In the cases of the Fourier

transform and the STFT, the signal was projected onto the basis functions: ejωt

or w(t)ejωt. The CWT no longer uses complex exponentials for basis functions,

but instead uses scaled and translated versions of the mother wavelet. By scaling

the mother wavelet, multi-frequency resolution is attained [40, 41].

CWT (a, b) =
1

√

|a|

∫

∞

−∞

x(t)ψ∗

(t− b

a

)

dt (5.4)

5.3 The Hilbert-Huang Transform and Empiri-

cal Mode Decomposition

The Hilbert-Huang transform is an adaptive time-frequency technique that is well-

suited for non-linear and non-stationary time series. It combines a sifting process

called Empirical Mode Decomposition (EMD) to decompose a signal into its various

components with the Hilbert transform to analyze the instantaneous frequency of

each signal component. Because of the adaptive nature of EMD, there is not a

solid theoretical foundation on which this time-frequency transform is based upon.

Instead, empirical testing has shown it to be reliable in decomposing signals into

components which are physically meaningful. One advantage that EMD has is

that it does not require a priori knowledge of the signal and is also not dependent
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on the selection of a kernel function like the wavelet transform and others.

EMD will decompose a signal into its intrinsic oscillatory modes (also called

Intrinsic Mode Functions), based on the time-scale of the oscillations. The faster

oscillations in the signal will be present in the lower-indexed IMFs and the slower

oscillations will be present in the higher-indexed IMFs. These oscillatory modes,

called Intrinsic Mode Functions (IMF), are components of the original signal and

each IMF is orthogonal to all of the other IMFs. The orthogonality of the IMFs

allow for EMD to be used in a number of ways. Filtering of the signal can be

performed by selectively adding together IMFs of the signal and omitting others.

In addition to this, the mechanism that produces the signal can be analyzed by

inspecting IMFs that have known properties [42].

The EMD algorithm consists mainly of a sifting process. In this process the

extrema of the signal s(t) are identified. From the extrema, the envelope of the

minima, xmin(t), and the envelope of the maxima, xmax(t), are formed by interpo-

lation techniques. Next, the mean of these two envelopes is calculated as:

m(t) =

(

xmax(t) + xmin(t)

2

)

(5.5)

and the mean envelope is subtracted from the signal to complete the first iteration

of the sifting process. The resulting signal is denoted by xkj (t) (k = 1, j = 1), where

k indicates the iteration and j indicates the index of the IMF. This sifting process

is repeated until the stopping criteria have been met, meaning < xkj (t) >= 0 (the

mean envelope is equal to zero at all times) and the number of zero crossings of xkj (t)

differs from the number of extrema by no more than 1. Once this condition has

been satisfied, we set xkj (t) = Ij(t) and Ij(t) is the j
th IMF (I1(t)) of x(t). Next, the

residue is calculated as: xrj(t) = x(t)− I1(t). The sifting process is then repeated,

where the residue is: xrj(t) = x(t)−∑i=j
i=1 Ii(t). This process is repeated until the

residue is either monotonically increasing or monotonically decreasing (having only

a single zero crossing). Figure 5.1 illustrates the process of decomposing a signal

into its components using EMD.
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X(t) = s(t)

Sk(t) = Sk-1(t) - Ik(t)

IMF Ik(t)

Extract maxima and minima

Maxima envelope, minima 

envelope by interpolation

Subtract mean envelope from 

signal

Mean of maxima and minima 

envelopes, m(t)

m(t) ~ 0 and # of 

extrema = # of zero 

crossings

Yes

No

Figure 5.1: EMD algorithm flowchart.

Ideally we would like to meet the stopping criteria exactly; however, the stop-

ping criteria can often be relaxed without decreasing the performance of EMD. In

fact, if the stopping criteria are too stringent, the resulting IMFs often no longer

have any physical meaning. This is called this “oversifting.” To avoid oversifting,

instead of requiring < xkj (t) >= 0 for all time, we require < xkj (t) >≤ C2 for all

time and < xkj (t) >≤ C1 for (1 − tolerance) ∗ 100% of the time, where C1 < C2.
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By defining two thresholds and a tolerance, the stopping criteria are relaxed. We

can also relax the stopping criteria by setting an upper limit to the number of

iterations that the inner loop of Figure 5.1 completes. In addition to avoiding the

problem of oversifting, by relaxing the stopping criteria, the total time that it takes

to complete EMD is reduced, which is desirable in most applications. Reducing the

time for EMD to finish can also be achieved by decreasing the number of points in

your signal. This can be accomplished by adjusting the parameters for digitization

(sampling frequency and number of points) or it can be realized after digitization

by decimation. Decimation is the process of downsampling followed by low-pass

filtering. Chapter 8 discusses how EMD and classification are affected by changing

the various stopping criteria and by varying how much the data is decimated.

The Hilbert transform can then be performed on the collection of IMFs that

result from the EMD process. This is the second part of the HHT algorithm. The

Hilbert transform is a method of calculating the instantaneous frequency of a real-

valued signal and it is related to the number of zero crossings that occur in a given

time [37, 43]. The Hilbert transform can be calculated by

y(t) = H[x(t)] =
1

π
PV

∫

∞

−∞

x(τ)

t− τ
dτ . (5.6)

In Equation (5.6), PV denotes the principal value of the singular integral. Once

the Hilbert transform has been found, the analytic signal is

z(t) = x(t) + jy(t) = x(t) + jH[x(t)] = a(t)ejθ(t). (5.7)

The instantaneous amplitude a(t) and instantaneous phase θ(t) are then found

simply by:

a(t) =
√

x2 + y2 (5.8)

and

θ(t) = arctan
y

x
. (5.9)

The instantaneous frequency can then be determined simply by
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ω(t) =
dθ

dt
. (5.10)

Past applications of the Hilbert transform have been limited to narrowband

signals. This is the reasoning behind performing the EMD sifting operation first

so that monocomponent signals are considered. The HHT algorithm calculates

the instantaneous frequency and instantaneous amplitude of each IMF component

separately. After HHT has been performed, if it is desired, the original signal can

be represented as in Equation 5.11 based on its instantaneous amplitude and in-

stantaneous frequency components. Compare this to the Fourier representation in

Equation 5.12. In the Fourier case, both ai and ωi are constants. It is apparent that

the IMF represents a generalized Fourier expansion. By permitting the amplitude

and frequency to vary with time, HHT allows for non-linear and non-stationary

signals to be analyzed.

x(t) = ℜ
{

n
∑

i=1

ai(t) exp
[

j

∫

widt
]}

(5.11)

x(t) = ℜ
[

n
∑

i=1

aie
jωi(t)t

]

(5.12)

The procedure that has been described provides us with a time-frequency dis-

tribution that relies on the amplitude of each component. This time-frequency

transform is called the Hilbert amplitude spectrum.

In addition to the Hilbert spectrum, the energy of the components can be

analyzed. The energy of a signal can be easily calculated as the inner product

of the signal with itself. When the EMD process is conducted on micro-Doppler

signals, the collection of IMF energies provides us with a vector that is unique to

the movement that caused the Doppler frequency shift. This allows for the energy

vector to be used as a feature vector, on which classification or pattern recognition

techniques can be performed.
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5.4 Other Time-Frequency Transforms

Other commonly used time-frequency transforms include Cohen’s class of time-

frequency transforms, which include the Wigner-Ville distribution (WVD) and

the Choi-Williams distribution [36, 39, 40]. The expression for the Wigner-Ville

distribution is:

WVD(t, ω) =

∫

x
(

t+
τ

2

)

x∗
(

t− τ

2

)

e−jωτdτ. (5.13)

By inspection of Equation 5.13 it is evident that the WVD is simply the Fourier

transform of the autocorrelation function. The expression for the Choi-Williams

distribution is:

CWD(t, ω) =

∫∫

1
√

4πα(τ)2
e
−

(t−u)2

4α(τ)2 x
(

u+
τ

2

)

x∗
(

u− τ

2

)

e−jωτdudτ (5.14)

Both the WVD and the CWD are special cases of Cohen’s class of time-

frequency transforms. The general form of Cohen’s class is shown in Equation

5.15, where φ is a two-dimensional kernel function. The kernel determines the

distribution and also the properties of the distribution. If φ is chosen to be 1 then

it reduces to the WVD.

C(t, ω) =
1

4π2

∫∫∫

e−jθt−jτω+jθuφ(θ, τ)x
(

u+
τ

2

)

x∗
(

u− τ

2

)

dudτdθ (5.15)

Because θ does not appear in the signal itself, this general form of Cohen’s class

can be simplified by defining a new kernel, r, which is the Fourier transform of the

original kernel, φ.

r(t, τ) =
1

2π

∫

φ(θ, τ)e−jtθdθ (5.16)

Using this new kernel, the general form of Cohen’s class becomes:

∫∫

r(t− u, τ)x
(

u+
τ

2

)

x∗
(

u− τ

2

)

e−jωτdudτ (5.17)
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If r is chosen to be

r(t, τ) =
1

√

4πα(τ)2
e
−

t
2

4α(τ)2 (5.18)

then Equation 5.17 is the expression for the CWD. As previously mentioned, the

kernel function determines properties of the distribution. Because the WVD is

simply the Fourier transform of the autocorrelation function, it suffers from having

significant cross-term interference (two separate components in the signal present

themselves as a new term in the distribution, which is the product of the two

components). The kernel for the CWD is chosen to significantly reduce the cross

terms.



Chapter 6

Micro-Doppler Signals of Stationary

Targets

As is usually the case in through-the-wall applications, the target is located in

an indoor environment and is therefore limited to the distances that it can move.

For this reason, another class of micro-Doppler movements is considered: targets

that have no translational velocity. In this situation, the mean Doppler frequency

is zero. Detecting these motions is more difficult than detecting motions due to

gait because the movements are much slower and produce much smaller Doppler

frequency shifts. The ability to detect these motions is challenging when the target

is trying to remain concealed. Here, we develop some simple models to describe

some basic human motions. The modeling and experimental results are shown

for both the S-band and millimeter-wave (mm-wave) micro-Doppler radar systems

[44, 45].

6.1 Experimental micro-Doppler of Human Mo-

tions

Before discussing the models for some basic human motions, some experimental

results are shown to illustrate the different parts of each movement that must

be considered. The four basic human motions that will be considered here are

breathing, swinging arms, picking up an object, and transitioning from crouching
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to standing. The micro-Doppler signature of a pendulum is also considered. The

micro-Doppler signals and the corresponding STFTs of the signals are shown in

Figures 6.1 - 6.10. The micro-Doppler time signature is shown on the left and the

STFT is shown on the right. These experiments were performed with non-coherent

CW Doppler radars. One operating in the S-band and the other operating in

the mm-wave frequency range. Because of the non-coherence of the radar, the

direction of travel cannot be determined. Any motion that creates a negative

Doppler frequency shift will be displayed as a positive frequency because only

real-valued signals are collected.

For the human motions in Figures 6.3, 6.5, 6.7, and 6.9, the S-band radar

was used and was operating in an indoor environment with the human located at

approximately 3 feet behind a 4 inch thick laboratory wall. The radar was located

approximately 9 feet in front of the wall.

For the human motions in Figures 6.4, 6.6, 6.8, and 6.10, the mm-wave radar

was used and was operating in an outdoor environment with the human located

at approximately 100 feet from the radar.

Figures 6.1 and 6.2 show the motion that is exhibited by a swinging pendulum

when measured with the S-band and mm-wave radars respectively. The pendulum

is a long flat metal plate that swings at a pivot point. The motion is sinusoidal and

because the pendulum is not forced, friction causes the pendulum to slow down

gradually. This is clearly seen in the STFT plot where the maximum frequency of

each successive swing is lower (indicating a slower speed) than the one before it.
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Figure 6.1: (Left) Experimentally measured micro-Doppler of a pendulum and
(Right) STFT of the micro-Doppler signal for an S-band radar.
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Figure 6.2: (Left) Experimentally measured micro-Doppler of a pendulum and
(Right) STFT of the micro-Doppler signal for a mm-wave radar.

Figures 6.3 and 6.4 show the micro-Doppler signature due to a human swinging

their arms using the two radars. While this motion is similar to the motion of a

pendulum, it is evident from the STFT plot that the arm swinging of a human

is more complex and contains more components. The additional components are

mainly due to the torso swaying to maintain balance and the fact that each arm

must be considered as two separate components, namely the upper arm and the

lower arm. The upper and lower arms must be considered as separate components

because any bend in the elbow joint will cause the lower arm to travel at a faster

angular velocity than the upper arm. In addition to these extra components, the

human body cannot be considered as a point scatterer. Each point along the arm

will contribute its own Doppler frequency shift and will be proportional to the

location of that point on the arm. The components that are closer to the end

of the arm will produce larger Doppler frequency shifts because this point on the
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arm is traveling faster than a point on the arm that is close to the shoulder joint

(where the radial velocity is zero). It is also evident from the plots that the mm-

wave radar produces much larger Doppler frequency shifts and also allows more of

the motion’s details to be captured by the radar.

Figure 6.3: (Left) Experimentally measured micro-Doppler of a person swinging
their arms and (Right) STFT of the micro-Doppler signal for an S-band radar.
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Figure 6.4: (Left) Experimentally measured micro-Doppler of a person swinging
their arms and (Right) STFT of the micro-Doppler signal for a mm-wave radar.

Figures 6.5 and 6.6 show the micro-Doppler signature due to a human breathing

with the two radars. This motion is very slow and therefore produces only very

low frequency micro-Doppler signals. In this case the STFT does not have a high

enough resolution to accurately determine the time-frequency characteristics of

the signal. However, it is still clear that this motion is distinct from other human

motions and is still distinguishable from background noise. The breathing motion

mainly consists of a periodic expansion and contraction of the chest cavity. Other

non-ideal components may arise from the human subject swaying either in an effort

to maintain balance or the swaying may be inadvertent. It is also clear from these

figures that breathing signals may be more easily extracted using the mm-wave

radar if the time-frequency resolution can be improved by increasing the number

of points and reducing the sampling frequency.
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Figure 6.5: (Left) Experimentally measured micro-Doppler of a person breathing
and (Right) STFT of the micro-Doppler signal for an S-band radar.
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Figure 6.6: (Left) Experimentally measured micro-Doppler of a person breathing
and (Right) STFT of the micro-Doppler signal for a mm-wave radar.

Figures 6.7 and 6.8 show the micro-Doppler signature due to a human picking

up an object with the two radars. This motion is non-periodic and clearly shows an

acceleration phase where the human bends at the waist and begins going toward the

ground followed by a deceleration phase where the human eventually reaches zero

velocity when they have reached the object on the ground. This acceleration and

deceleration is then repeated for when the person returns to an upright position.

Intuitively, many components contribute to this motion: bending at the waist,

reaching of the arms toward the object, bending of the knees, etc. However, many

of these components are small and may not be obvious when viewing the STFT.
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Figure 6.7: (Left) Experimentally measured micro-Doppler of a person picking up
an object and (Right) STFT of the micro-Doppler signal for an S-band radar.
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Figure 6.8: (Left) Experimentally measured micro-Doppler of a person picking up
an object and (Right) STFT of the micro-Doppler signal for a mm-wave radar.

Figures 6.9 and 6.10 show the micro-Doppler signature due to a human transi-

tioning from a crouching position to a standing position with the two radars. This

motion is very similar to the motion of picking up an object, except that the human

is already starting at a position close to the ground. Because of this, the human

body only goes through one acceleration-deceleration cycle and this is clearly seen

in the STFT of the crouching to standing micro-Doppler signal. As in the case of

picking up an object, other body motions contribute to the signal, but may not

have a large effect. Because the person is crouching, the bending of the knees may

play a more significant role in the micro-Doppler signature of transitioning from

crouching to standing than in picking up an object. However, this contribution is

still small compared to the very large contribution of the torso. As was the case

with a human swinging arms, these figures and the figures above for picking up an

object demonstrate that more detail can be seen in the mm-wave Doppler signals
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than in the S-band Doppler signals.

Figure 6.9: (Left) Experimentally measured micro-Doppler of a person transition-
ing from crouching to standing and (Right) STFT of the micro-Doppler signal for
an S-band radar.
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Figure 6.10: (Left) Experimentally measured micro-Doppler of a person transi-
tioning from crouching to standing and (Right) STFT of the micro-Doppler signal
for a mm-wave radar.

Similar experimental data has been obtained for various human motions using

a 750 MHz radar [6]. The lower carrier frequency means that lower Doppler fre-

quencies are observed; however, similar characteristics are found in these data as

was found in the data for the S-band radar above. The results obtained are shown

in Figure 6.11. Both the raw micro-Doppler and the energy of each IMF from

EMD processing are shown. The micro-Doppler signals of Figure 6.11 also show

that the micro-Doppler signatures are similar for different stand-off distances.
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Figure 6.11: Micro-Doppler characteristics of various human activities [6].

Additional information on human motions, including the motions of breathing
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and heartbeat, can be found in [19, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56,

57]. Many of these show the ability of radars to detect vital signs for medical

applications and many of these specifically are designed to operate in a through-

wall environment.

6.2 Models of Simple Human Motions

Micro-Doppler Signal of a Pendulum

The first motion that is considered is that of a person swinging their arms. This

motion is similar to that of a pendulum, therefore it will be used as a building

block to create the swinging arm model. The pendulum is among the simplest

of periodic motions that can be considered when discussing micro-Doppler. The

motion of a pendulum is governed by the laws of physics and can be represented

by the second order differential equation:

f(t) =
d2θ

dt2
+

γ

ml
+
g

l
sin(θ). (6.1)

For the moment, we consider only when the forcing function f(t) is zero. The

initial conditions determine the starting angle and velocity of the pendulum, but

once these are set, gravity and resistive forces such as friction become the only

factors in the motion of the pendulum. The solution to this differential equation

is a damped sinusoid of the form: exp(−αt) cos(ωt). The damping coefficient, α

is related to the frictional forces acting on the pivot point. Using this equation of

motion, the range of the pendulum from the radar is calculated and the Doppler

phase shift is calculated using the well-known expression: φ(t) = 4πr(t)
λ

. Because

the angle of the pendulum is constantly changing and the distance to the radar

is also changing as the pendulum swings, the radar cross section (RCS) and the

relative receive power must be accounted for (via the radar range equation) in the

model. Assuming a monostatic radar configuration, the RCS of a flat plate is:

σ = 4π

(

ab

λ

)2

cos θi
2

[

sin (βb sin θi)

βb sin θi

]2

. (6.2)

At normal incidence (θ = 0◦), this expression reduces to the well-known ex-
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pression of the RCS of a flat plate:

σ = 4π

(

ab

λ

)2

(6.3)

Because a flat plate exhibits only a single scattering center, we will consider

radar returns occurring from scattering at the antenna height, which in our ex-

periments and for the purposes of this model, is located at half the length of the

pendulum from the pivot point. Using a constant height for the scattering center of

the pendulum and using simple geometry, the radial distance from the pendulum

to the radar is:

r(t) = R0 +
L

2
tan θ (6.4)

where R0 is the distance to the pendulum at normal incidence and L is the

length of the pendulum.

The resulting simulated Doppler signal is shown in Figure 6.12. Comparing

this signal to the experimentally measured signal in Figure 6.1, we observe good

agreement with real data.

Figure 6.12: (Left) Simulated micro-Doppler of a pendulum and (Right) STFT of
the simulated micro-Doppler signal of the pendulum for an S-band radar.
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Figure 6.13: (Left) Simulated micro-Doppler of a pendulum and (Right) STFT of
the simulated micro-Doppler signal of the pendulum for a mm-wave radar.

Swinging arms

A human swinging their arms performs a more complex motion, which is confirmed

based on the time-frequency characteristics of the signal. The swinging arm causes

the torso to sway in order for the person to maintain balance. Furthermore, the

arm itself contains multiple components due to the shoulder and elbow joints. In

[58], arm motion is discussed, where the arm moves vertically from one position to

another. This motion is much different than that of a person swinging their arms

continuously; however, it allows us to gain some insight into the biomechanics of

the human arm. The angle between the upper arm and the vertical is modeled

as sinusoidal movement with a frequency of 0.7 Hz, similar to a simple pendulum.

The torso is also modeled as swaying sinusoidally, but the torso movements are

180◦ out of phase with the arm angle. The lower arm angle relative to the upper
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arm is modeled as moving in a Gaussian trajectory. Based on our observations

on four volunteers with different physical characteristics, this appeared to be a

reasonable estimation of the lower arm motion. In most cases, our test subjects

kept their arms straight for the majority of the swinging motion and only bent

their elbows near the forward most point of the swing. The Gaussian trajectory

also allows for the elbow joint to maintain a positive angle relative to the upper

arm, keeping with the physical limitations of the human body. Our simulation

uses a standard deviation of 0.14 seconds for the Gaussian trajectory of the lower

arm. Once the angular trajectory of the arm is established, the Doppler phase shift

can then be calculated using the well-known expression: ϕd = 4πr(t)
λ

where r(t) is

the distance to the radar. This distance can be calculated as: r(t) = L sin(θ),

where L is the length of the arm segment and θ is the angle of the arm relative to

vertical. The simulated micro-Doppler signals and the STFTs for both the S-band

and mm-wave radars are shown in Figure 6.14 and 6.15.

Because each point on the body causes a Doppler frequency shift, the STFT

plot should appear “filled in.” To simulate this, 10 randomly located points are

selected on the upper arm and 25 random points are selected on the lower arm for

calculation of Doppler frequencies. Close inspection of Figure 6.15 shows that each

of these points places a line on the STFT plot, and if more points are included,

this will cause the simulation to even more closely resemble experimental data.
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Figure 6.14: (Left) Simulated micro-Doppler of swinging arms and (Right) STFT
of the simulated micro-Doppler signal for an S-band radar.
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Figure 6.15: (Left) Simulated micro-Doppler of swinging arms and (Right) STFT
of the simulated micro-Doppler signal for a mm-wave radar.

Breathing

A human breathing entails a fairly simple periodic motion of the chest cavity with

one breathing cycle (inhalation and exhalation) completed in about 5 seconds. The

most complex part of simulating the chest cavity expansion and contraction is the

fact that breathing does not exhibit purely sinusoidal motion. For a normal person,

the chest cavity stops for a short pause after exhaling for about 1 second [59]. In

order to simulate this motion, a sine wave was first created, which was “flattened”

at a point below a certain threshold (−0.2 in this case). The “flattened signal”

was then filtered to produce a smooth motion. The RC filter used for smoothing

is has the discrete-time transfer function:

H(z) =
α

z − (1− α)
(6.5)
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where α = T
T+τ

and T is the sampling time. By adjusting the time constant, the

desired rise time and fall time can be achieved to closely match the motion of a

human breathing. This simulation uses a time constant of τ = RC = 0.6 with a

time length of 5 seconds. The time constant was adjusted manually so that the

transitions during inhalation and exhalation were smooth and the displacement of

the simulated chest wall closely matched our observations. Forward and reverse

filtering produces symmetry. The resulting chest displacement and an illustration

of the chest cavity expansion and contraction are shown in Figure 6.16.
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Figure 6.16: (Top) Simulated chest displacement for a human breathing and (Bot-
tom) illustration of chest expansion and contraction.

The simulated micro-Doppler signals and the STFTs of the signals for both the

S-band and mm-wave radars are shown in Figures 6.17 and 6.18. The simulation

plots clearly show the difficulty of identifying breathing using the STFT. Because

breathing contains very small Doppler frequency shifts, the STFT has difficulty in
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resolving the frequency changes that occur during this motion.
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Figure 6.17: (Left) Simulated micro-Doppler of breathing and (Right) STFT of
the simulated micro-Doppler signal for an S-band radar.
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Figure 6.18: (Left) Simulated micro-Doppler of breathing and (Right) STFT of
the simulated micro-Doppler signal for a mm-wave radar.

Picking up an object

The motion of picking up an object from the ground differs from the previous

motions because it is non-periodic. Due to the complexities of this motion (torso

bend, knee bend, ankle bend, arm motion, bending of the back, etc.), we expect

wide variability between individuals performing this motion. This is true of all

of the motions considered; however, this motion is especially dependent on these

intricacies. Even so, for simplicity, the simulation of this motion will consider

only the movement of the torso. The time taken between starting from a standing

position, bending the torso to a horizontal position to pick up the object, and

returning to the standing position is 3 seconds. The angle between the torso and

vertical is modeled as Gaussian with a width parameter of 0.5 seconds. A Gaussian

representation ensures that the torso begins at 0◦, reaches its maximum angle, and
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returns to 0◦. For the purposes of this simulation, the torso is modeled as straight,

bending only at the waist, and achieving a maximum angle of 90◦. Figure 6.19

illustrates the simulated angular trajectory of the torso. The simulated micro-

Doppler signal and the STFT of the signals for both the S-band and mm-wave

radars are shown in Figures 6.20 and 6.21. The STFT plots clearly show the

acceleration that occurs on the descending and ascending motions and also the

pause that occurs when the torso changes direction. The result is two cycles of

acceleration followed by deceleration.

As was the case with swinging arms, each point on the body causes a Doppler

frequency shift. Again, 25 randomly located points are selected along the length of

the upper torso for calculation of Doppler frequencies. If more points are included

this will cause the simulation to even more closely resemble experimental data.
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Figure 6.19: (Top) Simulated angular trajectory of a human picking up an object
and (Bottom) side view of the motion.
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Figure 6.20: (Left) Simulated micro-Doppler of picking up an object and (Right)
STFT of the simulated micro-Doppler signal for an S-band radar.
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Figure 6.21: (Left) Simulated micro-Doppler of picking up an object and (Right)
STFT of the simulated micro-Doppler signal for a mm-wave radar.

Transitioning from crouching to standing

The motion of transitioning from crouching to standing is similar in nature to

picking up an object. For picking up an object, there were two full cycles of

acceleration followed by deceleration. For transitioning from crouching to standing,

the descending motion of the torso does not take place and the STFT should only

complete one cycle of acceleration and deceleration. The time taken between the

crouching position with the knees bent to the standing position is 3 seconds. In

order to model this motion, a Gaussian trajectory cannot be used because it would

have the same time-frequency characteristics as picking up an object. Instead, the

motion is modeled as a sigmoid-like function. The equation that is used for this

simulation is:
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θ(t) =
θ0
2

[

1− erf

(

t− t0

σ
√
2

)]

. (6.6)

where erf(t) is the error function and θ0 = 90◦ is the initial torso angle.

Since we are using this function to model the motion, it means that the angular

velocity of the torso is modeled as a Gaussian instead of modeling the torso angle as

Gaussian. This is a reasonable assumption because when humans move their arm

from one position to another, the tangential velocity is approximately Gaussian

[58]. This can reasonably be extended to other human motions, such as standing up

from a crouching position, where the body transitions from one location to another.

This simulation uses σ = 0.4 seconds and t0 = 2.5 seconds so that the motion is

at the center of the time window. Figure 6.22 illustrates the simulated angular

trajectory of the torso. The simulated micro-Doppler signals and the STFTs for

both the S-band and mm-wave radars are shown in Figures 6.23 and 6.24.

As was the case with swinging arms and picking up an object, each point on

the body causes a Doppler frequency shift. Again, 25 randomly located points are

selected along the length of the upper torso for calculation of Doppler frequencies.

If more points are included this will cause the simulation to even more closely

resemble experimental data.

Here, we note that this model for transitioning from crouching to standing is

a very simple model. The motions of the legs and arms are not considered for

simplicity. Nevertheless, an excellent match between the simulation results and

the experimental data is clearly observed, which validates the phenomenological

approach used in our simulation procedure. In [60], standing up from a crouching

position is discussed in more detail from the perspective of an optimal control

problem. A similar motion, transitioning from sitting to standing, is discussed in

detail in [61, 62].
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Figure 6.22: (Top) Simulated angular trajectory of a human standing up from a
crouching position and (Bottom) side view of the motion.
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Figure 6.23: (Left) Simulated micro-Doppler of transitioning from crouching to
standing and (Right) STFT of the simulated micro-Doppler signal for an S-band
radar.
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Figure 6.24: (Left) Simulated micro-Doppler of transitioning from crouching to
standing and (Right) STFT of the simulated micro-Doppler signal for a mm-wave
radar.

6.3 Comparison of Through-the-Wall vs. Non-

Through-the-Wall micro-Doppler Signatures

In order to visualize how a wall affects micro-Doppler signatures, two examples

are briefly discussed now. The first example compares the micro-Doppler due to

a pendulum for both through-wall and barrier-free situations. This is shown in

Figure 6.25. The second example is of a human target that is swinging their arms.

The human comparison for swinging arms is shown in Figure 6.26. As expected,

for both examples, the SNR is significantly reduced and the wall has introduced

an additional DC offset to the signal. The wall clearly adds an additional DC

component to the signal; however, the signal without a wall still has a DC offset
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due to antenna coupling, multipath, and the constant distance, R0 from the radar

to the center point of the target’s swing motion.
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Figure 6.25: Comparison of the micro-Doppler signal of a pendulum (Top) without
a wall barrier and (Bottom) with a wall barrier.
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Figure 6.26: Comparison of the micro-Doppler signal of a pendulum (Top) without
a wall barrier and (Bottom) with a wall barrier.

If the classification of motions is desired, there are additional factors that must

be considered. To illustrate this, see Figures 6.27 and 6.28. Figure 6.27 compares

the energy of each IMF produced by EMD for a pendulum both with and without

a wall barrier. Figure 6.28 shows the same comparison, but with a person swinging

their arms. The raw micro-Doppler signals that produced these energy plots are

the same as in Figures 6.25 and 6.26.

In each energy plot comparison, the energy is greatly reduced by the presence of

the wall. This is expected based on the discussions in Sections 2.3.1 and 2.3.4. If the

energy of each IMF of a signal is to be used as a feature vector for classification, the

amplitudes of each are critical to the accuracy of the classifier. Training a classifier

under a scenario without a wall barrier, may not produce accurate results if the

test data are taken from a through-wall scenario. For this reason, the classifier

must be trained and tested under the appropriate conditions and it is important



98

to understand its limitations.
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Figure 6.27: Comparison of the energy of each IMF produced by EMD for a
pendulum (Top) without a wall barrier and (Bottom) with a wall barrier.
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Figure 6.28: Comparison of the energy of each IMF produced by EMD for a person
swinging arms (Top) without a wall barrier and (Bottom) with a wall barrier.

6.4 Adding Randomness to Human Motion Sim-

ulations

The simulated human movements described in Section 6.2 confirm that the exper-

imental data is valid and provide some useful insights into how simple motions

are performed. However, human motions cannot be perfectly repeated and the

equations used to model them are only approximations of what really happens.

For this reason, we are also interested in adding randomness to the human motion

simulations.

The main objective is to model the motions with some randomness in the

simulated angles. For swinging arms, this is the angle of the upper arms and

the angle of the lower arms relative to vertical. For picking up an object and
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transitioning from crouching to standing, this is the torso angle relative to vertical.

However, some problems arise if Gaussian noise is added to the models. If noise is

added, this causes micro-movements which change direction rapidly even though

the macro-motion remains the same. These small changes in the direction of

movement are not observed in reality because human gestures tend to transition

smoothly from one point to another.

In order to add randomness to the human body angles in the simulations,

while maintaining smooth transitions from one position to another, additive and

multiplicative noise were not used. Instead, Gaussian noise was generated and

convolved with the original angular trajectory. Figure 6.29 shows how this changes

the angle for the pendulum simulation. The top plot shows the original angular

trajectory and the bottom plot shows an example of the angular trajectory after

convolution with a Gaussian noise vector of the same length as the angle vector.

Figure 6.30 show the simulated micro-Doppler signal after adding randomness

to the pendulum angle and the STFT of the signal for a mm-wave radar. It is

clear from Figures 6.29 and 6.30 that the motion is no longer perfectly sinusoidal.

Its shape has been distorted and the angle does not always reach its maximum

during each cycle. Nevertheless, the micro-Doppler signal remains very similar to

the micro-Doppler signal without any randomness (compare to Figure 6.13) and

the STFT of the micro-Doppler signal has its repetitiveness preserved, with some

distortion that corresponds to the distortion in the pendulum angle.
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Figure 6.29: (Top) original angular trajectory for the pendulum simulation and
(Bottom) angular trajectory for a pendulum after randomization.
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Figure 6.30: (Left) Simulated micro-Doppler of a pendulum with randomness
added to the angle and (Right) STFT of the simulated micro-Doppler signal for a
mm-wave radar.

Randomness has also been added to the swinging arms simulation. Gaussian

noise is convolved with the angle vector for the upper arm. The results are shown

in Figure 6.31. Again, the simulation results with randomness added closely resem-

ble the original simulation results (compare to Figure 6.15) with slight variations

that correspond to changes in the upper arm angle. Figure 6.31 illustrates the

dependence of the lower arm movement on the upper arm. Randomness was not

added to the lower arm angle (elbow joint), however the high frequency portions of

the STFT plot that correspond to the forearm clearly show that the randomness

in the upper arm angle has affected the lower arm as well as the upper arm.
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Figure 6.31: (Left) Simulated micro-Doppler of a human swinging arms with ran-
domness added to the upper arm angle and (Right) STFT of the simulated micro-
Doppler signal for a mm-wave radar.

Adding randomness to the motions of picking up an object and transitioning

from crouching to standing was performed in a slightly different manner. If the

same procedure as above is used, the angular trajectory of the torso loses its

original shape. This is because small changes in the torso angle can cause large

changes in the velocity when the velocity is low. In order to add randomness to

the simulations, an additional “swaying” motion was added to the simulations.

The angular trajectory of the torso remains the same, however, the range from the

target to the radar has an additional sinusoidal swaying motion added to it. The

amplitude of the swaying was 3 cm and had a frequency of 1/3 Hz. This simulates

a person swaying to maintain balance, but this is a predictable motion. To add

some randomness, a random phase angle is included in the sinusoidal swaying.

Just like adding randomness to the pendulum, the swaying is then convolved with a

Gaussian random noise vector. This allows the swaying motion to be non-repetitive

and unpredictable. The results for picking up an object and transitioning from

crouching to standing are shown in Figures 6.32 and 6.33 respectively.
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Figure 6.32: (Left) Simulated micro-Doppler of a human picking up an object
with randomness added in the form of swaying and (Right) STFT of the simulated
micro-Doppler signal for a mm-wave radar.

Figure 6.33: (Left) Simulated micro-Doppler of a human standing up from a
crouching position with randomness added in the form of swaying and (Right)
STFT of the simulated micro-Doppler signal for a mm-wave radar.

These figures show that the additional swaying movement is most prevalent in

the low velocity areas of the STFT. In addition to this, the added randomness

slightly distorts the higher frequency portions of the time-frequency plot as well

and has a smearing effect. The STFT components from the 25 randomly located

points on the torso components are less prevalent individually and the smearing
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causes this to form a more complete micro-Doppler signature.

Randomness was also added to the human breathing simulations. In the ex-

perimental results of Figure 6.6, the test subject was seated in a chair to minimize

other body movements and attempt to isolate the chest expansion due to respi-

ration. Similar to the procedure described above for picking up an object and

standing up from a crouching position, a small swaying motion was added to the

breathing simulation. The swaying motion had an amplitude of 5 mm, a frequency

of 4.5 Hz, was convolved with Gaussian random noise, and filtered to remove high

frequency noise that produces non-smooth movements. The results are shown in

Figure 6.34. The top left plot is the simulated micro-Doppler breathing signature

with swaying and the bottom left plot is the STFT of the simulation. The top

right plot is an experimentally measured breathing signature with a person who is

standing and the bottom right plot is the STFT of the experimentally measured

breathing signature. The experimental signatures display the effects of swaying.

Comparison with the seated experimental breathing signature of Figure 6.6 clearly

shows the differences between a subject that is standing and a subject that is

seated. Because the swaying motion is very small in amplitude, this illustrates

why it is so difficult to obtain the breathing signature from micro-Doppler data.
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Figure 6.34: (Top Left) Simulated micro-Doppler signature of a human breathing
after including swaying motions, (Bottom Left) STFT of the simulated breathing
signature, (Top Right) experimentally measured breathing signature for a human
subject who remained standing, and (Bottom Right) STFT of the experimentally
measured breathing signature.



Chapter 7

Classification of Micro-Doppler

Signatures

The ability to identify human motions using micro-Doppler signatures has become

an area of interest recently. Activity classification has potential applications for

surveillance, search and rescue operations, and patient monitoring in hospitals.

Knowledge of human movements can aid in improving the safety of security or

surveillance personnel or it can potentially locate a person trapped inside a build-

ing. The identification of movements can be useful; however, the larger goal may

be to infer the intent of the target, which is a much more difficult problem. The

classification of human movements can be performed by utilizing a Doppler radar

system. The micro-Doppler frequency will vary depending on the unique velocity

profile of a radar target over time. Specific movements will have unique micro-

Doppler signatures which can then be classified [2].

7.1 Support Vector Machines

Support Vector Machines, developed by Vapnik in 1995 [63], have proven to be

an effective alternative to traditional classification techniques such as Bayesian

classifiers and Artificial Neural Networks. The primary advantages that SVMs have

over the other methods are their ability to generalize and that they are relatively

easy to implement. SVMs have also found use in regression problems.

Support Vector Machines were originally developed to address the binary clas-
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sification problem. The classifier is optimized to produce a model that is based on

the training set feature vectors and their associated known class label. Using this

model, the test set can be accurately classified using only their feature vectors,

without knowledge of the class label [63, 64, 65].

SVMs require the use of two known quantities. The first is the training vectors

(feature vectors): xi ∈ R
n, i = 1, . . . , l. The second is the label vector, y ∈ R

l such

that yi ∈ [+1, -1]. The following primal optimization problem is formulated:

max
w,b,ξ

1

2
wTw + C

l
∑

i=1

ξi (7.1)

subject to: yi(w
Tφ(xi) + b) ≥ 1− ξi,

ξi ≥ 0, i = 1, . . . , l.

where w is the weight vector that defines a linear hyperplane separating the two

classes of data, b is the constant offset of the hyperplane, ξi are a measure of

the error of any misclassifications, and C is a penalty parameter that allows the

classifier to tolerate some errors. The function φ maps the feature vectors into an

N-dimensional space. The parameters xi and yi are the feature vectors and their

associated class label (±1) respectively. For the specific problem of classifying

micro-Doppler signals that arise from human motion, the xi are the energy feature

vectors that were extracted using EMD.

The corresponding dual problem is simpler to solve and is:

min
α

1

2
αTQα− eTα (7.2)

subject to: yTα = 0,

0 ≤ αi ≤ C, i = 1, . . . , l.

Here, e is a vector of ones and Qij ≡ yiyjK(xi, xj) ∈ R
lxl. K(xi, xj) ≡ φ(xi)

Tφ(xj)

is a kernel that maps the input feature vectors to a higher dimensional space. In

many classification problems, the data are not linearly separable. In these cases,

mapping to a higher dimensional space allows the data to be separated linearly

in the higher dimensional space. This corresponds to a non-linear separation of
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the classes in the original feature space [64]. By including the penalty parameter,

C, the SVM will allow for some errors in the training set to avoid the problem

of over-training (the solution of this problem is also referred to as a soft margin

hyperplane). The dual problem above is a quadratic programming problem and

can be solved using standard techniques. The vector, w in the primal problem is

related to the vector α in the dual problem by:

w · φ(x) =
l

∑

i=1

yiαiK(xi, x). (7.3)

Once the optimal αi have been calculated, the decision function for C-SVM is:

yp(x) = sgn(
l

∑

i=1

yiαiK(xi, x) + b) = sgn(w · φ(x) + b) (7.4)

where a positive yp indicates a predicted output belonging to the class: +1, and

a negative yp indicates a predicted output belonging to the class: -1. The bias

parameter, b, is:

b =
1

NSV

NSV
∑

i=1

wxi − yi. (7.5)

where NSV is the number of support vectors. The kernel, K, is a symmetric, posi-

tive definite function and there are many choices for this function. For most cases,

the Gaussian kernel is preferred and it is the kernel of choice for the experiments

discussed in the following sections.

Because the solution of the optimization problem is dependent on the parame-

ters, (C, γ), it is necessary to find the set of these parameters that are also optimal.

To find these optimal parameters, a grid-search will be performed, along with ν-

fold cross-validation. Cross-validation allows the classifier to generalize well, so

that the classifier will be accurate not only for data in the training set, but also

for other unknown data. For our experiments, ν = 5 is used.

Support Vector Machines were originally developed to solve the binary clas-

sification problem; therefore, modifications must be made in order to extend the

binary problem to a multi-class problem. Multiple methods have been proposed to

tackle this problem including the one-against-all method (1-a-a), the one-against-
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one method (1-a-1), binary decision trees, and decision directed acyclic graphs

(DDAG). Because of its intuitiveness and its ability to be easily adapted for addi-

tional classes, the 1-a-a method was chosen for our experiments.

Using the one-against-all method, for k-class classification (yi ∈ [1, . . . , k]), k

binary classifiers are constructed. All of the data from the kth class is represented

with a label of ‘+1’ and data corresponding to all of the other classes are repre-

sented with a label of ‘-1.’ The decision function of each of the k classifiers is:

fk(x) = wk · φ(x) + bk. This is the same decision function as for binary classifi-

cation, except there are k of them and the sgn(·) function is omitted. In binary

classification, the sign of f(x) determines the class to which the data belongs. In

the 1-a-a method of multi-class classification the output classification is the deci-

sion function which produced the largest value for fk(x) [66, 67]. This is because

the magnitude of the decision function is the distance of a feature vector from

the separating hyperplane. The larger the distance, the more likely it is that the

feature vector is correctly classified.

yp(x) = argmax
k
fk(x) (7.6)

7.2 Classification Results

The feasibility of using EMD and a SVM classifier to identify human movements

has been demonstrated through the use of a 750 MHz micro-Doppler radar [6, 68].

This radar was designed to detect human targets concealed behind a wall [69]. The

radar operates through direct transmission of a 750 MHz CW wave. Empirical

Mode Decomposition and classification are performed off line using Matlab. The

classification is performed through the use of the LIBSVM software package[64, 70].

Using the 750 MHz radar, the classification algorithm was tested to ensure that

the optimal parameters were obtained. To do this, the Receiver Operating Char-

acteristic (ROC) is used. While the concept of an ROC is specific to the radar’s

probability of detection and probability of false alarm, this concept can be ex-

tended to classification. The ROC curve for the classification of six movements

(same movements as described earlier, but with the sixth class: “miscellaneous

movements” included) is shown in Figure 7.1. Here the probability of detection
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(percentage of correct classifications) is shown on the vertical axis and the proba-

bility of false alarm (percentage of vectors that are classified as belonging to class i,

but actually belong to another class) is shown on the horizontal axis. ROC curves

are shown separately for the classification of each classifier used in 1-a-a multi-class

classification. The curves were generated by varying the bias parameter, b, in the

SVM decision function. Multiple curves were created for different values of γ that

are described above. For the most accurate classifier, it is desired that a high

probability of detection (pd) is achieved, while minimizing the probability of false

alarm (pfa). An ROC curve that rises very steeply will achieve this. Figure 7.1

illustrates that, while the optimal (b, γ) may not yield the best (pd, pfa) for every

class, the optimal parameters outperform other (b, γ) combinations overall.
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Figure 7.1: ROC curve for 6-Class classification (100 trials averaged).

In addition to calculating an ROC for the SVM, we also briefly investigated

how to extend the binary SVM problem to multiple classes. As mentioned above,

there are many choices for how to do this. Table 7.1 shows a comparison of the
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results for the classification of 3 and 4 classes using the 1-a-a method and using a

decision tree. As the table illustrates, both achieve nearly the same accuracy for

this test. With this in mind and also realizing that the 1-a-a method was much

simpler to implement than other methods, the 1-a-a method was selected for the

remainder of our experiments.

Table 7.1: Comparison of the 1-a-a Method and Decision Tree Method of Multi-
Class Classification

Average Accuracy of Training

and Test Sets Combined (%)

3 Classes 4 Classes

1-a-a Method 95.84 96.69

Decision Tree Method 96.58 94.70

Our classification procedure has also been implemented for use with an S-band

and mm-wave micro-Doppler radars [44, 45, 71]. The higher transmit frequencies

allow these radars to pick out more subtle variations in the human movements

because the Doppler frequency shift is directly proportional to the transmitted

frequency. However, the larger carrier frequency also introduces higher losses for

through-the-wall applications. The S-band radar is capable of detecting micro-

motions through a 4-inch thick laboratory wall, a 4-inch thick brick wall, and an

8-inch thick cinder block wall and accurately classifies the motions of interest.

The mm-wave radar is incapable of detecting through-wall signatures because of

the high loss of the wall material, but it is capable of detecting micro-motions at

distances of up to 300 feet or through light foliage.

The S-band radar is designed for close range, through-the-wall situations, whereas

the mm-wave radar has been designed for longer range applications or applications

where the target is concealed within light foliage. As we should expect, the mm-

wave radar is not capable of detecting through-wall micro-Doppler signatures due

to the extremely high losses that the wave will experience. Experiments have been

conducted to test the accuracy of the micro-Doppler motion classification proce-

dure. These experiments represent data taken for multiple different test subjects
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with varying heights, weights, and fitness levels. For testing purposes, the data are

rotated amongst these test subjects so that all except one of them are always used

for training and cross-validation. The cross-validation and training sets consist of

data from all but one of the test subjects, but the cross-validation and training sets

contained no common data. The single remaining subject is used for the testing

set. This will allow for an accurate assessment of how the classifier responds to

data that are both “known” and “unknown.”

The S-band micro-Doppler has been tested for four situations: (1) direct trans-

mission (no wall), (2) through 4-inch thick laboratory wall, (3) through a 4-inch

thick brick wall, and (4) through an 8-inch thick cinder block wall. For the first

case, the person is located at approximately 11 feet from the radar antennas. For

case two, the person is located approximately 3 feet behind the wall and the wall

is located at approximately 8 feet from the radar antennas. For case three, the

person is located approximately 5 feet behind the wall and the wall is located at

approximately 6 feet from the radar antennas. For case four (cinder block wall), the

attenuation was very great, so the distance must be shortened in order to receive

a signal of adequate power. For that case, the person was located approximately

3 feet behind the wall and the wall was located at approximately 2 feet from the

radar antennas. For cases (1), (3), and (4), the same 6 test subjects were used.

For case (2), only 4 test subjects were used. These test subjects were the same as

test subjects #’s 1, 2, 3, and 6 for the other 3 cases.

The classification procedure considers five different motions: 1) background

noise, 2) breathing, 3) swinging arms, 4) picking up an object, and 5) transition-

ing from a crouching position to a standing position. The results are shown in

Tables 7.2 - 7.5. The average accuracy when combining the results of all of the

test subjects is 63.9%, 76.3, 49.8%, and 64.1% for no barrier, laboratory wall,

brick wall, and cinder block wall respectively. The cinder block wall produced the

lowest classification accuracy prior to shortening the distance to the target, which

agrees with the expected results. The attenuation through cinder block is larger

than through brick, so we would expect the classification accuracy to decrease ac-

cordingly. However, by shortening the distance for the cinder block case, we have

shown that if the signal power is increased by an appropriate factor, classification

through cinder block is feasible and the basic principles are no different than for
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other materials. The accuracy of the laboratory wall is slightly higher than the

others because those tests were conducted indoors, where wind, trees, etc. are

not a factor. The other scenarios (no wall, brick, and cinder block walls) were

conducted outdoors using a wall support frame that was constructed so that tem-

porary wall structures could be built for testing the performance of through-wall

radars.

Table 7.2: Classification results - S-band radar without wall barrier.

Test Subject Set Min (%) Max (%) Mean (%) St. Dev

1
Cross-Val Set 58 80 70.4 7.9

Test Set 70 80 76.0 3.3

2
Cross-Val Set 62 84 69.4 6.3

Test Set 42 66 52.8 6.9

3
Cross-Val Set 60 82 69.0 7.9

Test Set 56 68 61.0 3.8

4
Cross-Val Set 60 76 71.0 5.3

Test Set 66 78 70.4 3.6

5
Cross-Val Set 60 86 72.4 7.0

Test Set 60 72 66.8 3.6

6
Cross-Val Set 60 86 72.2 8.5

Test Set 50 60 56.2 3.3



115

Table 7.3: Classification results - S-band radar through laboratory wall.

Test Subject Set Min (%) Max (%) Mean (%) St. Dev

1
Cross-Val Set 80 96.7 87.3 6.2

Test Set 72 92 85 5.4

2
Cross-Val Set 83.3 93.3 90.0 3.1

Test Set 64 76 71.8 4.2

3
Cross-Val Set 86.7 96.7 92.3 3.2

Test Set 66 82 74.4 5.0

4
Cross-Val Set 76.7 93.3 89.0 4.7

Test Set 66 80 73.8 7.8

Table 7.4: Classification results - S-band radar through brick wall.

Test Subject Set Min (%) Max (%) Mean (%) St. Dev

1
Cross-Val Set 48 66 59.4 6.1

Test Set 54 68 61.4 5.1

2
Cross-Val Set 50 68 60.0 5.9

Test Set 32 64 48.6 9.8

3
Cross-Val Set 54 72 61.8 6.4

Test Set 38 54 44.2 4.3

4
Cross-Val Set 48 70 61.4 6.5

Test Set 42 58 48.0 4.5

5
Cross-Val Set 56 68 61.4 3.4

Test Set 38 56 46.6 5.0

6
Cross-Val Set 54 74 65.2 6.7

Test Set 46 54 49.8 2.7
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Table 7.5: Classification results - S-band radar through cinder block wall.

Test Subject Set Min (%) Max (%) Mean (%) St. Dev

1
Cross-Val Set 60 78 71.0 4.6

Test Set 48 64 57.2 5.0

2
Cross-Val Set 68 82 72.2 4.4

Test Set 60 72 66 4.5

3
Cross-Val Set 58 78 68.6 7.0

Test Set 64 78 68.4 5.3

4
Cross-Val Set 56 76 67.6 7.5

Test Set 64 76 71.4 4.8

5
Cross-Val Set 68 82 73.0 4.0

Test Set 50 66 59.6 5.8

6
Cross-Val Set 60 72 66.0 4.1

Test Set 52 70 61.8 6.0

The mm-wave micro-Doppler radar has been tested for the situation of a person

moving at a distances of 100, 200, and 300 feet in an outdoor environment. At

a range of 300 feet, this radar is sensitive enough to be able to classify all of the

motions of interest (the same five motions as in the S-band classifier). The training,

cross-validation, and test sets were chosen in the same manner as was described

for the S-band radar classification. Results are shown in Tables 7.6 - 7.8.

The average accuracy when combining the results of all six test subjects is

79.2%, 79.6%, and 94.3% for 100, 200, and 300 feet respectively. Because of the

use of high gain antennas (approximately 40 dB), we were able to isolate the hu-

man target and eliminate much of the Doppler components that were caused by

background motions such as swaying tree limbs. These results show that the clas-

sification algorithm is very accurate for micro-Doppler radars with a high transmit

frequency. The reasoning behind the higher accuracy at 300 feet is because at

the shorter distances, the human target will move outside of the antenna beam for

portions of the motions of picking up an object and transitioning from crouching to

standing. At the longer distances, the entire body is in the antenna beam, but the
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illuminated area is still small enough to isolate the human target. When compared

to the S-band radar results, we notice that the mm-wave radar performs much

better and is more robust over different training scenarios. This does not detract

from the S-band radar, but only serves to illustrate that higher Doppler frequency

shifts are desirable for classification and also to illustrate that penetration through

some materials may be a large obstacle to overcome for classification. In order to

minimize the effects of the wall material, higher power or larger antenna gain is

required.

Table 7.6: Classification Results - mm-Wave Radar at a Range of 100 feet.

Test Subject Set Min (%) Max (%) Mean (%) St. Dev

1
Cross-Val Set 76 94 87.8 5.3

Test Set 86 90 88.6 1.3

2
Cross-Val Set 86 98 91.4 4.3

Test Set 84 90 87.0 1.9

3
Cross-Val Set 84 96 91.6 4.0

Test Set 82 88 85.4 1.9

4
Cross-Val Set 82 92 89.0 3.7

Test Set 78 86 80.6 3.1

5
Cross-Val Set 84 98 90.6 5.1

Test Set 68 86 80.2 5.8

6
Cross-Val Set 82 100 90.4 4.8

Test Set 40 72 53.4 9.3
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Table 7.7: Classification Results - mm-Wave Radar at a Range of 200 feet.

Test Subject Set Min (%) Max (%) Mean (%) St. Dev

1
Cross-Val Set 82 98 88 4.6

Test Set 72 92 86.0 6.0

2
Cross-Val Set 84 94 88 4.0

Test Set 80 84 80.4 1.3

3
Cross-Val Set 80 92 86 3.4

Test Set 84 88 86.6 1.6

4
Cross-Val Set 74 92 87 5.4

Test Set 78 90 84.4 4.6

5
Cross-Val Set 86 98 90.4 3.6

Test Set 66 76 71.2 3.9

6
Cross-Val Set 84 94 90.2 3.6

Test Set 56 80 69.2 7.1

Table 7.8: Classification Results - mm-Wave Radar at a Range of 300 feet.

Test Subject Set Min (%) Max (%) Mean (%) St. Dev

1
Cross-Val Set 62 82 71.8 6.0

Test Set 90 100 94.8 3.7

2
Cross-Val Set 60 82 70.0 6.1

Test Set 90 98 95.2 3.2

3
Cross-Val Set 64 82 70.2 5.8

Test Set 90 100 94.0 3.4

4
Cross-Val Set 62 80 72.2 5.5

Test Set 92 98 95.2 1.9

5
Cross-Val Set 66 80 72.8 4.3

Test Set 86 100 93.4 4.1

6
Cross-Val Set 58 78 67.4 6.4

Test Set 84 98 93.4 5.0
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A confusion matrix for the S-band classifier through a laboratory wall is shown

in Table 7.9 and a confusion matrix for the mm-wave classifier at a distance of 300

feet is shown in Table 7.10. To remind the reader, the classes (or motions) that are

classified are: (1) background, (2) swinging arms, (3) breathing, (4) picking up an

object, and (5) transitioning from crouching to standing. This confusion matrix

was obtained using data from all of the test subjects (4 for the S-band classifier

and 6 for the mm-wave classifier) for training and cross-validation. The average

cross-validation accuracy is shown in the confusion matrix where 20 trials have

been averaged. Table 7.9 shows that all motions are classified well, with the lowest

accuracy for classes 4 and 5. Table 7.10 shows that motions 1 − 4 are classified

well. The fifth motion is less accurate, but the confusion matrix indicates that

it is approximately twice as likely to be classified correctly than it is to yield the

output of the second most frequent result (picking up an object).

Table 7.9: Confusion Matrix for the Classification of S-Band micro-Doppler signals
Through a Cinder Block Wall.

Target Class

1 2 3 4 5

O
u
tp

u
t
C
la
ss 1 100 0 3.2 0.6 5.4

2 0 93.9 0 0 1.4

3 0 0 87.3 15.5 0.7

4 0 0 7.0 78.0 8.8

5 0 6.1 2.5 6.0 83.8
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Table 7.10: Confusion Matrix for the Classification of mm-wave micro-Doppler
signals at a Distance of 91 m.

Target Class

1 2 3 4 5

O
u
tp

u
t
C
la
ss 1 74.1 19.9 3.4 0 8.3

2 11.9 69.5 3.9 3.8 12.6

3 8.2 1.6 84.1 4.6 12.6

4 1.2 0 3.9 78.1 22.6

5 4.5 9.0 4.7 13.4 43.9

The results using each radar system illustrate that different people perform

motions in slightly different manners. This also means that classification is more

accurate if the test subject performs the motions in a similar manner to other test

subjects in the training set. For the best possible results, a large number of test

subjects should be used for training so that as many variations in the movements

can be accounted for as possible.

It may also be desired to simply determine if there is a moving human target or

not. Based on the confusion matrices of Figures 7.9 and 7.10 we can see that high

classification accuracy is achieved for background noise (class #1). The accuracies

of the other 4 motions are also high, so the simple determination of the presence of

moving targets can be performed by determining if the Doppler signal is classified

as class 1 or classes 2 − 5. Another approach to this problem is to construct a

binary classifier, where all of the data from classes 2−5 are combined into a single

class.

Another observation that is made is that the results stated in other publications

describe classifiers that use data from test subjects at very close ranges and in ideal

conditions. Here, the classification accuracy is lower than some of these other

experiments because we have implemented our algorithm for longer ranges and for

through-wall environments. These reflect a more realistic environment and we still

achieve a high degree of accuracy.

The classifier above utilizes EMD to produce feature vectors for classification

and the target remains stationary when performing the motions. Other work has
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been performed in this area, which concentrates on identifying human gait. One

example is in [2], where the motions of running, walking, walking while holding

a stick, crawling, boxing while moving forward, boxing while standing in place,

and sitting still were considered for micro-Doppler classification. There, features

were selected based off of STFT characteristics. The features that were selected

for classification were: 1) torso Doppler frequency, 2) the total bandwidth of the

Doppler signal, 3) the offset of the total Doppler, 4) the bandwidth without micro-

Doppler, 5) the normalized standard deviation of the Doppler signal strength, and

6) the period of the limb motion. The data was classified using a Support Vector

Machine. The classification of these motions were reported to have an accuracy as

high as 92.8%

Another example of human activity classification can be found in [72]. The tech-

nique is different from the above techniques in that it transmits an ultra-wideband

signal and uses principal component analysis as the feature extraction method.

The overall classification accuracy for the classification of eight different human

activities is 85.3%. The eight activities are: walking, running, rotating, punching,

jumping, transitioning between standing and sitting, crawling, and standing still.

Even though this technique does not utilize the micro-Doppler phenomenon, it is

always of interest to investigate other methods.

7.3 Analysis of Classification Accuracy for Mea-

surement Error

To investigate how robust the classifier is to other influences such as measurement

error, slight changes in the EMD stopping criteria, and modest variations in how

movements are performed, an error analysis is performed. Here, a classifier is

trained in the same manner as described earlier. The test set features are then

obtained and perturbed by small amounts to see how the classification accuracy

is affected. For the first case, each feature within the test set is perturbed by

a uniform random value ranging from [−n%,+n%] of its original value. This

means that the uniform distribution is not the same for each feature, but instead

depends on the original magnitude of each individual feature. Classification is then
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performed on the test set using the new feature vectors and the accuracy of the

classifier is assessed. Figure 7.2 shows the classification results for various degrees

of perturbation. The results shown are averaged over 100 trials. The classifier for

Figure 7.2 uses mm-wave radar data for human targets moving at 100 feet. The

test subject is test subject 1.
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Accuracy of the classifier after perturbing the original features by a
uniform random number in the range: [−n% +n%] of the original value.

Figure 7.2: Classification accuracy after adding zero mean, uniformly distributed
random noise to each feature with test subject 1 used for the data in the test set.

The same procedure has also been implemented using uniformly distributed

random values in the range: [0,+n%] and [−n%, 0] and also for random values

that are normally distributed with zero mean and a standard deviation of n% of

the original feature value. These are shown in Figures 7.3, 7.4, and 7.5 respectively.
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Figure 7.3: Classification accuracy after adding positive, uniformly distributed
random noise to each feature with test subject 1 used for the data in the test set.
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Figure 7.4: Classification accuracy after adding negative, uniformly distributed
random noise to each feature with test subject 1 used for the data in the test set.
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Figure 7.5: Classification accuracy after adding normally distributed random noise
to each feature with test subject 1 used for the data in the test set.

This error analysis has been shown for test subject 1, however, it is important

to view other test subjects as well. On average, for most of the test subjects, the

classification accuracy follows similar patterns to those shown in Figures 7.2-7.5.

However, some test subjects do not exhibit these trends for all cases. For example,

if test subject 4 is used for the test set in the error analysis, the results are slightly

different. The results using uniformly distributed random values in the range:

[−n%,+n%], [0,+n%], and [−n%, 0] and also for random values that are normally

distributed with zero mean and a standard deviation of n% of the original feature

value are shown in Figures 7.6, 7.7, 7.8, and 7.9 respectively.
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Figure 7.6: Classification accuracy after adding zero mean, uniformly distributed
random noise to each feature with test subject 4 used for the data in the test set.
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Figure 7.7: Classification accuracy after adding positive, uniformly distributed
random noise to each feature with test subject 4 used for the data in the test set.
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Figure 7.8: Classification accuracy after adding negative, uniformly distributed
random noise to each feature with test subject 4 used for the data in the test set.
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Figure 7.9: Classification accuracy after adding normally distributed random noise
to each feature with test subject 4 used for the data in the test set.

For the cases of adding zero mean uniformly distributed error, negative uni-

formly distributed error, and zero mean normally distributed error, the results

remain similar to those with test subject 1. The difference is in Figure 7.7. This

figure illustrates that the classification accuracy using data from test subject 4

improves if positive error values are added to the features. Intuitively, this makes

sense when we reflect on the differences in body types of test subjects 1 and 4. Test

subject 1 has a large, athletic build, whereas test subject 4 is shorter and less mus-
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cular. This means that test subject 4 has a smaller RCS than test subject 1 and

the received Doppler signal from test subject 4 will be slightly weaker than that

of test subject 1. This directly influences the energy of each IMF component (or

components of the feature vector) that comes out of the EMD sifting process. Be-

cause all of this test subject’s features have a lower value, we would expect that the

feature vectors would be nearer to the boundaries between classes. Adding small

values to the features moves those points away from the boundary and are more

likely to be correctly classified. If the features are increased by large amounts, the

classification accuracy follows the same pattern as shown by test subject 1 and this

phenomenon is shown in Figure 7.10. This clearly shows the importance of using

as many test subjects as possible and of using test subjects that exhibit different

body types. If the classifier is trained using only test subjects that are similar in

build, then the classifier will not work as well as one that used test subjects with

diverse body types.
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Figure 7.10: Classification accuracy after adding positive, uniformly distributed
random noise to each feature with test subject 4 used for the data in the test set.
The horizontal axis has been expanded beyond 100%.

The same analysis has been performed using data from the S-band radar. Here,

the data that was chosen was for no wall barrier between the human target and the

radar and the test set consists of data from test subject 1 once again. The results

using uniformly distributed random values in the range: [−n%,+n%], [0,+n%],

and [−n%, 0] and also for random values that are normally distributed with zero
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mean and a standard deviation of n% of the original feature value are shown in

Figures 7.11, 7.12, 7.13, and 7.14 respectively.

0 20 40 60 80 100
73

74

75

76

77

78

79

80

81

% Error

Me
an

 te
st 

ac
cu

rac
y (

%)
Accuracy of the classifier after perturbing the original features by a

uniform random number in the range: [−n% +n%] of the original value.

Figure 7.11: Classification accuracy after adding zero mean, uniformly distributed
random noise to each feature with test subject 1 used for the data in the test set.
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Figure 7.12: Classification accuracy after adding positive, uniformly distributed
random noise to each feature with test subject 1 used for the data in the test set.
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Figure 7.13: Classification accuracy after adding negative, uniformly distributed
random noise to each feature with test subject 1 used for the data in the test set.
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Figure 7.14: Classification accuracy after adding normally distributed random
noise to each feature with test subject 1 used for the data in the test set.



Chapter 8

Effect of Stopping Criteria on EMD

and SVM

The effect of the stopping criteria on the EMD and SVM results is important to

consider. Figures 8.1 - 8.10 illustrate the effect that the EMD stopping criteria

have. Here, a classifier is constructed from the data set that was used for generating

the ROC curves in Section 7.2.

Setting the stopping criteria for EMD can be completed in two different ways.

The first involves setting a maximum number of iterations for the inner loop of the

EMD sifting process. The second involves setting limits for the mean envelope,

m(t). Ideally, the inner loop of the EMD algorithm stops when m(t) = 0 for all

time. In practice, however, limits are set form(t). When setting limits for the mean

envelope, a tolerance and two thresholds are defined. The tolerance determines the

percentage of time samples that must be less than threshold #2. The remaining

time samples must fall below threshold #1, which is the more restrictive of the

two thresholds.

In general, when the stopping criteria are relaxed, the number of resulting IMFs

from EMD is also less, which means that EMD will complete faster. Because the

energy of each IMF is used as feature for classification, less IMFs will also mean

that the feature vectors inhabit a lower dimensional feature space and will cause

SVM training and classification time to be reduced accordingly. From Figures 8.4,

8.6, 8.8, and 8.10 it is easily seen that relaxing the stopping criteria a small amount

will not have a noticeable effect on the classification accuracy. However, Figure 8.2
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shows that if the number of points is reduced too much through decimation, some

of the information in that signal is lost and the classification accuracy suffers.

As expected, relaxing the stopping criteria or reducing the number of samples

through decimation will cause the SVM training time to decrease significantly.

Once the classifier has been trained, the time to classify new data is always very

small because the SVM optimization problem is only solved for training. Once the

SVM parameters are determined, simple vector multiplication is all that is required

to classify new data. For this reason, classification can essentially be performed

in real time. The figures below illustrate that the stopping criteria does not have

a noticeable effect on the testing time. The main time limitation for the total

algorithm is that 5 seconds must be recorded to ensure that an entire motion is

captured by the radar. Five seconds was chosen because adults typically have a

respiration rate of 12− 24 breaths per minute (0.2− 0.4 breaths per second) and

5 seconds will encompass one entire respiratory cycle for a typical adult.

Figure 8.1: Decimation factor vs. EMD and SVM Completion Times.
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Figure 8.2: Decimation factor vs. SVM accuracy.

Figure 8.3: Threshold1 value vs. EMD and SVM Completion Times.
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Figure 8.4: Threshold1 value vs. SVM accuracy.

Figure 8.5: Threshold2 value vs. EMD and SVM Completion Times.
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Figure 8.6: Threshold2 value vs. SVM accuracy.

Figure 8.7: Tolerance factor vs. EMD and SVM Completion Times.
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Figure 8.8: Tolerance factor vs. SVM accuracy.

Figure 8.9: Maximum number of EMD inner loop iterations vs. EMD and SVM
Completion Times.
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Figure 8.10: Maximum number of EMD inner loop iterations vs. SVM accuracy.



Chapter 9

MIMO Doppler for Detecting Target

Orientation

Classification of human gestures using micro-Doppler signals has been demon-

strated for a single sensor radar system. If multiple sensors are employed, addi-

tional information about the target can be inferred. Of interest is the direction a

target is facing. Ranging is only capable of detecting the location of an object, but

if multiple sensors are employed, a moving target’s orientation can be determined.

The micro-Doppler effect for bistatic radar has been analyzed by multiple re-

searchers. In [73], the micro-Doppler effect is studied for vibrating targets with a

bistatic radar. In [74], the micro-Doppler effect is investigated for use in a single

input, multiple output (SIMO) radar and [75] employs a bistatic radar system for

use in synthetic aperture radar (SAR). In addition to this, if the transmitters and

receivers are not distributed linearly, three-dimensional target information can be

extracted using an algorithm described in [76], where the transmitters and receivers

were located in a plane rather than a line. [77] has also demonstrated that multiple

target angles will produce different time-frequency characteristics for each receiver

and that these spectrograms can be fused to provide a complete picture of the

target’s time-frequency characteristics.

Here, many of these concepts will be built upon. Using knowledge of the bistatic

micro-Doppler that is induced by target vibrations and utilizing multiple Doppler

sensors, target orientation is determined. In addition to this, the classification

algorithm that was proposed earlier in this dissertation will be employed with
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SIMO micro-Doppler data. This radar contains a single transmitter (input) and

two receivers (outputs). One receiver is collocated with the transmitter to create

a quasi-monostatic Doppler sensor and the other receiver is separated from the

transmitter to exploit additional advantages that can be achieved from a bistatic

Doppler configuration.

9.1 MIMO Doppler Background

In the traditional monostatic Doppler equation, the Doppler frequency shift is:

fd =
2v(t)

λ
cos(θ), (9.1)

where v(t) is the velocity of the target and θ is the angle of the target’s velocity

vector relative to the radar line of sight. If a single sensor Doppler radar is used,

only the radial velocity of the target can be determined. It is clear from Equation

9.1 that if the target is moving at an angle of 90◦ from the radar line of sight, then

a Doppler frequency shift cannot be measured.

In order to measure the orientation of a moving target, we have chosen to use

two Doppler sensors, operating in a bistatic configuration. The bistatic Doppler

equation is given by [11] and is:

fd =
2v(t)

λ
cos (ϕ/2) cos δ. (9.2)

This expression differs from the traditional monostatic Doppler equation in two

ways. First, the Doppler frequency shift is dependent on half the angle between the

transmit and receive antennas (ϕ). Second, the angle θ in Equation 9.1 is replaced

with the angle δ. Here, δ is the angle of the target’s velocity vector relative to the

bisector of the angle between the transmit and receive antennas. An illustration

of this geometry is shown in Figure 9.1.
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Figure 9.1: Diagram of a bistatic Doppler radar.

9.2 Theoretical Results

Changing to a bistatic configuration alone will still not allow for the target’s ori-

entation to be measured. In order to do this, multiple sensors must be used. This

can be done in many ways, however, for demonstrative purposes, one transmit

antenna and two receive antennas were used with one on each side of the transmit

antenna. A diagram of this is shown in Figure 9.2.
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Figure 9.2: Diagram of the multiple radar sensor configuration.

With two receive antennas, subscripts are used to distinguish the Doppler ex-

pressions for each receiver. The equations corresponding to the receive antenna to

the left of the transmit antenna are given the subscript 1 and the equations cor-

responding to the receive antenna to the right of the transmit antenna are given

the subscript 2. The angle that the target is moving is measured relative to the

transmit antenna and is denoted by θ.

The Doppler frequency shifts measured by each sensor are:

fd1 =
2v(t)

λ
cos (ϕ1/2) cos δ1 (9.3)

fd2 =
2v(t)

λ
cos (ϕ2/2) cos δ2 (9.4)

where δ1 = θ+ϕ1/2 and δ2 = θ−ϕ2/2. The ratio of Equation 9.4 to Equation 9.3

then yields:
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fd2
fd1

=
cos (ϕ2/2) cos δ2
cos (ϕ1/2) cos δ1

. (9.5)

Because ϕ1 and ϕ2 are known from the initial setup, we can simplify the above

expression by denoting C = cosϕ2

cosϕ1
. For ideal measurements and for motions that are

smooth, Equation 9.5 will be a constant value. However, due to human movements

being somewhat random, taking the ratio of the maximum of fd2 to the maximum

of fd1 was found to produce more reliable measurements in practice. This means

that Equation 9.5 becomes:

fd2
fd1

= C
cos δ2
cos δ1

= k1. (9.6)

The remaining steps to determine an expression for δ2 are as follows.

δ1 = δ2 +
ϕ1

2
+
ϕ2

2
(9.7)

cos δ2 =
k1
C

cos δ1 =
k1
C

cos
(

δ2 +
1

2
(ϕ1 + ϕ2)

)

(9.8)

Using the angle sum identity:

cos (δ2 +
1

2
(ϕ1 + ϕ2)) = cos δ2 cos

(1

2
(ϕ1 + ϕ2)

)

− sin δ2 sin
(1

2
(ϕ1 + ϕ2

)

(9.9)

Let 1
2
(ϕ1 + ϕ2) = ψ.

cos δ2

[

1− k1
C

cosψ
]

= −k1
C

sin δ2 sinψ (9.10)

tan δ2 =
1− k1

C
cosψ

−k1
C
sinψ

= cotψ − C

k1 sinψ
(9.11)

The angle that the target is moving is measured from the bisector of of the

angle formed between the two receive antennas (1
2
(ϕ1 + ϕ2)) and is denoted by

θ. This means that the angle that the target is moving relative to the transmit

antenna is: θT = θ−δ2−ϕ2/2. Using this relationship and Equation 9.11, the angle
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in which the target is moving relative to the transmit antenna can be determined.

However, at angles beyond where fd1 is zero (δ1 = 90◦ or θ = 90◦ − ϕ1/2), the

results are inaccurate due to symmetry of k1. This is illustrated in Figure 9.3. For

this simulation, ϕ1 = 30◦, ϕ2 = 60◦, the transmitted frequency is 4 GHz, and the

target is oscillating with a velocity that is sinusoidal in time.

In the left plot of Figure 9.3, there are two linear regions. These regions are

where k1 can be accurately used to calculate the angle of the target motion. In the

linear region around 120◦ − 180◦, the measured angle is negative. This is because

an oscillating target is used and adding 180◦ does not affect the results. Within

the region of 75◦ − 120◦, the theoretical measured results are inaccurate. This is

because of the repeating nature of using trigonometric functions to determine the

angles.
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Figure 9.3: (Left) Measured angle θ using k1 =
max (fd2)
max (fd1)

and (Right) k1 for a simple
oscillating target.

In order to obtain accurate results for all angles, a second metric was used to
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calculate the angle. The ratio of: k2 = (fd2 − fd1)/(fd1 + fd2) was used.

Using this value for k2, the same steps as above can be taken to find an expression

for δ2. The steps are as follows:

fd2 + fd1 =
2v(t)

λ
[cos (ϕ2/2) cos δ2 + cos (ϕ1/2) cos δ1] (9.12)

fd2 − fd1 =
2v(t)

λ
[cos (ϕ2/2) cos δ2 − cos (ϕ1/2) cos δ1] (9.13)

k2 =
fd2 − fd1
fd1 + fd2

=
cos (ϕ2/2) cos δ2 − cos (ϕ1/2) cos δ1
cos (ϕ2/2) cos δ2 + cos (ϕ1/2) cos δ1

(9.14)

Letting C = cos (ϕ2/2)
cos (ϕ1/2)

as we did earlier results in:

k2 =
C cos δ2 − cos δ1
C cos δ2 + cos δ1

(9.15)

Ck2 cos δ2 + k2 cos δ1 = C cos δ2 − cos δ1 (9.16)

Ck2 cos δ2 + k2 cos (δ2 + ψ) = C cos δ2 − cos (δ2 + ψ) (9.17)

cos δ2[Ck2 − C] = − cos (δ2 + ψ)[1 + k2] (9.18)

cos δ2[Ck2 − C] = −[1 + k2][cos δ2 cosψ − sin δ1 sinψ] (9.19)

−Ck2 − C

k2 + 1
= cosψ − tan δ2 sinψ (9.20)

tan δ2 = cotψ +
k2 − 1

k2 + 1

C

sinψ
(9.21)

As was the case earlier, because human micro-Doppler motions are not ideal,

the value of k2 is altered to be:

k2 =
max(fd2)−max(fd1)

max(fd1) + max(fd2)
(9.22)

This produces much more reliable results in practice because the ratio was not

always constant value when using real data. (Close inspection of the ratios show

that the value of k1 and k2 are a function of time, but the time dependence arising

from v(t) cancels in the equations.) Because k2 has been altered, Equation 9.21

must also be altered slightly. Because the sign information is removed by using

the maxima of fd in Equation 9.22, a sign change must be made in Equation 9.21.
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This expression then becomes:

tan δ2 = cotψ − k2 − 1

k2 + 1

C

sinψ
(9.23)

The results of calculating the angle based on k2 are shown in Figure 9.4. For

this simulation, ϕ1 = 30◦, ϕ2 = 60◦, the transmitted frequency is 4 GHz, and the

target is oscillating with a velocity that is sinusoidal in time. This figure shows

that the angle is accurately measured for 75◦ − 120◦.
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Figure 9.4: (Left) Measured angle θ using k2 =
max (fd2)−max (fd1)
max (fd1)+max (fd2)

and (Right) k2 for
a simple oscillating target.

By selecting the appropriate k value to use, the correct target oscillation angle

can be calculated for any angle (because the target is oscillating back and forth,

the angles 180◦ − 360◦ are equivalent to targets oscillating at angles of 0◦ − 180◦).

The criteria for selecting the correct k value to use is the phase difference

between the time-frequency plots at each receive antenna. The phase angle can be
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either 0◦ or 180◦. If the target is moving either forward or backward relative to

both of the receive antennas, the phase difference will be 0◦, whereas if the target

is moving toward one receiver and away from the other, the phase difference will

be 180◦.

After selecting the appropriate k value to use for calculations, the measured

angle results are shown in Figure 9.5. As mentioned earlier, 180◦ can be added or

subtracted to any results without changing the results, so the angles from 180◦ −
360◦ in Figure 9.5 are accurate even though they do not follow the dashed line.

0 50 100 150 200 250 300 350 400
0

50

100

150

200

250

300

350

400

Angle θ (degrees)

M
ea

su
re

d 
an

gl
e 

θ 
(d

eg
re

es
)

 

 
Measured θ
Known θ

Figure 9.5: Measured angle θ based on a simulated oscillating target.

In addition to this, some small variations are observed in the measured angle.

This is due to the frequency resolution of the STFT. The frequency resolution was

chosen to be small so that an ideal simulation can be shown. If the frequency

resolution is poorer, the results will be less accurate and are shown in Figure 9.6.

In this figure, the sampling frequency was increased, but the maximum velocity
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of the simulated Doppler target was kept constant. This illustrates that the sam-

pling frequency for experimental data must be kept as close as possible to the

Nyquist rate determined by the maximum Doppler frequency. In most cases this

is subjective because the maximum velocity of a target cannot always be known

beforehand, but an understanding of typical target speeds can be used to achieve

the best results possible.
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Figure 9.6: Measured angle θ based on a simulated oscillating target with poor
STFT frequency resolution.

In the above simulations, the angles ϕ1 and ϕ2 are not required to be equal.

However, if they are chosen to be equal, the equations are simplified slightly be-

cause C = cosϕ2

cosϕ1
= 1.
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9.3 Experimental Results

This procedure has been tested for a pendulum swinging. For the experiments

that follow, the transmit antenna was located between two receive antennas with

ϕ = ϕ1 = ϕ2 = 45◦. A coherent Doppler radar was constructed with a transmit

frequency of 4 GHz. A simple block diagram of the radar is shown in Figure 9.7.

Filters are also included in the radar but are not shown in this figure.

Figure 9.7: Simplified block diagram of the 2-sensor radar system.

Ten trials were averaged for each angle. An example of the received signals

is shown in Figure 9.8. This figure shows the STFT when the pendulum was

swinging at approximately 25◦. At this angle, the pendulum moves toward both

receive antennas simultaneously and then away from the antennas simultaneously.

This can be seen in Figure 9.8 where the phase difference between the received

signals is 0◦. The radar has a strong lower sideband that is clear in this figure, but

the stronger upper sideband indicates the direction of travel. After calculating the
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oscillation angle at 5 degree increments, the results are shown in Figure 9.9.

Figure 9.8: (Top) STFT of the experimentally measured Doppler signal from re-
ceiver 1 and (Bottom) STFT of the experimentally measured Doppler signal from
receiver 2 using a pendulum.
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Figure 9.9: Experimentally measured angle using a pendulum as the target.

The procedure has also been tested using the same human motions that were

considered for classification. To remind the reader, the motions are: breathing,

swinging arms, picking up an object, and standing up from a crouching position.

Figures 9.10, 9.11, 9.12, and 9.13 show the results for swinging arms, picking up

an object, transitioning from crouching to standing, and breathing respectively.

0 20 40 60 80 100 120 140 160 180
−50

0

50

100

150

200

Known θ (Degrees)

Me
as

ure
d θ

 (D
eg

ree
s)

Experimental Results

 

 

Test Subject #1 Avg.
Test Subject #2 Avg.
Avg. of Both Test Subjects
Ideal

Figure 9.10: Experimentally measured angle for a human swinging their arms.
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Figure 9.11: Experimentally measured angle for a human picking up an object.
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Figure 9.12: Experimentally measured angle for human transitioning from crouch-
ing to standing.
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Figure 9.13: Experimentally measured angle for a human breathing while standing.

9.4 Classification of MIMO Doppler Signals

In addition to determining the orientation of an oscillating target, we also are

interested in how the classification algorithm performs when the target is not

directly facing the antennas. We are also interested whether using a MIMO radar

architecture will improve classification. To answer these questions, the MIMO

radar described above was used. To mimic the earlier monostatic classification

scenario, one receive antenna was placed very close to the transmit antenna so

that the angle between them was nearly zero. The second transmit antenna was

placed at 45◦ to the right of the transmit antenna. A diagram of this setup is

shown in Figure 9.14 for clarity.
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Figure 9.14: Setup for collecting MIMO Doppler data for classification.

Five test subjects performed the motions of swinging their arms and picking

up an object at a distance of 10 feet from the transmit antenna. Background

noise data were also collected, to bring the total number of motions to 3. The test

subjects performed these motions (1) while facing directly toward the transmit

antenna and (2) while facing at a 90◦ angle from the transmit antenna. For the

classification, the training set consisted of data from receive antenna 1 while the

human target was facing directly toward the transmit antenna. Once this was

completed, we can investigate multiple scenarios. These scenarios are listed in

Table 9.1.
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Table 9.1: Description of classification scenarios when the antennas are placed
linearly.

Scenario Geometry

1 monostatic sensor with the target facing 0◦

2 monostatic sensor with the target facing 90◦

3 bistatic sensor with the target facing 0◦

4 bistatic sensor with the target facing 90◦

We expect the classification accuracy of scenario 1 to be very high because it

is the training scenario. The classification accuracy of scenario 2 is expected to

be lower because movements at 90◦ from the monostatic Doppler radar produce

no Doppler shift. However, human motions do not follow straight lines and often

have additional components aside from the main movement. The radar is able to

detect the smaller, but still perceptible components of the human motions that

are in the radial direction, making classification still possible for this scenario.

For scenarios 3 and 4, the classification accuracies are expected to be lower than

scenario 1. Based on inspection of equation 9.2, there is an additional cos(ϕ/2)

component that will decrease the Doppler frequency shift when compared to the

monostatic case. Because the angle between the transmit antenna and receive

antenna # 2 is 45◦, when the person is moving at an angle of 0◦ in relation to

the transmit antenna, the angle of δ2 in equation 9.2 is 22.5◦. When the person is

moving perpendicular to the transmit antenna, δ2 is equal to 67.5◦. Thus, scenario

4 should produce lower classification accuracies than scenario 3. Similarly, for

scenario 2, the antenna configuration is monostatic and δ1 is 90◦. Therefore, we

expect that this scenario would produce the worst results among the 4 scenarios.

The advantage of using a bistatic configuration is that target motion orthogonal

to the transmit antenna will be non-zero. This means that if no Doppler is detected

by the monostatic Doppler sensor, the motion can still be detected by the bistatic

Doppler sensor. We can also consider the converse situation where the target

motion is orthogonal to ϕ/2 (δ = 90◦ or θ = 90◦ − ϕ/2). This will cause the

bistatic Doppler sensor to detect no signal, but the monostatic sensor will still
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detect a component of the target’s motion.

The classification results for each of the scenarios described above are shown

in Table 9.2. Some observations can be made based on this table. First, because

human motions do not follow perfectly straight paths, the results of scenario #2

are not zero. Second, we expect scenario 2 (antenna #1, target angle = 90◦) to

produce the worst results. However, scenario 4 (antenna #2, target angle = 90◦)

actually produces the lowest classification accuracy. The reasoning for this is that

the antennas were placed in a line, without considering the total path length of

the electromagnetic waves. The path length to antenna 1 is 20 feet, whereas the

path length to antenna 2 is 24.14 feet. This will lower the signal to noise ratio by

1.6 dB. I obtained this value by using the bistatic radar range equation. There

is a factor R2
r in the denominator, which makes it a factor of approximately 1.45

overall, thus 1.6 dB lower.

Table 9.2: Classification results using a multi-sensor radar with human targets
facing in two different directions when the receive antennas are placed linearly as
in Figure 9.2.

Antenna #, Target Orientation

1,0◦ 1,90◦ 2,0◦ 2,90◦

Min (%) 92.0 67.6 78.7 59.6

Max (%) 97.8 74.7 84.4 68.0

Mean (%) 95.0 71.0 82.2 64.3

St. Dev. 1.29 1.72 1.39 2.88

Because of the path length difference between the monostatic and the bistatic

sensors, the experiment above was repeated with both path lengths equal to 20

feet. The angle between the transmitter and receiver #2 was maintained at 45◦.

This experimental setup is shown in Figure 9.15. In addition to changing the path

length of the bistatic sensor, the experiment was also expanded to include targets

moving at 45◦ relative to the transmit antenna. The results of this experiment

are shown in Table 9.4. Again, the monostatic case with the target facing 0◦ was

used as the training scenario and the other cases were used for testing. The six
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scenarios are listed in Table 9.3.

Table 9.3: Description of classification scenarios when the total path lengths are
equal for both sensors.

Scenario Geometry

1 monostatic sensor with the target facing 0◦

2 monostatic sensor with the target facing 45◦

3 monostatic sensor with the target facing 90◦

4 bistatic sensor with the target facing 0◦

5 bistatic sensor with the target facing 45◦

6 bistatic sensor with the target facing 90◦

Scenarios 2, 4, and 5 produce similar results because δ = 22.5◦ for each of these

cases. Moreover, the accuracy of scenario 2 is slightly higher than scenarios 4 and

5 because the bistatic Doppler equation has an additional cos (ϕ/2) term, which

lowers the bistatic accuracy slightly. Furthermore, the results of scenarios 3 and 6

are lower than the other scenarios because the δ angles are larger for these cases

than for the others. The accuracy of scenario 3 is lower than that of scenario 6

because δ = 90◦. Scenario 6 is low, but not as low as scenario 6, because δ = 67.5◦

and also because of the cos(ϕ/2) term in the bistatic Doppler equation.
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Figure 9.15: Setup for collecting MIMO Doppler data for classification.

Table 9.4: Classification results using a multi-sensor radar with human targets
facing in multiple directions when the total path lengths are equal for both sensors.

Antenna #, Target Orientation

1,0◦ 1,45◦ 1,90◦ 2,0◦ 2,45◦ 2,90◦

Min (%) 95.6 76.0 60.0 72.4 70.7 62.2

Max (%) 98.2 80.9 68.9 82.2 84.0 73.3

Mean (%) 96.8 78.4 64.7 77.8 77.9 67.0

St. Dev. 0.79 1.66 2.50 2.71 3.13 2.87

These classification results clearly show that high accuracies are possible even
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if the target is not facing the radar line of sight and also for a bistatic radar

configuration. If human motions could be performed in perfectly straight paths,

the Doppler frequency for the scenario with a monostatic sensor and a target

angle of 90◦ should be zero. However, because a human target’s motion will have

some components in other directions, the radar is capable of detecting them. These

results also illustrate that it may be possible to improve the classification algorithm

described earlier by using multiple sensors. The data from these sensors could be

fused together in some manner or additional features can be extracted to attempt

to improve the classification accuracy. The accuracy can potentially be improved

because the information in each sensor can provide redundancy that may solidify

the results. Furthermore, the two sensors may compliment each other by providing

information that the other sensor was incapable of picking up.

Confusion matrices have also been obtained for the 2-sensor Doppler radar

system. They have been obtained for scenarios 1, 2, and 5 of Table 9.4 and the

confusion matrices are shown in Tables 9.5, 9.6, and 9.7. Table 9.5 shows that

scenario 1 (monostatic sensor with the target facing directly toward the anten-

nas) achieves excellent classification not only for the total set, but also for each

individual motion that is classified. Tables 9.6 and 9.7 begin to show where the

classification accuracy decreases. Class #’s 1 and 3 (background and picking up

an object) achieve a high classification accuracy even though the target is facing a

different direction, and in the bistatic case, even though the radar antennas are not

colocated. The accuracy of class #2 (swinging arms) shows a significant reduction

when compared to the training scenario. Another observation is that the monos-

tatic configuration of Table 9.6 slightly outperforms the bistatic configuration of

Table 9.7.
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Table 9.5: Confusion Matrix for the Classification of Scenario #1 (Monostatic
radar with the target at an angle of 0◦).

Target Class

O
u
tp

u
t
C
la
ss 1 2 3

1 100 0 0.8

2 0 95.6 4.4

3 0 4.4 94.8

Table 9.6: Confusion Matrix for the Classification of Scenario #2 (Monostatic
radar with the target at an angle of 45◦).

Target Class

O
u
tp

u
t
C
la
ss 1 2 3

1 100 0.2 2.0

2 0 53.0 13.7

3 0 46.8 84.3

Table 9.7: Confusion Matrix for the Classification of Scenario #5 (Bistatic radar
with the target at an angle of 45◦).

Target Class

O
u
tp

u
t
C
la
ss 1 2 3

1 100 1.0 2.3

2 0 48.5 8.3

3 0 50.5 89.4



Chapter 10

Conclusions and Recommendations

for Future Work

10.1 Conclusions

Two radar systems have been successfully constructed for the detection of defilade

human targets. The S-band radar is capable of ranging targets through wall bar-

riers such as brick and concrete at short distances, whereas the millimeter-wave

radar is capable of ranging human targets at longer distances and through light

foliage.

Classification of human motions has also been demonstrated and has been

shown to achieve accuracies up to 90% when using empirical mode decomposition

for feature extraction. Based on ROC-like curves, the support vector machine

classifier was shown to select the optimal parameters for classification. Also, error

analysis shows that human motion classification is robust to small perturbations

of the feature values. This confirms that the support vector machine is indeed,

forming an optimal separating hyperplane that maximizes the margin between

classes.

In addition to classification, simulations of micro-Doppler signatures that arise

from simple human motions have been created. These models demonstrate that

complex human movements can be reasonably approximated by simpler models and

that these models very accurately mimic experimentally measured micro-Doppler
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responses.

In regards to the MIMO Doppler radar, an algorithm has been developed that

is capable of not only measuring time-varying micro-Doppler signals, but can also

predict with reasonable accuracy the orientation of the Doppler target. This, when

combined with target ranging, can provide the radar operator with valuable infor-

mation. Utilizing a bistatic Doppler configuration, accurate classification results

were obtained for targets that were facing in different directions. The ability of

the classifier to be accurate for different target orientations is extremely important

because uncooperative targets may not be facing directly toward the radar.

10.2 Future Work

The radar systems that have been developed have been shown to yield accurate

and reliable results; however, the systems can be improved. If the micro-Doppler

radars can improve their sensitivity, then it is possible that additional information

such as respiration and heart rates may be inferred. Information about whether

or not a human target has an increased respiration or heart rate can be useful

to the warfighter. It would alert them to potential human threats that may be

under stress due to concealed explosives or possibly tell a soldier that an enemy is

fatigued.

In addition to increasing the system sensitivity, additional work may be able

to improve the classification accuracy by being more selective about which EMD

features are beneficial for classification and which EMD features may not provide

any discriminating information in regards to human movements.

The MIMO radar can be improved significantly by eliminating mixer sidebands

that often undermine the need to use a coherent Doppler radar. The power in the

sideband is often comparable to the main Doppler signal, which leads to confusion

concerning the direction of motion. This information is critical to selecting the

appropriate equation to use for angle estimation. The results shown in section 9.14

suggest that the classification algorithm may be improved upon if multiple sensors

are used. A method for combining the information obtained from each sensor

can be developed to achieve this. The classification can be improved because

the information from each sensor can provide redundancy that may solidify the
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results and can also complement each other by providing information that the

other sensors may not pick up.
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